
Proximity Rank Join

Davide Martinenghi Marco Tagliasacchi
Dipartimento di Elettronica e Informazione – Politecnico di Milano

Piazza Leonardo da Vinci, 32 – 20133 Milano, Italy
{martinen,tagliasa}@elet.polimi.it

ABSTRACT
We introduce the proximity rank join problem, where we
are given a set of relations whose tuples are equipped with
a score and a real-valued feature vector. Given a target
feature vector, the goal is to return the K combinations of
tuples with high scores that are as close as possible to the
target and to each other, according to some notion of dis-
tance. The setting closely resembles that of traditional rank
join, but the geometry of the vector space plays a distinctive
role in the computation of the overall score of a combination.
Also, the input relations typically return their results either
by distance from the target or by score. Because of these
aspects, it turns out that traditional rank join algorithms,
such as the well-known HRJN , have shortcomings in solv-
ing the proximity rank join problem, as they may read more
input than needed. To overcome this weakness, we define a
tight bound (used as a stopping criterion) that guarantees
instance optimality, i.e., an I/O cost is achieved that is al-
ways within a constant factor of optimal. The tight bound
can also be used to drive an adaptive pulling strategy, de-
ciding at each step which relation to access next. For practi-
cally relevant classes of problems, we show how to compute
the tight bound efficiently. An extensive experimental study
validates our results and demonstrates significant gains over
existing solutions.

1. INTRODUCTION
Imagine a smartphone user wishing to organize the evening

by finding a restaurant, a movie theater and a hotel that are
nearby, close to each other, and recommended in terms of,
respectively, price, user rating, and number of stars. This
can be done by suitably collecting and assembling different
pieces of information, as envisaged in search computing [4].
Here, one could, e.g., exploit the current geographical posi-
tion available on the smartphone, as well as local informa-
tion obtained from specific search services on the Internet
(such as Yahoo! Local, IMDB, etc.).

This simple example captures the essence of proximity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

rank join problems, in which the best combinations of ob-
jects coming from different services (here: restaurants, the-
aters, and hotels) are sought, and each object is equipped
with both a score and a real-valued feature vector. The
aggregation function assigning a score to a combination de-
pends on the individual scores, on the proximity of the indi-
vidual vectors to a given vector (called query) and on their
mutual proximity, according to some notion of distance in
the feature space. Typically, objects are retrieved sorted by
either distance from a given vector or by score.

The interest in proximity rank join is motivated by its
generality and broad applicability. Indeed, it covers multi-
domain search, as in the previous example, as well as several
other scientific fields, such as: i) information retrieval, e.g.,
finding similar documents in different data collections given
a set of keywords; ii) multimedia databases, e.g., requesting
similar images from different repositories given a sample im-
age; iii) bioinformatics, e.g., discovering orthologous genes
from different organisms given a target annotation profile;
and many others. In all these cases, proximity plays a cru-
cial role, as it captures the mutual relationships between the
objects in the feature space.

In the conventional rank join problem [10], instead, the
overall score of a combination depends only on the scores of
the single objects. Existing algorithms, such as HRJN [9],
may be used to address proximity rank join. However, as
will be shown in this paper, they fail to achieve optimality
as they are completely oblivious of the proximity aspect.

Our contributions. We formally define the proximity
rank join problem and propose algorithms that solve it. We
identify the main differences with traditional rank join and
revisit existing algorithms and templates in the new set-
ting in order to assess their limitations and potential. To
this end, as customary in top-k query answering, we re-
fer to the notion of instance-optimality [6] to characterize
I/O efficiency. We show that, for the proximity rank join
problem, no algorithm using a stopping criterion based on
the so-called corner bound (such as HRJN and HRJN ∗) is
instance-optimal, even with only two input relations.

We then introduce a different bound that is tight [13] and
can thus be used in order to guarantee instance-optimality.
We show how to compute the tight bound efficiently for
practically relevant instances of the problem, in particular
when a Euclidean distance is used.

In order to further improve efficiency in terms of I/O as
well as CPU cost, we refine the exploration strategy used
by the algorithm to pull tuples from the inputs. Also, we
exploit geometrical properties to conclude that part of the

352

search space is dominated and thus need not be explored.
Finally, we provide a thorough experimental evaluation of

our approach by analyzing performance with regard to the
main operating parameters. These include the number of
desired top combinations, the number of dimensions of the
feature space, the density of tuples in the space, its skewness,
and the number of relations in the join. Our empirical study
is carried out both on real and on synthetic data.

2. PRELIMINARIES
Consider a set of relations R1, . . . ,Rn where each tuple τi ∈

Ri is composed of named attributes, a real-valued feature
vector x(τi) ∈ Rd, and a score σ(τi) ∈ R. Let q ∈ Rd denote
a constant vector representing the query, and δ(x(τ),q) a
metric distance between vectors x(τ) and q. We consider
the two most common access kinds that arise in practice:
A. Distance-based access: The relations R1, . . . ,Rn are ac-

cessed sequentially in increasing order of δ(⋅,q).
B. Score-based access: The relationsR1, . . . ,Rn are accessed

sequentially in decreasing order of σ(⋅).
We indicate with τ

(ri)
i = Ri[ri] the ri-th tuple extracted

from Ri according to the available access kind, and with
Pi ⊆ Ri the ordered relation containing the tuples already
extracted from Ri. The number pi = ∣Pi∣ of such tuples is
called depth.

Let τ = τ1 × ⋯ × τn ∈ R1 × . . . × Rn denote an element of
the cross-product of the n relations, hereafter called combi-
nation. The aggregate score S(τ) of τ is defined as

S(τ) = f (S(τ1), , . . . ,S(τn)) (1)

where S(τi) = gi (σ(τi), δ(x(τi),q), δ(x(τi),µ(τ))), and
● The function f(x1, . . . , xn) ∶ Rn → R is monotonically

non-decreasing in all of its arguments.
● The functions gi(x, y, z) ∶ R × R+ × R+ → R, for i =

1, . . . , n, are monotonically non-decreasing in x and
monotonically non-increasing in y and z.

● The vector µ(τ) ∈ Rd denotes the centroid of a combi-
nation, computed as arg. minω∑ni=1 δ(x(τi),ω).

We refer to the functions gi as the proximity weighting func-
tions since they compute the proximity weighted score S(τi)
of the tuple τi participating in the combination τ . Intu-
itively, the proximity weighted score increases with the score
and decreases with the distance from the query vector q and
from the combination centroid µ(τ). Therefore, the top
combinations are those whose constituent tuples: i) have
high scores; ii) are close to the query vector; iii) are close
to each other. We note that (1) generalizes the Maximize-
Over-Location scoring function recently defined in [16].

Example 2.1. As a concrete example, we consider

S(τ)=
n

∑
i=1
ws ln(σ(τi))−wq∥x(τi)−q∥2−wµ∥x(τi)−µ(τ)∥2 (2)

which is obtained by setting f(x1, . . . , xn) = ∑ni=1 xi and
gi(x, y, z) = ws ln(x) − wqy2 − wµz2, i.e., adopting a Eu-
clidean distance. The weights ws, wq and wµ ∈ R+ can be
used to tune the proximity weighting functions based on
user’s preferences. Note that if the scores σ(τi) ∈ [0,1] then

S(τ) ∈ (−∞,0]. Alternatively, one might take eS(τ) to ob-
tain an aggregate score in the range [0,1]. Table 1 illustrates
an example with three relations, when two tuples have been
retrieved from each of them, and tuples are sorted according

Table 1: Three relations with distance-based access
and the formed combinations with their scores.

R1

σ1 xT1
τ
(1)
1 0.5 [0, -0.5]

τ
(2)
1 1.0 [0, 1]
⋯ ⋯ ⋯

R3

σ3 xT3
τ
(1)
3 1.0 [-1, 1]

τ
(2)
3 0.4 [-2, -2]
⋯ ⋯ ⋯

R2

σ2 xT2
τ
(1)
2 1.0 [1, 1]

τ
(2)
2 0.8 [-2, 2]
⋯ ⋯ ⋯

τ = τ1 × τ2 × τ3 S(τ)
τ
(2)
1 × τ (1)2 × τ (1)3 -7.0

τ
(1)
1 × τ (1)2 × τ (1)3 -8.4

τ
(2)
1 × τ (2)2 × τ (1)3 -13.9

τ
(1)
1 × τ (2)2 × τ (1)3 -16.3

τ
(1)
1 × τ (1)2 × τ (2)3 -21.0

τ
(2)
1 × τ (1)2 × τ (2)3 -22.6

τ
(1)
1 × τ (2)2 × τ (2)3 -28.9

τ
(2)
1 × τ (2)2 × τ (2)3 -29.5

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

τ
(1)
1

τ
(2)
1 τ

(1)
2

τ
(2)
2

τ
(1)
3

τ
(2)
3

q

(a) Tuples of Table 1

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

τ
(1)
1

τ
(2)
1 τ

(1)
2

τ
(2)
2

τ
(1)
3

τ
(2)
3

q

(b) Solution of problem (12)

Figure 1: (a) Location of the tuples represented as
discs whose radius is proportional to the score. (b)

Solution for: (i) partial combination τ
(1)
2 ; (ii) par-

tial combination τ
(1)
1 × τ (1)3 whose centroid is indi-

cated by a black empty circle. The optimal locations
of unseen tuples are represented by empty circles
collinear with the the centroid and the query.

to the distance from the query q = 0. Figure 1(a) shows the
location x(τi) of the tuples in R2 represented as discs whose
radius is proportional to the score (blue for R1, red for R2,
green for R3). Figure 1(a) also shows three circles, whose
radius is equal to the distance of the last accessed tuple from
each relation. The cross-product consists of 8 combinations,
also reported in Table 1, sorted by their aggregate score
computed using (2), by setting ws = wq = wµ = 1.

Definition 2.1. The proximity rank join problem is an
(n+2)-tuple (R1, . . . ,Rn,S,K) such that S is an aggregation
function defined as in (1), all the relations R1, . . . ,Rn are
accessed sequentially either in: A) increasing order of δ(⋅,q),
or B) decreasing order of σ(⋅), and 1 ≤K ≤ ∣R1 × . . . ×Rn∣.

A solution is an ordered relation O containing the top K
combinations from R1 × . . .×Rn ordered by S (score ties are
resolved using a tie-breaking criterion). A proximity rank
join algorithm that on input (R1, . . . ,Rn,S,K) returns the
corresponding O upon termination is said to be correct.

Proximity rank join closely resembles rank join [9]. Unlike
the latter, the former assumes that i) each tuple is equipped
with a feature vector, ii) the aggregation function depends
both on the score and on the feature vector, and iii) the
relations are accessed as specified in Definition 2.1.

353

The proximity rank join problem can be tackled by adopt-
ing the ProxRJ template reported in Algorithm 1, which
adapts the Pull/Bound Rank Join (PBRJ) template origi-
nally introduced for rank join in [13]. The chooseInput func-
tion (line 4) of a given pulling strategy PS decides at each
step the next relation to be accessed. The updateBound
function (line 9) of a given bounding scheme BS computes
an upper bound on the aggregate score of the unseen com-
binations. The unseen combinations are those that can be
formed with at least an unseen tuple τi ∈ Ri − Pi.

The above-mentioned differences between rank join and
proximity rank join on the assumptions regarding the rela-
tions and the aggregation function have an impact on the
computation of the upper bound (and, consequently, on the
pulling strategy). This will be further discussed in Section 3.

Algorithm 1: ProxRJ(R1, . . . ,Rn,S,K)
Input : relations R1, . . . ,Rn; function S as in (1);

result size K
Output: K combinationswithhighestaggregate score
Data : input buffersP1, . . . , Pn; output bufferO

1 begin
2 t←∞;
3 while ∣O∣ <K or minω∈O S(ω) < t do
4 i← PS .chooseInput();
5 τi ← next unseen tuple of Ri;
6 R←P1×. . .×Pi−1×{τi}×Pi+1×. . .×Pn;
7 Add each member of R to O, retaining only

the top K combinations;
8 Add τi to Pi;
9 t← BS .updateBound(τi);

10 end
11 return O

12 end

Unlike the general PBRJ template, ProxRJ focuses on
cross-product (line 6), the notion of join being here implic-
itly captured by the proximity between the objects [15]. Yet,
the results of this paper also hold when an additional join
predicate is used to select a subset of the cross-product.

An algorithm complying with the ProxRJ template is cor-
rect (as PBRJ is for rank join [13]) if: i) updateBound re-
turns a correct upper bound on the aggregate scores of the
combinations that use at least one unread tuple; ii) chooseInput
returns an index of an unexhausted relation.

We define the notion of tight bounding scheme as in [13],
but we drop their condition (C3), which is only relevant
when tuples may have multiple scores and when the behavior
of S is only assumed to be known on the observed tuples.

Definition 2.2. Let I = (R1, . . . ,Rn,S,K) be a proxim-
ity rank join problem problem and let Pi be the extracted
portion of Ri, 1 ≤ i ≤ n:

● A continuation of I is a problem (R′
1, . . . ,R

′
n,S,K)

that satisfies the following conditions.
(C1) The first ∣Pi∣ tuples in R′

i and Ri are identical.
(C2) ∣R′

i∣ = ∣Ri∣ for all i.
● If τ is a combination for some continuation of I, and
τ uses at least one unseen tuple, then we say τ is a
potential result and S(τ) is a potential score of I.

● A bounding scheme is tight if updateBound returns a
potential score or −∞ whenever ∣P1 × . . . × Pn∣ ≥K.

In order to characterize the performance of proximity rank
join algorithms, we introduce the sumDepths cost metric
and the notion of instance optimality, which are common in
top-k query answering. Let depth(A, I, i) be the depth on
input relation Ri explored by algorithm A on problem I =
(R1, . . . ,Rn,S,K) before returning a solution. We define
sumDepths(A, I) as ∑ni=1 depth(A, I, i), which provides an
indication of the amount of I/O performed by A to solve I.
Let A be the class of correct, deterministic proximity rank
join algorithms, and let I be the class of problems satisfying
Definition 2.1. We say that A is instance-optimal wrt. A and
I for the sumDepths cost metric if there exist constants c1
and c2 such that sumDepths(A, I) ≤ c1 ⋅sumDepths(A′, I)+c2
for all A′ ∈ A and I ∈ I.

3. BOUNDING SCHEME
We carry out our analysis for the case of distance-based

access. First, we consider a simple bounding scheme that
does not leverage the geometrical constraints imposed by
the problem formulation; this bounding scheme is equivalent
to that of HRJN [9]. Then, we show how to define a tight
upper bound for the score of unseen combinations, which
is of paramount importance in order to guarantee instance
optimality, as proved in [13]. We show that the computa-
tion of the upper bound requires solving a set of quadratic
programs, if the aggregation function is as in (2).

Similar results and algorithms are available for the simpler
case of score-based access, as shown in Appendix C.

3.1 Corner bound
Under distance-based access, it is possible to compute a

correct upper bound tc by keeping track of the distance from
the query q of the first and last accessed tuple from each re-
lation, i.e., δ(x(Ri[1]),q) and δ(x(Ri[pi]),q), respectively:

tc = max{t1, . . . , tn}, with ti = f (S̄1, . . . ,Si, . . . , S̄n) (3)

In (3), S̄j is an upper bound on the proximity weighted score
that can be attained by a tuple τj ∈ Rj , i.e.

S̄j = gj (σmax
j , δ(x(Rj[1]),q),0) (4)

where σmax
j is the maximum score possible for Rj . Similarly

Si denotes an upper bound on the proximity weighted score
that can be attained by an unseen tuple τi ∈ Ri − Pi:

Si = gi (σ
max
i , δ(x(Ri[pi]),q),0) (5)

Note that when no object has been extracted from a re-
lation Ri, i.e., pi = 0, both distances δ(x(Ri[1]),q) and
δ(x(Rj[pi]),q) are conventionally set to zero.

The bound in (3), corresponding to the one used by HRJN ,
is a corner bound [13]. Bound (3) is not tight, since a possi-
ble combination whose aggregate score is equal to the bound
might not exist. Here, non-tightness precludes instance op-
timality.

Theorem 3.1. Let A be an algorithm complying with the
ProxRJ template for distance-based access using the corner
bound (3). Then A is not instance optimal for problems with
at least two relations.

A similar result was shown in [13] for PBRJ algorithms
using the corner bound on the rank join problem. However,
Theorem 3.1 does not descend from their results. Indeed,
the lack of tightness in rank join derives from failure of the

354

join predicate, whereas here we have cross-products, and the
geometry of the problem (absent in rank join) contributes to
determining the bounds. Moreover, unlike theirs, our result
also holds with two input relations (n = 2), as the corner
bound turns out to be tight only in the extreme case n = 1.

3.2 Tight bound
Let M = {i1, . . . , im} denote a proper subset of {1, . . . , n}

and m = ∣M ∣, 0 ≤m < n. Let PC(M) = Pi1 ×⋯×Pim denote
the set of partial combinations that can be formed using
seen tuples from Pi, i ∈ M . Clearly, ∣PC(M)∣ = ∏i∈M pi.
Given a partial combination τ ∈ PC(M), we want to find
the maximum aggregate score that can be achieved by com-
pleting τ with unseen tuples from Ri−Pi, i ∈ {1, . . . , n}−M .
Distance-based access imposes that δ(x(Ri[ri]),q) ≥ δi, for
ri > pi, where δi = δ(x(Ri[pi]),q) is the distance from the
query of the last accessed tuple from Ri. The goal is to find
the feasible locations yi = x(τi), i ∈ {1, . . . , n} −M of the
unseen tuples that maximize the aggregate score, i.e.,

maximize f(S1, . . . ,Sn)
subject to δ(yi,q) ≥ δi, i ∈ {1, . . . , n} −M (6)

where

Si = {gi (σ(τi), δ(x(τi),q), δ(x(τi),µ)) , i ∈M
gi (σmax

i , δ(yi,q), δ(yi,µ)) , i ∈ {1, . . . , n} −M
(7)

Note that all the n −m optimization variables yi influence
the functions Si, i = 1, . . . , n, since they participate in the
computation of the combination centroid µ.

Let y∗i , i ∈ {1, . . . , n} −M , denote a solution of (6) for a
partial combination τ ∈ PC(M), and f∗ the value of the
objective function computed at y∗i . Thus, the upper bound
t(τ) on the aggregate score of the possible combinations
formed by completing τ is given by t(τ) = f∗.

Then, for each proper subset M of {1, . . . , n}, we compute

tM = max{t(τ)∣τ ∈ PC(M)} (8)

and we obtain the final upper bound as

t = max{tM ∣M ⊂ {1, . . . , n}} (9)

The detailed pseudocode of the function updateBound com-
puting t is reported in Appendix B.1.

Theorem 3.2. The bounding scheme (9) is tight.

The simplest pulling strategy is the one that accesses the
inputs in a round-robin fashion (e.g., in the orderR1, . . . ,Rn).
Tightness and a round-robin strategy are sufficient to guar-
antee instance optimality.

Theorem 3.3. ProxRJ with the tight bounding scheme (9)
and a round-robin pulling strategy is instance-optimal for
proximity rank join with distance-based access.

We observe that the computation of the tight upper bound (9)
comes at a cost that is polynomial under data complexity
(i.e., w.r.t. the number of retrieved tuples). In fact, it
suffices to solve the problem (6) a number of times equal
to C = ∑n−1m=0 (nm)∏j∈M,M⊂{1,...,n},∣M ∣=m pj , and it is easily
shown that 2n−1 ≤ C ≤ pn(2n−1), where p = max{p1, . . . , pn}.
This is aligned with the findings in [13], where the authors
also show polynomial data complexity of tight bounding for
rank join. Observe that, here too, the number of relations
n weighs exponentially on the cost.

In addition, solving each instance of the problem in (6)
might be difficult, depending on the aggregation function
and the distance in use. In Section 3.2.1, we show that,
for some relevant cases, such as when using the aggregation
function in (2), the problem in (6) can be efficiently solved.

Example 3.1. For the relations in Table 1, the upper
bound t, using (2), is −7 (see Appendix B.2), and can be
potentially achieved by an unseen combination formed by

completing τ
(1)
2 ×τ (1)3 with an unseen tuple from R1. There-

fore, the seen combination τ
(2)
1 ×τ (1)2 ×τ (1)3 in Table 1 can be

guaranteed to be the top-1, since its aggregate score −7 is as
high as t. Note that none of the seen combinations in Table 1
can be guaranteed to be the top-1 using the corner bound,
since, by (3), we have tc = max{−5,−10.25,−10.25} = −5.

3.2.1 Tight bound for a case with Euclidean distance
We focus now on aggregation functions of the form given

in (2). Initially, we make the simplifying assumption that
the access kind allows retrieving all tuples within a target
maximum distance δ from the query q. Thus, all unseen
tuples in Ri − Pi are constrained to be at a distance of at
least δ. W.l.o.g., let us assume M = {1, . . . ,m} and consider
a partial combination τ ∈ PC(M). The upper bound t(τ)
is obtained by solving the following instance of (6).

max.∑mi=1wsln(σ(τi))−wq∥x(τi)−q∥2−wµ∥x(τi)−µ∥2+
∑ni=m+1ws ln(σmax

i)−wq∥yi−q∥2−wµ∥yi−µ∥2
s.t. ∥yi − q∥ ≥ δ, i ∈ {m + 1, . . . , n}

(10)

where µ = 1
n
(∑mi=1 x(τi) +∑ni=m+1 yi). Problem (10) is a

non-convex QCQP (quadratically constrained quadratic pro-
gram). Let ν = 1

m ∑
m
i=1 x(τi) denote the centroid of the

partial combination τ . The solution can be easily found in
closed form observing that the problem is symmetric in the
optimization variables yi. Thus, the optimal solution must
satisfy y∗m+1 = . . . = y∗n = y∗. We have (see Appendix B.3):

y∗ = {
q + (ν − q) mwµ

mwµ+nwq
if ∥(ν − q) mwµ

mwµ+nwq
∥ ≥ δ

q + (ν − q) δ
∥ν−q∥ otherwise

(11)
Note that y∗ lies on the ray from the query through ν.

In general, however, we need to solve the problem

max.∑mi=1wsln(σ(τi))−wq∥x(τi)−q∥2−wµ∥x(τi)−µ∥2+
∑ni=m+1ws ln(σmax

i)−wq∥yi−q∥2−wµ∥yi−µ∥2
s.t. ∥yi − q∥ ≥ δi, i ∈ {m + 1, . . . , n}

(12)

which differs from (10) because the distances δi are not con-
strained to be equal. This may occur, for example, when
the access kind enables retrieving a target number of tuples
from each relation Ri. Although the problem is no longer
symmetric in the optimization variables, the following holds.

Theorem 3.4. In the optimal solution of (12) all the
y∗i ’s, i = m + 1, . . . , n, are collinear and lie on the ray from
the query through the centroid of the partial combination.

By Theorem 3.4, we can reduce (12) to a 1-dimensional prob-
lem with n scalar variables θi, i = 1, . . . , n, representing the
distance from q. The first m variables are constrained to
be equal to the length of the orthogonal projection of x(τi)
onto the line defined by the query and the centroid of the
seen tuples, i.e., θi = P(x(τi)), i = 1, . . . ,m, where

P(x(τi)) =
(x(τi) − q)T (ν − q)

∥ν − q∥ (13)

355

The remaining n − m variables are lower bounded by the
current distances from q, i.e., θi ≥ δi, m+1, . . . , n. The upper
bound t(τ) is obtained by solving the following problem

max. ∑mi=1ws ln(σ(τi)) +∑ni=m+1ws ln(σmax
i)

−∑ni=1wqθ2i −∑ni=1wµ(θi − 1
n ∑

n
j=1 θj)2

s.t. θi = P(x(τi)), i = 1, . . . ,m
θi ≥ δi, i =m + 1, . . . , n

(14)

In Appendix B.4 we show that (14) can be written as a
convex quadratic program (QP) with linear constraints, thus
it can be efficiently solved using off-the-shelf solvers. Let
θ∗ = [θ∗1 , . . . , θ∗n]T denote the optimal solution of (14). The
solution of the original problem (12) is given by

y∗i = q + θ∗i
ν − q

∥ν − q∥ , i =m + 1, . . . , n (15)

i.e., the i-th variable is at distance θ∗i from the query q and
on the ray that originates from q and goes through ν.

Example 3.2. Assume Table 1 reports all the seen tu-
ples. Thus, δ1 = 1, δ2 = 2

√
2 and δ3 = 2

√
2. Solving (12)

for the partial combination τ
(1)
2 gives y∗1 = [

√
2/2,

√
2/2]T

and y∗3 = [2,2]T (and t(τ (1)2) = −12.8), which lie along the

ray from q to x(τ (1)2). Solving (12) for τ
(1)
1 × τ (1)3 requires:

i) computing the centroid of τ
(1)
1 × τ (1)3 (ν = [−0.5,0.25]T);

ii) computing the projections on the line from q to ν (θ1 =
−0.22, θ3 = 1.34); iii) solving (14) to obtain θ∗2 = 2

√
2;

iv) computing y∗2 = [−2.53,1.26]T according to (15); v) com-

puting t(τ (1)1 × τ (1)3) = −16. Figure 1(b) shows that the op-
timal locations of the unseen tuples are at the minimum
allowed distances, but this does not hold in general.

3.2.2 Dominance
The solution of problem (12) for a partial combination

τ ∈ PC(M) depends on the current distance lower bounds
δi, i ∈ {1, . . . , n} −M , and needs to be re-computed when-
ever any of these lower bounds may change, i.e., after every
access to Ri, i ∈ {1, . . . , n} −M . Nevertheless, in order to
determine tM as of (8), it is unnecessary to solve (12) for
all partial combinations τ ∈ PC(M). Indeed, some of them
might be dominated, in the sense that, for a dominated par-
tial combination τ , it will never happen that tM = t(τ).

In order to determine whether a partial combination is
dominated, we consider the unconstrained version of (12).
Let fα(y) = −(ayTy + 2[bα]Ty + cα) compactly represent
the objective function of (12) for partial combination τα,
where y = ym+1 = . . . = yn by the symmetry of the objective
function (a, bα, and cα are computed as a, b, and c in
Appendix B.3). Let yα be the vector for which fα(y) is
maximum, i.e., the solution of this unconstrained problem
for a partial combination τα ∈ PC(M). For another partial
combination τβ ∈ PC(M), the set

D(τα, τβ) = {y ∈ Rd∣fα(y) ≥ fβ(y)} (16)

intuitively represents the region of the feature space Rd
where τα dominates τβ . We observe that such a region
is defined by fα(y) ≥ fβ(y), i.e., 2(bα − bβ)Ty ≤ cβ − cα,
which is a half-space, since the quadratic terms disappear.
The dominance region of τα ∈ PC(M) is defined as

D(τα) = {y ∈ Rd∣∀τβ ∈ PC(M).fα(y) ≥ fβ(y)} (17)

τ
(1)
2 × τ

(1)
3 τ

(2)
2 × τ

(1)
3 τ

(1)
2 × τ

(2)
3 τ

(2)
2 × τ

(2)
3

Figure 2: Dominance regions (in white) of the four
partial combinations in PC({2,3}) in Table 1.

We observe that dominance regions are polyhedra that
define a partition of Rd. If the dominance region D(τα) is
empty, we say that τα is dominated. Emptiness of D(τα)
can be checked by solving a feasibility linear program (LP),
as shown in Appendix B.5. In practice, solving the LP might
be too costly to be of practical interest. Indeed, we can ei-
ther i) ignore dominance by solving the optimization prob-
lem (12) for each partial combination, i.e., up to ∏i∈M pi
times; or ii) determine the dominated partial combinations
and solve (12) only for those that are not dominated. Note
that, once a combination is dominated, it will remain so
regardless of the newly formed combinations. In our exper-
iments in Section 4, we show that a good heuristics consists
of periodically solving the LP only after a fixed number of
accesses.

Example 3.3. Figure 2 shows the dominance regions of
the four partial combinations τ ∈ PC({2,3}) formable from
Table 1. Here, no partial combination is dominated.

3.3 Pulling strategy
A pulling strategy identifies the relation Ri from which

the next tuple is retrieved. We describe a potential adaptive
(PA) strategy that is based on the current upper bounds
tM , defined for each set M ⊂ {1, . . . , n}. We generalize the
approach introduced in [7] to the case of n ≥ 2 relations. Let
pot i denote the potential of relation Ri, defined as pot i =
max{tM ∣M ⊂ {1, . . . , n} − {i}}, i.e., the upper bound on the
aggregate score of combinations that can be formed with
unseen tuples from Ri. The PA strategy is then defined as
follows: access relation Ri such that pot i is maximal (among
pot1, . . . ,potn), breaking ties in favor of the relation with the
least depth pi, then the relation with the least index i.

Let TBPA and TBRR denote algorithms complying with
the ProxRJ template for distance-based access using the
tight bound (6) and, resp., the PA and round-robin strategy.

Theorem 3.5. Let I be a proximity rank join problem.
Then depth(TBPA, I, i) ≤ depth(TBRR, I, i) for all i.

Corollary 3.6. TBPA is instance optimal.

4. EXPERIMENTAL STUDY
We investigate the following aspects: i) I/O cost reduc-

tion, in terms of the sumDepths metrics, that can be achieved
using a tight bounding scheme and an adaptive pulling strat-
egy, with respect to a simpler corner bound and a round-
robin pulling strategy; ii) overhead, in terms of CPU time,
due to the computation of a tight bound and potential sav-
ings that can be achieved when dominance is exploited;

356

Table 2: Operating parameters (defaults in bold).
full name parameter tested values
Number of results K 1,10,50
Number of dimensions d 1,2,4,8,16
Density ρ 20,50,100,200
Skewness ρ1/ρ2 1,2,4,8
Number of relations n 2,3,4

iii) impact, on the aforementioned metrics, of the problem
parameters, i.e., number of results, dimensionality of the
feature space, tuple density in the feature space, skewness
of the tuple density and number of relations.

4.1 Methodology
Data sets. First, we conduct our analysis on a synthetic

data set whose generation is described in Appendix D.1.
The relevant parameters are summarized in Table 2.

Then, we consider real data sets with relations containing
hotels, theaters, and restaurants in five different American
cities. In each such city, we run the example described in
Section 1. Data are obtained as described in Appendix D.2.

Methods. We test four different instantiations of the
ProxRJ template described in Algorithm 1. These are the
result of combining the two bounding schemes (Corner Bound
and Tight Bound) with the two pulling strategies (Round-
Robin and Potential Adaptive). Therefore, we denote the
tested algorithms as CBRR, CBPA, TBRR, and TBPA. We
observe that CBRR and CBPA correspond to, resp., HRJN
and HRJN ∗ [9].

Evaluation metrics. We adopt sumDepths as the pri-
mary metrics for comparing the different algorithms. This
is especially relevant in application scenarios where the cost
of fetching tuples from the relations largely dominates over
computing the combinations and their respective bounds.
This is the case, e.g., of search services invoked over the
Web. We also report the total CPU time, in seconds, for the
various experiments. We do not measure the time needed
for fetching the tuples, as this is implicitly captured by the
sumDepths metrics. Moreover, we indicate the fraction of
time consumed by the calls to the function updateBound
and, whenever applicable, by the evaluation of dominance.
For fairness, we compute both metrics over ten different data
sets and report the average.

4.2 Results
The results obtained on the synthetic data sets are sum-

marized in Figure 3. In the stacked bar charts reporting the
total CPU time, i) the darker bars at the bottom represent
the cost of forming the combinations and computing their
aggregate score. ii) the lighter bars on top represent the
cost of executing updateBound. As a general trend, we ob-
serve that the use of a tight bounding always outperforms
the simpler corner bound in terms of the sumDepths metrics
by a noticeable margin, i.e., at least 15% in the worst case.
This comes at the cost of an increased complexity when com-
puting the bound. However, the average total CPU time in
our experiments, for n = 2, is always less than 0.5 seconds.
Thus, in a scenario where data is accessed by means of re-
mote service invocations, the total CPU time is of the same
order of magnitude as the time needed for a single access.
Moreover, we note that in our experiments the tight bound
is recomputed after every accessed tuple. While this guar-
antees to access the minimum number of tuples, in practical

systems a good trade-off can be achieved by recomputing
the tight bound only after retrieving blocks of tuples. We
now comment on the effect of the individual parameters.

Number of results - K: As in conventional rank join
problems, the number of results grows sublinearly with re-
spect to the number of accessed tuples. The gain of TBPA
over CBPA is between 25% and 45% and is larger for smaller
values of K. The adaptive pulling strategy reduces the num-
ber of accessed tuples by 5-10%, although the two relations
contain data sampled from identical distributions. TBPA
requires approximately 4 times more CPU time than CBPA.

Number of dimensions - d: This is a characteristic pa-
rameter of the proximity rank join problem. The gain of
TBPA over CBPA is between 15% and 45% and it is larger
in higher dimensional spaces. Indeed, for the same den-
sity per volume unit, higher dimensional spaces are emptier,
in the sense that the average inter-tuple distance is larger.
This fact is neglected by the simpler corner bounding scheme
adopted by CBRR and CBPA that always assume a zero dis-
tance from the centroid for unseen combinations. Note that
the total CPU time scales favorably when d increases. This
is due to two facts: first, the number of accessed tuples de-
creases as d increases, thus computing the tight bound needs
to consider fewer partial combinations; second, for the same
number of accessed tuples, the total CPU time does not de-
pend on d, since computing the upper bound on the score
of a partial combination requires solving a 1-dimensional
problem, regardless of d.

Density - ρ (number of tuples per volume unit): TBPA
and CBPA are similarly affected by the tuple density, and
the gain of the former is always in the 20-30% range. The
sumDepths metrics increases with the density. This is due
to the higher probability of generating combinations with a
large aggregate score by means of random sampling.

Skewness - ρ1/ρ2 (ratio of densities for two relations):
Generating skewed data sets highlights the benefits of an
adaptive pulling strategy. The gain over round-robin can be
as large as 25-30% when ρ1/ρ2 ≥ 4.

Number of relations - n: The gain of TBPA over CBPA
is significantly larger when joining more than two relations,
attaining more than 50% for n = 3. We observe that, in this
case, TBPA outperforms CBPA in terms of both sumDepths
and total CPU time. Indeed, the additional computational
burden related to the tight bounding scheme is more than
compensated by the significantly smaller number of com-
binations (approximately 4000 as opposed to 32000) that
need to be formed. This observation is further confirmed
for n = 4. In this case, CBPA was unable to report the top-
10 results (within five minutes), due to the extremely large
number of combinations that need to be formed.

Dominance: As discussed in Section 3.2.2, checking dom-
inance can be costly. A good trade-off between cost and
benefits is achieved by testing dominance only periodically.
Figures 3(m) and 3(n) illustrate the total CPU time of com-
puting the result when the dominance test is enabled. A
dominance period equal to ∞ corresponds to disabling the
dominance test. In each stacked bar chart, the lightest top-
most bar represents the time needed to check dominance.
For n = 2, we observe that testing dominance after every
accessed tuple increases the total CPU time, despite the
fact that the time needed to compute the tight bound is
decreased. When the dominance period is between 8 and
16, a marginal 4% improvement is achieved. For n = 3 the

357

1 10 50
0

50

100

150

Number of top results - K

su
m
D
ep

th
s

CBRR(HRJN)
CBPA(HRJN∗)
TBRR
TBPA

(a)

1 2 4 8 16
0

50

100

150

Number of dimensions - d

su
m
D
ep

th
s

(b)

20 50 100 200
0

50

100

150

Density - ρ

su
m
D
ep

th
s

(c)

1 10 50
0

0.1

0.2

0.3

0.4

0.5

Number of top results - K

to
ta
l
C
P
U

ti
m
e
(s
ec
.)

CBRR(HRJN)
CBPA(HRJN∗)
TBRR
TBPA

(d)

1 2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

Number of dimensions - d

to
ta
l
C
P
U

ti
m
e
(s
ec
.)

(e)

20 50 100 200
0

0.1

0.2

0.3

0.4

0.5

Density - ρ

to
ta
l
C
P
U

ti
m
e
(s
ec
.)

(f)

1 2 4 8
0

50

100

150

Skewness - ρ1/ρ2

su
m
D
ep

th
s

CBRR(HRJN)
CBPA(HRJN∗)
TBRR
TBPA

(g)

2 3 4
0

50

100

150

Number of relations - n

su
m
D
ep

th
s

(h)

SF NY BO DA HO
0

20

40

60

80

Real data sets
su
m
D
ep

th
s

(i)

1 2 4 8
0

0.1

0.2

0.3

0.4

0.5

Skewness - ρ1/ρ2

to
ta
l
C
P
U

ti
m
e
(s
ec
.)

CBRR(HRJN)
CBPA(HRJN∗)
TBRR
TBPA

(j)

2 3 4
0

20

40

60

80

100

120

Number of relations - n

to
ta
l
C
P
U

ti
m
e
(s
ec
.)

(k)

SF NY BO DA HO
0

0.2

0.4

0.6

0.8

1

Real data sets

to
ta
l
C
P
U

ti
m
e
(s
ec
.)

(l)

1 2 4 8 12 16
0

0.1

0.2

0.3

0.4

0.5

Dominance period for n = 2

to
ta
l
C
P
U

ti
m
e
(s
ec
.)

∞

TBRR
TBPA

(m)

1 2 4 8 12 16
0

1

2

3

4

5

Dominance period for n = 3

to
ta
l
C
P
U

ti
m
e
(s
ec
.)

∞

(n)

Figure 3: Performance of the tested algorithms in terms of the sumDepths and total CPU time metrics. In
each figure one parameter is varied, while the others are set to the default values in Table 2. The stacked
bars in (d),(e),(f),(j),(k),(l) show the total CPU time and, with lighter shading, the fraction of time required
to compute the tight bound. The stacked bars in (m) and (n) show, for n = 2 and n = 3, the total CPU time
when dominance is exploited and, with lighter shading, the fraction required to compute the tight bound
(middle) and to compute the dominance (top). 358

dominance test is always beneficial; a significant 35% im-
provement is attained with a dominance period equal to 8.

Finally, Figures 3(i) and 3(l) report the results obtained
on the real data sets. TBPA outperforms CBPA by a large
margin (on average, 35%). The adaptive pulling strategy is
always beneficial, regardless of the bounding scheme, reduc-
ing by 30% the number of accessed tuples.

5. RELATED WORK
Proximity rank join is a significant extension of rank join,

a class of problems recently discussed in [9, 14, 13, 7, 10].
State-of-the-art rank join algorithms [9, 13, 7] inherit the

idea of using an upper bound from the threshold-based stop-
ping condition of the well-known threshold algorithm [6] (TA).
TA addresses rank aggregation, which is the problem of com-
bining several ranked lists into a single consensus ranking.

Our main starting point is [13], where the rank join PBRJ
template is introduced, which we have specialized and ex-
tended into ProxRJ for proximity rank join. This tem-
plate encompasses the well-known HRJN and HRJN ∗ oper-
ators [9], corresponding to our CBRR and CBPA algorithms.
In [13], rank join is studied in the case where each relation
may be equipped with even more than one score attribute,
while we have focused on relations with a single score. As
was discussed in Section 3, the results in [13] do not always
carry over to proximity rank join, due to the geometry of
the problem (absent in rank join). These include, e.g., the
fact that HRJN is instance optimal with two relations (with
a single score) for rank join but not for proximity rank join.

In [7], the authors propose an efficient way for computing
an approximation of the tight bound, in order to find a good
trade off between I/O cost and CPU cost.

In [2], the authors study (two-way) rank join problems,
in which memory availability is limited, and propose algo-
rithms that are instance-optimal also with this restriction.

We have considered a scenario in which the objects’ fea-
ture vectors are deterministic. Others have addressed re-
lated problems (e.g., nearest neighbors) when the objects
have uncertain features, such as approximate positions [3].

Weighted proximity join is introduced in [16], where algo-
rithms are proposed to find combinations of words in docu-
ments that appear close to each other and match different
query terms. Their approach differs from ours in the fol-
lowing aspects: i) the aggregation function does not depend
on the distance from the query, and all the input needs to
be read to find the best combinations; ii) the proposed al-
gorithms are specifically tailored to 1-dimensional spaces.
Similarity join is promoted to a first-class operator in [15].

The study of join predicates that depend on the spatial
proximity among the objects has been thoroughly investi-
gated in the past literature. The work in [8] presents in-
cremental distance joins, e.g., how to compute the spatial
join between two lists of objects and reporting the closest
pairs early. A non-incremental algorithm for the K-closest-
pair problem is investigated in [5]. This is extended in [12],
where additional spatial constraints are imposed on the do-
main of the objects belonging to the two lists (e.g., all points
of the first list that are part of the answer are enclosed in a
given region). The top-k spatial join described in [11] is a bi-
nary join operator that returns, for each list, the object with
the largest number of overlapping objects in the other list,
thus extending the previous approaches to objects covering
finite regions. Nevertheless, in all of the above-mentioned

works, the authors assume that input relations are indexed
by structures of the R-tree family. This contrasts our set-
ting, where indexes are unavailable and relations are ac-
cessed either by distance or by score.

6. CONCLUSION
We introduced proximity rank-join as the problem of find-

ing the best combinations of heterogeneous objects that are
close to a given target object (the query) and to each other.
We gave a general formulation of the problem and proposed
an instance optimal algorithm that solves it based on the
computation of a tight upper bound on the aggregate score
of the combinations to be formed. Our solution proves su-
perior to existing rank join approaches, also experimentally.

We plan to extend proximity rank join to the case of rela-
tions that can be accessed not only by sorted access but also
by random access. Similarly to what we did for Euclidean
distance, we also intend to specialize the tight bounding
scheme to the case of proximity based on cosine similarity.

Acknowledgments. The authors acknowledge support from
the Search Computing (SeCo) project, funded by the ERC.

7. REFERENCES
[1] YQL console. http://developer.yahoo.com/yql/console/.
[2] P. Agrawal and J. Widom. Confidence-aware join

algorithms. In ICDE, pages 628–639, 2009.
[3] G. Beskales, M. A. Soliman, and I. F. Ilyas. Efficient search

for the top-k probable nearest neighbors in uncertain
databases. PVLDB, 1(1):326–339, 2008.

[4] M. Brambilla and S. Ceri, editors. Search Computing -
Challenges and Directions, volume 5950 of LNCS. Springer,
March 2010.

[5] A. Corral, Y. Manolopoulos, Y. Theodoridis, and
M. Vassilakopoulos. Algorithms for processing
k-closest-pair queries in spatial databases. Data Knowl.
Eng., 49(1):67–104, 2004.

[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. J. Comput. Syst. Sci.,
66(4):614–656, 2003.

[7] J. Finger and N. Polyzotis. Robust and efficient algorithms
for rank join evaluation. In SIGMOD Conference, pages
415–428, 2009.

[8] G. R. Hjaltason and H. Samet. Incremental distance join
algorithms for spatial databases. In SIGMOD Conference,
pages 237–248, 1998.

[9] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting
top-k join queries in relational databases. VLDB J.,
13(3):207–221, 2004.

[10] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of
top- query processing techniques in relational database
systems. ACM Comput. Surv., 40(4), 2008.

[11] N. Mamoulis, Y. Theodoridis, and D. Papadias. Spatial
joins: Algorithms, cost models and optimization
techniques. In Spatial Databases, pages 155–184. 2005.

[12] A. N. Papadopoulos, A. Nanopoulos, and Y. Manolopoulos.
Processing distance join queries with constraints. Comput.
J., 49(3):281–296, 2006.

[13] K. Schnaitter and N. Polyzotis. Evaluating rank joins with
optimal cost. In PODS, pages 43–52, 2008.

[14] K. Schnaitter, J. Spiegel, and N. Polyzotis. Depth
estimation for ranking query optimization. In VLDB, pages
902–913, 2007.

[15] Y. N. Silva, W. G. Aref, and M. H. Ali. The similarity join
database operator. In ICDE, 2010.

[16] R. Thonangi, H. He, A. Doan, H. Wang, and J. Yang.
Weighted proximity best-joins for information retrieval. In
ICDE, pages 234–245, 2009.

359

APPENDIX
A. PROOFS

Proof of Theorem 3.1. Consider S as in (2) with ws =
0, wq = 1, wµ = 1, and q = 0, and a problem I = (R1,R2,S,1)
with

x(τ (1)1) = [0,−0.5]T x(τ (1)2) = [0,2]T
x(τ (2)1) = [0,1]T x(τ (2)2) = [−2,2]T

(Tuple scores are immaterial to S as ws = 0.)
When p1 = 2 and p2 = 1, by reasoning on the geometry

of the seen tuples, an algorithm may correctly return τ =
τ
(2)
1 × τ (1)2 as the top combination for I, since no formable

combination can have a higher score than S(τ) = −5.5. The
same conclusion can also be drawn by finding a tight bound
as shown in Section 3.2.1.

Conversely, we show that, in order to terminate, A needs
to explore R1 until a depth that is a priori unbounded. In-
deed, when p1 = p2 = 2, A would compute the upper bounds
t1 = −5, t2 = −8.25, and thus tc = −5. With this, τ cannot
be guaranteed to be the top combination for I, as tc > S(τ).
Since deepening on R2 cannot lower tc, we discuss how tc
varies as p1 grows. Indeed, tc remains above −5.5 until the

first tuple τ
(j)
1 in R1 is seen whose distance from q is at

least
√

5.5 − ∥x(τ (1)2) − q∥2 =
√

1.5. Since there can be an

arbitrary number of tuples in R1 between τ
(2)
1 and τ

(j)
1 , the

value of depth(A, I,1) upon termination of A is unbounded,
hence the claim.

Proof of Theorem 3.2. In order to verify Definition 2.2
for any given proximity rank join problem I and extracted
portions of the relations, it suffices to exhibit a continuation
of I in which a combination using at least one unseen tuple
has a score that equals the bound given by (9). To do that,
let y∗i , i ∈ {1, . . . , n} −M , denote a solution of problem (6)
for the partial combination τ ∈ PC(M) maximizing (8) with
the set M maximizing (9). It suffices then to extend each
relation Ri, i ∈ {1, . . . , n} −M , with a tuple with score σmax

i

and feature vector y∗i . With this, i) the value of the ag-
gregation function for the combination made by τ and the
new tuples equals by construction the bound (9), and ii) the
requirements posed by distance-based access are met by sat-
isfaction of the constraints in (6).

Proof of Theorem 3.3. Follows immediately from tight-
ness of (9) and Theorem 5.1 of [13].

Proof of Theorem 3.4. W.l.o.g., let q = 0. We prove
the claim by contradiction. Assume that the optimal solu-
tion is such that y∗m+1, . . . ,y

∗
n are not collinear. We show

that there is a feasible solution of (12) that attains a larger
value of the objective function, thus contradicting the state-
ment that y∗m+1, . . . ,y

∗
n is the optimal solution. The objec-

tive function of problem (12) can be rewritten as a function
f(ym+1, . . . ,yn) given by

m

∑
i=1
ws ln(σ(τi)) −wq∥xi∥2 +

n

∑
i=m+1

ws ln(σmax
i) −wq∥yi∥2+

−wµh(ym+1, . . . ,yn)

where we adopt the shorthand notation xi = x(τi) and

h(ym+1,. . .,yn) is given by

∑mi=1 ∥xi −µ∥2 +∑ni=m+1 ∥yi −µ∥2

= ∑mi=1 xTi xi +∑ni=m+1 yTi yi − m2

n
νTν+

− 1
n
(∑nj=m+1 yj)

T(∑nj=m+1 yj)−2m
n
νT(∑nj=m+1 yj)

Let y∗m+1, . . . ,y
∗
n denote the optimal solution, consisting of

non-collinear points. Let y′m+1, . . . ,y
′
n denote a possible so-

lution defined as follows:

y′i = ∥y∗i ∥
ν

∥ν∥ for m + 1 ≤ i ≤ n (18)

Thus, y′i has the same distance from the origin as y∗i (and
thus is feasible) but it lies along the direction of ν.

We can observe that

νT
⎛
⎝

n

∑
j=m+1

y′j
⎞
⎠
> νT

⎛
⎝

n

∑
j=m+1

y∗j
⎞
⎠

since
n

∑
j=m+1

νTy′j >
n

∑
j=m+1

νTy∗j

where the strict inequality stems from the observation that
the inner products νTyj are maximized when yj has the
same direction as ν. Also

⎛
⎝

n

∑
j=m+1

y′j
⎞
⎠

T
⎛
⎝

n

∑
j=m+1

y′j
⎞
⎠
>
⎛
⎝

n

∑
j=m+1

y∗j
⎞
⎠

T
⎛
⎝

n

∑
j=m+1

y∗j
⎞
⎠

since
XXXXXXXXXXX

n

∑
j=m+1

y′j

XXXXXXXXXXX
>
XXXXXXXXXXX

n

∑
j=m+1

y∗j

XXXXXXXXXXX
where the strict inequality is due to the fact that, given
two sets of vectors having pairwise the same lengths (i.e.,
∥y′i∥ = ∥y∗i ∥, for m + 1 ≤ i ≤ n), the length of the sum is
maximized when the vectors are parallel. Thus we have

h(y∗m+1, . . . ,y
∗
n) > h(y′m+1, . . . ,y

′
n) (19)

f(y∗m+1, . . . ,y
∗
n) < f(y′m+1, . . . ,y

′
n) (20)

which contradicts the statement that y∗m+1, . . . ,y
∗
n is the

optimal solution, hence the optimal solution is collinear.

Proof of Theorem 3.5 (sketch). The proof of this the-
orem is very similar to the proof of Theorem 4.2 in [13].
There, the authors show that their potential adaptive ver-
sion of the PBRJ template with a corner bound (PBRJ ∗

c)
always terminates with a depth less than or equal to the
depth of the round robin execution (PBRJRRc), for every
input relation. Their argument seamlessly adapts to our
case by replacing i) PBRJ ∗

c with TBPA, ii) PBRJRRc with
TBRR, and iii) their upper bound S̄(Ri(pi)) with the po-
tential pot i of relation Ri. The proof proceeds by contra-
diction, assuming an index k for which depth(TBPA, I, k) >
depth(TBRR, I, k). Let pRRi = depth(TBRR, I, i) and let pi
be the depth of Ri when TBPA decides to pull Rk[pRRk +1].
Then, it can be shown that, for each i, either TBPA has seen
all tuples from Ri seen by TBRR or no tuple past Ri[pi] can
participate in the solution. Thus, TBPA has already formed
all combinations found by TBRR. Also, the score of the
last combination found by TBRR is at least pot i, for every
i, and max{pot1, . . . ,potn} coincides with our tight bound.
Therefore the termination condition of TBPA is met. Con-
tradiction.

Proof of Corollary 3.6. Trivial, by instance optimal-
ity of TBRR and Theorem 3.5.

360

B. DISTANCE-BASED ACCESS

B.1 Updating the bound
Algorithm 2 provides the pseudocode that is executed for

updating the value of the tight bound after each retrieved
tuple τi. The loop at line 3 evaluates (9). The loop at line
5 evaluates (8) for all partial combinations τ ′ ∈ PC(M).
Both the upper bound t(τ ′) and the dominance test need
to be evaluated. When M = ∅, the set PC(M) convention-
ally contains exactly one tuple (the so-called empty tuple ⟨⟩)
and the algorithm may proceed as in all other cases, since
the corresponding combinations are those formed using un-
seen tuples from all relations. Note that, when invoking
updateBound after accessing a tuple τi ∈ Ri, these opera-
tions need not be performed for all partial combinations.
Indeed, the upper bound t(τ ′) is computed if: i) partial
combination τ ′ has not been flagged as dominated (line 6);
ii) either τ ′ is a newly formed partial combination that uses
τi or τ ′ is a seen partial combination that can be completed
with tuples from Ri (line 7). In all other cases, the value
of t(τ ′) is not recomputed; instead, we reuse the previously
computed value, that we store as a global variable.

The dominance test is executed, by checking emptiness of
D(τ ′) via (35), if: i) partial combination τ ′ has not been
flagged as dominated (line 6); ii) τ ′ is a partial combina-
tion that uses seen tuples from Ri (line 10). Note that, as
discussed in Section 3.2.2, the dominance test can also be
performed only periodically, instead of after each access.

Algorithm 2: updateBound(τi) distance-based case

Input : last seen tuple τi = Ri[pi]; seen tuples Pj ,
j = 1, . . . , n, curr. values of t(⋅) for all seen
combinations

Output: Tight upper bound t
1 begin
2 t← −∞;
3 for M ⊂ {1, . . . , n} do
4 tM ← −∞;
5 for τ ′ ∈ PC(M) do
6 if τ ′ is not dominated then
7 if i ∈M ∧ τ ′i = τi ∨ i /∈M then
8 Compute t(τ ′) solving (6);
9 end

10 if i ∈M then
11 if D(τ ′) = ∅ then
12 Flag τ ′ as dominated;
13 end

14 end
15 tM ←max{tM , t(τ ′)};

16 end

17 end
18 t = max{t, tM};

19 end
20 return t

21 end

B.2 Partial combinations and their upper bounds
For the relations in Table 1, Table 3 shows the partial com-

binations that need to be examined, for each of the subsets
M of {1,2,3}. For each partial combination τ , we also re-

Table 3: Partial combinations formed with the tu-
ples of Table 1.

M τ ∈ PC(M) t(τ) tM
∅ ⟨⟩ -19.2 -19.2

{1} τ
(1)
1 -20.6

-19.2
τ
(2)
1 -19.2

{2} τ
(1)
2 -12.8

-12.8
τ
(2)
2 -19.4

{3} τ
(1)
3 -12.8

-12.8
τ
(2)
3 -20.1

{1,2}
τ
(1)
1 × τ (1)2 -16.0

-13.5τ
(1)
1 × τ (2)2 -24.0

τ
(2)
1 × τ (1)2 -13.5

τ
(2)
1 × τ (2)2 -20.4

{1,3}
τ
(1)
1 × τ (1)3 -16.0

-13.5τ
(1)
1 × τ (2)3 -22.0

τ
(2)
1 × τ (1)3 -13.5

τ
(2)
1 × τ (2)3 -26.4

{2,3}
τ
(1)
2 × τ (1)3 -7.0

-7.0τ
(1)
2 × τ (2)3 -21.0

τ
(2)
2 × τ (1)3 -13.1

τ
(2)
2 × τ (2)3 -26.8

port the value of t(τ), which is obtained by solving (6) with
the aggregation function (2), as was shown in Section 3.2.1.
The values of tM are computed as in (8).

B.3 Solution of (10)

We assume w.l.o.g. that q = 0 or, equivalently, that all
the feature vectors are referred to a coordinate system that
has the origin in q, i.e., xi ← xi −q, for i = 1, . . . ,m, and we
adopt the shorthand notation xi = x(τi). The centroid µ of
the full combination can be written

µ = m
n
ν + n −m

n
y (21)

where y = ym+1 = ⋅ ⋅ ⋅ = yn due to the symmetry of the
problem, and ν = 1

m ∑
m
i=1 xi is the centroid of the partial

combination.
The objective function of (10) rewrites into

min. wq(n −m)yTy +wµ(n −m)m2

n2 yTy+
wµ(n −m)m2

n2 ν
Tν − 2wµ(n −m)m2

n2 ν
Ty+

wµ∑mi=1[(xi − m
n
ν)T (xi − m

n
ν)+

(m−n
n

)2 yTy − 2n−m
n

(xi − m
n
ν)Ty] + s.

(22)

where s is a scalar that does not depend on y. The problem
can thus be compactly represented as

minimize ayTy + 2bTy + c
subject to ∥y∥ ≥ δ (23)

where

a = [wq(n −m) +wµ
m

n
(n −m)] (24)

b = −wµ(n −m)m
n
ν (25)

c = wµ(n −m)m
2

n2
νTν +wµ

m

∑
i=1

(xi −
m

n
ν)

T

(xi −
m

n
ν) + s

(26)
The solution of problem (23) is obtained by imposing the

361

Karush-Kuhn-Tucker conditions and it is given by

y∗ = { −b/a if ∥b/a∥ ≥ δ
δ ν
∥ν∥ otherwise (27)

or, equivalently,

y∗ = {
ν

mwµ
mwµ+nwq

if ∥ν mwµ
mwµ+nwq

∥ ≥ δ
ν δ
∥ν∥ otherwise

(28)

Note that y∗ has the same direction as the vector represent-
ing the centroid ν. If q ≠ 0, then y∗ ← q + y∗, thus:

y∗ = {
q + (ν − q) mwµ

mwµ+nwq
if ∥(ν − q) mwµ

mwµ+nwq
∥ ≥ δ

q + (ν − q) δ
∥(ν−q)∥ otherwise

(29)

B.4 Solution of (14)

Let θ = [θ1, θ2, . . . , θn]T denote a vector representing the
distances from q of the n vectors of the tuples that form a
combination. Problem (14) can be written as a quadratic
program (QP) in canonical form, as follows

minimize θTHθ
subject to Aeqθ = beq

θ ≥ `
(30)

To see this, let 1 = [1,1, . . . ,1]T ∈ Rn and In be the n ×
n identity matrix. The objective function of (14) can be
written in matrix form:

m

∑
i=1
ws ln(σ(τi)) +

n

∑
i=m+1

ws ln(σmax
i)

−
n

∑
i=1
wqθ

2
i −

n

∑
i=1
wµ(θi −

1

n

n

∑
j=1

θj)2 =

=r −wqθTθ −wµ(θ −
1

n
1 ⋅ 1Tθ)T (θ − 1

n
1 ⋅ 1Tθ)

=r −wqθTθ −wµθT (In −
1

n
1 ⋅ 1T)

T

(In −
1

n
1 ⋅ 1T)θ

where r is an expression not containing θ. Therefore:

H = wqI +wµ (In −
1

n
1 ⋅ 1T)

T

(In −
1

n
1 ⋅ 1T) (31)

From the equality constraints in (14), θi = P(x(τi)),i =
1, . . . ,m, it follows

Aeq = [Im 0m×(n−m)
0(n−m)×m 0(n−m)×(n−m)

] (32)

beq = [P(x(τ1)), . . . ,P(x(τm)),01×(n−m)]T (33)

Finally, from the inequality constraints in (14), θi ≥ δi, i =
m + 1, . . . , n, it follows

` = [0m×1, δm+1, . . . , δn]T (34)

B.5 Dominance
Let τα be the partial combination whose dominance is

to be checked. We denote as {τ1, . . . , τu} = PC(M) − τα
the set of partial combinations excluding τα. In order to
determine whether D(τα) is empty, we need to solve the
following feasibility linear program (LP)

minimize 1

subject to

⎡⎢⎢⎢⎢⎢⎣

2(bα − b1)T
⋯

2(bα − bu)T

⎤⎥⎥⎥⎥⎥⎦
y ≤

⎡⎢⎢⎢⎢⎢⎣

c1 − cα
⋯

cu − cα

⎤⎥⎥⎥⎥⎥⎦

(35)

If (35) is unfeasible, we can conclude that D(τα) is empty,
thus τα is dominated. We observe that solving (35) can be
costly, since the number of constraints u = ∏i∈M pi−1 grows
quickly as more tuples are retrieved.

Yet, a speed-up can be obtained by discarding from the
constraints of problem (35) those partial combinations in
PC(M) that have already been flagged as dominated.

C. SCORE-BASED ACCESS
Under score-based access, it is possible to compute a cor-

rect upper bound by keeping track of the scores σ(Ri[1])
and σ(Ri[pi]) of the first and, respectively, last accessed
tuples from each relation. The upper bound is given by

tsc = max{ts1, . . . , tsn}, with tsi = f (S̄s1 , . . . ,Ssi , . . . , S̄
s
n) (36)

where S̄sj is an upper bound on the proximity weighted score
that can be attained by a tuple τj ∈ Rj , i.e.,

S̄sj = gj (σ(Ri[1]),0,0) (37)

Similarly Ssi denotes an upper bound on the proximity weighted
score that can be attained by an unseen tuple τi ∈ Ri − Pi:

Ssi = gi (σ(Ri[pi]),0,0) (38)

Such a bound is a corner bound (like that of HRJN [9]),
and it does not consider any geometric constraints of the
problem at hand. As for the case of distance-based access,
the bound is not tight and precludes instance optimality.

Theorem C.1. Let A be an algorithm complying with the
ProxRJ template for score-based access using the corner bound (36).
Then A is not instance optimal for problems with at least two
relations.

Proof. Consider an aggregation function of form (2) on
a one-dimensional space, with ws = wq = wµ = 1, q = 0, and
a problem I = (R1,R2,S,1) with

σ(τ (1)1) = 1 x(τ (1)1) = [1] σ(τ (1)2) = 1 x(τ (1)2) = [1]
σ(τ (2)1) = e−5 x(τ (2)1) = [0] σ(τ (2)2) = 1 x(τ (2)2) = [1/3]

The combination τ = τ (1)1 ×τ (2)2 has score S(τ) = −4/3, which
is the highest possible for all seen and unseen combinations.
However, when p1 = p2 = 2 the corner bound is tsc = 0, thus τ
cannot be guaranteed to be top by tsc, as tsc > S(τ). Deepen-
ing on R1 cannot lower tsc. When p2 grows, tsc remains above

S(τ) until the first tuple τ
(j)
2 is seen with σ(τ (j)2) ≤ e−4/3.

The number of tuples between τ
(2)
2 and τ

(j)
2 in R2 is arbi-

trary, hence the claim.

Similarly to Section 3, let τ ∈ PC(M) denote a partial
combination that can be formed using seen tuples from Ri,
i ∈M . A tight upper bound ts(τ) is obtained by solving the
following unconstrained optimization problem in the vari-
ables yi ∈ Rd, i ∈ {1, . . . , n} −M

maximize f(Ss1 , . . . ,Ssn), where

Ssi = {gi (σ(τi), δ(x(τi),q), δ(x(τi),µ)) , i ∈M
gi (σ(Ri[pi]), δ(yi,q), δ(yi,µ)) , i ∈ {1, . . . , n} −M

(39)
A tight bound for the score-based case is then given by

ts = max{tsM ∣M ⊂ {1, . . . , n}}, tsM = max{ts(τ)∣τ ∈ PC(M)}
(40)

This suffices to obtain instance optimality. The proofs of
these claims are analogous to those of Theorems 3.2 and 3.3.

362

Theorem C.2. The bounding scheme (40) is tight.

Theorem C.3. ProxRJ with the tight bounding scheme (40)
and a round-robin pulling strategy is instance-optimal for
proximity rank join with score-based access.

Unlike the case of distance-based access, for each set M ,
we need to keep track of only one partial combination τMbest
that dominates all the others. In other words, if, at a given
state of execution, ts(τα) ≥ ts(τβ), for two given partial
combinations τα and τβ , then the same inequality holds
when additional tuples are retrieved from Ri, i ∈ {1, . . . , n}−
M . Retrieving additional tuples from Ri, i ∈M creates new
partial combinations. Updating the tight bound when a new
tuple is retrieved can be done incrementally, as it suffices to
solve (39) for each new partial combination and to keep track
of the partial combination with the highest upper bound.

C.1 Updating the bound
Algorithm 3 provides the pseudocode that is executed for

updating the value of the tight bound after each retrieved tu-
ple τi for the case of score-based access. The algorithm pro-
ceeds as Algorithm 2, with two main difference: i) the up-
per bound of a partial combination is computed according to
(39), and ii) partial combinations that do not exceed the cur-
rent value of tsM can be immediately flagged as dominated,
and will remain so. Note that, for each M ⊂ {1, . . . , n}, we
keep track of the partial combination τMbest with the currently
highest upper bound, each stored as a global variable. At
line 10, if the upper bound of the current partial combina-
tion τ ′ exceeds tsM , we flag the previous τMbest (if defined) as
dominated (line 11), we update tsM (line 12), and we set τ ′

as the new τMbest (line 13).

Algorithm 3: updateBound(τi) score-based case

Input : last seen tuple τi = Ri[pi]; seen tuples Pj ,
j = 1, . . . , n, curr. values of ts(⋅) for all seen
combinations, τMbest for every M ⊂ {1, . . . , n}

Output: Tight upper bound ts

1 begin
2 ts ← −∞;
3 for M ⊂ {1, . . . , n} do
4 tsM ← −∞;
5 for τ ′ ∈ PC(M) do
6 if τ ′ is not dominated then
7 if i ∈M ∧ τ ′i = τi ∨ i /∈M then
8 Compute ts(τ ′) solving (39);
9 end

10 if ts(τ ′) > tsM then
11 Flag τMbest as dominated;
12 tsM ← ts(τ ′);
13 τMbest ← τ ′;

14 else
15 Flag τ ′ as dominated;
16 end

17 end

18 end

19 end
20 return ts

21 end

C.2 Tight bound for Euclidean distance
Consider an aggregation function of the form given in (2).

W.l.o.g. let us assume M = {1, . . . ,m} and a partial combi-
nation τ ∈ PC(M). The (partial) upper bound is obtained
by solving the following problem

max. ∑mi=1wsσ(τi) −wq∥x(τi) − q∥2 −wµ∥x(τi) −µ∥2+
∑ni=m+1wsσ(R[pi]) −wq∥yi − q∥2 −wµ∥yi −µ∥2

The problem is of the same kind as (10), but without con-
straints. Therefore, the optimal solution is given by

y∗m+1 = ⋅ ⋅ ⋅ = y∗n = q + (ν − q) mwµ
mwµ + nwq

(41)

i.e., the upper bound on the score of unseen combinations is
achieved by completing the partial combination τ with tu-
ples from Ri, i =m+1, . . . , n such that: i) the unseen tuples
are located along the ray that originates from the query q
and goes through the centroid ν of the partial combination;
ii) the score is equal to the score of the last seen tuple of Ri.

D. EXPERIMENTS SETUP

D.1 Synthetic data sets
We generated the synthetic data sets used in our experi-

ments as follows. For each of the relations Ri, i = 1, . . . , n, we
generate a number of tuples. Each tuple τi is assigned a ran-
dom score σ(τi), sampled from a uniform distribution, and
a feature vector x(τi). The feature vectors are obtained by
sampling a d-dimensional uniform distribution centered in 0
a number of times so as to obtain the desired average den-
sity ρ expressed in terms of tuples per volume unit. When
testing n = 2, we change the skewness parameter ρ1/ρ2 in
such a way as to generate relations with different densities.

We emphasize that the size of the data sets is not a rele-
vant parameter in our study. Indeed, solving the proximity
rank join problem for a target number of results K calls for
retrieving only a prefix of the relations.

D.2 Real data sets
The real data sets contain information needed to answer

the type of query introduced in Section 1. Each data set is
obtained by retrieving customer ratings, latitude and lon-
gitude (thus d = 2) of entertainment places in five differ-
ent destinations (San Francisco, New York, Boston, Dallas
and Honolulu) by means of the YQL console available at
[1]. These data sets are used to feed n = 3 Web services
endowed with distance-based access returning, respectively,
hotels, restaurants and cinemas. The query vector q is rep-
resented by a specific location within these cities (e.g. Fish-
ermans Wharf in San Francisco, Battery Park in New York,
etc.). For each query, we retrieve the top-10 combinations.

D.3 Testing environment
All the algorithms have been executed on a PC with the

Windows 7 operating system, an Intel RO Core2-Duo proces-
sor at 2.4GHz and 4Gb RAM. We remark that the sumDepth
metrics is completely oblivious of the testing environment.
As for the CPU time, we measured the wall clock execu-
tion time needed to return the top-K combinations, assum-
ing that tuples of the joined relations are available locally.
Thus, we did not consider the time needed for fetching the
tuples when data is available from remote sources.

363

