
x-RDF-3X: Fast Querying, High Update Rates,
and Consistency for RDF Databases

Thomas Neumann
Technische Universität München

Munich, Germany

neumann@in.tum.de

Gerhard Weikum
Max-Planck-Institut für Informatik

Saarbrücken, Germany

weikum@mpi-inf.mpg.de

ABSTRACT
The RDF data model is gaining importance for applications
in computational biology, knowledge sharing, and social com-
munities. Recent work on RDF engines has focused on
scalable performance for querying, and has largely disre-
garded updates. In addition to incremental bulk loading,
applications also require online updates with flexible control
over multi-user isolation levels and data consistency. The
challenge lies in meeting these requirements while retaining
the capability for fast querying.

This paper presents a comprehensive solution that is based
on an extended deferred-indexing method with integrated
versioning. The version store enables time-travel queries
that are efficiently processed without adversely affecting
queries on the current data. For flexible consistency, trans-
actional concurrency control is provided with options for
either snapshot isolation or full serializability. All methods
are integrated in an extension of the RDF-3X system, and
their very good performance for both queries and updates
is demonstrated by measurements of multi-user workloads
with real-life data as well as stress-test synthetic loads.

1. INTRODUCTION

1.1 Motivation
In the last few years, there has been rekindled and steadily

increasing interest in the Semantic-Web data model RDF
[23]. Important application areas like computational biology
(see, e.g., uniprot.org) and Social-Web knowledge-sharing
(see, e.g., dbpedia.org) prefer RDF over other data models
(e.g., relational or XML) for a number of reasons. 1) RDF is a
natural representation for graph-structured data, by means of
subject-property-object (SPO) triples, which can be viewed
as constituting nodes (S and O) and edges (P) of labeled
graphs. 2) RDF spans the whole spectrum (or evolutionary
path) from schema-free or highly heterogeneous collections
of triples to repositories with semantic constraints and (still
flexible) schemas. 3) it is easy to attach annotations to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

primary data or other annotations, for capturing provenance
or data-quality information.

Substantial research has gone into developing concepts,
algorithms, and full-fledged systems for scalable management
of RDF data [1, 3, 12, 14, 25, 27]. These projects have fo-
cused on speeding up complex join queries on large RDF
collections, by means of novel approaches to indexing, query
processing, and query optimization. However, biological or
social-network data is not static at all; these appliations need
updates, too. Incremental bulk loading has been addressed in
[13], based on a deferred-indexing method, but this technique
does not support online updates at high rates. Also, it pro-
vides only read-committed isolation of transactions and even
lacks snapshot isolation [2]. It is clearly foreseeable that ap-
plications will require online updates as well, potentially with
high throughput demands and non-trivial consistency needs.
This is a major challenge for the heavily read-optimized
RDF engines mentioned above. The aggressive indexing or
view materialization employed by these systems would incur
prohibitive costs for updates, unless new ways are found for
reconciling fast querying with high-throughput updates.

Consider a social-tagging community such as library-
thing.com, where hundred thousands of users share their
personal knowledge about books, with book metadata, anno-
tations (tags), ratings, comments, recommendations, cross-
language links, links to external sites, etc. Also, the com-
munity members have personal profiles and social relations
like friendships, recommendations for ”interesting users”,
thematic user groups, etc. Such communities exhibit very
high dynamics: new users register, users join groups, add
books, add tags or comments to existing books – all this at
a high rate with occasional load bursts. Moreoever, there
are cross-links between different social-community sites, in
the spirit of the Linking-Open-Data movement (see linked-
data.org), which entails the need for keeping heavily updated
graphs consistent.

Although this is not a classical OLTP application, these
updates do pose mission-critical consistency requirements.
Simply treating each individual insertion or change of an
RDF triple as an atomic step would fail to meet these de-
mands. For example, when a new book is added, it may
have to be linked to already existing versions of the book in
other languages and also to external sites (e.g., amazon.com).
Likewise, when a user adds tags on a book, this may be in
combination with posting a comment and, perhaps, linking
to another user. Together, these steps should form an atomic
transaction. If the new tags and comments are influenced, in
the user’s mind, by other users’ postings, there is even a read-

256

write dependency that needs to be taken into account, to
avoid confusing views of the data and irritated users. While
transactional isolation is an obvious mechanism, applications
may often be satisfied with relaxed guarantees like snapshot
isolation, which comes with better cost/throughput ratio.
But specific procedures of the application may still need
full serializability, and it must be possible to mix different
isolation levels across the workload.

1.2 Contribution
This paper develops new methods that reconcile fast query-

ing with efficient online updates at high rates, versioning,
time-travel access, and transactions on RDF databases. This
is a difficult issue already for single-user mode: aggressive
indexing as used by state-of-the-art RDF engines incurs a
big penalty for updates, but fewer indexes would significantly
slow down queries. For multi-user mode, the additional diffi-
culty arises that updates may cause memory, disk, or lock
contention with adverse impact on parallel queries.

The methods are fully implemented by extending the open-
source system RDF-3X [12, 13]. We refer to our extension
as x-RDF-3X; its source code will be available at [17]. Our
approach is inspired by the deferred-indexing approach of
[13], but makes a much bigger step forward by developing
a comprehensive solution that efficiently supports the full
suite of desiderata for updates, versioning, and transactions.

The paper’s technical contributions are the following: 1) an
extended deferred-indexing method that supports versioning
and can sustain high update rates. 2) a new query processing
techniques that enable time-travel querying for arbitrary joins
of SPARQL triple patterns, without unduly degrading queries
on the current data. 3) a new low-overhead way of version-
based, fine-grained, transactional concurrency control, either
with snapshot isolation or with full serializability, and 4) the
x-RDF-3X implementation and performance measurements
in comparison with the original RDF-3X and a PostgreSQL-
based engine.

2. BACKGROUND

2.1 Related Work
RDF engines have wide differences in the way they map

SPO triples onto storage-level tables or files, how they index
triples, and how they process complex queries. Early RDF
systems like Jena [9, 26] and many Semantic-Web-oriented
engines were not designed for scalable performance or lack
support for advanced join processing. Other systems such as
[4] heavily rely on manual tuning by making the right choice
of materialized join views. The work by [1] opened the path
to a new generation of more scalable engines tailored to RDF
workload characteristics. This specific work uses minimum-
width property tables (i.e., binary relations) mapped onto a
column-store. Follow-up work with novel indexing and query-
processing techniques includes [25, 20, 12, 14, 3]. Among
these, RDF-3X [14] has achieved the best query performance
in all published measurements.

Storage designs and system support for versioning has a sig-
nificant history in the database literature, ranging from the
seminal work on Postgres [21] (and the even older operating-
systems-level work by [18]) to the recent project on Immor-
talDB [10]. These systems use an append-only storage model,
possibly with some form of garbage collection for discarding
old, unwanted versions. The units of versioning are database

records (relational tuples), and versions are timestamped at
transaction-commit time.

The state-of-the-art ImmortalDB system has developed
lazy-timestamping techniques to avoid repeated access to
record versions within the critical path of a transaction’s user-
perceived response time. For indexing versions, it enhances
standard B+-trees with a time dimension and time-split
strategies following earlier work on the TSB-tree [11]. There
is a large literature on temporal and multiversion indexing
structures (including the TSB-tree); an excellent survey is
given by [19].

An attractive way of implementing a versioned storage
system is by means of a multi-stage architecture with deferred
and batched maintenance between stages. This approach
goes back to classic notions of differential files, and is best
exemplified in the work on the log-structured merge tree or
LSM-tree for short [15]. Our multi-stage architecture has
been inspired by this work.

RDF-specific versioning is addressed in the tGRIN proto-
type [16]. This work develops a subgraph index structure
for time-annotated RDF versions, with support for temporal
querying but no consideration of online updates. tGRIN
processes queries by identifying the smallest subgraphs that
contain query answers. The paper presents performance com-
parisons against Jena, Sesame, and 3Store (but not against
RDF-3X), and reports response times in the range of 10 to
30 seconds for datasets with 20 million triples.

Transaction support for RDF databases is vastly unex-
plored, because the need for mixed workloads with concur-
rent queries and updates is arising only now. SQL engines
support a suite of transaction isolation levels, ranging from
read-committed to full serializability (SR). But record-level
concurrency control along these lines would cause disastrous
overhead for RDF data because SPARQL operations often
touch a huge number of fine-grained RDF triples. Snapshot
isolation (SI) (see, e.g., [2]) is a version-based level that can
boost the performance of read-only transactions by giving
them wait-free access to consistent versions. However, it is
well known that SI may exhibit anomalies that could destroy
the consistency of a database, with small but non-zero prob-
ability. Thus, there is a need for systems to support multiple
isolation levels.

2.2 RDF-3X Architecture
As we implemented our apporach in RDF-3X [17] we give a

brief overview here. RDF-3X employs an exhaustive-indexing
approach by building clustered B+-trees on all six SPO
permutations and also all permutations of six binary and
three unary projections. This design rationale is similar to
the methods of [7], [22], and [25]. For the projection indexes,
the missing component(s) (S, P, or O) are replaced by count
aggregates, for fast statistical lookups. In all indexes, all S,
P, O components are implement as integer identifiers rather
than the original literals (URLs or string constants). RDF-3X
uses a dictionary with literal-to-identifier and identifier-to-
literal mappings. For fast query processing, RDF-3X uses
query optimization [13] and run-time methods for sideways
information passing within the resulting join trees [14].

RDF-3X had previously been extended for incremental
bulk loading and a weak form of online updates (with lim-
ited performance and without transactional support) [13].
It uses a deferred-indexing approach with three stages: 1)
updates are initially performed in workspaces that are private

257

Main Indexes Differential
Indexes

Queries Updates

Merges

S

P

O

SP

SO

PS

PO

OS

OP

SPO

SOP

PSO

POS

OSP

OPS

SPO

SOP

PSO

POS

OSP

OPS

Figure 1: Differential indexes in RDF-3X

to program executions; 2) when a program terminates or
issues a savepoint, the updates are merged into differential
indexes shared by all running programs; 3) the differential
indexes are periodically merged into the main indexes by
a background process. There is one differential index for
each of the main indexes: the six indexes on permutations
SPO triples (SPO, SOP, . . .), and the two mappings in the
literal-identifier dictionary. The merge operations between
storage stages are performed in a batch-oriented manner with
efficient sequential access. Queries are executed against both
main and differential indexes, at a moderately increased cost.
This deferred-indexing architecture is illustrated in Figure 1.
The current paper uses this design as a starting point, but
adds major extensions for both enhanced functionality (ver-
sions, time-travel, transactions) and much better scalability
and efficiency of online updates.

3. VERSION STORAGE AND INDEXING
Transactions always create new versions rather than over-

writing existing triples. This forms the basis for both an
efficient update mechanism based with deferred indexing, and
transaction isolation that provides read access to globally con-
sistent database snapshots. Designing a suitable storage and
indexing system for RDF versions entails a number of tech-
nical difficulties: 1) keeping the space overhead of versions
as low as possible, to minimize the potential degradation on
scan and merge-join performance, 2) assigning and managing
timestamps on a per-transaction basis, but again with as
little interference with the normal update mechanisms as
possible, and 3) coping with hotspot situations where a few
triples would produce a large number of versions.
Triple Versions. Any change to an RDF triple will modify
it so significantly (either S or P or O changes) that it will
end up at completely different index positions (in the indexes
for SPO, SOP, OPS, etc.). We therefore consider updates
as pairs of deletes and inserts, and maintain versions of
individual triples. For this purpose, we augment the triples
by two additional fields: the created and deleted timestamps,
where the latter has a null value for versions that are presently
alive. The [created,deleted[interval is the lifespan of the
triple version. We can reconstruct the database state as of a
given point in time t by returning all triples for which t falls
into the corresponding lifespan intervals.

This is conceptually straightforward, but we need to be
careful about space consumption and devise specific compres-
sion techniques. In RDF-3X, the leaf pages in the indexes
use byte-wise compression [12], where a header byte for a

triple encodes the lengths of the variable parts. Since there
are values that cannot be valid header bytes, we use these
to encode timestamp differences in the compressed triple
stream within a page. This achieves great space savings
whenever subsequent triples in an index have the same or
similar timestamps, which is often the case in realistic inser-
tion load patterns. Insertions in the middle of a run require
additional encoding steps. For incremental loads by a single
“transaction”, the space overhead is nearly zero as timestamps
rarely change. This is a workload pattern that we would
expect for computational-biology repositories. In all cases,
decompressing during index scans has very low overhead.
For a query with a given as-of timestamp, the header bytes
allow us to skip irrelevant triples.
Timestamping. Ideally, timestamps reflect the commit
order of transactions. Unfortunately the commit order is
not known when inserting new data. This complication
has led systems like Immortal DB [10] to write temporary
timestamps and then update the written data again once
the real timestamp is known. These timestamp adjustments
can be performed in a lazy manner by a background process
after the transaction commits, but still incur non-negligible
costs.

We use a different approach, utilizing the fact that transac-
tions initially perform all updates in private workspaces and
merge their new triples into the differential indexes only at
occasional savepoints. Each transaction is assigned a write
timestamp once it starts updating the differential index, and
this timestamp is then used for all subsequent operations.
Triples that have not yet migrated into the differential index
need no timestamp, as they are only visible to the current
transaction. Ideally the migration is performed at transac-
tion commit only, which means that the timestamps perfectly
reflect the commit order and need no further updates.

In the general case where workspace updates merged into
the differential indexes at savepoints before the transactions
reaches its commit point (i.e., due to memory pressure),
we still assign a write timestamp as outlined above and
use the same timestamp for the rest of the transaction’s
updates, but then lose the connection to the transaction
commit order. To rectify these situations, we introduce a
transaction inventory that tracks transaction ids, their begin
and commit times (BOT and EOT), the version number used
for each transaction, and the largest version number of all
committed transactions (highCV#) at the commit time of
a transaction:

transId version # BOT EOT highCV#

T101 100 2009-03-20 16:51:12 2009-03-20 16:55:01 300
T102 200 2009-03-20 16:53:25 2009-03-20 16:54:15 200
T103 300 2009-03-20 16:54:01 2009-03-20 16:54:42 300
.

This inventory serves to efficiently decide if a transaction
committed before another one. Also, it relates the relative
time of transaction ordering and version numbering to wall-
clock times. This is needed for supporting time-travel queries
and snapshot isolation, explained in Section 4. Note that
the transaction id does not need to be stored, it is mainly
useful for debugging. The version number offers an implicit
transaction id.
Handling Hotspots. The presented versioning techniques
have very low overhead. However, there are potential prob-
lems with hotspots: triples that are inserted and deleted very

258

frequently. Note that this refers to insertions and deletions
of exactly the same triple, with identical values for all three
components (S, P, O). After a large number of inserts (a
few 1000 in RDF-3X), the versions for the same triple would
span multiple pages. Our remedy is the following. When we
can no longer store all versions of the same triple on a single
page, we create a separate B+-tree that is linked to from
the original leaf page. The main index leaf only contains
the current-time version and also the oldest created times-
tamp and the most recent deleted timestamp of all versions.
This extra information allows us to skip the triple if none of
its versions qualifies for a given time-travel query, without
touching the separate B+-tree at all.

Hotspot triples should be rare, but derived index entries
could become hotspots more easily. RDF-3X maintains
aggregated-triples indexes for the 2-projections (SP, PS, SO,
etc.) and 1-projections (S,P,O) of all triples. The entries
in these indexes change at a much higher rate. For exam-
ple, whenever a new triple is inserted for an existing SP
value pair but with a new O value, the corresponding SP
index entry is updated and would trigger the creation of a
new version of the index entry. We therefore decided that
projection/aggregation indexes are not versioned at all; we
only maintain their present-time part. The indexes are used
for selectivity estimation, for which we can tolerate that
we do not have as-of statistics and instead use present-time
statistics, and for faster scans when a sub-query does not
need all three SPO components. The latter entails some
modification to the query optimizer. When an execution
plan uses a particular projection/aggregation index, the plan
is adjusted so as to scan the index in both main-indexing
and differential-indexing stages (see Section 2.2) and merge
these two streams on the fly. For the differential-indexing
part, this is actually implemented by computing the count-
aggregates via scanning the corresponding full-triples index.
This is performed only for the actually required projection
– for example, for SP* from SPO, but not PS* etc. unless
needed at this point.

4. TIME-TRAVEL QUERIES
Query Processing. With the version storage of x-RDF-
3X developed in this paper, time-travel queries, i.e., queries
running on database states as they were in the past, are
amazingly easy to implement. The main technique is to eval-
uate queries – by scanning indexes, merging triple streams,
etc. – with a timestamp test based on the query transaction’s
as-of timestamp TR. This way, we can identify all relevant
versions on the fly. This way, we can support time-traveling
for the full set of SPARQL triple patterns (manyway joins)
and filter conditions offered by RDF-3X. The query optimizer
first generates plans suitable for current-time queries and
then adds version-number filters and other adjustments to
ensure the proper timestamping of the query results. In
particular, whenever the current-time plan makes use of
projection/aggregation indexes, the optimizer adds scans
on appropriately chosen full-triples indexes, aggregates the
triples on the fly, and merges these streams with the ones
from the current-time projection/aggregation indexes (see
also Section 3).
Timestamps and Version Numbers. Recall from Sec-
tion 3 that we create version numbers that are not necessarily
in synch with the transaction commit order. This is a design
decision for higher update throughput, as it avoids having to

Figure 2: Out-of-order version numbers

touch a stored version a second time at transaction time or
later. So in contrast to the design of ImmortalDB [10], which
had different design criteria and constraints, we minimize
the version overhead during normal operation, but this now
entails complications for time-travel queries by facing the
following problem of out-of-order version numbers.

Between two transactions, the one that committed earlier
may have used higher (i.e., “younger”) version numbers. So
when scanning indexes and seeing a version number, the
query execution has to look up the transaction inventory and
perform a suitable test to check if the encountered version
number belongs to a transaction that is a) in the time-travel
scope of the query and b) indeed committed. This situation
is illustrated in Figure 2. Here the time-travel query must not
see the - then uncommitted - versions with version numbers
50 and 70. And for each accessed triple, it needs to determine
among the versions numbered 10, 20, 30, 40, and 60 those
that were committed last before the time-travel query’s as-of
timestamp. This could be version number 20 for a triple x,
which also has versions numbered 10 and 40, and version
number 30 for a triple y, which has another version numbered
40. When accessing triples in a time-travel transaction for
timestamp TR, we check if the versions fall into the range of
transactions active at TR. If yes, we maintain an in-memory
cache of active transactions to see if have to ignore the triple
or not. Otherwise, we can decide globally if a triple is visible
(beeing either too new or old enough for sure).

5. CONCURRENCY CONTROL

5.1 Snapshot Isolation (SI)
The versioning of RDF triples provides snapshot isolation

(SI) almost for free. We implemented SI via version numbers
for reads and write locks to satisfy the write-set disjointness
of concurrent transactions. The fine-grained nature of RDF
raises issues regarding the overhead of lock management; we
discuss them in Section 5.3 in the context of serializability
which requires both read and write locks for update transac-
tions (but no locks at all for read-only transactions). We use
version numbers for determining the most recent committed
version that a read access should see. We need handle the
complication that version numbers do not necessarily reflect
the commit order of transactions. We described our solution
in Section 4.

5.2 Serializability (SR)
Usually SR on top of SI is achieved by using SI for read-only

transactions, and adding locking for read-write transactions.
This is also our solution. What complicates the situation
for RDF is that the database may consist of billions of tiny

259

S

P

O

Figure 3: Geometric interpretation of RDF locks

triples. Locking individual triples is not practically viable
because of the potentially huge memory demand for the lock
table, and lock escalation is likely to lead to deadlocks due to
the lack of natural ordering within the RDF graph. Next, we
show how to bound the overhead of predicate locks without
unduly restricting the degree of concurrency.

5.3 Predicate Locking
Internally, RDF-3X maps all SPO triples into integer

triples by using a dictionary for literals. This means that all
triples form points in N3. SPARQL queries consist of triple
patterns, where each triple pattern uses constant values or
variables for the S, P, O positions. Thus, each triple pat-
tern denotes a 3-dimensional axis-aligned rectangular box
in N3 data space, as illustrated in Figure 3. By keeping
track of all boxes scanned or modified by a transaction and
testing for overlaps, we can detect all conflicts between trans-
actions. Our lock granularity are essentially these boxes,
and we could use a standard locking protocol on this basis.
To improve concurrency we use a conflict-ordering protocol
(see Section 5.4), but for now it is sufficient to think of the
boxes as regular locks. The locks are represented by pro-
jections of N3 such as x1 = (101, 11, ∗), x2 = (200, 11, ∗),
x3 = (200, ∗, 5000), x4 = (∗, ∗, 6000) where the conflicting
pairs are (x1, x4), (x2, x3), and (x2, x4). Because transac-
tions with many insert operations often write-lock sequences
of consecutive projections by the nature of assigning new
identifiers, we can also combine contiguous boxes into 3D
range predicates such as (101, 11, 1..7) or (301..450, 11, ∗).

Tracking the locked boxes is light-weight for queries; a
SPARQL query typically consists of a few or perhaps tens
of patterns, much less than the number of examined triples.
Update transactions are much more expensive, in particular
if they perform (incremental) bulk insertions. In principle,
one could lock a tiny box for each inserted or modified triple,
but if a transaction loads millions of triples (in parallel to
ongoing queries) this is no longer practically viable. Instead,
we dynamically construct coarser-grained locking boxes on
demand, using the following procedure.

Initially, all updates are stored in the per-transaction
workspaces. At commit time, the transaction must request
write locks for all its deferred updates before merging them
into the shared differential indexes. We give each transaction
a budget in terms of a maximum number of write locks it
can use (e.g., 1000), and then construct locking boxes that
cover all updated triples and as little non-modified space of
N3 as possible.

In this covering of updated data with a limited number of
boxes, we aim to minimize the unnecessarily locked space
as this may cause “false conflicts” that degrade concurrency.

We conjecture that this bounded-cover problem is combina-
torially hard (related to NP-hard problems liket set cover
– but we do not have any theorems); so we use heuristics.
Similarly to the related but different problem of optimizing
R-tree splits of bounding boxes, we aim to minimize the
volume of the “falsely locked” space.

We define the volume of boxes in N3, by scaling the ranges
of existing identifers in each of the S, P, and O dimensions
to length 1 and assume a 3D grid of discrete cells on this
uniformized space. As a result, the volume sub-cubes (or sub-
planes for projections) reflect the total number of distinct
S, P, and O values in a data-adaptive manner. If a box
comprises many consecutive P values and there are much
fewer P values than S or O values overall, then the box is
made more streched in the P dimension and thus given higher
volume. This is exactly the desired effect of treating boxes
with higher conflict potential in a finer-grained manner.

Ideally we would compute, for each transaction, the min-
imum-volume cover of its locked boxes with the allowed
bound for the number of locks, but run-time techniques like
this would unduly delay the response times of interactive
transactions. Therefore, we settle for a faster heuristic ap-
proach, which resembles lock de-escalation techniques [6]
(decomposing coarser lock granules into finer ones as con-
flicts arise) but operates on 3D range predicates. Initially,
we place all modified data points in one big lock cube. Then,
we repeatedly examine the lock cube with the largest volume
and split it into two smaller sub-cubes using the algorithm
shown in Figure 4. The algorithm examines the input boxes
with regard to all three dimensions d (d is S, P, or O), finds
the largest ”falsely locked” gap along these dimensions, and
then computes the resulting minimum-volume boxes if one
would partition the lock along this dimension. It then picks
the split dimension such that the resulting total volume for
all locks is minimal. This process is repeated until the maxi-
mum number of allowed locks is reached. The algorithm has
computational complexity O(n logn) where n is the number
of a transaction’s updated triples, or O(n) if the triples are
already sorted in each dimension. Our measurements confirm
that this is a practically viable method.

The currently held locks can be organized efficiently in a
k-d tree [5]. As all predicates form axis-aligned bounding
boxes in the data space, we can test for lock collision by
finding all intersecting boxes and checking for conflicting
lock modes. Note that conflict checks are relative infrequent
compared to record level locking. We only have to check the
predicates in each query, which are few, and the covering
boxes for update transactions, where we limit the number of
boxes. The overall overhead for lock management is therefore
low.

5.4 Conflict Ordering
When detecting a lock conflict, i.e., when one transaction

tries to lock a region that intersects with an existing (and
mode-wise conflicting) lock, there are different strategies to
handle the situation. The simplest one would be to abort
the lock-requesting transaction. Alternatively, one could use
two-phase locking, where the second transaction waits until
the first transaction releases its lock (at its commit time).
This standard technique is unnecessarily restrictive in our
setting. As we are operating on versioned data, there is no
need to immediately block a transaction.

Instead, we ensure that the executed transaction schedule

260

splitLock(cube = [Smin : Smax]x[Pmin : Pmax]x[Omin : Omax])
for each d ∈ {S, P,O}
bd = 0, sd = arg mint∈cube t.d, l = sd
for each t ∈ cube ordered by t.d

if |t.d− l.d| > bd
bd = |t.d− l.d|, sd = t

l = t
C1

d =minimum bounding box for {t ∈ cube|t.d ≤ sd}
C2

d =minimum bounding box for {t ∈ cube|t.d > sd}
d = arg mind∈{S,P,O} |C1

d |+ |C2
d |

return (C1
d , C

2
d)

Figure 4: Lock Splitting Algorithm

is serializable by dynamically building a serialization graph
(SG) [24]. Initially, all transactions can be arbitrarily ordered.
As we observe conflicts, we add order-constraining edges to
the SG and check that the graph remains cycle-free:

• if a read lock of transaction T1 conflicts with a previous
write lock of transaction T2, we order T1 before T2

(reading an earlier - already committed - version);

• if a write lock of transaction T1 conflicts with a previous
read or write lock of T2, we order T1 after T2.

If this reordering is not possible (either because it creates a
cycle in the SG or if T1 would have to be ordered before a
committed transaction because of other edges), we abort T1.
Note that before the commit point this reordering is purely
conceptual: we ensure that the schedule is still serializable,
but we do not cause any transaction waits. Only at commit
point it may be necessary to wait. When a transaction T1 has
been ordered before T2, T1 must commit (or abort) before
T2 is allowed to commit.

This SG-testing protocol greatly improves throughput and
the feasible concurrency, compared to a conservative, real-
locking protocol. The only disadvantage is that we must
possibly remember locks even after a transaction’s commit
(which is a common feature of graph-testing concurrency
control [24]). We can drop locks from the lock table (and
transactions from the SG) only when all concurrently running
transactions are finished. Otherwise it could happen that
during a long-running transaction a shorter transaction has
already commited (and discarded its locks) before a conflict
cycle could arise. But this addition to the lock-table and SG
bookkeeping is straightforward and light-weight.

6. EVALUATION
We implemented all data structures and algorithms for

versioning, time-travel queries, and transactional isolation
in the RDF-3X engine [17]. Note that this software does
not provide any update capabilities other than bulk-import.
We denote our extended version as x-RDF-3X. We studied
the efficiency of our methods by running different types
of benchmarking workloads, comparing run-times averaged
over a large number of transactions. All experiments were
conducted on a Dell D620 PC with a 2 Ghz Core 2 Duo
processor, 2 GBytes of memory, and running a 64-bit Linux
2.6.31 kernel.

Competitors. We ran the same workloads on two oppo-
nents that represent two classes of alternative architectures:
1) As a triple store based on a relational engine, we used
PostgreSQL 8.4 as described in [12]. PostgreSQL has built-in
versioning and uses snapshot isolation for transactional con-
currency control. 2) As a native RDF system we used Jena

(SDB 1.3.0, Derby 10.5.3.0) [9], which also provides trans-
action support. Jena is widely considered the most mature
system in this category. We also ran experiments with other
RDF systems (Mulgara, Yars2, Sesame 2 – tGRIN is not
publicly available), but encountered significant performance
limitations.

Data. As there is no established benchmark for RDF up-
dates, we constructed our own workloads based on data from
a partial crawl of the LibraryThing book-tagging Web site
(www.librarything.com). RDF triples capture the tagging
activity of this community: when a user u annotates book
b with tag t, this (u, t, b) combination forms an SPO triple
[12]. This results in a large number of distinct P values and
in skewed frequency distributions. Additional RDF triples
are formed by user or book metadata, friendship links, etc.

Workload. For constructing a mixed read-write workload,
we assume that when a user tags books, she first examines the
existing tags, thinks a moment about her choice of tags, and
then enters these tags - everything within a single transaction.
(This interaction template follows the UI of the LibraryThing
Web site). By running many of these transactions either
sequentially or in parallel, we mimic the natural growth of
the dataset and naturally introduce data access skew and
hot spots. We used this transaction type as a building block
for constructing a three-phase lifecycle: 1) bulk-loading,
2) growing the data by transactions, and 3) querying the
existing data. Each phase is measured separately.

Bulk-load phase. We took one million random triples
from the LibraryThing dataset and split it into two parts:
the first part consists of half of the user-tag-book triples and
all other triples with user or book metadata. We measured
the time to complete the data import.

Online-update phase. We took the remaining half of the
user-tag-book triples, grouped them by user-book pairs, and
ran these user-book-specific updates as a single transaction
as described above. We ran these transactions in multi-user
mode, using an open system model [8] to reflect a realistic
workload with many clients. Transactions arrive at the
system by a Poisson process with rate λ. This load model
creates occasional load bursts, which are more realistic than
a closed system model with a fixed multiprogramming level.
We did not exert any admission control, and left choosing
the number of system-internal worker threads to the systems
under test. We varied the arrival rates, and report numbers
for the maximum sustained throughput and the average
response time at particular arrival rates. The user think
time inside the transactions was set to one second.

Query phase. We ran a series of time-travel queries
on the complete one-million triples database as created by
the first two phases. We adopted the queries of [12], but
evaluated them as of a randomly chosen timepoint in the
past. We measured these query run-times in single-user
mode, with cold and with warm caches.

We also measured performance with all 35 million triples
from the dataset instead of the one-million sample. This
had little effect on the transaction rates of PostgreSQL and
x-RDF-3X (preserving their relative performance ratio), but
Jena could not load this large dataset. We thus report only
on the one-million-sample results.

6.1 Bulk Load and Sequential Updates
The initial bulkload used the import functions provided

by each of the competitors. We give the times for loading

261

www.librarything.com

system total time [s] triples/second space [MB]
RDF-3X 36 23502 113
x-RDF-3X 55 15383 113
PostgreSQL 91 9228 373
Jena 929 910 375

Figure 5: Performance for the initial bulkload

system total time [s] triples/second
x-RDF-3X 10.34 14876
PostgreSQL 189.91 810
Jena 193.70 794

Figure 6: Performance for sequential updates

half of our test data in Figure 5, and also give the resulting
database sizes. RDF-3X without update support performs
best, with x-RDF-3X following in second place. Note that
our performance loss compared to the original RDF-3X is
somewhat misleading. We do have to pay some overhead by
our modifications to the RDF-3X engine, but surprisingly
most of the performance difference does not come from these
but from input parsing. For larger datasets where the import
is dominated by I/O costs, both systems perform nearly
the same; we verified this by bulk-loading all 35 million
triples into both systems. PostgreSQL performs slightly
worse, although it did not have to do any complex input
parsing; we used the RDF parser from RDF-3X to generate
text data that could be directly imported into PostgreSQL,
and did not count the RDF-to-text conversion (which took
an additional 4s when using the RDF-3X parser). Jena is
an order of magnitude slower than the other systems. The
reasons are not fully clear to us.

We also studied the run-time of basic update operations.
After completing the initial bulk-load, we added the remain-
ing half of the one-million triples dataset by sequentially
executing update operations. This measures elementary up-
date costs without any concurrency. The results are shown
in Figure 6.

6.2 Concurrent Read-Write Transactions
We employed an open system model with read-write trans-

actions as explained above. We gradually increased the
arrival rate λ of the transactions from low values where trans-
actions run more or less sequentially (because of long 1/λ
inter-arrival times) to high λ values until systems could no
longer sustain the throughput. Beyond this point, response
times grow dramatically and would approach infinity. This
way we could determine the maximum sustained throughput
of each system and the response times at different throughput
levels. For each parameter setting we ran the experiment
with 10,000 transactions and measured the response time of
each transaction. We also included an extreme stress-test
where all transactions arrived instantaneously at the very
beginning of a run (denoted as “λ =∞”).

The results are shown in Figure 7. Initially x-RDF-3X,
PostgreSQL, and Jena perform similarly, as all systems are
still lightly utilized for low arrival rates up to 5. Average
response times in this load range are around 2 seconds. As
the load increases the differences become much larger. Post-
greSQL becomes saturated at an arrival rate of 25 where the
average response time goes up to 17 seconds, and degrades
for λ = 50. x-RDF-3X handles this throughput of 50 transac-
tions/second very well, and even at 200 transactions/second
still has response times around 2 seconds. In terms of av-
erage response times at throughput λ = 100, x-RDF-3X

outperformed PostgreSQL by a factor of 40. Jena exhibits
severe problems with this multi-user workload. It performs
well only for very low arrival rates, but saturates already at
5 transactions per second and crashed for higher λ.

Overall, x-RDF-3X could sustain a throughput of 200
transactions/second with hardly any slow-down of its near-
sequential response times of 2 seconds. If we view 2 seconds
average as a reasonable bound for user-tolerated response
time on an interactive multi-user system, PostgreSQL could
meet this standard only up to about 20 transactions/second,
and Jena failed completely at around 5 transactions/second
at best. The response time gains of x-RDF-3X at high
throughput levels were one or two orders of magnitude.

6.3 Time-Travel Queries
In the previous workload, the queries are relatively simple

lookups. To study the overhead induced by the tuple ver-
sioning, we also measured the more complex LibraryThing
queries from [12] but made them time-travel queries that re-
turn the results as of a given timepoint in the past. As only
x-RDF-3X supports time-travel querying, the competitor
systems just ran regular queries (as of now). For x-RDF-3X,
the overhead that we wanted to quantify is the extra cost
incurred by reading but ignoring versions that are newer
than the query timestamp.

The results are shown in Figure 8. Both PostgreSQL and
Jena perform poorly on these complex queries. RDF-3X and
x-RDF-3X have similar performance, with a mild slowdown of
x-RDF-3X in the cold-cache case. This is mostly because the
time-travel queries cannot use any projection/aggregation
indexes and thus require more I/O. However, the overhead
is small and the query run-times of x-RDF-3X are nearly as
good as those of the original RDF-3X (despite the advantage
of RDF-3X that it does not keep versions and runs regular
instead of time-travel queries).

6.4 Locking Overhead
Finally, we studied the costs of serializability (SR). We

ran the experiment from Figure 7 with different locking
implementations, namely, without any locking (only short-
term latching), with our predicate locking method from
Section 5.2, and with traditional record locking. Up to
an arrival rate of 20 transactions per second, there was no
noticeable overhead induced by our locking scheme (i.e., by
SR) compared to SI. Both average and median response
times were unchanged, the 95% quantile increased by 3% due
to lock waits. In an extreme stress test, we set the arrival
rate to infinity so that all transactions arrived at once. In
this case, the average response time did increase, but even
then only by a negligible factor of 0.7%. Record locking,
on the other hand, led to disastrous processing times for
two reasons: first, because many thousands of locks have
to be managed, and second because deadlocks (and thus
transaction re-starts) are very frequent. Traditional locking
schemes are not suited for the fine-grained nature of RDF
data. Our predicate locking method works well, and SR
is affordable with negligible impact on the overall system
performance.

7. CONCLUSION
This paper has described how to extend a query-centric

RDF engine into a system with full-fledged support for up-
dates, versioning, and transactions. Although we started

262

λ[s−1] 3.33 5 10 12.5 16.66 25 50 100 200 ∞
x-RDF-3X 1995.3 2023.1 1998.9 2029.2 2027.9 2046.0 2037.5 1991.3 2008.9 16064.2
PostgreSQL 2026.2 2053.7 2045.5 2083.1 2075.4 2040.5 17455.5 63201.7 83270.3 102757.0
Jena 2119.5 2136.5 N/A N/A N/A N/A N/A N/A N/A N/A

Figure 7: Average response times at different arrival rates λ

A1 A2 A3 B1 B2 B3 C1 C2 geom. mean
cold caches

RDF-3X 0.03 0.05 0.12 0.06 0.03 0.25 0.06 0.11 0.06
x-RDF-3X 0.04 0.05 0.20 0.09 0.04 0.27 0.06 0.13 0.08
PostgreSQL 9.31 9.16 19.08 0.64 3.88 > 10min 6.95 8.12 >10.39
Jena 4.48 5,52 12.07 3.85 7.73 > 10min >10min 385.91 >32.46

warm caches
RDF-3X <0.01 <0.01 0.01 <0.01 <0.01 0.03 <0.01 <0.01 <0.01
x-RDF-3X <0.01 <0.01 0.01 <0.01 <0.01 0.04 <0.01 <0.01 <0.01
PostgreSQL 5.39 5.31 12.02 <0.01 0.92 > 10min 4.26 4.08 >3.67
Jena 2.31 2.25 10.90 2.11 6.44 > 10min >10min 275.16 >22.92

Figure 8: Average run-times for time-travel queries on x-RDF-3X, regular queries on the other systems

with the “penalty” of an aggressive indexing scheme on the
SPO triples, we managed to design and implement very ef-
ficient mechanisms for both incremental bulk loading and
online updates. Our measurements have shown that the
extended engine can sustain high throughput in multi-user
mode for mixed read-write transactions, with both snapshot
isolation and serializability. The opponents in our experimen-
tal comparison were outperformed by a very large margin,
with orders-of-magnitude differences at high levels of re-
source contention. Our experiments also demonstrated that
transactional isolation has low overhead when based on a judi-
ciously designed versioning system and implemented with our
RDF-specific predicate-lock management and a light-weight
serialization-graph protocol. Thus, our approach success-
fully combines the virtues of fast querying, strong update
performance, and the beauty of automatic, easy-to-program
consistency guarantees by full-fledged transactions.

8. REFERENCES
[1] D. J. Abadi et al. Scalable semantic web data

management using vertical partitioning. In VLDB,
pages 411–422, 2007.

[2] A. Adya, B. Liskov, and P. E. O’Neil. Generalized
isolation level definitions. In ICDE, pages 67–78, 2000.

[3] M. Bröcheler, A. Pugliese, and V. S. Subrahmanian.
Dogma: A disk-oriented graph matching algorithm for
rdf databases. In International Semantic Web
Conference, pages 97–113, 2009.

[4] E. I. Chong et al. An efficient SQL-based RDF
querying scheme. In VLDB, pages 1216–1227, 2005.

[5] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2001. 2nd
Edition.

[6] G. Graefe. Hierarchical locking in b-tree indexes. In
BTW, pages 18–42, 2007.

[7] A. Harth et al. YARS2: A federated repository for
querying graph structured data from the web. In
ISWC/ASWC, pages 211–224, 2007.

[8] R. Jain. The Art of Computer Systems Performance
Analysis. Wiley, 1991.

[9] Jena: a Semantic Web Framework for Java.
http://jena.sourceforge.net/.

[10] D. B. Lomet et al. Transaction time support inside a
database engine. In ICDE, page 35, 2006.

[11] D. B. Lomet and B. Salzberg. The performance of a
multiversion access method. In SIGMOD, 1990.

[12] T. Neumann and G. Weikum. RDF-3X: a RISC-style
engine for RDF. PVLDB, 1(1):647–659, 2008.

[13] T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. VLDB J., 2009.

[14] T. Neumann and G. Weikum. Scalable join processing
on very large RDF graphs. In SIGMOD, 2009.

[15] P. E. O’Neil et al. The log-structured merge-tree
(lsm-tree). Acta Inf., 33(4):351–385, 1996.

[16] A. Pugliese, O. Udrea, and V. S. Subrahmanian.
Scaling rdf with time. In WWW, pages 605–614, 2008.

[17] RDF-3X.
http://www.mpi-inf.mpg.de/~neumann/rdf3x.

[18] D. P. Reed. Implementing atomic actions on
decentralized data. TOCS, 1(1):3–23, 1983.

[19] B. Salzberg and V. J. Tsotras. Comparison of access
methods for time-evolving data. ACM Comput. Surv.,
31(2):158–221, 1999.

[20] L. Sidirourgos et al. Column-store support for RDF
data management: not all swans are white. PVLDB,
1(2):1553–1563, 2008.

[21] M. Stonebraker. The design of the postgres storage
system. In VLDB, pages 289–300, 1987.

[22] O. Udrea, A. Pugliese, and V. S. Subrahmanian. GRIN:
A graph based RDF index. In AAAI, 2007.

[23] W3C: Resource Description Framework (RDF).
http://www.w3.org/RDF/.

[24] G. Weikum and G. Vossen. Transactional Information
Systems: Theory, Algorithms, and the Practice of
Concurrency Control and Recovery. Morgan Kaufmann,
2002.

[25] C. Weiss, P. Karras, and A. Bernstein. Hexastore:
sextuple indexing for semantic web data management.
PVLDB, 1(1):1008–1019, 2008.

[26] K. Wilkinson et al. Efficient RDF storage and retrieval
in Jena2. In SWDB, pages 131–150, 2003.

[27] Yars2. http://sw.deri.org/svn/sw/2004/06/yars.

263

http://jena.sourceforge.net/
http://www.mpi-inf.mpg.de/~neumann/rdf3x
http://www.w3.org/RDF/
http://sw.deri.org/svn/sw/2004/06/yars

