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ABSTRACT

Top-k queries are widely applied for retrieving a ranked set of the

k most interesting objects based on the individual user preferences.

As an example, in online marketplaces, customers (users) typically
seek a ranked set of products (objects) that satisfy their needs. Re
versing top-kqueries leads to a query type that instead returns the
set of customers that find a product appealing (it belongs to the
top-k result set of their preferences). In this paper, we address the
challenging problem of processing queries that identify thertop-
mostinfluential productdo customers, where influence is defined
as the cardinality of the reverse toprésult set. This definition of
influence is useful for market analysis, since it is directly related to
the number of customers that value a particular product and, con-
sequently, to its visibility and impact in the market. Existing tech-
nigues require processing a reverse togukery for each object in

the database, which is prohibitively expensive even for databases

of moderate size. In contrast, we propose two algorith$iisand

BB, for identifying the most influential objectsSB restricts the
candidate set of objects that need to be examined, whiteis a
branch-and-bound algorithm that retrieves the result incrementally.
Furthermore, we propose meaningful variations of the query for
most influential objects that are supported by our algorithms. Our
experiments demonstrate the efficiency of our algorithms both for
synthetic and real-life datasets.

1. INTRODUCTION

Top-k queries are widely applied for retrieving tkemost inter-

ter collecting customer feedback regarding their individual prefer-
ences, with respect to favored features of devices, the company is
interested in finding the subset of phones that are top-ranked ac-
cording to customer preferences, in order to perform direct market-
ing to its customers in a timely fashion. This subset of products

forms the most influential products of the company.

Real estate market. A real estate agency maintains a database
of houses that are available for sale in the market, including its own
houses. In addition, the agency regularly collects the current prefer-
ences of the buyers for favored features of houses, as determined by
the demand in the market. In order to facilitate a beneficial strategy
for the promotion of its own houses, the agency needs to identify
the most influential houses in the market. This set of houses have a
higher probability to be sold, therefore the agents need to prioritize
showing such houses to buyers. Moreover, when such houses are
sold and are not in the market anymore, it is imperative to find the
new influential houses to show to buyers.

Given a product, reverse top-gueries [9] have been recently
proposed to retrieve the customers to whom the product belongs to
their top-kresult set. In this paper, we capitalize on reversekop-
queries to define thmfluence scoref a product as the cardinality
of its reverse top-kesult set. Then, the problem of identifying
the most influential products in the market can be formulated as
a query that selects the@ products with highest influence score.
Unfortunately, efficient processing of this novel query type is not
currently supported by existing techniques, as obtaining the most
influential products requires computing a reverse kaguery for
each product in the database, which is prohibitively expensive even

esting objects based on the individual user preferences. Clearly, arfor databases of moderate size.

object (product) that is highly ranked by many users (customers)
has obviously a wider visibility and impact in the market. Thus,
an intuitive definition of the influence of a product in the market is
the number of customers that consider it appealing (the product be-
longs to their top-Aesults) based on their preferences. Identifying
the mosinfluential object§rom a given database of products is im-
portant for market analysis and decision-making and is beneficial
for several real-life applications.
Optimizing direct marketing. Consider a mobile phone com-

pany that aims to introduce a set of new phones in the market. Af-
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The contributions of this paper are:

e We formulate the problem of identifying the most influen-
tial data objects based on reverse toftferies. Each object
is characterized by its influence score, which equals to the
cardinality of the reverse top-query result set (Section 4).

We propose two algorithms for identifying the most influ-
ential data objects: the firsSB) exploits the properties of
the skyband set [7] to restrict the number of candidate result
objects (Section 5), whereas the second J/#a branch-
and-bound algorithm that employs upper bounds on influ-
ence score and result sharing to report the result incremen-
tally (Section 6). In addition, we provide theoretical proofs
for the correctness and efficiency of our algorithms.

We introduce meaningful variants of the query for most in-
fluential objects that are useful in practice, and we show that
they can be supported by our algorithms with minor modifi-
cations (Section 7).

We demonstrate the efficiency of our algorithms using both
synthetic and real-life datasets (Section 8).



Section 2 reviews related work, while the preliminaries are pre-
sented in Section 3. Finally, in Section 9, we conclude the paper.

2. RELATED WORK

Top-k have been studied for retrieving a limited setkoflata
object based on a user-defined preference function [2, 8]. Reverse
top-k queries [9] have been recently proposed for assessing the im-
pact of a potential product in the market, based on the number of
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(a) Top-kquery (b) Reverse top-kuery
Figure 1: Top-k and reverse top-kquery.

users that deem this product as one of theirkqpoducts accord-
ing to their preferences. However, identifying a ranked set of the
top-m most influential products is extremely costly, as it requires
computing a reverse top-guery for each product in the database,
and then rank the products based on their result cardinality. In this data pointp is defined as a weighted sum of the individual scores:
paper, we propose more efficient algorithms for solving the prob- f.,(p) = >, w[i] x p[é], wherew[i] > 0 (1 < ¢ < n) and3j
lem, including an incremental branch-and-bound algorithm. such thatw[j] > 0, and}>", w[i] = 1.*

Several novel queries have been proposed lately that focus on
the aspect of the product manufacturer, rather than the customer. DEFINITION 1. (Top-kquery): Given a positive integér and
DADA [5] aims to help manufactures position their products in the a user-defined weighting vectar, the result sef"O P, (w) of the
market, based on dominance relationship analysis. Creetimg top-k query is a set of points such th&fOP;(w) C S,
petitive productshas been recently studied in [10]. Nevertheless |TOPy(w)| = k andVp;,p; : pi € TOPy(w), p; € S —
in these approaches, user preferences are expressed as data poirif®) Py, (w) it holds thatf., (p:) < fuw(p;).
that represent preferable products, whereas reverse tpeies
examine user preferences in terms of weighting vectors. Miah
al. [6] propose an algorithm that selects théset of attributethat be represented by a vectar Consider the datasét depicted in
increases theisibility of a new product. In [13]promaotion anal- Figure 1(a), and the queny=[0.75,0.25]. In then-dimensional
ysisfor business intelligence is studied, which discovers and ranks space, the hyperplane (line in 2d) which is perpendicular to vector
for a given object the subspaces in which it is highly ranked (also w and contains a point defines the score of poiptand all points
calledinteresting subspacgsA related problem is that of finding  lying on the same perpendicular hyperplane have the same score
the top-kmost interesting regions for promotion of an object [12]. based onw. The rank of a poinp based on a weighting vectaris

Given a query objeat, reverse nearest neighbor queries [4] aim equal to the number of the points enclosed in the half-space defined
to retrieve those objects that hayas their nearest neighbor based by the perpendicular hyperplane that contains the origin of the data
on a similarity function. These objects are said to be influenced by space. In Figure 1(ap. is the top-1 object for this query, since no
g. Finding the region in space that maximizes the size of bichro- other data object is enclosed in the corresponding half-space.
matic reverse nearest neighbor is studied in [11]. The reverse sky- .
line set of a query objeat can be used to discover objects influ-  3-2 Reverse Top-k Queries
enced byg based on dominance relationships [3]. The notion of  Given a query object;, the reverse top-iquery identifies all
influence has also been used by other approaches, in order to idenweighting vectors for whicly belongs to the top-kesult set. The
tify the best objects in a dataset. In spatial databases, an interestingormal definition of the reverse top-guery follows.
problem is to compute the toprtost influentialspatial siteq14],
where the influence of an object is defined as the total weight ofits ~ DEFINITION 2. (Reverse top-kuery [9]): Given a poing, a
reverse nearest neighbors. We argue that in the context of studyingpositive numbek and two datasets and W, whereS represents
the impact of products in the market, our definition of influence is data points andV is a dataset of weighting vectors, a weighting
meaningful and intuitive, since it inherently integrates the mostim- vectorw; € W belongs to the reverse top{#27°0 P (q)) result
portant factor for assessing the impact, namely the visibility of the setofg, if and only if3p € TO Py (w;) such thatf., (¢) < fu, (p)-
product based on user preferences (in terms of tgpéties).

Geometrically, in the Euclidean space a linear koguery can

In Figure 1(b), a datasétis depicted together with two different
weighting vectorsv; andws. Assume that a reverse top-3 query
is posed, while the query objectis. Then,w; belongs to the
Consider a data spacP defined by a set of dimensions reverse top-3 query result set, since only 2 objects are contained in
{d1,...,d,} and a sef of database objects dn with cardinality the underlined half-space hy;. However,w, does not belong to
|S|. Each dimension represents a numerical scoring attribute. A the reverse top-3 query result set, since there exist 3 objects in the
database object can be represented as a poitS, such thaip underlined half-space bys.
={p(1],...,p[n]}, wherepli] is a value on dimensiod;. With-
out loss of generality, we assume that the vaju¢jsare numerical
non-negative scores and that smaller score values are preferable.

3.1 Top-k Queries

Top-k queries are defined based on a scoring funcfidimat ag-
gregates the individual scores of an object into an overall score.
The most important and commonly used case of scoring functions
is the weighted sum function, also called linear. Each dimension 1gjnce the weights represent thalative importance between dif-
d; has an associated query-dependent weigfat indicatingd;’s ferent dimensions, the assumptidn’_, w[i] = 1 does not influ-
relative importance for the query. The aggregated s¢oi@) for ence the definition of top-gueries.

3. PRELIMINARIES

4. PROBLEM STATEMENT

We commence by defining thefluence scoref a data objecp.
Given a dataset and a set of weighting vectors, the definition of in-
fluence score only requires setting a single valukat determines
the scope of the reverse topefieries that are taken into account
for identifying influential data objects.
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Figure 2: Most influential data objects.

DerINITION 3. (Influence Score): Given a positive inteder
a datasetS and a set of preferences (weighting vectaorg) the
influence scoreff (p) of a data objectp is defined as the cardi-
nality of the reverse top-kuery result set at poinp: f7(p) =
|RTOP(p)|-

Based on the definition of influence score, we provide next the
formal problem statement.

DEFINITION 4. (Top-mMost Influential Data Objects\Given
a positive integek, a datasetS and a set of preferences (weighting
vectors)IV, the result sef TO P} of the top-minfluential query
is a ranked set of objects such th&OP;* C S, [ITOP*| =m
andVp;,p; : pi € ITOP", p; € S — ITOP;" it holds that

fEPi) > f(ps)-

Consider the example of Figure 2, where a Setf data ob-
jects and a set of weighting vectdi® are depicted. Assume that
we are interested in computing the topmost influential objects
ITOPR;" form = 2 andk = 2. In Figure 2, the result set of the
reverse top-2 query for each data objects shown. If the objects

Algorithm 1 Skyband-based algorithiiB

lnput: S, W, m, k

: Output: RES

Q10

: mSB(S) < computeSkyband(Sm)
: forall (p; € mSB(S))do
FE(pi) — RTA(S, W, p;, k)
Q-push(n)

: end for
cfor(j=1...m)do

10: RES «— RES U Q.pop()
11: end for

12: return RES

©O~NOUDWNE

LEMMA 2. Given asef of data objects, the skyline s8KY (.5)
always contains the most influential data objeclp € SKY (S),
such that € ITOP}.

In our example (Figure 2), the most influential objecipisthat
belongs to the skyline set & (SKY (S) = {p1,p2,ps,ps})-

5. SKYBAND-BASED ALGORITHM

A straightforward approach to identify the most influential data
objects is to issue a reverse toméery for each data objepte S
in order to compute its influence scofg(p), and then rank the
objects. This is clearly not efficient in practice, as it requires com-
puting a reverse top-guery for each object in the database. Notice
that processing of reverse topgkieries is costly, since each query
requires several top-guery evaluations. To address this shortcom-
ing, we propose a more efficient algorithm that exploits the notion
of skyband set.

So far, we have identified the relationship that exists between the
most influential data object and the objects belonging to the skyline
set. Generalizing this observation for themost influential data

pi are ranked according to the cardinality of the reverse top-2 result gpjects requires an extended set of objects that contains the skyline

set (RTOB(p)), itis clear that the 2 most influential data objects
areps and therp.. A delicate situation arises when two (or more)
objects share the same score for theh position. Similar to the
definition of top-kqueries, it suffices to report any one of them as
m-th result.

set, namely then-skyband sef7].

DEFINITION 5. Given a datasetS, the m-skyband set
mSB(S) contains all data objects that are dominated by at most
m — 1 other objects.

In the sequel, we present a set of useful theoretical properties re-

lated to the problem of identifying the most influential data objects
that facilitate the study of the problem and provide some intuition.
All proofs can be found in the Appendix.

First, for clarity reasons, we report the notions of objéomn-
inance and skyline sef{1] and then, we present some important
properties of the influence score. A pomtominates; (p < q),
if Vd; € D: p[i] < q[é], and on at least one dimensidp € D:
plj] < ¢[j]. The set of pointp; € S that are not dominated by any
other pointp; € S belong to the skyline s&§ K'Y (S) of S.

LEMMA 1. If a pointp dominates another poirt(p < q), then
for any value ofk, the reverse top-kesult set of is a superset of
the reverse top-kesult set ofy:

RTOPy(p) 2 RTOPx(q)

COROLLARY 1. If a point p dominates another point, then
for any value of, the influence score gfis at least as high as the
influence score af:

fE(p) > fr(q)

We can now provide the following lemma that discloses the re-

Lemma 2 can be generalized for topmost influential objects by
using them-skyband concept.

COROLLARY 2. Given a datase$, them-skyband of5 always
contains the top-nmost influential objectg; (i = 1...m), i.e.,
pi € mSB(S).

Algorithm. Capitalizing on these observations, we propose Al-
gorithm 1 (SB) that produces the most influential data objects of a
datasetS. SB first computes then-skyband (mSE.S)) of S (line
4) and then processes a reverse tapséry (line 6) for each object
pi € mSB(S). In this way, the influence score of all objegisis
computed, and the objects are kept in a priority qu@uine 7),
which is sorted by influence score. Finally, themost influential
objects are retrieved fror (line 10) and they can be returned to
the user. Notice that any algorithm for skyband computation can
be employed for implementing the functicomputeSkyband(). In
our implementation, we employ the algorithm proposed in [7] that
uses an R-tree index af

The performance of théB algorithm is sensitive to the cardi-
nality of the skyband set. Especially for high valuesrof the

lationship between the most influential data object and the objects 2A reverse top-fguery is processed using the RTA algorithm pro-

belonging to the skyline set.

posed in [9].
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size of the skyband set increases significantly and incurs a high
number of reverse top-fueries. MoreoverSB is hot incremen-

tal, as it needs to process a reverse togukry for all objects in
mSB(S) before reporting any result. In additiofB requires as
input the valuem, since the algorithm encapsulates the computa-
tion of mSB(S). Therefore,SB is restricted as it cannot compute
them+1 most influential data object on demand, without comput-
ing the(m+1)SB(S). In the following, we propose an incremental
algorithm that does not require processing all objects in the skyband
set, thus alleviating the shortcomings$.

6. BRANCH-AND-BOUND ALGORITHM

In this section, we present the incremental branch-and-bound al-
gorithm (BB) for identifying the most influential data object8B
owes its efficiency to two features: upper bounds on influence score
and result sharing. FirsBB calculates amwpper boundor the in-

RTOP,(p)
Py= {Wy, Wy, W}
P,"= {w,, wg}
Pg"= {W,, Wy, Wg}
P,"= {w,, W}
Ps"= {w,, wg}

window query

—PWALON®CS o

4

12345678910
Figure 3: Upper bound of influence score of;.

Henceforth, we use™ (i.e., the exponent) to refer to the set
of candidate weighting vectors for the reverse topesult set of
a pointp. For example, in Figure 3;'DS(q) consists of objects
{ps,ps, ps}. Therefore, the lisg® is computed as the intersection
of lists p;” for i = 3-5 and only contains the weighting vectos.
The upper bound of the score gfis set equal to the cardinality

w

fluence score of candidate objects based on already processed ob- Theorem 1 enables the calculation of an upper bound of the in-

jects. This allowsBB to prioritize processing of promising objects
and at the same time to postpone processing of objects that are no
likely to be the next most influential object. In turn, the number
of reverse top-fevaluations is minimized. Furthermore, the score
bound enable®B to return the most influential objects incremen-
tally. This occurs when the score of the current object is higher
than the upper bound of all candidate objects.

Secondly, the set of candidate weighting vectors for a reverse
top-k query is taken as input by the reverse topdgorithm and
affects the overall performance of computing the most influential
objects. BB manages to restrict the size of the input of each re-
verse top-kquery, by using previously computed results (sets of
weighting vectors) of data objects. TherefoBR employsresult
sharingto avoid costly re-computations and boost the performance
of influence score computation.

6.1 Upper Bound of Influence Scores

We provide a bound for the influence score of an objedby
using the notion of thelynamic skyline sd¢7]. A point p; dynami-
cally dominate); based on poing, if Vd; € D: |p;:[j] — q[j]| <
Ipi[i]—q[j]|, and on at least one dimensidne D: |p;[j]—q[j]| <
P[] — ql]|- The set of points that are not dynamically dominated
based ory form the dynamic skyline set af

DEFINITION 6. (Constrained Dynamic Skyline Set): Given a
set of pointsP and a pointg, we denote ag. C P the set of all
points p;, such thatvd; € D: q[j] > pi[j]. A pointp; € P.
belongs to the constrained dynamic skyline 8é2.S(q) of point
q, if itis not dynamically dominated with respect¢dy any other
pointp; in P..

CDS(q) is equivalent to applying a dynamic skyline query on the
objects enclosed in the window query definedgognd the origin

fluence score of a point based on the reverse toprésult sets

bf other points that dominate and have been already evaluated.
The following theorem shows an important property of the pro-
posed upper bound, namely that it suffices to examine the points
in p, € CDS(q) and ignore all other points, since no pojnte

P — CDS(q) can further improve the upper bound.

THEOREM 2. A pointp € P — C'DS(q) can not refine the
upper boundJ; (g).

Based on Theorem Z/DS(q) is the minimum set of points that
need to be examined in order to derive the upper baung)
For example in Figure 3, poiniy € P. — CDS(q) dominates
pointp, € CDS(q) and the intersection of the lisig’ () py’ is
equal topy’. Thus, includingy: in the computation of/;(¢) does
not further reduce the upper bound but increases the computation
overhead for determining the intersection.

Algorithm 2 computeBound()

1: Input: pointg

2: Output: Us(q)

3: computeCDS(q)

4: if (CDS(q) # 0) then
5:
6
7
8
9

4% <~ Nyp,ecpsq) BRTOPx(pi)
Ur(g) < 1g%]
. else
Ur(q) — |W|
cendif
10: return ¢

Algorithm. Computing the upper bound of the influence score
of a pointq is performed using the pseudocode in Algorithm 2.

of the data space. Figure 3 depicts an example for the constrainednitially, the constrained dynamic skyline poir@DS(q) of ¢ are

dynamic skyline set of point, given the set of points;. The win-
dow query is defined by point, as shown in the figure. From the
set of points inP. (p1,p2,. . . ,ps), CDS(q) contains onlyps,pa,ps.

Upper Bound on Influence Score Using the notion o€ D S(q),
we define the upper bound on influence score as follows.

THEOREM 1. Given a poinyg and a non-empty set of constrained
dynamic skyline point§€’ DS (¢q) = {p;}, it holds that:
RTOP:(q) C ﬂvpigcps(q) RTOPy(p:)

DEFINITION 7. (Upper Bound): Given a poing and a non-
empty set of constrained dynamic skyline po3.S(q) = {p:},
the upper bound/; (¢) of ¢’s influence score (f(¢) < Ur(q)) is:

Ur(9) = [Ny, ecnsiq BTOP(pi)]
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retrieved (line 3). In case this set is empty, we cannot compute a
tighter upper bound and the bound of the score is the number of
all weighting vectors if¥ (line 8). However, when the set is non-
empty (line 4), then the intersection of the reverse kapsult sets

of points inC'DS(q) provides the lis* of candidate weighting
vectors ofg (line 5) and defines the upper bound of the influence
score ofg (line 6).

The remaining challenge is to efficiently implement the upper
bound computation of the influence score of a point. This is equiv-
alent to finding theC'DS(q) of a pointq given all pointsp; for
which the RT'O Py, has already been computed. For this purpose,
we insert all those pointg; in a main-memory R-tree. Addition-
ally, their computed lists of weighting vectors are also maintained.



Algorithm 3 Branch-and-bound algorith@8B d, Dataset S d, , Main-memory R-tree
atstep 9

1: Input: S, W, m, k 9 : e
2: Output: RES s ] Pro 0 I
3: Initialize main-memory R-treé? 7 p“ p7 e 7 - atsteps
4: Q « load MBRs in root of R-tree 0§ & ’ ¢
5: while (RES.size< m) do 4 4
6: ¢ Q.pop() 3 3 .

. . . . e atstep
7: if (? is c}iata _object)hen 14 b, 1 lap:
8: if (fI (C) is computed}hen LI L B B e e B e e q
9: RES — RESUc 12345678910 12345678910
10: else )
11: Uz (c.q) « computeBound(c.)y (a) DatasetS (b) Main-memory R-tree
12: if (U1 (c.q) is notimproved}then

Ste ‘Acti Priority queue (Q)

13: f}g(c) «— RTA(S, c%, c, k) 1ep msZnD::m e,(m;,z Z(ig)‘ezsm)@(m)
14: R.insert(9 2 expand e, p,(10),¢,(10) €,(10) p,(10) € ,(10)
15: end If 3 calculation of p 4 €,(10),e,(10),p ,(10),e ,(10),p,(8)

. 4 | re-estimationofe , e,(10),p,,(10).e,(10).p,(8) ,(8)
%g: ?-'fPUSh(() 5 expand e, P.(10).p,(10).€,(10)p;(10).p,(8).€,(8).P.(8)

. enal 6 | calculation of p , p,4(10).€,(10).p ,(10),p,(8).€,(8).p,(8).p,(5)
18: else 7 calculation of p €,(10),p,(10),p,(8).€,(8).p,(8).P,(5).p,(3)
19: Uy (e.l) < computeBound(c)l 8 | reestmationofe, | p,(10),,(8),8):¢ ,(8).2.(3)P(5)Py(3)
20: if (Ug(ce.l) is notimproved}hen 9 | calcutation of p , P1(8):0,(8).2,(8).P.(8).P,(5)P4(3)P(2)
21: c; — expand(a: 10 | add p, to the result ,(8).2,(8),p,(8).p,(5).p4(3).0,(2)
22: for all (c;) do (c) Contents of priority queu@
23: Uy (c;i.l) «— computeBound(cl) . . .
24 Q.push(e) Figure 4: Example of execution of algorithm BB.
25: end for
26: else
27: Q-push(y real influence score is computed by invoking the RTA algorithm for
%g; Sr']fd if reverse top-icomputation (line 13) and is inserted in the main-
%0- en(ei?/vhlile memory R-tree (line 14), in order to facilitate more accurate score

estimation of other entries. Thenjs pushed again i) (line 16),
either with a real score or with a tighter score bound. In easan

MBR (line 18), its upper score bound is computed (line 19), and if

it has not changed, then it is expanded and for its children MBRs
their upper bound scores are computed (line 23) and they are added
6.2 BB Algorithm to the queue (line 24). If a tighter bound o8 score is derived;

is added again to the queue (line 27).

The algorithm continues in the same spirit, as long as either: 1)
the user requests the next most influential object, or 2) the requested
m most influential objects have not been returned to the user.

Notice that there exists a special case when the influence score of
q is equal to zero and there is obviously no need to compute).

Then,C'DS(q) can be efficiently retrieved by using an adaptation
of BBS [7] on the main-memory R-tree.

Assume that datasét is indexed by a multidimensional index-
ing structure, such as an R-tree. A multidimensional bounding
rectangle (MBR)e; in the R-tree is represented by its lower left
cornerl; and its upper right cornet;. We define thanfluence
score of an MBRe; as the influence score of its lower left corner

k(o) — fE(].
fr(e) = fr (k). This occurs when more thanl objectsp; exist with strictly better
COROLLARY 3. The influence scorg} (e;) of an MBRe; is values, i.e.¥/j : pi[j] < q[j], because it can be proved that for any
always an upper bound of all enclosed data objects. weighting vectorw (any top-kquery)q does not belong to the top-

k result set. This test is performed during the bound computation,

Intuitively, BB accesses MBRs based their influence score and but is omitted in the pseudocode for sake of simplicity.
places them in a priority queug, sorted by descending influence Example. Consider a 2-dimensional datasethat consists of
score. In the case of equal influence scores, the queue is sorted bybjectsp:,p2,. . . ,p10. The dataset is indexed by an R-tree and its
ascending distance of the MBR’s lower corner (or data object) to MBRse; are depicted in Figure 4(a). The scores of the objggts
the origin of the data spacé3B expands MBRs that are found at  are shown in Figure 2.BB starts by loading in the queu@ the
the top of@ and inserts their children MBRs 1. root of the R-tree that consists of MBRSs,e2,e3,e4. The elements

The pseudocode describifigp is presented in Algorithm 3. Ini- of the queue are sorted in descending order based on their score,
tially, the root of the R-tree that index@ds accessed (line 4). Each  as illustrated in Figure 4(c) (in case of ties, sorting is based on
root entry (MBR) is inserted i) with estimated influence score  ascending distance from the origin). Then, the first element (MBR)

equal to the number of weighting vectd#&|. In each repetition, e1 of the queue is expanded and its enclosed objegtsua ps)
the most promising entry is accessed from the top ¢f (line 6). are added t@). In the next step, the score pf that is equal to 8 is
We use the following notation for an enteyf Q: f7(c) denotes its computedps is inserted in the main-memory R-tré&(shown at
influence scorel/; (c) is its upper bound, and”’ is the set of can- Figure 4(b)), angs is re-inserted irQ). Then, the next elemeant,
didate weighting vectors for the result of the reverse kaguery. is accessed, and its score is bound to 8 ugingoe; is re-inserted

If ¢ is a data object and the influence score is already computedin Q. As we cannot provide a tighter bound for the score of the
(i.e., it corresponds to a real score, rather than an upper bound ofnext elements, it is expanded, and its enclosed objegts §2,p4)

the score), then is safely returned as the next most influential ob- are inserted Q. Notice thatp,’s score can be bound using
ject (line 9). Otherwise (it is a data object), the upper bound of to 8. In the next two steps, the scorespgfandps are computed
c's score is re-computed (functimomputeBound()) (line 11), in respectively and they are insertedimand re-inserted i). Then,
order to derive a tighter bound, due to recently computed results of a tighter bound of the score efi can be provided, using. The
other data objects. If a tighter bound cannot be achieved,dBen  next element ig1, its score that is equal to 2 is computed and it
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is inserted inR and re-inserted irQ. At the following stepps is SB cannot support-influential queries, since the number of re-
found at the top ofY, and since its real score has been computed, turned objects (m) is necessary as an input for computing the sky-

ps is returned to the user as the most influential object. band set. In contrasBB is easily adapted to suppattinfluential
Analysis of BB algorithm. The following theorems prove the  queries. The only necessary modification is related to the termi-
correctness and the efficiency of tB& algorithm. nation condition;BB continues until the next retrieved data object

has an influence score higher thafline 5). Additionally, the size
THEOREM 3. (Correctness) AlgorithnBB always returns the of the queue can be reduced by addingxmnly objectsp with
correct result set. upper boundJ; (p) of influence score higher than or equalto
. ) Profit-aware influence score. Assuming that each weighting
PROOF. Let p; be the data object that is returned as the next yectorw, corresponds to a customer, the influence score corre-

most influential object with scorg;’(p;). The proof is by contra-  gponds to the number of customers that are interested in a product

diction. ASS]iJme that tlrgere exists an objggtwith higher influ- based on the top-#esults set of their queries. Often, each customer
ence scorefr (p;) > f7(p:) that has not been returned @53 is associated with a profitr; that expresses the average/expected
yet. This means that eithgr; or an MBR that encloseg; is lo- profit of this customer, for example the number of orders or the
cated in the priority queu®. We focus on the case thaj is lo- total amount of cost of the orders. The definition of the influence

cated in@, as the other case follows the same reasoning. Then, score can be extended to include also the notion of the profit related
based on the sorting @3, either: (a)p,; has smaller influence score g the customer.

thanp; (fF(p;) < fF(p:)), or (b) p; has equal influence score

to p; (ff(p;) = f7(p:)) and higher distance from the origin of DEFINITION 9. (Profit-aware Influence Score): Given a posi-
the space. In both cas¢$ (p;) < /7 (p:), which leads to a con- tive integerk, a datasetS and a set of preferences (weighting vec-
tradiction. For the remaining case that an MBR, u) that en- tors) W, the profit-aware influence scoi (p) of a data objecp
closesp; is located in@, we have based on the same reasoning is defined as:f}“(p) _ Z pri, wherepr; the profit that

that f¥(e) < fF(p:). Moreover, from Corollary 3, we know that
fT(pj) < ff(e), thus we derive thaff (p;) < ff(p:), which is
again a contradiction. []

Yw; € RTO Py (p)
is associated tav;.

The profit-aware influence score can be used for supporting both
Furthermore,BB minimizes the number of reverse topekal- top-minfluential queries and-influential queriesSB and BB can
uations, since it evaluates queries only if the upper bound cannotsupport profit-aware influence queries by adjusting only the score
be improved by any point of the dataset. Thus, the reversé top- calculation. In more detail$3B needs to additionally maintain the

evaluation cannot be avoided. profit that is associated with each weighting vector, and consider
this value during the upper bound calculation. Then, the algorithm
THEOREM 4. (Minimum number oRRT'O P}, evaluations)BB estimates an upper bound also for the profit-aware influence score
minimizes the number @¢tT'O P, evaluations. and is able to return the correct result set.

PROOF. Let p; denote the element at the top of the qu&de
that will be evaluated next. Lei; denote any other element in 8. EXPERIMENTAL EVALUATION
@. Two situations may occur: (g),; has smaller influence score In this section, we present the results of the experimental eval-
thanp; (ff(p;) < ff(p:)), or (b) p; has equal influence score to  uation of identifying the most influential objects. All algorithms
pi (f¥(p;) = fF(p:)) and higher distance from the origin of the ~SB, BB and Naive (which evaluates one reverse togelery for

space. In both case®’ (p;) < f¥(p:). Based on Corollary Ip; each object in the database) are implemented in Java and the ex-
cannot dominate;. This means that no element @ can refine periments run on a 3GHz Dual Core AMD processor equipped
the upper bound of;, thus the reverse top-guery forp, cannot with 2GB RAM. The R-tree uses a buffer size of 100 blocks and
be avoided. [ the block size is 4KB. For the datasg¢twe employ both real and

synthetic data collections, namely uniform (UN), correlated (CO)
and anticorrelated (AC), are used. For the uniform dataset, all at-
tribute values are generated independently using a uniform distri-

7. INFLUENCE SCORE VARIANTS

In this section, we introduce variants of the tepinfluential bution. The correlated and anticorrelated datasets are generated as
queries, which are meaningful for many applications and are sup- described in [1]. For the datasBt of the weighting vectors, two
ported by theB B algorithm. different data distributions are examined, namely uniform (UN) and

Threshold-based influential objects. In several applications,  clustered (CL). The clustered data$tis generated as described
users are interested in retrieval of objects with influence score higherin [9] and models the case that many users share similar prefer-

than a user-specified threshatd For example, a product may be  ences. In addition, we use two real datasets. NBA consists of

considered as important if the result set of its reversektoprery 17265 5-dimensional tuples, representing a player's performance
includes 10% of all customers (i.e., 10%|)}” We refer to this per year. The attributes are average values of: number of points
query, asr-influential query. As an analogy, the top-influential scored, rebounds, assists, steals and blocks. HOUSE (Household)

query corresponds to a topgery on the influence score, while  consists ofl 27930 6-dimensional tuples, representing the percent-

the T-influential query corresponds to a range query on the influ- age of an American family’s annual income spentéotypes of

ence score. expenditure: gas, electricity, water, heating, insurance, and prop-

erty tax. We conduct a thorough sensitivity analysis varying the

DEFINITION 8. (7-Influential Data Objects): Given athreshold  dimensionality (2-5d), the cardinality (10K-50K) of the dataSet

7, a datasetS and a set of preferences (weighting vectdis) the the cardinality (5K-20K) of the datas&t” the value oft (10-100)

result setr-1TO P, of the r-influential query is a ranked set of  and the value ofn (5-20). Unless explicitly mentioned, we use the

objects such that-ITOP, C S, Vp; : p; € T-ITOP, it holds default setup of:|S| = 10K, |W| = 10K, d=3, k=10, m=10,

that ¥ (p;) > 7. and uniform distribution forS andW. Our metrics include: a) the
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Figure 5: Comparative performance of all algorithms for UN dataset and varying dimensionality (d).

total execution time, b) the number of 1/0s, c) the number ofkop-
evaluations, and d) the number of reverse tapréluations. Notice
that one reverse top-évaluation translates to multiple tdpeval-
uations. The experimental results with real data as well as some
additional results using synthetic data can be found in Appendix B.

1000

BB

Naive 100000

10000

=
15}
S)

1000

Time (sec)

100

.
o

10

#Reverse Top-k Evaluations

2 3 4

Dimensionality (d)

(a) Time.

Dimensionality (d)

(b) Rev. top-kevaluations.

Figure 6: All algorithms for CO dataset and varying d.

100000

10000 100000
10000
1000
1000

Time (sec)

100
100

10 10

#Reverse Top-k Evaluations

Dimensionality (d)

(a) Time.

Dimensionality (d)

(b) Rev. top-kevaluations.

Figure 7: All algorithms for AC dataset and varying d.

Varying dimensionality d. Figure 5 presents the comparative
performance of all algorithms for uniform data distributionsSof
andW. BB is faster in terms of total time (Figure 5(a)) and more
efficient in terms of 1/0s (Figure 5(b)), usually almost by one or-
der of magnitude. Furthermoré3B consistently requires fewer
top-k evaluations than botfB and naive (Figure 5(c)). However,
when the number of reverse topekaluations is considered (Fig-
ure 5(d)),BB attains the highest gaiiB outperformsSB by one
order of magnitude and naive by 1-3 orders of magnitude. The rea-
son that this gain is not directly reflected to metrics such as total
time or 1/Os is because the performance of the state-of-the-art al-
gorithm employed for reverse topeivaluation (RTA) is affected by
the cardinality of the result set. Thus, higher ranked objects (i.e.,
the influential objects) have bigger result sets. As a result, the num-
ber of top-kevaluations is high and this affects the total time and
the I/Os. Clearly, if we could replace RTA with a more efficient
algorithm, BB would achieve even better total time and 1/Os.

Our conclusions remain the same in the case of CO dataset (de-

picted in Figure 6), only the absolute values are smaller. In Fig-
ure 7, we show the results obtained from AC data distribution,

which is the most demanding dataset for the problem of identifying
the most influential objects. This is due to the fact that the number
of candidate objects for inclusion in the final result set explodes,
especially for increased dimensionalityg B consistently outper-
forms all algorithms, though the gain is smaller as the dimension-
ality increases. Notice that fat > 3, SB degenerates to the naive
algorithm, because the cardinality of the skyband becomes compa-
rable to|S|. This also affects the bounding &B, since only few
dominance relationships exist with increased dimensionality.

Summarizing, our algorithms outperform the naive approach in
all metrics consistently, often by more than one order of magnitude,
while BB is more efficient thar$B. Due to this reason, we do not
show the naive approach in the remaining experiments. Henceforth,
for the synthetic datasets, we use as metrics the 1/0Os and the number
of reverse top-fevaluations, as they reflect the cost and the pruning
capability respectively of our algorithms. Moreover, we show only
the experiments with UN and AC data distributions, as they are
more demanding than the CO data distribution and the results with
CO do not offer any additional insight.

Varying cardinality of .S. Figure 8 shows the effect of increased
values of| S| to the number of reverse topevaluations induced by
our algorithms for UN and AC datasets. As shown in the charts,
BB prunes more data objects without processing, due to the up-
per score bounds employed, thus achieving significant performance
gains for both UN and AC. More importantlig B maintains its ad-
vantage asS| increases. Also notice that in general the number
of induced reverse top-évaluations increases moderately wish
for each data distribution.

Clustered datasetlV. In Figure 9, we use a clustered datagét
and vary the dimensionality for UN and AC data distributionsSor
We observe that the number of I/Os is smaller in Figure 9(a), when
compared to the uniform datadét in Figure 5(b). This shows that
our algorithms perform better in the case of clustered user prefer-
encesV, which are more realistic in real applications. In general,
BB always outperforms$ B regardless of the dimensionality value,
even in the case of the demanding AC data distribution, although
the gain is admittedly smaller.
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Cardinality (W) Cardinality (W) results. In this paper, we address the important data analysis task
(a) 1/Os. (b) Rev. top-kevaluations. of identifying the mosinfluential productgo customers, given a

database of products. The influence of a product is defined as the
cardinality of the reverse top-fesult set. By exploiting the prop-
erties of reverse top-gueries, we propose two algorithms that find
efficiently the most influential objects. Our first algorith$® re-
stricts the candidate set of objects that need to be examined based
on the skyband set of the data objects. The second algofBm

is a branch-and-bound algorithm that retrieves the result incremen-
tally. In addition, we study meaningful variations of the query for
most influential objects that are useful in practice and they can be
supported by our algorithms.

Figure 10: BB vs. SB for UN dataset and varying |W|.

Varying cardinality of 1. We also measure the number of I1/0Os
and reverse top-kvaluations when increasirj§j’| in Figure 10.
Although the number of top-gvaluations increases with/| (fig-
ure omitted due to lack of space), this is not reflected in the induced
I/0s, which remain relatively stable. More importantly, the gain of
BB in terms of pruning is sustained 8§ | increases, as shown in
Figure 10(b). Both algorithm scale well with increased values of

|W| andBB is better in all cases. 10. REFERENCES
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APPENDIX
A. PROOFS

Proof of Lemma 1.

PROOF By contradiction. Assume th&T'O Py (p) C RTOPx(q)
and therefore there exisise RT'O P (q) suchthatw ¢ RTOPy(p).
We conclude that: (afw(p) < fw(q), because < ¢, thusvd;
pli] < ¢[i] and f,, is monotone, and (bjr € TOP;(w) such
that f, (q) < fuw(r), sincew € RTOPy(q) (Definition 2). From
(a) and (b) we derive thalr € TOP;(w) such thatf,(p) <
fw(q) < fuw(r), thus by definitionw € RTOPx(p), which is a
contradiction. [

Proof of Corollary 1.
ProOOF. According to Lemma 1, it holds thatRT'O Py (p) 2

RTOPy(q). This directly implies that{ RTO Py (p)| > |RTOPx(q)|,
and equivalentlyf¥ (p) > f¥(¢). O

Proof of Lemma 2.

PROOF. By contradiction. Assume thdlp € SKY (S) such
thatp € ITOP;. Thendg ¢ SKY(S) andg € ITOP;. We
conclude that: (afip € SKY (S) such thatp < ¢ and fF(p) >
fF(q) (Corollary 1) (b)Vr € S — ITOP; it holds thatf (q) >
fF(r) sinceq € ITOP;. Thus, from (a) and (b) we derive that
Vr € § — ITOP} it holds fF(p) > fF(q) > f¥(r). Based on
Definition 4 we conclude that € ITOP;, which contradicts our
assumption. [J

Proof of Theorem 1.

PrRoOOF. It holds thatvp; € CDS(q): p; < g and there exists at
least onep; € CDS(q). Moreover, from Lemma 1 we derive that:
Vpi : RTOPy(q) € RTOP:(p;). According to the set theory it
holds that: ifA C BandA C C, thenA C BN C. Consequently,
it holds thatRT'O Py (q) € Ny, copsiq BTOPe(pi). O

Proof of Theorem 2.

PROOF. Let us assume that there exise P — C'D.S(q) such
that(y,,. copsignipy BLOPe(Pi) C Nyp,consq RTOPk(pi)
which leads to a smaller upper boubd(q). If p ¢ P., then
p # g and the Lemma 1 is violated. Thus,e P. — CDS(q)
and based on Definition 8p; € CDS(q) such thatp < p;.
Based on Lemma RTOP;(p;) € RTOP;(p) and therefore
Nvp;er RTOPk(pi) € Nyp,ccns(q RTOPk(pi). Which leads
to a contradiction. []

Proof of Corollary 3.

ProOOF. Obviously, any data objeptenclosed in an MBR; (1;, u;)
is either equal or dominated by the lower left corheThus, based
on Corollary 1, the influence scorf (p) of objectp is bound by
the influence score df: f¥(p) < ff(l;). O
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B. ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide some additional experimental results.

Experiments with synthetic data. In Figure 13, we measure
the number of I/0Os and the number of required topr&luations for
the CO dataset and for varyinly The results are complementary to
those of Figure 6. Both our algorithms perform consistently better
than naive. In additionBB is more efficient tharbB.

In Figure 14, we depict the same measures for the AC dataset and
for varyingd. These results correspond to the experimental setup
of Figure 7 and they confirm the conclusions drawn for the case of
the AC dataset.

Experiments with real data. In Figure 15, we show the exper-
iments using the real dataset8B produces the result faster than
SB for both datasets. Moreover, the gain in terms of pruning is high
for both datasets, as demonstrated by the number of reverge top-
evaluations. Obviously, the absolute values of the measures depend
on the peculiarities of each dataset, for example the data distribu-
tion. However, we observe that the relative gainB# compared
to SB is much higher in the case of the larger dataset (HOUSE),
since BB manages to prune more data points. Notice that HOUSE
is the largest dataset in our experimental study in terms of cardi-
nality and dimensionality. In general, the results with real datasets
are in accordance with the conclusions drawn from the synthetic
datasets.
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