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ABSTRACT
In this paper, we present a new record linkage approach that uses
entity behavior to decide if potentially different entities are in fact the
same. An entity’s behavior is extracted from a transaction log that
records the actions of this entity with respect to a given data source.
The core of our approach is a technique that merges the behavior of
two possible matched entities and computes the gain in recognizing
behavior patterns as their matching score. The idea is that if we obtain
a well recognized behavior after merge, then most likely, the original
two behaviors belong to the same entity as the behavior becomes more
complete after the merge. We present the necessary algorithms to
model entities’ behavior and compute a matching score for them. To
improve the computational efficiency of our approach, we precede
the actual matching phase with a fast candidate generation that uses
a ”quick and dirty” matching method. Extensive experiments on real
data show that our approach can significantly enhance record linkage
quality while being practical for large transaction logs.

1. INTRODUCTION
Record linkage is the process of identifying records that refer to

the same real world entity. There has been a large body of research
on this topic (refer to [10] for a recent survey). While most existing
record linkage techniques focus on simple attribute similarities, more
recent techniques are considering richer information extracted from
the raw data for enhancing the matching process (e.g. [3, 15, 8, 6]).

In contrast to most existing techniques, we are considering entity
behavior as a new source of information to enhance the record link-
age quality. We observe that by interpreting massive transactional
datasets, for example, transaction logs, we can discover behavior pat-
terns and identify entities based on these patterns. Various applica-
tions such as retail stores, web sites, and surveillance systems, main-
tain transaction logs that track the actions performed by entities over
time. Entities in these applications will usually perform actions, e.g.,
buying a specific quantity of milk at a specific point in time or brows-
ing specific pages within a web site, which represent their behavior
vis-à-vis the system.

To further motivate the importance of using the behavior for record
linkage, consider the following real-life example. Yahoo has recently
acquired a Jordanian Internet company called Maktoob, which, simi-
lar to Yahoo, provides a large number of Internet services to its cus-
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tomers in the region like e-mail, blogs, news, and online shopping. It
was reported that with this acquisition, Yahoo will be able to add the
16 million Maktoob users to its 20 million users from the middle east
region1. Clearly, Yahoo should expect that the overlap between these
two groups of users can be quite significant, and hence the strong need
for record linkage. However, user profile information stored by both
companies may not be reliable enough because of different languages,
unreal information, . . . etc. In this scenario, analyzing the users be-
havior, in terms of how they use the different Internet services, will
be an invaluable source of information to identify potentially common
users. Record linkage analysis based on entity behavior has also many
other applications. For example, identifying common customers for
stores that are considering a merge, tracking users accessing web sites
from different IP addresses, as well as helping in crime investigations.

A seemingly straightforward strategy to match two entities is to
measure the similarity between their behaviors. However, a closer
examination shows that this strategy may not be useful, for the fol-
lowing reasons. It is usually the case that the complete knowledge
of an entity’s behavior is not available to both sources, since each
source is only aware of the entity’s interaction with that same source.
Hence, the comparison of entities’ “behaviors” will in reality be a
comparison of their “partial behaviors”, which can easily be mislead-
ing. Moreover, even in the rare case when both sources have almost
complete knowledge about the behavior of a given entity (e.g., a cus-
tomer who did all his grocery shopping at Walmart for one year and
then at Safeway for another year), the similarity strategy still will not
help. The problem is that many entities do have very similar behav-
iors, and hence measuring the similarity can at best group the entities
with similar behavior together (e.g., [21, 13, 1]), but not find their
unique matches.

Fortunately, we developed an alternative strategy that works well
even if complete behavior knowledge is not known to both sources.
The key to our proposed strategy is that we merge the behavior infor-
mation for each candidate pair of entities to be matched. If the two
behaviors seem to complete one another, in the sense that stronger be-
havioral patterns become detectable after the merge, then this will be a
strong indication that the two entities are, in fact, the same. The prob-
lem of distinct entities having similar overall behavior is also handled
by the merge strategy, especially when their behaviors are split across
the two sources with different splitting patterns (e.g., 20%-80% ver-
sus 60%-40%). In this case, two behaviors (from the first and second
sources) will complete each other if they indeed correspond to the
same real world entity, and not just two distinct entities who happen
to share a similar behavior (which is one of the shortcomings of the
similarity strategy).

In this paper, we develop principled computational algorithms to
detect those behavior patterns which correspond to latent unique
entities in merged logs. We compute the gain in recognizing a
behavior before and after merging the entities transactions and use
this gain as a matching score. In our empirical studies with real world
data sets, the behavior merge strategy produced much better results

1http://www.techcrunch.com/2009/08/25/confirmed-yahoo-acquires-
arab-internet-portal-maktoob/
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than the behavior similarity strategy in different scenarios of splitting
the entities’ transactions among the data sources.

The contributions of this paper are:
• We present the first formulation of the record linkage problem

using entity behavior and solve the problem by detecting con-
sistent repeated patterns in merged transaction logs.

• To model entities’ behavior, we develop an accurate, principled
detection approach that models the statistical variations in the
repeated behavior patterns and estimates them via expectation
maximization [7].

• We present an alternative, more computationally efficient, de-
tection technique that is based on information theory which de-
tects recognized patterns through high compressibility.

• To speed up the linkage process, we propose a filtering proce-
dure that produces candidate matches for the above detection
algorithms through a fast but inaccurate matching. This filter-
ing introduces a novel “winnowing” mechanism for zeroing in
a small set of candidate pairs with few false positives and al-
most no false negatives.

• We conduct an extensive experimental study on real world
datasets that demonstrates the effectiveness of our approach to
enhance the linkage quality.

The rest of the paper is organized as follows; we discuss the prob-
lem and overview our approach in Section 2. Section 3 presents
the candidates generation phase and Section 4 describes the accurate
matching phase. The experiments are discussed in Section 5. Section
6 contains the related work and we conclude in section 7.

2. BEHAVIOR BASED APPROACH

2.1 Problem Statement
We are given two sets of entities {A1, . . . , AN1} and

{B1, . . . , BN2}, where for each entity A we have a transaction
log {T1, . . . , TnA} and each transaction Ti is a tuple in the form of
〈ti, a, F id〉 where ti represents the time of the transaction, a is the
action (or event) that took place, and F id refers to the set of features
that describe how action a was performed.

Our goal is to return the most likely matches between entities from
the two sets in the form of 〈Ai, Bj , Sm(Ai, Bj)〉, where Sm(Ai, Bj)
is the matching function. Given entities A, B (and their transactions),
the matching function returns a score reflecting to what extent the
transactions of both A and B correspond to the same entity.

2.2 Approach Overview
We begin by giving an overview of our approach for record linkage,

which can be summarized by the process depicted in Figure 1.
Phase 0: In the initial pre-processing and behavior extraction

phase, we transform raw transaction logs from both sources into a
standard format as shown on the right side of Figure 2. Next, we
extract the behavior data for each single entity in each log. Behavior
data is initially represented in a matrix format similar to those given
in Figure 3, which we refer to as Behavior Matrix (BM).

Phases 1: Similar to most record linkage techniques, we start with
a candidate generation phase that uses a “quick and dirty” match-
ing function. When matching a pair of entities, we follow the merge
strategy described in the introduction. Moreover, in this phase, we
map each row in the BM to a 2-dimensional point resulting in a very
compact representation for the behavior with some information loss.
This mapping allows for very fast computations on the behavior data
of both the original and merged entities. The mapping is discussed in
Section 3 and we will show how we can use it to generate a relatively
small set of candidate matches (with almost no false negatives).

It is worth mentioning that in some scenarios, and depending on
the domain knowledge, more techniques can be applied to further dis-
card candidate matches in this phase. For example, two customers in
the shopping scenario should be deemed “un-mergeable” if they hap-
pened to shop in two different stores exactly at the same time. In our

Pre-processing and Behavior Extraction

Candidate Generation
(Quick & Dirty Matching)

Accurate Matching
(Statistical Technique or Information Theoretic Technique)

Final Filtering and Conflict Resolution

Phase 0:

Phase 1:

Phase 2:

Phase 3:

Figure 1: Process for behavior-based record linkage.

experiments, we did not rely on any such techniques to ensure the
generality of the results.

Phase 2: The core of our approach is to perform the accurate (yet
more expensive) matching of entities. Accurate matching of the can-
didate pair of entities (A, B) is achieved by first modeling the be-
havior of entities A, B, and AB using a statistical generative model,
where AB is the entity representing the merge of A, B. The estimated
models’ parameters are then used to compute the matching score.

In addition to the above statistical modeling technique, we also pro-
pose an alternative heuristic technique that is based on information
theoretic principles for the accurate matching phase (See Appendix
B). This alternative technique relies on measuring the increase in the
level of compressibility as we merge the behavior data of pairs of en-
tities. While, to some extent, it is less accurate than the statistical
technique, it is computationally more efficient.

Phase 3: The final filtering and conflict resolution phase is where
the final matches are selected. In our experiments, a simple filtering
threshold, tf , is applied to exclude low-scoring matches. To further
resolve conflicting matches, more involved techniques such as stable
marriage [11] can be used. However, the ultimate goal of this pa-
per is to assign a matching score to each pair of entities and report
the matches with the highest scores. Due to space limitations, we re-
ported our experimental results without using any conflict resolution
technique, although when used, we were able to gain at least 5% more
accuracy over the reported results.

In the remainder of this section, we will first examine the details
of phase 0, and then we will give an introduction to phases 1 and
2, whose detailed discussions will be presented in the following two
sections.

2.3 Pre-processing and Behavior Extraction
A transaction log, from any domain, would typically keep track

of certain types of information for each action an entity performs.
This information includes: (1) the time at which the action occurred,
(2) the key object upon which the action was performed (e.g., buy-
ing a Twix bar), and (3) additional detailed information describing
the object and how the action was performed (e.g., quantity, payment
method, etc). For simplicity, we will be referring to each action just
by its key object. For example, “Twix” can be used to refer to the
action of buying a Twix bar.

The following example illustrates how we can transform a raw
transaction log into a standard format with such information. Al-
though the example is from retail stores, the same steps can be applied
in other domains with the help of domain experts.

Example 1. An example of a raw log is shown in table “Raw log”
in Figure 2 which has four columns representing the time, the cus-
tomer (the entity to be matched), the ID of the item bought by the
customer, and the quantity. Since the item name may be too specific
to be the key identifier for the customer’s buying behavior, an alterna-
tive is to use the item category name as the identifier for the different
actions. This way, actions will correspond to buying Chocolate
and Cola rather than Twix and Coca Cola. The main reason be-
hind this generalization is that, for instance, buying a bar of Twix
should not be considered as a completely different action from buy-
ing a bar of Snickers, and so on. In general, these decisions can
be made by a domain expert to avoid over-fitting when modeling the
behavior. In this case, the specific item name, along with the quantity,
will be considered as additional detailed information, which we will
refer to as the action features.

The next step is to assign an id, F id, for each combination of
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Raw log Processed LogTime Cstmr itm_id Qty Items Time Entity Action F_id… … … .. itm_id Category Name .. … … …3 A 1001 2 … … 3 A Chocolate 43 A 1004 2 1001 Chocolate 3 A Cola 26 A 1001 1 1002 Chocolate 6 A Chocolate 38 A 1004 2 1003 Chocolate 8 A Cola 210 A 1001 2 1004 Cola 10 A Chocolate 41 B 1003 2 1005 Cola 1 B Chocolate 21 B 1004 2 … … 1 B Cola 26 B 1004 2 6 B Cola 28 B 1001 1 8 B Chocolate 310 B 1004 2 10 B Cola 213 B 1001 1 13 B Chocolate 313 B 1004 2 13 B Cola 215 B 1001 1 Action Description 15 B Chocolate 315 B 1004 2 action F_id 15 B Cola 23 C 1002 4 … … 3 C Chocolate 53 C 1005 1 Chocolate 2 3 C Cola 16 C 1001 2 Chocolate 3 6 C Chocolate 46 C 1005 1 Chocolate 4 6 C Cola 19 C 1005 1 Chocolate 5 9 C Cola 110 C 1002 4 … … 10 C Chocolate 514 C 1002 4 Cola 1 14 C Chocolate 514 C 1005 1 Cola 2 14 C Cola 116 C 1001 2 … … 16 C Chocolate 4… … … … … …. … …<Qty=1>,<Desc=Pepsi Cola><Qty=2>,<Desc=Coca Cola>……Features<Qty=2>,<Desc=KitKat><Qty=1>,<Desc=Twix><Qty=2>,<Desc=Twix><Qty=4>,<Desc=Snickers>…
Pepsi Cola……Item NameTwixSnickersKitKatCoca Cola1 1 22

Figure 2: Raw log pre-processing example: The first step is to
decide on the action identifiers and the features describing each
action to create the ”Action Description” table. The second step
is to use the identified actions to re-write the log.
features occurring with a specific action in “Raw Log”, as shown in
the “Action Description” table. This step ensures that even if we have
multiple features, we can always reason about them as a single object
using F id. If there is only one feature, then it can be used directly
with no need for F id.

As a final step, we generate the “Processed Log” by scanning “Raw
Log” and registering the time, entity, action, and F id information for
each line. ¤

Behavior Extraction and Representation: Given the standard-
ized log, we extract the transactions of each entity and represent them
in a matrix format, called Behavior Matrix.

DEFINITION 1. Given a finite set of n actions performed over m
time units by an entity A, the Behavior Matrix (BM) of entity A is
an n×m matrix, such that:

BMi,j =

{ Fij if action ai is performed
0 otherwise

Where, Fij ∈ Fi is the F id value for the combination of features
describing action ai when performed at time j, Fi is the domain of all
possible F id values for action ai ,i = 1, . . . , n and j = 1, . . . , m.

Example 2. The BMs for customers A, B and C are shown in
Figure 3. A non-zero value indicates that the action was performed
and the value itself is the F id that links to the description of the
action at this time instant.¤

A more compact representation for the entities’ behavior is de-
rived from the Behavior Matrix representation, and is constructed and
used during the accurate matching phase. This second representa-
tion, which is based on the inter-arrival times, considers each row
in the BM as a stream or sequence of pairs {vij ,F (vij)}, where
vij is the inter-arrival time since the last time action ai occurred,
and F (vij) ∈ Fi is a feature that describes ai from Lai possi-
ble descriptions, |Fi| = Lai . For example, in Figure 3, the row
corresponding to action ai = chocolate of entity C, BMi =
{0, 0, 5, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 5, 0, 4}, will be represented as Xi =
{{3, 5}, {3, 4}, {4, 5}, {4, 5}, {2, 4}}.

The lossy behavior representation used in the candidate generation
phase will be described in Section 3.

It is worth mentioning that the actions, along with their level of
details (e.g., buying chocolate vs. buying Twix) and their associ-
ated features, are assumed to be homogeneous across the two sources.
Otherwise, another pre-processing phase will be required to match
the actions, and thereby ensure the homogeneity. Needless to say, the
sources themselves must belong to the same domain (e.g., two gro-
cery stores, two news web sites, etc) for the behavior-based approach
to be meaningful.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16A Chocolate 0 0 4 0 0 3 0 0 0 4 0 0 0 0 0 0Cola 0 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0B Chocolate 3 0 0 0 0 0 0 3 0 0 0 0 3 0 3 0Cola 2 0 0 0 0 2 0 0 0 2 0 0 2 0 2 0C Chocolate 0 0 5 0 0 4 0 0 0 5 0 0 0 5 0 4Cola 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1AB Chocolate 3 0 4 0 0 3 0 3 0 4 0 0 3 0 3 0Cola 2 0 2 0 0 2 0 2 0 2 0 0 2 0 2 0BC Chocolate 3 0 5 0 0 4 0 3 0 5 0 0 3 5 3 4Cola 2 0 1 0 0 3 0 0 1 2 0 0 2 1 2 1AB looks more consistent than BC, then AB is most likely the same customerWhen merging A &B and then B &C
Time (Date)

Figure 3: Resulting Behavior Matrices from the processed log.

2.4 Matching Strategy
As we explained in Section 2.2, matching entities based on their

extracted behavior data is achieved in two consecutive phases: a can-
didate generation phase followed by an accurate matching phase. In
this section, we describe our general matching strategy, which we ap-
ply in the two matching phases. Note that ultimately, we need to as-
sign a matching score, Sm, for each pair of entities (A, B) deemed as
a potential match, and then report the matches with the highest scores.

To compute Sm(A, B), we first compute a behavior recognition
score, Sr , for each entity (i.e., Sr(A) and Sr(B)). We then merge
the behavior data of both A and B to construct the behavior of some
hypothetical entity AB, whose score, Sr(AB), is also computed.

The next step is to check if this merge results in a more recog-
nizable behavior compared to either of the two individual behaviors.
Hence, the overall matching score should depend on the gain achieved
for the recognition scores. More precisely, it can be stated as follows:

Sm(A, B) =
nA[Sr(AB)− Sr(A)] + nB [Sr(AB)− Sr(B)]

nA + nB
(1)

where nA and nB are the total number of transactions in the BMs of
A and B respectively. Note that the gains corresponding to the two
entities are weighted based on the density of their respective BMs.

Example 3. To better understand the intuition behind the behavior
merge strategy, we assume that entities A and C are from Source 1
and B is from Source 2 and their processed log is shown in table
“Processed Log” in Figure 2. To find the best match for entity B, we
first merge it with A, and then do the same with C. It is apparent from
the resulting BMs in Figure 3 that A is potentially a good match for
B; entity AB is likely to be an entity that buys chocolate every 2 or
3 days and prefers 2 liters of Coca Cola with either 2 bars Twix
or 4 bars Snikers chocolates. However, it is hard to tell a behavior
about entity BC. Of course, in a real scenario we will deal with much
more actions. ¤

The key question now is: How to compute Sr(A)? In fact, the goal
of the recognition score, Sr , is to capture the consistency of an entity’s
behavior along three main components: (1) consistency in repeating
actions, (2) stability in the features describing the action, and (3) the
association between actions. These three components, which will be
explained shortly, correspond to three score components of Sr; i.e.,
Sr1, Sr2, and Sr3. We compute Sr(A) as their geometric mean as
given below.

Sr(A) = 3
√

Sr1(A)× Sr2(A)× Sr3(A) (2)

1- Consistency in repeating actions: Entities tend to repeat spe-
cific actions on a regular basis following almost consistent inter-
arrival times. For example, a user (entity) of a news web site may
be checking the financial news (action) every morning (pattern).

2- Stability in the features describing actions: When an entity
performs an action several times, almost the same features are ex-
pected to apply each time. For example, when a customer buys choco-
late, s/he mostly buys either 2 Twix bars or 1 Snickers bar, as op-
posed to buying a different type of chocolate each time and in com-
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pletely different quantities. The latter case is unlikely to occur in real
scenarios.

3- Association between actions: Actions performed by entities
are typically associated to each other, and the association patterns
can be detected over time. For example, a customer may be used to
buying Twix chocolate and Pepsi cola every Sunday afternoon,
which implies an association between these two actions.

A major distinction between the matching techniques that we will
describe next is in the method used to compute Sr1, Sr2, and Sr3.
The candidate generation phase is a special case as it only considers
the first behavior component; i.e. Sr(A) = Sr1(A).

The matching strategy we have described so far can be referred to
as the behavior merge strategy, since it relies essentially on merging
the entities’ behaviors and then measuring the realized gain. This is to
be contrasted to an alternative strategy, which can be referred to as the
behavior similarity strategy, where the matching score can simply be
a measure of the similarity between the two behaviors.

3. CANDIDATE GENERATION PHASE
To avoid examining all possible pairs of entities during the expen-

sive phase of accurate matching, we introduce a candidate generation
phase, which quickly determines pairs of entities that are likely to be
matched. This phase results in almost no false negatives, at the ex-
pense of relatively low precision.

The high efficiency of this phase is primarily due to the use of a
very compact (yet lossy) behavior representation, which allows for
fast computations. In addition, only the first behavior component;
i.e., consistency in repeating actions, which is captured by Sr1, is
considered in this phase. Note that because the two other components
are ignored, binary BMs are used with 1’s replacing non-zero values.

Each row in the BM , which corresponds to an action, is considered
as a binary time sequence. For each such sequence, we compute the
first element of its Discrete Fourier Transform (DFT) [22], which is a
2-dimensional complex number. The complex number corresponding
to an action ai in the BM of an entity A is computed by:

C
(ai)
A =

m−1∑
j=0

BMi,je
2jπ

√−1
m (3)

An interesting property of this transformation is that the lower the
magnitude of the complex number, the more consistent and regular
the time sequence, and vice versa. This can be explained as follows.
Consider each of the elements in the time series as a vector whose
magnitude is either 0 or 1, and that their angles are uniformly dis-
tributed along the unit circle (i.e., the angle of the jth vector is 2jπ

m
).

The complex number will then be the resultant of all these vectors.
Now, if the time series was consistent in terms of the inter-arrival
times between the non-zero values, then their corresponding vectors
would be uniformly distributed along the unit circle, and hence they
would cancel each other out. Thus, the resultant’s magnitude will be
close to zero.

Another interesting property is that merging the two rows corre-
sponding to an action a in the BMs of two entities, A, B, is reduced
to adding two complex numbers i.e., C

(a)
AB = C

(a)
A + C

(a)
B .

The following example shows how the candidate generation phase
can distinguish between “”match” and “mismatch” candidates.

Example 4. Consider the example described in Figure 4. Let aA,
aB and aC be the rows of action a (chocolate) in the binary BMs
of entities A, B and C from Figure 3. At the left of Figure 4, when
merging aA and aB , the magnitude corresponding to the merged ac-
tion, aAB equals 0.19, which is smaller than the original magnitudes:
1.38 for aA and 1.53 for aB . The reduction in magnitude is because
the sequence aAB is more regular than either of aA and aB .

At the right of Figure 4, we apply the same process for aB and aC .
The magnitudes we obtain are 2.03 for aBC , 1.54 for aB , and 0.09
for aC . In this case, merging aB and aC resulted in an increase in
magnitude because the sequence aBC looks less regular than either
of aB and aC . ¤

-2

0

2

-2 0.2

-2

0

2

-2 0.2

Figure 4: Actions patterns in the complex plane and the effect on
the magnitude.

Based on the above discussion, we can compute a recognition
score, Sr(aA), for each individual action a that belongs to entity A
such that it is inversely proportional to the magnitude of the com-
plex number C

(a)
A . In particular, Sr(aA) = M −mag(C

(a)
A ), where

mag(C
(a)
A ) is the magnitude of C

(a)
A and M is the maximum com-

puted magnitude.
To compute the overall Sr(A), we average the individual scores,

Sr(aA), each weighted by the number of times its respective action
was repeated (n(a)

A ). The formula for Sr(A) is thus given as follows.

Sr(A) =
1

nA

∑

∀ a

n
(a)
A · Sr(aA) (4)

It is worth mentioning that we implemented the entire candidate
generation phase as a single SQL query. The query is presented and
discussed in Appendix C, where we also show the derivation of the
final formula for the matching score starting from Eq. 1.

4. ACCURATE MATCHING USING A STA-
TISTICAL MODELING TECHNIQUE

4.1 Building the Statistical Model
Our goal is to build a statistical model for the behavior of an entity

given its observed actions. The two key variables defining an entity’s
behavior with respect to a specific action are (1) the inter-arrival time
between the action occurrences, and (2) the feature id associated with
each occurrence, which represents the features describing how the
action was performed at that time, or in other words it reflects the
entity’s preferences when performing this action.

In general, we expect that a given entity will be biased to a narrow
set of inter-arrival times and feature ids which is what will distinguish
the entity’s behavior. In merging two behavior matrices for the same
entity, the bias should be enforced and made clearer. However, when
the behavior matrices of two different entities are merged, the bias
will instead be weakened and made harder to recognize. The statisti-
cal model that we build should enable us to measure these properties.

Our problem is similar to classifying a biological sequence as being
a motif, i.e., a sequence that mostly contains a recognized repeated
pattern, or not. A key objective in computational biology is to be
able to discover motifs by separating them from some background
sequence that is mostly random. In our case, a motif corresponds to
a sequence of an action by the same entity. In view of this analogy,
our statistical modeling will have the same spirit as the methods com-
monly used in computational biology. However our model has to fit
the specifics of our problem which are as follows: (a) sequences are
of two variables (inter-arrivals and feature id), rather than just one
variable (DNA character) and (b) for ordinal variables (such as the
inter-arrival time), neighboring values need to be treated similarly.

Modeling the Behavior for an Action: We model the behav-
ior of an entity A with respect to a specific action a using a fi-
nite mixture model M = {M1, . . . ,MK}, with mixing coefficients
λ(aA) = {λ(aA)

1 , . . . , λ
(aA)
K }, whereMk is its kth component. Each

component Mk is associated with two random variables: (i) The
inter-arrival, which is generated from a uniform distribution over the
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range of inter-arrival times, rk = [startk, endk]2. (ii) The feature
id, is a discrete variable, which is modeled using a multinomial dis-
tribution with parameter θ

(aA)
k = {f (aA)

k1 , . . . , f
(aA)
kL }, where L is

the number of all possible feature ids, and f
(aA)
kj is the probability to

describe the occurrence of action a using feature Fj , j = 1, . . . , L.
In what follows, we omit the superscript aA and assume that there is
only one action in the system to simplify the notations.

What we described so far is essentially a generative model in the
sense that once built, we can use it to generate new action occur-
rences for a given entity. For example, using λ, we can select the
componentMk to generate the next action occurrence, which should
occur after an inter-arrival time picked from the correspondng range
rk = [startk, endk] and we can describe the action by selecting a
feature id using θk. However, we do not use the model for this pur-
pose. Instead, we use its estimated parameters (λ and the vectors θk)
to determine the level of recognizing repeated patterns in the sequence
corresponding to the action occurrences.

For the estimation of the model parameters, we use the
Expectation-Maximization (EM) algorithm to fit the mixture model
for each specific action a of an entity A to discover the optimal param-
eter values which maximize the likelihood function of the observed
behavior data. Appendix A presents the algorithm and details all the
derivations used to estimate the model parameters.

Below, we show an example of a behavior and the properties we
desire for its corresponding model parameters. We demonstrate the
challenge in finding those desired parameters, which we address by
using the EM algorithm. We also show through the example how we
choose the initial parameter values required for the EM algorithm.

Example 5. Consider that a customer’s behavior with respect
to the action of buying chocolate is represented by the sequence
{{6, s}, {15, l}, {6, s}, {8, s}, {15, l}, {14, l}, {13, l}}, where s de-
notes a small quantity (e.g., 1-5 bars), and l denotes a large quantity
(e.g., more than 5 bars). So s/he bought a small quantity of chocolate
after 6 days, a large quantity after 15 days, and so on.

To characterize the inter-arrival times preferred by this customer,
the best ranges of size 2 to use are [6, 8] and [13, 15]. Their associated
mixing coefficients (λk) should be 3

7
and 4

7
, because the two ranges

cover 3 and 4 respectively out of the 7 observed data points.
However, since in general, the best ranges in a behavior sequence

will not be as clear as in this case, we need to systematically consider
all the ranges of a given size (2 in this case), and assign mixing coef-
ficients to each of them. The possible ranges for our example would
be {[6, 8], [7, 9], [8, 10], . . . , [13, 15]}.

A straightforward approach to compute λk for each range is to
compute the normalized frequency of occurrence of the given range
for all the observed data points. For instance, the normalized frequen-
cies for the ranges [6, 8], [12, 14], and [13, 15] are 3

12
, 2

12
, and 4

12
(or

1
4

, 1
6

, and 1
3

) respectively, where 12 is the sum of frequencies for all
possible ranges. Note that the same inter-arrival time may fall in mul-
tiple overlapping ranges. Clearly, these are not the desired values for
λk. We would rather have zero values for all ranges other than [6, 8]
and [13, 15]. However, we still use these normalized frequencies as
the initial values for λk to be fed into the EM algorithm.

Similarly, to compute the initial values for the θk probabilities, we
first consider the data points covered by the range corresponding to
component Mk only. Then, for each possible value of the feature
id, we compute its normalized frequency across these data points.
Clearly, in our example, the customer favors buying small quantities
when s/he shops at short intervals (6-8 days apart), and large quanti-
ties when s/he shops at longer intervals (13-15 days apart). 2

4.2 Computing Matching Scores
To match two entities A and B, we need to compute the gain

2The range size of rk is user-configurable as it depends on the appli-
cation and what values are considered close. In our experiments with
retail store data from Walmart, we generated ranges by sliding, over
the time period, a window of size 5 days with a step of 3 days. (i.e.
{{1,6},{4,9},{7,12}, . . .})

Sm(A, B) in recognizing a behavior after merging A and B us-
ing Eq. 1. This requires computing the scores Sr(A), Sr(B) and
Sr(AB) using Eq. 2, which in turn requires computing the behavior
recognition scores corresponding to the three behavior components,
which, for entity A for example, are Sr1(A), Sr2(A), and Sr3(A).

For the first behavior component, the consistency in repeating an
action a is equivalent to classifying its sequence as a motif. We
quantify the pattern strength to be inversely proportional to the un-
certainty about selecting a model component using λ(aA), i.e., action
a’s sequence is a motif if the uncertainty about λ(aA) is low. Thus,
we can use the entropy to compute Sr1(aA) = log K − H(λ(aA)),
where H(λ(aA)) = −∑K

k=1 λ
(aA)
k log λ

(aA)
k , and the overall score

Sr1(A) is then computed by a weighted sum over all the actions ac-
cording to their support, i.e., the number of times the action was re-
peated.

Sr1(A) =
1

nA

∑

∀ a

n
(a)
A · Sr1(aA) (5)

For the second behavior component, the stability in describing
the action (action features) is more recognizable when the uncer-
tainty in picking the feature id values is low. The behavior score
along this component can be evaluated by first computing θ′(aA) =

{f ′(aA)
1 , . . . , f

′(aA)
L }, which is the overall parameter to pick a fea-

ture id value for action a using the multinomial distribution such
that the overall probability for entity A to describe its action a by
feature Fj is f

′(aA)
j . Here, f

′(aA)
j =

∑K
k=1 λ

(aA)
k f

(aA)
kj com-

bined from the all K components for j = 1, . . . , L, knowing
that θ

(aA)
k = {f (aA)

k1 , . . . , f
(aA)
kL }. Using the entropy of θ′(aA),

we compute Sr2(aA) = log L − H(θ′(aA)), where H(θ′(aA)) =

−∑L
j=1 f

′(aA)
j log f

′(aA)
j . Similar to Eq. 5, we can compute the

overall score for Sr2(A) as the weighted sum for Sr2(aA) according
to the actions support.

For the third component, we look for evidence about the associ-
ations between actions. We estimate, for every pair of actions, its
probability of being generated from components with the same inter-
arrival ranges. The association between actions can be recognized
when they occur close to each other. In other words, this can oc-
cur when both of them tend to prefer the same model components to
generate their sequences. Consequently, the score for the third com-
ponent can be computed over all possible pairs of actions for the same
entity as follows:

Sr3(A) =
∑

∀ a,b

K∑

k=1

λ
(aA)
k λ

(bA)
k

Computing Behavior Similarity Score:
The similarity between two behaviors can be simply quantified by

the closeness between the parameters of their corresponding behavior
models according to the Euclidean distance. For two entities A and
B, we compute the behavior similarity as follows:

BSim(A, B) = 1− 1

nA + nB

∑

∀ a

(na
A + na

B)

√√√√
K∑

k=1

[(λ
(aA)
k − λ

(aB)
k )2 +

L∑
j=1

(λ
(aA)
k f

(aA)
kj − λ

(aB)
k f

(aB)
kj )2].

Note that this method is preferred over directly comparing the
BMs of the entities, since the latter method would require some sort
of alignment for the time dimension of the BMs. In particular, de-
ciding which cells to compare to which cells is not obvious.

5. EXPERIMENTS
The goals of our experimental study are: (1) Evaluate the over-

all linkage quality of our behavior based record linkage for various
situations of splitting the entities’ transactions in the log. (2) Demon-
strate the quality improvement when our technique is combined with
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Figure 5: Experimental Results.
a textual based record linkage technique.(3) Study the performance
and scalability as well as the effectiveness of the candidate generation
phase on the overall performance. We also include in our evaluation
the compressibility technique, which is discussed in Appendix B. In
the following, we will refer to the statistical model technique as motif.

To the best of our knowledge, this is the first approach to leverage
entity’s behavior for record linkage. Consequently, there is no other
technique to directly compare to. Instead, we show how our tech-
nique can be combined with a textual record linkage technique. We
should also mention that all existing techniques, including ours, de-
pend on some domain information, e.g., relational [9] and aggregate
constraints [6], which if present, the techniques will perform well. In
our case, if the behavior information is rich enough and more reliable
than other type of information, better record linkage is expected.

Dataset: We use a real world transaction log from Walmart which
would cover many similar scenarios in the retail industry. These trans-
actions cover a period of 16 months. An entry in the log represents
an item that has been bought at a given time. Figure 2 shows a typ-
ical example for this log. We use the first level item grouping as the
actions which are described by the quantity feature. This feature was
grouped into {very low, low, medium, high, very high} for each indi-
vidual item (high quantity for oranges is different from high quantity
of milk gallons).

Setup and Parameters: To simulate the existence of two data
sources whose customers (entities) need to be linked, a given entity’s
log is partitioned into contiguous blocks which are then randomly as-
signed to the sources. The log splitting operation is controlled by the
following parameters with their assigned default values if not speci-
fied: (1) e: the percentage of overlapped entities between the two data
sources (default 50%). (2) d: the probability of assigning a log block
to the first data source (default 0.5). (3) b: the transactions block size
as a percentage of the entity’s log size. When b is very small, the log
split is called a random split (default 1%), and for higher values we
call the split a block split (default 30%). The block split represents the
case where the customer alternates between stores in different places,
e.g., because of moving during the summer to a different place. When
b is 50%, the log is split into two equal contintigues halves. From the
overlapping entities, 50% have their transactions random split and the
rest is block split. These parameters allow us to test our techniques
under various scenarios on how entities interact with the two systems.

All the matching scores within a phase are scalled to be between
0 and 1, by subtracting the minimum and dividing by the maximum
scores. All of the experiments were conducted on a Linux box with
a 3 GHz processor and 32 GB RAM. We implemented the proposed
techniques in Java and we used MySQL DBMS to store and query the
transactions and the intermediate results.

5.1 Quality
The matching quality of the proposed techniques is analyzed by

reporting the classical precision and recall. We also report the f-
measure= 2×precision×recall

precision+recall
, which corresponds to the weighted

harmonic mean of precision and recall. Since we control the number
of overlapping entities, we know the actual unique entities to compute
the precision and recall. In some cases and to provide more readable
plots, we only report the f-measure as an overall quality measure.

Overall Quality: In this experiment, we use a log of a group of
1000 customers.

For the candidate generation phase, we report in Figure 5(a) the
recall, precision and percentage of the reduction in the number of
candidates against the candidate matching score threshold tc. If the
two data sources contain p and q entities and the number of generated
candidates is c pairs, the reduction percentage corresponds to r =
100(pq − c)/pq.

We observe that high recall values close to 100% are achieved for
tc ≤ 0.3. Moreover, the reduction in the number of candidates starts
around 40% and quickly increases close to 100% for tc ≥ 0.2. The
precision starts at very low values close to zero and increases with tc.

The main purpose of this phase is to reduce the number of candi-
dates while maintaining high recall using an approximate matching
process. Therefore, low values for tc should be used to relax the
matching function and avoid false negatives. For low values around
tc = 0.2, the number of candidates are perfectly reduced with very
few false negatives. This result was achieved on different datasets.

Figure 5(b) and 5(c) illustrate and compare the overall quality of the
techniques of the behavior merge strategy; motif and compressibility,
and the behavior similarity technique. In this experiment, we used
the candidates produced at tc = 0.2. The three techniques behave
similarly with respect to tf , Phase 2 filtering threshold. High recall is
achieved for low values of tf , while high precision is reached for high
tf . In Figure 5(c), f-measure values show that the motif technique can
get an accuracy over 80% while the compressibility technique can
hardly reach 65%. The behavior similarity technique was the worst
as it can hardly reach 45%.

The difference between the motif and compressibility techniques is
expected as the motif technique is based on an exhaustive statistical
method that is more accurate, while the compressibility is based on ef-
ficient mathematical computations. The behavior similarity technique
did not perform well because when a customer’s shopping behavior is
split randomly, it will be difficult to accurately model his/her behav-
ior based on either source taken separately. Consequently, comparing
the behavior model can hardly help in matching the customers. In the
case where the transactions are block split, the behavior can be well
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modeled. However, since there are many distinct customers who have
similar shopping behaviors, the matching quality will drop.

For subsequent experiments and to be fair to the three behavior
matching techniques, we report the best achieved results when chang-
ing tf . For the candidate generation phase, we used tc = 0.2.

Improving Quality with Textual Linkage: In this experiment, we
consider a situation that is similar to the Yahoo-Maktoob acquisition
discussed in the introduction. We constructed a profile for each cus-
tomer such that the textual information is not very reliable. Basically,
we synthetically perturbed the string values. To match the customers
textual information, we used the Levenshtein3 distance function [17].
In the experiment, we first match the customers using different string
similarity thresholds and we then pass the resulting matches to our
behavior-based matching techniques.

In Figure 5(d), the overall accuracy improvement is illustrated by
reporting the f-measure values. Generally, as we relax the matching
using the textual information by reducing the string similarity thresh-
old, the behavior linkage approach get more chance to improve the
overall quality. Reducing the string similarity threshold resulted in
very low precision and high recall with an overall low f-measure.
Leveraging the behavior in such case improves the precision and con-
sequently improves the f-measure. Although all the behavior match-
ing techniques improved the matching quality, the motif technique is
more accurate.

Split Transactions with Different Probabilities: In this experi-
ment, we study the effect of changing the parameter d (i.e. we assess
the quality when the entities’ transactions are split between the data
sources with different density). In Figure 5(e), we report and com-
pare the f-measure when linking several datasets each splitted with
different d value from 0.1 to 0.5.

We observe that for d ≤ 0.2 (i.e, the first source contains below
20% of the entitiy’s transactions), the matching quality drops sharply.
The drop happens because one of the data sources will contain cus-
tomers with fewer information about their behaviors. When matching
such small behaviors, it is likely to fit and produce well recognized
behavior with many other customers. The behavior merge techniques
consistently produce better results in situations when each of the par-
ticipating data sources contains at least 20% of an entity’s behavior.
This is a reasonable results especially when only the behavior infor-
mation is used for linkage.

Split Incomplete Behaviors: This experiment evaluates the qual-
ity of the behavior linkage when matching incomplete behaviors (i.e.,
non-exhaustive4). More precisely, for a customer we split his/her
transactions into p parts and proceed to link the behaviors using only
two parts. We report in Figure 5(f) the resulting f-measure matching
values when p = 2, . . . , 7.

As expected, as we increase p the matching quality using all the
behavior linkage approach drops. Although the customers we used
in the experiments may not have their complete buying behavior in
Walmart stores, the motif technique was able to get more than 50%
quality for customers having about 25% of their behavior split be-
tween the two sources. The matching quality of the compressibility
technique drops below 50% immediately if we split the transactions
into 3 parts and link two of them. The behavior similarity technique
was not helpful most of the time even when using an even transactions
split.

Split Contiguous Behavior Blocks: This experiment studies the
effect of changing b, the transactions block size, to split an entity’s
transactions. In Figure 5(g), we report the matching quality using the
f-measure as we change b. For b = 50%, the transactions are split
into two contiguous halves and for b = 1%, it is almost as if we are
randomly splitting the transactions. For low values of b, we get the
best quality matching using the behavior merge, then as we increase
the block size, b, the matching quality drops. For the behavior simi-

3We used the implementation in the Second String library
(http://secondstring.sourceforge.net/)
4An exhaustive behavior means that the customer does all of his/her
purchases from the same store throughout the entire studied period
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Figure 6: Performance.

larity, the quality starts low, about 45%, for very low values of b, then
the quality improves to about 65% for b between 5% and 15%. After
that the quality keeps decreasing with the increase of b.

The behavior merge techniques benefit from having the original
entities’ behavior more random; when merging the transactions, the
behavior patterns emerge. This is the main reason for having good
accuracy for low values of b. Moreover, high values of b close to
50% mean that the behaviors can be well recognized and therefore
the computed gain after merging the transaction will not be significant
enough to distinguish between the entities. On the other hand, for the
behavior similarity technique, there are two observations affecting its
results: (i) there are many customers sharing the same buying behav-
ior, and (ii) how much of the complete behavior can be recognized.
For low values of b, the behavior can not be well recognized leading
to poorly estimated behavior model parameters, and consequently low
matching accuracy. For high values of b, the behavior is well recog-
nized, however, because there are many customers sharing the same
behavior the matching quality drops.

Changing the Number of Overlapping Entities : In this exper-
iment, we study the effect of changing the overlapping percentage,
e, from 10% to 100% (100% means that all the customers use both
stores) and the results are reported in Figure 5(h). We see that the
overlapping percentage parameter is not significantly affecting the
matching quality for all techniques. This highlights the benefit of
our approach to provide good results even when the expected number
of overlapping entities is small.

5.2 Performance
Our next set of experiments study the execution time. We start by

showing the positive effect of the candidate generation phase on the
overall linking time, then we discuss the scalability of our approach.

Candidate Generation Phase Effectiveness: In this experiment,
we used the same dataset as in Figure 5(a). In Figure 6(a), we report
the total execution time of the motif, compressibility and similarity
techniques against different values of Phase 1 threshold, tc. Phase 1
took 45 sec; this execution time is not affected by tc because all the
pairs of entities should be compared anyway and then filtered based
on tc’s selected value. For each value of tc, the candidates are passed
to the accurate matching phase to produce the final matching results.

The time spent in the whole matching process decreases as tc in-
creases because the number of produced candidates drops dramati-
cally. This was illustrated in Figure 5(a) in terms of reduction in the
percentage of the number of candidates. However, high values for tc

results in many false negatives. As mentioned earlier, values around
tc = 0.2 produce good quality candidates.

When comparing the performance of the accurate matching tech-
niques at tc = 0.2, the compressibility outperforms motif technique
by a factor of about 3. This is because the compressibility uses a tech-
nique that does not require scanning the data many times while the
motif technique uses an expensive iterative statistical method. The
compressibility technique is thus more attractive for very large logs.
The similarity technique requires less time than the motif, because
the motif computes for each candidate pair 3 statistical models (two
for the original two entities and one for the resulting merged entity),
while the similarity computes models for only two entities.

Scalability : This experiment analyzes the scalability of the be-
havior linkage approach and compares the two cases of using or not
the candidate generation phase. The evaluation was conducted using
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a sequential implementation of the techniques (i.e., no parallelization
was introduced). In Figure 6(b), we report the overall linkage time
for the three behavior matching techniques when using Phase 1 (mo-
tif, compress and sim) and without Phase 1 (motif-nP1, compress-nP1
and sim-nP1). When we used Phase 1, tc = 0.2.

The behavior matching techniques require expensive computations
and scale poorly without the help of the candidate generation phase,
which resulted in around 2 orders of magnitude speedup for the case
of motif technique. The processing time is governed by the gener-
ated number of candidates using the threshold tc as discussed in the
previous experiment.

For very large scale data processing, generating the candidates can
benefit from standard database join performance. Moreover, the com-
putations required for each candidate pair is independent from any
other pair computation and hence can be easily parallelized. There-
fore, in a parallel environment, all the behavior matching computa-
tions can be speeded up to the number of available processing units.

6. RELATED WORK
Most existing record linkage techniques based on textual attributes

use various string approximate matching approaches (refer to [10] and
[16] for recent surveys). Recent, more involved techniques use infor-
mation extracted from the data to improve the linkage accuracy. For
example, extracting information to capture similarities between enti-
ties has been recently explored in data mining and machine learning
(e.g. [18, 9, 4, 15]). To the best of our knowledge, our work is the
first to exploit the entities’ behavior extracted from transactions log
to perform entity matching. Moreover in contrast to the traditional
concept of linkage based on similarity between entities pair, we used
a new concept driven by computing the gain in recognizing behaviors
upon merging the log of entities pair.

To improve the performance of the linkage run time, several tech-
niques were introduced and used to avoid the entities cross product
matching. For example, blocking, Sorted Neighborhood [12], tradi-
tional clustering [20], and canopies [19]. Our candidate generation
phase is similar the canopies technique in the sense that we develope
a quick and dirty matching function to quickly generate candidates
for more accurate matching.

A closely related area to our work is users adaptive systems for
web navigation and information retrieval (e.g., [21, 13, 1]). Most
of these techniques focus on statistically modeling user interactions
to extract domain specific features to understand users preferences.
These models focus on the statistical significance of extracted fea-
tures and may take into account the sequence of users actions. How-
ever, they do not take into account the time dimension to determine
the repeated patterns of actions. Moreover, they are better suited to
determine groups of common behaviors and may be used to evaluate
the similarities between entities. However, they cannot be helpful for
computing the strength in recognizing behaviors when merging entity
behaviors along the time dimension.

7. CONCLUSIONS AND FUTURE WORK
We presented a new approach for record linkage that uses entity

behavior extracted from transactions logs. When matching two enti-
ties, we measure the gain in recognizing a behavior in their merged
logs. We proposed two different techniques for behavior recognition:
a statistical modeling technique and a more computationally efficient
technique that is based on information theory. To improve efficiency,
we introduced a quick candidate generation phase. Our experiments
demonstrate the high quality and performance of our approach.

One area that we left for future work is to automatically specify
the actions and their features without the help of domain experts.
Considering very general descriptions may lead to less information
to distinguish between entities while very minute details may not lead
to recognizable consistent patterns due to many sparse actions. This
typically falls in the pathology of attribute selection error [14] for
induction algorithms like our approach.

Other potential areas for future work include addressing multiple
sources instead of two, the privacy issues for behavior data, and the

integration of our approach with other relevant approaches proposed
for web usage modeling and mining.
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APPENDIX
A. BEHAVIOR MODEL PARAMETERS ES-

TIMATION
In the following, we use the expectation maximization (EM) algo-

rithm to fit the finite mixture model of a given action sequence rep-
resenting its occurrence and discover the parameters’ values of the
overall model which was discussed in Section 4.1. To simplify the
notations, we assume there is only one action in the system, so we
omit the superscript that link the entity and action names.

Recall that our model consists of K components M =
{M1, . . . ,MK}, where each component Mi describes the occur-
rence of an action using two variables: rk = [start, end] with a uni-
form distribution, which represents a range of inter-arrival time of the
action, and θk, which represents an independent random variable de-
scribing a multinomial trial with parameters θk = {fk1, . . . , fkL},
where L is the number of possible features to describe the action
when it occurs. fkj is the probability to describe an action using
feature Fj in component Mk. The different parameters fkj , with
k = {1, . . . , K} and j = {1, . . . , L}, are estimated from the entity’s
transaction log. The overall model of the pattern is achieved by esti-
mating the components’ mixing coefficient λ = {λ1, . . . , λK}. λk,
with

∑K
k=1 λk = 1, is the probability of using component Mk to

get the next entry {v,F (v)} in the sequence X; i.e. after how many
time units, v, the action will occur and how it will be described, F (v).
In summary, the parameters for the overall model of an action are
the mixing coefficient λ and the vector θk for each component Mk,
where k = {1, . . . , M}.

As we mentioned earlier, we use the expectation maximization
(EM) for finite mixture model to discover the parameters’ values
of the overall model which would maximize the likelihood of the
data. The EM uses the concept of missing data and follows an it-
erative procedure to find values for λ and θ, which maximize the
likelihood of the data given the model. In our case, the miss-
ing data is the knowledge of which components produced X =

{{v1,F (v1)}, . . . , {vN ,F (vN )}}. A finite mixture model assumes
that the sequence X arises from two or more components with differ-
ent, unknown parameters. Once we obtain these parameters, we use
them to compute the behavior scores along each of the behavior three
components.

Let us now introduce a K-dimensional binary random variable Z
with a 1-of-K representation in which a particular zk is equal to 1 and
all other elements are equal to 0, i.e., zk ∈ {0, 1} and

∑K
k=1 zk = 1,

such that the probability p(zk = 1) = λk. Every entry in the se-
quence Xi will be assigned Zi = {zi1, zi2, . . . , ziK}, We can easily
show that the probability

p(Xi|θ1, . . . , θK) =

K∑

k=1

p(zik = 1)p(Xi|Zi, θ1, . . . , θK)

=

K∑

k=1

λkp(Xi|θk)

Since we do not know zik, we consider the conditional probability
γ(zik) of zik given Xi p(zik = 1|Xi) which can be found using
Bayes’ theorem [5]:

γ(zik) =
p(zik = 1)p(Xi|zik = 1)∑K

k=1 p(zik = 1)p(Xi|zik = 1)

=
λkp(Xi|θk)∑K

k=1 λkp(Xi|θk)
(6)

We shall view λk as the prior probability of zik = 1, and γ(zik) as
the corresponding posterior probability once we got X. γ(zik) can
also be viewed as the responsibility that componentMk takes for ex-
plaining the observation Xi. Therefore, the likelihood or probability

of the data given the parameters can be written in the log form as:

ln p(X|λ, θ) =

N∑
i=1

K∑

k=1

γ(zik) ln [λkp(Xi|θk)]

=

N∑
i=1

K∑

k=1

γ(zik) ln p(Xi|θk) +

N∑
i=1

K∑

k=1

γ(zik) ln λk (7)

The EM algorithm monotonically increases the log likelihood of
the data until convergence by iteratively computing the expected log
likelihood of the complete data (X, Z) in the E step and maximizing
this expected log likelihood over the model parameters λ and θ. We
first choose some initial values for the parameters λ(0) and θ(0). Then,
we alternate between the E-step and M-step of the algorithm until it
converges.

In the E-step, to compute the expected log likelyhood of the com-
plete data, we need to calculate the required conditional distribution
γ(0)(zik). We plug the λ(0) and θ(0) in Eq. 6 to get γ(0)(zik), where
we can compute p(Xi|θk) as follows:

p(Xi|θk) =

L∏
j=1

f
I(j,k,F(vi))
kj (8)

where Xi = {vi,F (vi)} and I(j, k,F (vi)) is an indicator function
equal to 1 if vi ∈ rk and F (vi) = Fj ; otherwise it is 0.

Recall that rk = [start, end] is the period identifying the compo-
nent Mk.

The M-step of EM maximizes Eq. 7 over λ and θ in order to re-
estimate new values for them λ(1) and θ(1). The maximization over
λ involves only the second term in Eq. 7,
argmaxλ

∑N
i=1

∑K
k=1 γ(zik) ln λk, has the solution

λ
(1)
k =

1

N

N∑
i=1

γ(0)(zik) , k = 1, . . . , K. (9)

We can maximize over θ by maximizing the first term in
Eq. 7 separately over each θk for k = {1, . . . , K}.
argmaxθ E(logp(X, Z|θi, ..., θK)] is equivalent to maximizing the
right hand side of Eq. 10 over θk (only a piece of the parameter) for
every k.

θk = argmax
θk

N∑
i=1

γ(0)(zik) ln p(Xi|θk), (10)

To do this, for k = {1, . . . , K} and j = {1, . . . , L} let

ckj =

N∑
i=1

γ(0)(zik)I(j, k,F (vi)) (11)

Then ckj is in fact the expected number of times to describe the action
by Fj when its inter-arrival falls in Mk’s range rk. We re-estimate
θk by substituting Eq. 8 into Eq. 10 to get

θ
(1)
k = {f̂k1, . . . , f̂kL} = argmax

θk

L∑
j=1

ckj ln fkj (12)

Therefore, f̂kj =
ckj∑L

j=1 ckj

(13)

To find the initial parameters λ(0) and θ(0), we scan the sequence
X once and use Eq. 11 to get ckj by setting all γ(0) = 1. Afterward,
we use Eq. 13 to get θ

(0)
k and compute

λ
(0)
k =

∑L
j=1 ckj∑K

k=1

∑L
j=1 ckj
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B. COMPRESSIBILITY: AN ACCURATE IN-
FORMATION THEORETIC TECHNIQUE

We present an information theory-based technique for the compu-
tation of the matching scores. This technique is not as accurate as
the motif-based technique (Section 4), but it is more computationally
efficient. The underlying idea stems from observing that if we rep-
resent the BM as an image, we will see horizontal repeated blocks
that would be more recognizable if the behavior is well recognized.
The repeated blocks appear because of the repetition in the behavior
patterns. Therefore, we expect more regularity along the rows than
along the columns of the BM . In fact, the order of values in any of
the columns depends on the order of the actions in the BM , which is
not expected to follow any recognizable patterns. For these reasons,
we compress the BM on a row by row basis, rather than compressing
the entire matrix as a whole.

Most existing compression techniques exploit data repetition and
encode it in a more compact representation. We thus introduce com-
pressibility as a measure of confidence to recognize behaviors. In our
experiments, we compress the BM with the DCT compression tech-
nique [2], being one of the most commonly used compression tech-
niques in practice. We then use the compression ratios to compute the
behavior recognition scores. Significantly higher compression ratios
imply a more recognizable behavior.

Given the sequence representation of an action occurrence i.e.
{{vj ,F (vj)}}, if an entity follows stability in repeating an action,
the values vj’s will follow a certain level of correlation showing the
action rate. Moreover, the features values F (vj) will contain similar
values to describe how the action was performed. To perform a com-
pression of an action sequence, we follow the same approach used in
JPEG [23] for a one dimentional sequence.

Our aim is to compute the three behavior recognition scores along
the three behavior components (see Section 2.4). For the first behavior
component, we compress the sequence {v1, . . . , vn

(a)
A

}, which repre-

sents the inter-arrival times for each action a. The behavior score,
Sr1(aA) for action a of entity A, will be the resulted compression
ratio; the higher the compression ratio, the more we can recognize a
consistent inter-interval time (motif). We then use Eq. 5 to compute
the overall score Sr1(A). Similarly, for the second behavior compo-

nent, we compress the sequence {F (v1), . . . ,F
(v

n
(a)
A

)

}, which rep-
resents the feature values that describe the action a. Again, the score
Sr2(aA), is the produced compression ratio; the higher the compres-
sion ratio, the more we can recognize stability in action features. Sim-
ilar to Sr2(aA), we can compute the overall score Sr2(A).

Finally, for the third behavior component, which evaluates the re-
lationship between the actions, we compress the concatenated se-
quences of inter-arrival times of every possible pair of actions.Given
two actions a and b, we concatenate and then compress their inter-
arrival times to get the compression ratio cra,b. If a and b are closely
related, they will have similar inter-arrival times allowing for better
compressibility of the concatenated sequence. On the contrary, if they
are not related, the concatenated sequence will contain varying values.
Thus, cra,b quantifies the association between actions a and b. Hence,
the overall pairwise association is an evidence for the strength in the
relationship between the actions that can be computed by:

S
(A)
r3 =

∑

∀ a,b

cra,b

C. STANDARD SQL TO COMPUTE CANDI-
DATE MATCHES IN PHASE 1

In the following, we provide a derivation for a final formulation of
the matching score in the candidate generation matching phase. At
the end, we provide the corresponding SQL statement we used for
this computation.

In Section 3, after computing the complex numbers representation
for each action in an entity, we computed Sr(aA) = M−mag(C

(a)
A ),

where M is the maximum computed magnitude. Then, we obtain

S(A) =
1

nA

∑

∀ a

n
(a)
A (M −mag(C

(a)
A )) (14)

By substituting Eq. 14 into Eq. 1, we obtain the matching score
Sm(A, B):

Sm(A, B) =
nA

nA + nB

[
1

nA + nB

∑

∀ a

(n
(a)
A + n

(a)
B )(M −mag(C

(a)
AB))

− 1

nA

∑

∀ a

(n
(a)
A )(M −mag(C

(a)
A ))]

+
nB

nA + nB

[
1

nA + nB

∑

∀ a

(n
(a)
A + n

(a)
B )(M −mag(C

(a)
AB))

− 1

nB

∑

∀ a

(n
(a)
B )(M −mag(C

(a)
B ))]

By Simple rearrangement to collect the terms related to mag(C
(a)
AB),

we get

Sm(A, B) =
1

nA + nB∑

∀ a

[(n
(a)
A + n

(a)
B )M − (n

(a)
A + n

(a)
B ) mag(C

(a)
AB)

−n
(a)
A M + n

(a)
A mag(C

(a)
A )

−n
(a)
B M + n

(a)
B mag(C

(a)
B )]

Note that the terms of M will cancel out and the final matching score
will be

Sm(A, B) =
1

nA + nB∑

∀ a

[ n
(a)
A mag(C

(a)
A ) + n

(a)
B mag(C

(a)
B )

− (n
(a)
A + n

(a)
B ) mag(C

(a)
AB) ] (15)

We store the complex number information for each data source in
a relation with the attributes (entity, action, Re, Im, mag, a supp,
e supp), where there is a tuple for each entity and its actions. For
each action of an entity, we store the real and imaginary components
(Re and Im) of the complex number as well as the magnitude (mag).
a supp is the number of transaction for that action within the entities
log and e supp is total number of transactions for the entity repeated
with each tuple corresponding an action. Thus, there are two tables
representing each of the two data sources src1 and src2.

To generate the candidates, we need to compute Eq. 15 for each pair
of entities and filter the result using the threshold tc on the resulting
matching score. The following SQL applies this computation and
returns the candidate matches.
select

c1.entity as e1 ,
c2.entity as e2 ,
( c1.a_supp * c1.mag // nˆa_A * magˆa_A
+ c2.a_supp * c2.mag // nˆa_B * magˆa_B
- (c1.a_supp + c2.a_supp ) * // nˆa_AB *

SQRT( // magˆa_AB
(c1.Re + c2.Re)*(c1.Re + c2.Re)

+(c1.Im + c2.Im)*(c1.Im + c2.Im))
)/ (c1.e_supp + c2.e_supp) // n_AB
as gain_score

from src1 c1 inner join src2 c2
on c1.action = c2.action

where magscore > t_c
group by c1.entity, c2.entity
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