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ABSTRACT
Top-k queries are widely applied for retrieving a ranked set of the
k most interesting objects based on the individual user preferences.
As an example, in online marketplaces, customers (users) typically
seek a ranked set of products (objects) that satisfy their needs. Re-
versing top-kqueries leads to a query type that instead returns the
set of customers that find a product appealing (it belongs to the
top-k result set of their preferences). In this paper, we address the
challenging problem of processing queries that identify the top-m

most influential productsto customers, where influence is defined
as the cardinality of the reverse top-kresult set. This definition of
influence is useful for market analysis, since it is directly related to
the number of customers that value a particular product and, con-
sequently, to its visibility and impact in the market. Existing tech-
niques require processing a reverse top-kquery for each object in
the database, which is prohibitively expensive even for databases
of moderate size. In contrast, we propose two algorithms,SB and
BB , for identifying the most influential objects:SB restricts the
candidate set of objects that need to be examined, whileBB is a
branch-and-bound algorithm that retrieves the result incrementally.
Furthermore, we propose meaningful variations of the query for
most influential objects that are supported by our algorithms. Our
experiments demonstrate the efficiency of our algorithms both for
synthetic and real-life datasets.

1. INTRODUCTION
Top-k queries are widely applied for retrieving thek most inter-

esting objects based on the individual user preferences. Clearly, an
object (product) that is highly ranked by many users (customers)
has obviously a wider visibility and impact in the market. Thus,
an intuitive definition of the influence of a product in the market is
the number of customers that consider it appealing (the product be-
longs to their top-kresults) based on their preferences. Identifying
the mostinfluential objectsfrom a given database of products is im-
portant for market analysis and decision-making and is beneficial
for several real-life applications.

Optimizing direct marketing. Consider a mobile phone com-
pany that aims to introduce a set of new phones in the market. Af-
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ter collecting customer feedback regarding their individual prefer-
ences, with respect to favored features of devices, the company is
interested in finding the subset of phones that are top-ranked ac-
cording to customer preferences, in order to perform direct market-
ing to its customers in a timely fashion. This subset of products
forms the most influential products of the company.

Real estate market.A real estate agency maintains a database
of houses that are available for sale in the market, including its own
houses. In addition, the agency regularly collects the current prefer-
ences of the buyers for favored features of houses, as determined by
the demand in the market. In order to facilitate a beneficial strategy
for the promotion of its own houses, the agency needs to identify
the most influential houses in the market. This set of houses have a
higher probability to be sold, therefore the agents need to prioritize
showing such houses to buyers. Moreover, when such houses are
sold and are not in the market anymore, it is imperative to find the
new influential houses to show to buyers.

Given a product, reverse top-kqueries [9] have been recently
proposed to retrieve the customers to whom the product belongs to
their top-kresult set. In this paper, we capitalize on reverse top-k

queries to define theinfluence scoreof a product as the cardinality
of its reverse top-kresult set. Then, the problem of identifying
the most influential products in the market can be formulated as
a query that selects them products with highest influence score.
Unfortunately, efficient processing of this novel query type is not
currently supported by existing techniques, as obtaining the most
influential products requires computing a reverse top-k query for
each product in the database, which is prohibitively expensive even
for databases of moderate size.

The contributions of this paper are:
• We formulate the problem of identifying the most influen-

tial data objects based on reverse top-kqueries. Each object
is characterized by its influence score, which equals to the
cardinality of the reverse top-k query result set (Section 4).

• We propose two algorithms for identifying the most influ-
ential data objects: the first (SB ) exploits the properties of
the skyband set [7] to restrict the number of candidate result
objects (Section 5), whereas the second (BB) is a branch-
and-bound algorithm that employs upper bounds on influ-
ence score and result sharing to report the result incremen-
tally (Section 6). In addition, we provide theoretical proofs
for the correctness and efficiency of our algorithms.

• We introduce meaningful variants of the query for most in-
fluential objects that are useful in practice, and we show that
they can be supported by our algorithms with minor modifi-
cations (Section 7).

• We demonstrate the efficiency of our algorithms using both
synthetic and real-life datasets (Section 8).
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Section 2 reviews related work, while the preliminaries are pre-
sented in Section 3. Finally, in Section 9, we conclude the paper.

2. RELATED WORK
Top-k have been studied for retrieving a limited set ofk data

object based on a user-defined preference function [2, 8]. Reverse
top-kqueries [9] have been recently proposed for assessing the im-
pact of a potential product in the market, based on the number of
users that deem this product as one of their top-k products accord-
ing to their preferences. However, identifying a ranked set of the
top-m most influential products is extremely costly, as it requires
computing a reverse top-kquery for each product in the database,
and then rank the products based on their result cardinality. In this
paper, we propose more efficient algorithms for solving the prob-
lem, including an incremental branch-and-bound algorithm.

Several novel queries have been proposed lately that focus on
the aspect of the product manufacturer, rather than the customer.
DADA [5] aims to help manufactures position their products in the
market, based on dominance relationship analysis. Creatingcom-
petitive productshas been recently studied in [10]. Nevertheless
in these approaches, user preferences are expressed as data points
that represent preferable products, whereas reverse top-kqueries
examine user preferences in terms of weighting vectors. Miahet
al. [6] propose an algorithm that selects thesubset of attributesthat
increases thevisibility of a new product. In [13],promotion anal-
ysisfor business intelligence is studied, which discovers and ranks
for a given object the subspaces in which it is highly ranked (also
called interesting subspaces). A related problem is that of finding
the top-kmost interesting regions for promotion of an object [12].

Given a query objectq, reverse nearest neighbor queries [4] aim
to retrieve those objects that haveq as their nearest neighbor based
on a similarity function. These objects are said to be influenced by
q. Finding the region in space that maximizes the size of bichro-
matic reverse nearest neighbor is studied in [11]. The reverse sky-
line set of a query objectq can be used to discover objects influ-
enced byq based on dominance relationships [3]. The notion of
influence has also been used by other approaches, in order to iden-
tify the best objects in a dataset. In spatial databases, an interesting
problem is to compute the top-tmost influentialspatial sites[14],
where the influence of an object is defined as the total weight of its
reverse nearest neighbors. We argue that in the context of studying
the impact of products in the market, our definition of influence is
meaningful and intuitive, since it inherently integrates the most im-
portant factor for assessing the impact, namely the visibility of the
product based on user preferences (in terms of top-kqueries).

3. PRELIMINARIES
Consider a data spaceD defined by a set ofn dimensions

{d1, . . . , dn} and a setS of database objects onD with cardinality
|S|. Each dimension represents a numerical scoring attribute. A
database object can be represented as a pointp ∈ S, such thatp
= {p[1], . . . , p[n]}, wherep[i] is a value on dimensiondi. With-
out loss of generality, we assume that the valuesp[i] are numerical
non-negative scores and that smaller score values are preferable.

3.1 Top-k Queries
Top-k queries are defined based on a scoring functionf that ag-

gregates the individual scores of an object into an overall score.
The most important and commonly used case of scoring functions
is the weighted sum function, also called linear. Each dimension
di has an associated query-dependent weightw[i] indicatingdi’s
relative importance for the query. The aggregated scorefw(p) for
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Figure 1: Top-k and reverse top-kquery.

data pointp is defined as a weighted sum of the individual scores:
fw(p) =

∑n

i=1 w[i] × p[i], wherew[i] ≥ 0 (1 ≤ i ≤ n) and∃j

such thatw[j] > 0, and
∑n

i=1 w[i] = 1.1

DEFINITION 1. (Top-kquery): Given a positive integerk and
a user-defined weighting vectorw, the result setTOPk(w) of the
top-k query is a set of points such thatTOPk(w) ⊆ S,
|TOPk(w)| = k and ∀pi, pj : pi ∈ TOPk(w), pj ∈ S −
TOPk(w) it holds thatfw(pi) ≤ fw(pj).

Geometrically, in the Euclidean space a linear top-k query can
be represented by a vectorw. Consider the datasetS depicted in
Figure 1(a), and the queryw=[0.75,0.25]. In then-dimensional
space, the hyperplane (line in 2d) which is perpendicular to vector
w and contains a pointp defines the score of pointp and all points
lying on the same perpendicular hyperplane have the same score
based onw. The rank of a pointp based on a weighting vectorw is
equal to the number of the points enclosed in the half-space defined
by the perpendicular hyperplane that contains the origin of the data
space. In Figure 1(a),p2 is the top-1 object for this query, since no
other data object is enclosed in the corresponding half-space.

3.2 Reverse Top-k Queries
Given a query objectq, the reverse top-kquery identifies all

weighting vectors for whichq belongs to the top-kresult set. The
formal definition of the reverse top-kquery follows.

DEFINITION 2. (Reverse top-kquery [9]): Given a pointq, a
positive numberk and two datasetsS andW , whereS represents
data points andW is a dataset of weighting vectors, a weighting
vectorwi ∈ W belongs to the reverse top-k(RTOPk(q)) result
set ofq, if and only if∃p ∈ TOPk(wi) such thatfwi(q) ≤ fwi(p).

In Figure 1(b), a datasetS is depicted together with two different
weighting vectorsw1 andw2. Assume that a reverse top-3 query
is posed, while the query object isp4. Then,w1 belongs to the
reverse top-3 query result set, since only 2 objects are contained in
the underlined half-space byw1. However,w2 does not belong to
the reverse top-3 query result set, since there exist 3 objects in the
underlined half-space byw2.

4. PROBLEM STATEMENT
We commence by defining theinfluence scoreof a data objectp.

Given a dataset and a set of weighting vectors, the definition of in-
fluence score only requires setting a single valuek that determines
the scope of the reverse top-kqueries that are taken into account
for identifying influential data objects.

1Since the weights represent therelative importance between dif-
ferent dimensions, the assumption

∑n

i=1 w[i] = 1 does not influ-
ence the definition of top-kqueries.
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Figure 2: Most influential data objects.

DEFINITION 3. (Influence Score): Given a positive integerk,
a datasetS and a set of preferences (weighting vectors)W the
influence scorefk

I (p) of a data objectp is defined as the cardi-
nality of the reverse top-kquery result set at pointp: fk

I (p) =
|RTOPk(p)|.

Based on the definition of influence score, we provide next the
formal problem statement.

DEFINITION 4. (Top-mMost Influential Data Objects): Given
a positive integerk, a datasetS and a set of preferences (weighting
vectors)W , the result setITOP m

k of the top-minfluential query
is a ranked set of objects such thatITOP m

k ⊆ S, |ITOP m
k | = m

and ∀pi, pj : pi ∈ ITOP m
k , pj ∈ S − ITOP m

k it holds that
fk

I (pi) ≥ fk
I (pj).

Consider the example of Figure 2, where a setS of data ob-
jects and a set of weighting vectorsW are depicted. Assume that
we are interested in computing the top-m most influential objects
ITOP m

k for m = 2 andk = 2. In Figure 2, the result set of the
reverse top-2 query for each data objectpi is shown. If the objects
pi are ranked according to the cardinality of the reverse top-2 result
set (RTOP2(p)), it is clear that the 2 most influential data objects
arep3 and thenp2. A delicate situation arises when two (or more)
objects share the same score for them-th position. Similar to the
definition of top-kqueries, it suffices to report any one of them as
m-th result.

In the sequel, we present a set of useful theoretical properties re-
lated to the problem of identifying the most influential data objects
that facilitate the study of the problem and provide some intuition.
All proofs can be found in the Appendix.

First, for clarity reasons, we report the notions of objectdom-
inanceand skyline set[1] and then, we present some important
properties of the influence score. A pointp dominatesq (p ≺ q),
if ∀di ∈ D: p[i] ≤ q[i], and on at least one dimensiondj ∈ D:
p[j] < q[j]. The set of pointspi ∈ S that are not dominated by any
other pointpj ∈ S belong to the skyline setSKY (S) of S.

LEMMA 1. If a pointp dominates another pointq (p ≺ q), then
for any value ofk, the reverse top-kresult set ofp is a superset of
the reverse top-kresult set ofq:

RTOPk(p) ⊇ RTOPk(q)

COROLLARY 1. If a point p dominates another pointq, then
for any value ofk, the influence score ofp is at least as high as the
influence score ofq:

fk
I (p) ≥ fk

I (q)

We can now provide the following lemma that discloses the re-
lationship between the most influential data object and the objects
belonging to the skyline set.

Algorithm 1 Skyband-based algorithmSB

1: Input: S, W , m, k

2: Output: RES

3: Q← ∅
4: mSB(S)← computeSkyband(S, m)
5: for all (pi ∈ mSB(S)) do
6: fk

I (pi)← RTA(S, W, pi, k)
7: Q.push(pi)
8: end for
9: for (j = 1 . . . m) do

10: RES ← RES ∪Q.pop()
11: end for
12: return RES

LEMMA 2. Given a setS of data objects, the skyline setSKY (S)
always contains the most influential data objectp: ∃p ∈ SKY (S),
such thatp ∈ ITOP 1

k .

In our example (Figure 2), the most influential object isp3 that
belongs to the skyline set ofS (SKY (S) = {p1,p2,p3,p8}).

5. SKYBAND-BASED ALGORITHM
A straightforward approach to identify the most influential data

objects is to issue a reverse top-kquery for each data objectp ∈ S

in order to compute its influence scorefk
I (p), and then rank the

objects. This is clearly not efficient in practice, as it requires com-
puting a reverse top-kquery for each object in the database. Notice
that processing of reverse top-kqueries is costly, since each query
requires several top-kquery evaluations. To address this shortcom-
ing, we propose a more efficient algorithm that exploits the notion
of skyband set.

So far, we have identified the relationship that exists between the
most influential data object and the objects belonging to the skyline
set. Generalizing this observation for them most influential data
objects requires an extended set of objects that contains the skyline
set, namely them-skyband set[7].

DEFINITION 5. Given a datasetS, the m-skyband set
mSB(S) contains all data objects that are dominated by at most
m − 1 other objects.

Lemma 2 can be generalized for top-mmost influential objects by
using them-skyband concept.

COROLLARY 2. Given a datasetS, them-skyband ofS always
contains the top-mmost influential objectspi (i = 1 . . . m), i.e.,
pi ∈ mSB(S).

Algorithm. Capitalizing on these observations, we propose Al-
gorithm 1 (SB) that produces the most influential data objects of a
datasetS. SB first computes them-skyband (mSB(S)) of S (line
4) and then processes a reverse top-kquery2 (line 6) for each object
pi ∈ mSB(S). In this way, the influence score of all objectspi is
computed, and the objects are kept in a priority queueQ (line 7),
which is sorted by influence score. Finally, them most influential
objects are retrieved fromQ (line 10) and they can be returned to
the user. Notice that any algorithm for skyband computation can
be employed for implementing the functioncomputeSkyband(). In
our implementation, we employ the algorithm proposed in [7] that
uses an R-tree index onS.

The performance of theSB algorithm is sensitive to the cardi-
nality of the skyband set. Especially for high values ofm, the
2A reverse top-kquery is processed using the RTA algorithm pro-
posed in [9].
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size of the skyband set increases significantly and incurs a high
number of reverse top-kqueries. Moreover,SB is not incremen-
tal, as it needs to process a reverse top-kquery for all objects in
mSB(S) before reporting any result. In addition,SB requires as
input the valuem, since the algorithm encapsulates the computa-
tion of mSB(S). Therefore,SB is restricted as it cannot compute
them+1 most influential data object on demand, without comput-
ing the(m+1)SB(S). In the following, we propose an incremental
algorithm that does not require processing all objects in the skyband
set, thus alleviating the shortcomings ofSB .

6. BRANCH-AND-BOUND ALGORITHM
In this section, we present the incremental branch-and-bound al-

gorithm (BB) for identifying the most influential data objects.BB

owes its efficiency to two features: upper bounds on influence score
and result sharing. First,BB calculates anupper boundfor the in-
fluence score of candidate objects based on already processed ob-
jects. This allowsBB to prioritize processing of promising objects
and at the same time to postpone processing of objects that are not
likely to be the next most influential object. In turn, the number
of reverse top-kevaluations is minimized. Furthermore, the score
bound enablesBB to return the most influential objects incremen-
tally. This occurs when the score of the current object is higher
than the upper bound of all candidate objects.

Secondly, the set of candidate weighting vectors for a reverse
top-k query is taken as input by the reverse top-kalgorithm and
affects the overall performance of computing the most influential
objects. BB manages to restrict the size of the input of each re-
verse top-kquery, by using previously computed results (sets of
weighting vectors) of data objects. Therefore,BB employsresult
sharingto avoid costly re-computations and boost the performance
of influence score computation.

6.1 Upper Bound of Influence Scores
We provide a bound for the influence score of an objectp, by

using the notion of thedynamic skyline set[7]. A point pi dynami-
cally dominatesp′

i based on pointq, if ∀dj ∈ D: |pi[j] − q[j]| ≤
|p′

i[j]−q[j]|, and on at least one dimensiondj ∈ D: |pi[j]−q[j]| <

|p′

i[j]− q[j]|. The set of points that are not dynamically dominated
based onq form the dynamic skyline set ofq.

DEFINITION 6. (Constrained Dynamic Skyline Set): Given a
set of pointsP and a pointq, we denote asPc ⊆ P the set of all
pointspi, such that∀dj ∈ D: q[j] ≥ pi[j]. A point pi ∈ Pc

belongs to the constrained dynamic skyline setCDS(q) of point
q, if it is not dynamically dominated with respect toq by any other
pointp′

i in Pc.

CDS(q) is equivalent to applying a dynamic skyline query on the
objects enclosed in the window query defined byq and the origin
of the data space. Figure 3 depicts an example for the constrained
dynamic skyline set of pointq, given the set of pointspi. The win-
dow query is defined by pointq, as shown in the figure. From the
set of points inPc (p1,p2,. . . ,p5), CDS(q) contains onlyp3,p4,p5.

Upper Bound on Influence Score.Using the notion ofCDS(q),
we define the upper bound on influence score as follows.

THEOREM 1. Given a pointq and a non-empty set of constrained
dynamic skyline pointsCDS(q) = {pi}, it holds that:

RTOPk(q) ⊆
⋂

∀pi∈CDS(q) RTOPk(pi)

DEFINITION 7. (Upper Bound): Given a pointq and a non-
empty set of constrained dynamic skyline pointsCDS(q) = {pi},
the upper boundUI(q) of q’s influence score (fkI (q) ≤ UI(q)) is:

UI(q) = |
⋂

∀pi∈CDS(q) RTOPk(pi)|
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Figure 3: Upper bound of influence score ofq.

Henceforth, we usepw (i.e., the exponentw) to refer to the set
of candidate weighting vectors for the reverse top-k result set of
a pointp. For example, in Figure 3,CDS(q) consists of objects
{p3, p4, p5}. Therefore, the listqw is computed as the intersection
of lists pw

i for i = 3-5 and only contains the weighting vectorw2.
The upper bound of the score ofq is set equal to the cardinality
|qw| = 1.

Theorem 1 enables the calculation of an upper bound of the in-
fluence score of a pointq based on the reverse top-kresult sets
of other points that dominateq and have been already evaluated.
The following theorem shows an important property of the pro-
posed upper bound, namely that it suffices to examine the points
in pi ∈ CDS(q) and ignore all other points, since no pointp ∈
P − CDS(q) can further improve the upper bound.

THEOREM 2. A point p ∈ P − CDS(q) can not refine the
upper boundUI(q).

Based on Theorem 2,CDS(q) is the minimum set of points that
need to be examined in order to derive the upper boundUI(q).
For example in Figure 3, pointp1 ∈ Pc − CDS(q) dominates
point p4 ∈ CDS(q) and the intersection of the listspw

1

⋂

pw
4 is

equal topw
4 . Thus, includingp1 in the computation ofUI(q) does

not further reduce the upper bound but increases the computation
overhead for determining the intersection.

Algorithm 2 computeBound()
1: Input: pointq
2: Output: UI(q)
3: computeCDS(q)
4: if (CDS(q) 6= ∅) then
5: qw ←

⋂

∀pi∈CDS(q) RTOPk(pi)

6: UI(q)← |qw|
7: else
8: UI(q)← |W |
9: end if

10: return q

Algorithm. Computing the upper bound of the influence score
of a point q is performed using the pseudocode in Algorithm 2.
Initially, the constrained dynamic skyline pointsCDS(q) of q are
retrieved (line 3). In case this set is empty, we cannot compute a
tighter upper bound and the bound of the score is the number of
all weighting vectors inW (line 8). However, when the set is non-
empty (line 4), then the intersection of the reverse top-k result sets
of points inCDS(q) provides the listqw of candidate weighting
vectors ofq (line 5) and defines the upper bound of the influence
score ofq (line 6).

The remaining challenge is to efficiently implement the upper
bound computation of the influence score of a point. This is equiv-
alent to finding theCDS(q) of a point q given all pointspi for
which theRTOPk has already been computed. For this purpose,
we insert all those pointspi in a main-memory R-tree. Addition-
ally, their computed lists of weighting vectors are also maintained.
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Algorithm 3 Branch-and-bound algorithmBB

1: Input: S, W , m, k

2: Output: RES

3: Initialize main-memory R-treeR
4: Q← load MBRs in root of R-tree onS
5: while (RES.size< m) do
6: c← Q.pop()
7: if (c is data object)then
8: if (fk

I (c) is computed)then
9: RES ← RES ∪ c

10: else
11: UI(c.q)← computeBound(c.q)
12: if (UI(c.q) is not improved)then
13: fk

I (c)← RTA(S, cw, c, k)
14: R.insert(c)
15: end if
16: Q.push(c)
17: end if
18: else
19: UI(c.l)← computeBound(c.l)
20: if (UI(c.l) is not improved)then
21: ci ← expand(c)
22: for all (ci) do
23: UI(ci.l)← computeBound(ci.l)
24: Q.push(ci)
25: end for
26: else
27: Q.push(c)
28: end if
29: end if
30: end while

Then,CDS(q) can be efficiently retrieved by using an adaptation
of BBS [7] on the main-memory R-tree.

6.2 BB Algorithm
Assume that datasetS is indexed by a multidimensional index-

ing structure, such as an R-tree. A multidimensional bounding
rectangle (MBR)ei in the R-tree is represented by its lower left
corner li and its upper right cornerui. We define theinfluence
score of an MBRei as the influence score of its lower left corner
fk

I (ei) = fk
I (li).

COROLLARY 3. The influence scorefk
I (ei) of an MBRei is

always an upper bound of all enclosed data objects.

Intuitively, BB accesses MBRs based their influence score and
places them in a priority queueQ, sorted by descending influence
score. In the case of equal influence scores, the queue is sorted by
ascending distance of the MBR’s lower corner (or data object) to
the origin of the data space.BB expands MBRs that are found at
the top ofQ and inserts their children MBRs inQ.

The pseudocode describingBB is presented in Algorithm 3. Ini-
tially, the root of the R-tree that indexesS is accessed (line 4). Each
root entry (MBR) is inserted inQ with estimated influence score
equal to the number of weighting vectors|W |. In each repetition,
the most promising entryc is accessed from the top ofQ (line 6).
We use the following notation for an entryc of Q: fk

I (c) denotes its
influence score,UI(c) is its upper bound, andcw is the set of can-
didate weighting vectors for the result of the reverse top-k query.
If c is a data object and the influence score is already computed
(i.e., it corresponds to a real score, rather than an upper bound of
the score), thenc is safely returned as the next most influential ob-
ject (line 9). Otherwise (ifc is a data object), the upper bound of
c’s score is re-computed (functioncomputeBound()) (line 11), in
order to derive a tighter bound, due to recently computed results of
other data objects. If a tighter bound cannot be achieved, thenc’s
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(c) Contents of priority queueQ

Figure 4: Example of execution of algorithmBB .

real influence score is computed by invoking the RTA algorithm for
reverse top-kcomputation (line 13) andc is inserted in the main-
memory R-tree (line 14), in order to facilitate more accurate score
estimation of other entries. Then,c is pushed again inQ (line 16),
either with a real score or with a tighter score bound. In casec is an
MBR (line 18), its upper score bound is computed (line 19), and if
it has not changed, then it is expanded and for its children MBRsci

their upper bound scores are computed (line 23) and they are added
to the queue (line 24). If a tighter bound onc’s score is derived,c
is added again to the queue (line 27).

The algorithm continues in the same spirit, as long as either: 1)
the user requests the next most influential object, or 2) the requested
m most influential objects have not been returned to the user.

Notice that there exists a special case when the influence score of
q is equal to zero and there is obviously no need to computeUI(q).
This occurs when more thank-1 objectspi exist with strictly better
values, i.e.,∀j : pi[j] < q[j], because it can be proved that for any
weighting vectorw (any top-kquery)q does not belong to the top-
k result set. This test is performed during the bound computation,
but is omitted in the pseudocode for sake of simplicity.

Example. Consider a 2-dimensional datasetS that consists of
objectsp1,p2,. . . ,p10. The dataset is indexed by an R-tree and its
MBRs ei are depicted in Figure 4(a). The scores of the objectspj

are shown in Figure 2.BB starts by loading in the queueQ the
root of the R-tree that consists of MBRse1,e2,e3,e4. The elements
of the queue are sorted in descending order based on their score,
as illustrated in Figure 4(c) (in case of ties, sorting is based on
ascending distance from the origin). Then, the first element (MBR)
e1 of the queue is expanded and its enclosed objects (p3 andp8)
are added toQ. In the next step, the score ofp3 that is equal to 8 is
computed,p3 is inserted in the main-memory R-treeR (shown at
Figure 4(b)), andp3 is re-inserted inQ. Then, the next elemente2

is accessed, and its score is bound to 8 usingR, soe2 is re-inserted
in Q. As we cannot provide a tighter bound for the score of the
next elemente3, it is expanded, and its enclosed objects (p1,p2,p4)
are inserted inQ. Notice thatp4’s score can be bound usingR
to 8. In the next two steps, the scores ofp2 andp8 are computed
respectively and they are inserted inR and re-inserted inQ. Then,
a tighter bound of the score ofe4 can be provided, usingR. The
next element isp1, its score that is equal to 2 is computed and it
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is inserted inR and re-inserted inQ. At the following step,p3 is
found at the top ofQ, and since its real score has been computed,
p3 is returned to the user as the most influential object.

Analysis of BB algorithm. The following theorems prove the
correctness and the efficiency of theBB algorithm.

THEOREM 3. (Correctness) AlgorithmBB always returns the
correct result set.

PROOF. Let pi be the data object that is returned as the next
most influential object with scorefk

I (pi). The proof is by contra-
diction. Assume that there exists an objectpj with higher influ-
ence scorefk

I (pj) > fk
I (pi) that has not been returned byBB

yet. This means that eitherpj or an MBR that enclosespj is lo-
cated in the priority queueQ. We focus on the case thatpj is lo-
cated inQ, as the other case follows the same reasoning. Then,
based on the sorting ofQ, either: (a)pj has smaller influence score
than pi (fk

I (pj) < fk
I (pi)), or (b) pj has equal influence score

to pi (fk
I (pj) = fk

I (pi)) and higher distance from the origin of
the space. In both casesfk

I (pj) ≤ fk
I (pi), which leads to a con-

tradiction. For the remaining case that an MBRe(l, u) that en-
closespj is located inQ, we have based on the same reasoning
thatfk

I (e) ≤ fk
I (pi). Moreover, from Corollary 3, we know that

fk
I (pj) ≤ fk

I (e), thus we derive thatfk
I (pj) ≤ fk

I (pi), which is
again a contradiction.

Furthermore,BB minimizes the number of reverse top-keval-
uations, since it evaluates queries only if the upper bound cannot
be improved by any point of the dataset. Thus, the reverse top-k

evaluation cannot be avoided.

THEOREM 4. (Minimum number ofRTOPk evaluations)BB

minimizes the number ofRTOPk evaluations.

PROOF. Let pi denote the element at the top of the queueQ

that will be evaluated next. Letpj denote any other element in
Q. Two situations may occur: (a)pj has smaller influence score
thanpi (fk

I (pj) < fk
I (pi)), or (b) pj has equal influence score to

pi (fk
I (pj) = fk

I (pi)) and higher distance from the origin of the
space. In both casesfk

I (pj) ≤ fk
I (pi). Based on Corollary 1,pj

cannot dominatepi. This means that no element inQ can refine
the upper bound ofpi, thus the reverse top-kquery forpi cannot
be avoided.

7. INFLUENCE SCORE VARIANTS
In this section, we introduce variants of the top-m influential

queries, which are meaningful for many applications and are sup-
ported by theBB algorithm.

Threshold-based influential objects. In several applications,
users are interested in retrieval of objects with influence score higher
than a user-specified thresholdτ . For example, a product may be
considered as important if the result set of its reverse top-k query
includes 10% of all customers (i.e., 10%|W|). We refer to this
query, asτ -influential query. As an analogy, the top-minfluential
query corresponds to a top-kquery on the influence score, while
the τ -influential query corresponds to a range query on the influ-
ence score.

DEFINITION 8. (τ-Influential Data Objects): Given a threshold
τ , a datasetS and a set of preferences (weighting vectors)W , the
result setτ -ITOPk of the τ -influential query is a ranked set of
objects such thatτ -ITOPk ⊆ S, ∀pi : pi ∈ τ -ITOPk, it holds
thatfk

I (pi) ≥ τ .

SB cannot supportτ -influential queries, since the number of re-
turned objects (m) is necessary as an input for computing the sky-
band set. In contrast,BB is easily adapted to supportτ -influential
queries. The only necessary modification is related to the termi-
nation condition;BB continues until the next retrieved data object
has an influence score higher thanτ (line 5). Additionally, the size
of the queue can be reduced by adding toQ only objectsp with
upper boundUI(p) of influence score higher than or equal toτ .

Profit-aware influence score. Assuming that each weighting
vector wi corresponds to a customer, the influence score corre-
sponds to the number of customers that are interested in a product
based on the top-kresults set of their queries. Often, each customer
is associated with a profitpri that expresses the average/expected
profit of this customer, for example the number of orders or the
total amount of cost of the orders. The definition of the influence
score can be extended to include also the notion of the profit related
to the customer.

DEFINITION 9. (Profit-aware Influence Score): Given a posi-
tive integerk, a datasetS and a set of preferences (weighting vec-
tors) W , the profit-aware influence scorêfk

I (p) of a data objectp

is defined as:̂fk
I (p) =

∑

∀wi∈RTOPk(p)

pri, wherepri the profit that

is associated towi.

The profit-aware influence score can be used for supporting both
top-m influential queries andτ -influential queries.SB andBB can
support profit-aware influence queries by adjusting only the score
calculation. In more details,BB needs to additionally maintain the
profit that is associated with each weighting vector, and consider
this value during the upper bound calculation. Then, the algorithm
estimates an upper bound also for the profit-aware influence score
and is able to return the correct result set.

8. EXPERIMENTAL EVALUATION
In this section, we present the results of the experimental eval-

uation of identifying the most influential objects. All algorithms
SB , BB and Naive (which evaluates one reverse top-kquery for
each object in the database) are implemented in Java and the ex-
periments run on a 3GHz Dual Core AMD processor equipped
with 2GB RAM. The R-tree uses a buffer size of 100 blocks and
the block size is 4KB. For the datasetS we employ both real and
synthetic data collections, namely uniform (UN), correlated (CO)
and anticorrelated (AC), are used. For the uniform dataset, all at-
tribute values are generated independently using a uniform distri-
bution. The correlated and anticorrelated datasets are generated as
described in [1]. For the datasetW of the weighting vectors, two
different data distributions are examined, namely uniform (UN) and
clustered (CL). The clustered datasetW is generated as described
in [9] and models the case that many users share similar prefer-
ences. In addition, we use two real datasets. NBA consists of
17265 5-dimensional tuples, representing a player’s performance
per year. The attributes are average values of: number of points
scored, rebounds, assists, steals and blocks. HOUSE (Household)
consists of127930 6-dimensional tuples, representing the percent-
age of an American family’s annual income spent on6 types of
expenditure: gas, electricity, water, heating, insurance, and prop-
erty tax. We conduct a thorough sensitivity analysis varying the
dimensionality (2-5d), the cardinality (10K-50K) of the datasetS,
the cardinality (5K-20K) of the datasetW the value ofk (10-100)
and the value ofm (5-20). Unless explicitly mentioned, we use the
default setup of:|S| = 10K, |W | = 10K, d=3, k=10, m=10,
and uniform distribution forS andW . Our metrics include: a) the
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Figure 5: Comparative performance of all algorithms for UN dataset and varying dimensionality (d).

total execution time, b) the number of I/Os, c) the number of top-k

evaluations, and d) the number of reverse top-kevaluations. Notice
that one reverse top-kevaluation translates to multiple top-k eval-
uations. The experimental results with real data as well as some
additional results using synthetic data can be found in Appendix B.
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Figure 6: All algorithms for CO dataset and varying d.
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Figure 7: All algorithms for AC dataset and varying d.

Varying dimensionality d. Figure 5 presents the comparative
performance of all algorithms for uniform data distributions ofS

andW . BB is faster in terms of total time (Figure 5(a)) and more
efficient in terms of I/Os (Figure 5(b)), usually almost by one or-
der of magnitude. Furthermore,BB consistently requires fewer
top-k evaluations than bothSB and naive (Figure 5(c)). However,
when the number of reverse top-kevaluations is considered (Fig-
ure 5(d)),BB attains the highest gain;BB outperformsSB by one
order of magnitude and naive by 1-3 orders of magnitude. The rea-
son that this gain is not directly reflected to metrics such as total
time or I/Os is because the performance of the state-of-the-art al-
gorithm employed for reverse top-kevaluation (RTA) is affected by
the cardinality of the result set. Thus, higher ranked objects (i.e.,
the influential objects) have bigger result sets. As a result, the num-
ber of top-kevaluations is high and this affects the total time and
the I/Os. Clearly, if we could replace RTA with a more efficient
algorithm,BB would achieve even better total time and I/Os.

Our conclusions remain the same in the case of CO dataset (de-
picted in Figure 6), only the absolute values are smaller. In Fig-
ure 7, we show the results obtained from AC data distribution,

which is the most demanding dataset for the problem of identifying
the most influential objects. This is due to the fact that the number
of candidate objects for inclusion in the final result set explodes,
especially for increased dimensionality.BB consistently outper-
forms all algorithms, though the gain is smaller as the dimension-
ality increases. Notice that ford > 3, SB degenerates to the naive
algorithm, because the cardinality of the skyband becomes compa-
rable to|S|. This also affects the bounding ofBB , since only few
dominance relationships exist with increased dimensionality.

Summarizing, our algorithms outperform the naive approach in
all metrics consistently, often by more than one order of magnitude,
while BB is more efficient thanSB . Due to this reason, we do not
show the naive approach in the remaining experiments. Henceforth,
for the synthetic datasets, we use as metrics the I/Os and the number
of reverse top-kevaluations, as they reflect the cost and the pruning
capability respectively of our algorithms. Moreover, we show only
the experiments with UN and AC data distributions, as they are
more demanding than the CO data distribution and the results with
CO do not offer any additional insight.

Varying cardinality of S. Figure 8 shows the effect of increased
values of|S| to the number of reverse top-kevaluations induced by
our algorithms for UN and AC datasets. As shown in the charts,
BB prunes more data objects without processing, due to the up-
per score bounds employed, thus achieving significant performance
gains for both UN and AC. More importantly,BB maintains its ad-
vantage as|S| increases. Also notice that in general the number
of induced reverse top-kevaluations increases moderately with|S|
for each data distribution.

Clustered datasetW . In Figure 9, we use a clustered datasetW

and vary the dimensionality for UN and AC data distributions forS.
We observe that the number of I/Os is smaller in Figure 9(a), when
compared to the uniform datasetW in Figure 5(b). This shows that
our algorithms perform better in the case of clustered user prefer-
encesW , which are more realistic in real applications. In general,
BB always outperformsSB regardless of the dimensionality value,
even in the case of the demanding AC data distribution, although
the gain is admittedly smaller.
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Figure 8: BB vs. SB for varying |S|.
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Figure 9: BB vs. SB for clustered W .
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Figure 10: BB vs. SB for UN dataset and varying |W |.

Varying cardinality of W . We also measure the number of I/Os
and reverse top-kevaluations when increasing|W | in Figure 10.
Although the number of top-kevaluations increases with|W | (fig-
ure omitted due to lack of space), this is not reflected in the induced
I/Os, which remain relatively stable. More importantly, the gain of
BB in terms of pruning is sustained as|W | increases, as shown in
Figure 10(b). Both algorithm scale well with increased values of
|W | andBB is better in all cases.
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Figure 11: BB vs. SB for AC dataset and varying k.

Varying k. In Figure 11, we investigate the performance of our
algorithms for increasing values ofk for the AC dataset. Intuitively,
whenk increases, more objects are candidates for inclusion in the
top-m influential objects, since more objects appear in the result
sets of top-kqueries. Therefore, it is expected that the cost of query
processing will increase. This is verified by our experiments in
terms of necessary I/Os, as shown in Figure 11(a). However, the
number of reverse top-kevaluations is not affected significantly, as
depicted in Figure 11(b). In all cases,BB ’s comparative advantage
overSB is sustained.

Varying m. In Figure 12, we demonstrate the effect ofm in
the performance of our algorithms.BB is more stable thanSB as
m increases. As them-skyband size increases withm, SB needs
to evaluate more reverse top-kqueries, thus its cost increases. In
contrast,BB scales gracefully withm, because asm increases a
higher number of objects have already been evaluated, resulting in
refined upper bounds and improved performance of query process-
ing for the remaining objects. This is an important finding that
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Figure 12: BB vs. SB for UN dataset and varyingm.

demonstrates the benefit ofBB with increasing values ofm.

9. CONCLUSIONS
Given a product, the reverse top-kquery returns a set of cus-

tomers that find the product appealing, i.e., it belongs to their top-k

results. In this paper, we address the important data analysis task
of identifying the mostinfluential productsto customers, given a
database of products. The influence of a product is defined as the
cardinality of the reverse top-kresult set. By exploiting the prop-
erties of reverse top-kqueries, we propose two algorithms that find
efficiently the most influential objects. Our first algorithmSB re-
stricts the candidate set of objects that need to be examined based
on the skyband set of the data objects. The second algorithmBB

is a branch-and-bound algorithm that retrieves the result incremen-
tally. In addition, we study meaningful variations of the query for
most influential objects that are useful in practice and they can be
supported by our algorithms.
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APPENDIX

A. PROOFS
Proof of Lemma 1.

PROOF. By contradiction. Assume thatRTOPk(p) ⊂ RTOPk(q)
and therefore there existsw ∈ RTOPk(q) such thatw /∈ RTOPk(p).
We conclude that: (a)fw(p) ≤ fw(q), becausep ≺ q, thus∀di

p[i] ≤ q[i] andfw is monotone, and (b)∃r ∈ TOPk(w) such
thatfw(q) ≤ fw(r), sincew ∈ RTOPk(q) (Definition 2). From
(a) and (b) we derive that∃r ∈ TOPk(w) such thatfw(p) ≤
fw(q) ≤ fw(r), thus by definitionw ∈ RTOPk(p), which is a
contradiction.

Proof of Corollary 1.

PROOF. According to Lemma 1, it holds that:RTOPk(p) ⊇
RTOPk(q). This directly implies that:|RTOPk(p)| ≥ |RTOPk(q)|,
and equivalently:fk

I (p) ≥ fk
I (q).

Proof of Lemma 2.

PROOF. By contradiction. Assume that∄p ∈ SKY (S) such
that p ∈ ITOP 1

k . Then∃q /∈ SKY (S) andq ∈ ITOP 1
k . We

conclude that: (a)∃p ∈ SKY (S) such thatp ≺ q andfk
I (p) ≥

fk
I (q) (Corollary 1) (b)∀r ∈ S − ITOP 1

k it holds thatfk
I (q) ≥

fk
I (r) sinceq ∈ ITOP 1

k . Thus, from (a) and (b) we derive that
∀r ∈ S − ITOP 1

k it holds fk
I (p) ≥ fk

I (q) ≥ fk
I (r). Based on

Definition 4 we conclude thatp ∈ ITOP 1
k , which contradicts our

assumption.

Proof of Theorem 1.

PROOF. It holds that∀pi ∈ CDS(q): pi ≺ q and there exists at
least onepi ∈ CDS(q). Moreover, from Lemma 1 we derive that:
∀pi : RTOPk(q) ⊆ RTOPk(pi). According to the set theory it
holds that: ifA ⊆ B andA ⊆ C, thenA ⊆ B ∩C. Consequently,
it holds thatRTOPk(q) ⊆

⋂

∀pi∈CDS(q) RTOPk(pi).

Proof of Theorem 2.

PROOF. Let us assume that there existp ∈ P − CDS(q) such
that

⋂

∀pi∈CDS(q)∩{p}
RTOPk(pi) ⊂

⋂

∀pi∈CDS(q) RTOPk(pi)

which leads to a smaller upper boundUI(q). If p /∈ Pc, then
p ⊀ q and the Lemma 1 is violated. Thus,p ∈ Pc − CDS(q)
and based on Definition 6∃pj ∈ CDS(q) such thatp ≺ pj .
Based on Lemma 1RTOPk(pj) ⊆ RTOPk(p) and therefore
⋂

∀pi∈P
RTOPk(pi) ⊆

⋂

∀pi∈CDS(q) RTOPk(pi). Which leads
to a contradiction.

Proof of Corollary 3.

PROOF. Obviously, any data objectp enclosed in an MBRei(li, ui)
is either equal or dominated by the lower left cornerli. Thus, based
on Corollary 1, the influence scorefk

I (p) of objectp is bound by
the influence score ofli: fk

I (p) ≤ fk
I (li).
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Figure 13: All algorithms for CO dataset and varying d.
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Figure 14: All algorithms for AC dataset and varying d.
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Figure 15: BB vs. SB for real data.

B. ADDITIONAL EXPERIMENTAL RESULTS
In this section, we provide some additional experimental results.
Experiments with synthetic data. In Figure 13, we measure

the number of I/Os and the number of required top-kevaluations for
the CO dataset and for varyingd. The results are complementary to
those of Figure 6. Both our algorithms perform consistently better
than naive. In addition,BB is more efficient thanSB .

In Figure 14, we depict the same measures for the AC dataset and
for varyingd. These results correspond to the experimental setup
of Figure 7 and they confirm the conclusions drawn for the case of
the AC dataset.

Experiments with real data. In Figure 15, we show the exper-
iments using the real datasets.BB produces the result faster than
SB for both datasets. Moreover, the gain in terms of pruning is high
for both datasets, as demonstrated by the number of reverse top-k

evaluations. Obviously, the absolute values of the measures depend
on the peculiarities of each dataset, for example the data distribu-
tion. However, we observe that the relative gain ofBB compared
to SB is much higher in the case of the larger dataset (HOUSE),
sinceBB manages to prune more data points. Notice that HOUSE
is the largest dataset in our experimental study in terms of cardi-
nality and dimensionality. In general, the results with real datasets
are in accordance with the conclusions drawn from the synthetic
datasets.
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