
Slicing Long­Running Queries

Nicolas Bruno
Microsoft Research

nicolasb@microsoft.com

Vivek Narasayya
Microsoft Research

viveknar@microsoft.com

Ravi Ramamurthy
Microsoft Research

ravirama@microsoft.com

ABSTRACT
The ability to decompose a complex, long-running query into sim-
pler queries that produce the same result is useful for many scenar-
ios, such as admission control, resource management, fault toler-
ance, and load balancing. In this paper we propose query slicing as
a novel mechanism to do such decomposition. We study different
ways to extend a traditional query optimizer to enable query slicing
and experimentally evaluate the benefits of each approach.

1. INTRODUCTION
New application scenarios have significantly increased the com-

plexity of queries that are submitted to a database server. In this
context, it is common for queries to run for a long time and con-
sume significant server resources. These long-running queries, in
turn, introduce new challenges to administer and tune the underly-
ing database system, as illustrated by the following examples:

Admission control: Many systems rely on strict admission con-
trol policies to prevent long-running queries from monopolizing
system resources. In such systems, a query is accepted only if its
estimated cost is below a threshold. Examples include traditional
database systems [11] as well as emerging cloud data services [14].
Although such limits appear restrictive, they are necessary to en-
sure the overall scalability and performance of the shared infras-
tructure for all users. No matter what threshold is used for admis-
sion control, however, there will still be valid queries that are too
expensive to run completely. In such systems, application devel-
opers need to manually transform a query that is not admitted into
simpler queries that individually pass the admission test.

Resource management: In addition to admission control, an
important component of resource management is scheduling, which
maintains and manages a queue of pending tasks [9, 10]. Design-
ing robust resource management policies in the presence of multi-
ple long-running queries remains a challenging task. For instance,
techniques that abort a long-running query in favor of another with
higher priority face the challenge of restarting the aborted query
from scratch, potentially wasting considerable work. Pause/restart
techniques [3, 4] partially deal with these issues, but do not handle
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all scenarios gracefully. The ability to decompose a complex query
into simpler fragments can be an important step in addressing re-
source management challenges.

Fault tolerance: Conceptually similar to the case of manually
aborted queries, a long-running query that fails before completion
has to be restarted from scratch [3, 4, 16]. If a query is decomposed
into simpler components, these can be restarted at a finer granular-
ity, thus minimizing the amount of wasted computation.

Load Balancing: Parallel systems attempt to distribute compu-
tation across nodes in such a way that each node performs roughly
the same amount of work. This task becomes more challenging
when the units of distribution are long-running and complex. The
ability to decompose a long-running query into many pieces of sim-
ilar cost can thus contribute in adapting load balancing techniques
to new scenarios.

In this paper we propose query slicing as a novel mechanism to
complement existing work in the context of managing long-running
queries. The idea is to enable a query optimizer to decompose a
complex query into slices that are executed to produce the original
result. Specifically, in this paper we study the following version of
the query slicing problem. For an input query q and a given cost
threshold, we attempt to decompose q into a set of queries {qi}
such that (i) all {qi} together produce the original result, and (ii) the
cost of each individual query is bounded by the cost threshold (we
formally define the problem in Section 2). Consider the following
query q:

q = SELECT R.a, S.b
FROM R JOIN S ON R.x=S.y
WHERE R.c<10 AND S.d>20

Suppose that the cost threshold for a slice is smaller than the orig-
inal cost of the query. In this case, if R is a large table and R.c<10

returns a small fraction of R, q can be rewritten as two queries q1
and q2 as shown in Figure 1. Although the combined cost of q1
and q2 is larger than that of q due to an intermediate table creation,
each q1 and q2 might individually satisfy the cost threshold. While
this extension to traditional query optimization seems natural, there
are significant challenges in implementing such functionality. For
example, even for such a simple query, there can be several other
alternatives to consider. Suppose that there is an index on S.d. In
that case, we can partition S into two fragments by adding predi-
cates on S.d and rewrite q into q3 and q4 as shown in Figure 1. In
this case, query q can be decomposed into two slices q3 and q4 that
can be efficiently executed using index-based plans. As a final ex-
ample, suppose that both R.c<10 and S.d>20 are not very selective
(i.e., they return most of R and S respectively). If there are indexes
on R.x and S.y, another alternative to evaluate q is given by q5 and
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q1 = INSERT INTO TR q3 = SELECT R.a, S.b q5 = SELECT R.a, S.b
SELECT R.a, R.x FROM R JOIN S ON R.x=S.y FROM R JOIN S ON R.x=S.y
FROM R WHERE R.c<10 AND S.d>20 WHERE R.c<10 AND S.d>20 AND R.x<500
WHERE R.c<10 AND S.d < 100

q2 = SELECT TR.a, S.b q4 = SELECT R.a, S.b q6 = SELECT R.a, S.b
FROM TR JOIN S ON TR.x=S.y FROM R JOIN S ON R.x=S.y FROM R JOIN S ON R.x=S.y
WHERE S.d>20 WHERE R.c<10 AND S.d>=100 WHERE R.c<10 AND S.d>20 AND R.x>=500

Figure 1: Different ways to decompose an input query into two slices.

q6 in Figure 1. In this case, q5 and q6 implement a “partitioned”-
join strategy, and their results together are the same as those of q.
Even when there are no indexes on S.y, if table S is small, q5 and
q6 would each join a fragment of R with the whole S, producing
results efficiently.

The examples above illustrate that there can be multiple ways
to decompose a query into components that satisfy the cost thresh-
old and together produce the same original result. In this paper
we introduce a comprehensive approach to decompose such long-
running queries into multiple slices, such that each slice satisfies
a cost threshold and the global execution is as efficient as possi-
ble. The rest of the paper is structured as follows. In Section 2 we
formalize our problem statement and the minor extensions to an
execution engine that are required for our techniques. In Section 3
we present a family of optimization strategies that tradeoff opti-
mization time and quality of the resulting solutions. In Section 4
we report an experimental evaluation of our approaches. Finally, in
Section 5 we review related work.

2. QUERY SLICING
In this paper we consider SQL queries and the optimizer’s cost

model as the estimator for query costs. We then state the query
slicing problem as follows. Let cost(q) be the optimizer’s estimated
cost for query q, and ∆ the cost threshold for any query slice (note
that if ∆ ≥cost(q), the original plan is optimal). Slicing q for ∆
produces a partially ordered set of queries {q1, . . . , qn} such that:

1. Executing all qi (while respecting the partial order) produces
a table containing the same result1 as q.

2. ∀i cost(qi) ≤ ∆.
3.

∑
i cost(qi) is minimal.

We require that the final result be written into a table, which can
then be read by the user at any time. Otherwise, any query slice
that involves memory intensive operators like hash joins, could be
opened by the client and processed very slowly, using significant
server resources. This requirement does not affect our algorithms,
which can be easily adapted to stream results of such query slices
to the client without the last materialization.

In Figure 1 we showed different ways to slice queries, which
include writing intermediate results into temporary tables and hor-
izontally partitioning the input tables. We next formalize these al-
ternatives using the notion of extended execution plans.

2.1 Extended Execution Plans
Extended execution plans enable reasoning with collections of

query slices very similarly to what is done with a traditional query,
thus leveraging existing work in query optimization. In addition
to the traditional relational operators, extended execution plans can
contain partitioned spools. Partitioned spools are a useful formal-
ism to reason with query slices, are expressive enough to handle
scenarios including those in Section 1, and can be implemented in
1We assume that no updates occur across executions of qi.

existing system with minimal or even no changes at all. We next
describe different variants of the partitioned spool operator.

The Spool Operator: The Spool operator χ (used in almost all
DBMS engines) writes an intermediate result into a temporary ta-
ble. It takes a single relational input R and a temporary table name,
and bulk-loads the temporary table with the result of evaluating R.
Spool operators can be placed on top of any execution sub-plan,
and the resulting temporary table can be subsequently read in an
extended execution plan. If so, we connect the Spool operator χ
and the consumer scan with a dotted line. Queries q1 and q2 in
Section 1 can be implemented using a Spool operator as shown in
Figure 2(a). The scan operator above the Spool operator reads from
the temporary table, called TR (omitted when it is clear in context).

The Input-Partitioned Spool Operator: The input-partitioned
spool operator, or iSpool for short, extends the Spool operator by
introducing iteration. The relational input R of an iSpool operator
is parameterized by a predicate of the form $l<c≤$h, where c is a
column defined in R. It additionally defines an expression of the
form (c, {r1, r2, . . . , rk}), where ri=(li, hi] are ranges that form a
partition of c’s domain. To process an iSpool operator χ(c,{ri})(R)
we instantiate R for each range li < c ≤ hi, denoted by R[li, hi],
and evaluate χ(R[li, hi])). Note that the Spool operator appends
the results of each iteration to the same temporary table. In an ex-
tended execution plan, we mark with double lines the edges that
vary for each instantiated range. An extended execution plan has
double lines for all operators in the path connecting the iSpool op-
erator to the base tables over which the range column is defined
(there might be multiple such tables due to join predicates), un-
less the path includes another Spool operator. Queries q3 and q4 in
Section 1 are implemented using iSpool operators in Figure 2(b).

The Output-Partitioned Spool Operator: The iSpool opera-
tor iterates over multiple relations and produces a single temporary
output table. Conversely, the output-partitioned spool operator, or
oSpool for short, takes a single input relation and partitions it into
multiple temporary output tables. As with iSpool, an oSpool opera-
tor takes a parameter (c, {r1, r2, . . . , rk}), where c is a column of
the oSpool’s relational input and {ri} forms a partition of c’s do-
main. To process an oSpool operator χ(c,{ri})(R) we maintain as
many temporary tables as ranges in the operator 2. We then read R
completely and append each tuple to the appropriate table depend-
ing on the value of column c. The oSpool operator is similar to par-
titioning operators used in parallel databases, and we discuss this
relationship in Section 5. We note that oSpool operators can be eas-
ily implemented by a small code fragment that leverages querying
and bulk-loading capabilities of existing query engines. Figure 2(c)
shows an extended execution plan that implements queries q5 and
q6 with a partitioned join on x and y using an iSpool operator. The
plan joins together tuples from R and S that satisfy each range of R.x
(respectively S.y due to the join predicate). The valid tuples from S

for each range are obtained by an index on S.y. Suppose, however,
2oSpool arguments use superscripts and iSpool arguments use subscripts.
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R.x, {(-∞,500],(500,∞)}

σR.c<10˄$l<R.x≤$h

R

(c) (d)
Figure 2: Extended execution plans to reason with query slices.

that there is no index on R.x, so processing σR.c<10∧li<R.x≤hi(R)
for each range requires scanning the whole R. We can improve this
plan by introducing an oSpool operator, which reads σR.c<10(R)
once and writes two temporary tables TR0 and TR1 depending on
R.x values (see Figure 2(d)). These temporary tables contain tu-
ples from R satisfying both R.c<10 and li <R.x≤ hi (i.e., the tuples
needed for each iteration of the iSpool).

The Input/Output-Partitioned Spool Operator: Finally, the
input/output-partitioned spool, or ioSpool for short, efficiently com-
bines iSpool and oSpool while scanning the input data once. An
ioSpool takes two expressions (cin, {ri}) and (cout, {sj}), and a
relational input R parameterized by a range predicate on cin. To
process an ioSpool χ(cout,{sj})

(cin,{ri})
(R) we evaluate, for each range

li < ri ≤ hi, expression χ(cout,{sj})(σcin∈ri(R)), where the
oSpool operator shares the temporary tables across iterations. Sup-
pose, in Figure 2(d), that evaluating σR.c<10(R) is too expensive.
By changing the oSpool in the figure to an ioSpool χ(R.x,{ri})

(R.c,{rj})
, and

assuming that an index on R.c is available, we obtain an admissible
execution plan.

In this paper we focus on range partitions for simplicity, but our
approach can be extended to consider hash partitioning as well.

2.2 Valid Extended Execution Plans
To evaluate an extended execution plan P , we first obtain query

slices by breaking-up P on all dotted-line edges. Each query slice
depends on base or intermediate tables, which induce a partial order
among slices. We then execute query slices respecting this partial
order. A valid extended execution plan satisfies some restrictions
on the placement of spool operators. We say that an oSpool (or
ioSpool) operator χ with output parameter (c, {ri}) closes another
iSpool (or ioSpool) operator χ′ with input parameter (c′, {sj}) if
χ is a descendant of χ′, c=c′ and {ri}={sj}. For an extended ex-
ecution plan to be valid, every time there is an iSpool (or ioSpool)
operator χ with input parameter (c, {ri}) and we follow the path
from χ to the base table(s) that defines c (modulo column equiva-
lence) the first spool operator in the path (if any) has to close χ.

2.3 Cost Model for Extended Execution Plans
The cost model in a traditional optimizer needs to be extended

to reason with spool variants, query slices and cost thresholds. The
local cost of an operator ρ, LC(ρ), is given by traditional cost for-
mulas of query optimizers (spool variants are seen as table inser-
tions and thus costed appropriately). Additionally, we need to ex-
tend the cost model by defining, for each execution subplan, a tuple
(SC,DC), where SC is the shallow cost of the subplan (which mod-
els the cost of a query slice and should fit in the cost threshold), and
DC is the deep cost of the subplan (which should be minimized).

Consider a scan or a seek operator over a table in an execution
plan. If ρ’s table is a base table, we define SC(ρ)=LC(ρ), and
DC(ρ)=LC(ρ). If ρ’s table is a temporary result from executing
subplan P , the scan operator resets the shallow cost SC of its sub-
plan to its local cost, and the overall cost is kept in DC. That is,
SC(ρ)=LC(ρ), and DC(ρ)=LC(ρ)+DC(P ).

Consider an execution plan P with root operator ρ and sub-
trees ρ1, . . . , ρn. If ρ does not partition its input (i.e., ρ is not
an iSpool or ioSpool operator), SC(P )=LC(ρ) +

∑
i SC(ρi), and

DC(ρ)=LC(ρ) +
∑

i DC(ρi). Suppose now that ρ=χ(c,{ri}) with
an input parametric plan ρ′ (the case for an ioSpool is defined
analogously). Then, the shallow cost for ρ is the maximum, over
all ranges ri, of executing the parametric plan ρ′[ri] and writing
the partial result to the temporary table. The deep cost for ρ is
the sum of the local and deep costs for the first range r1, and
the local and shallow costs of subsequent ranges. The reason is
that we only incur a deep cost once (to materialize intermediate
results down in the execution plan) but subsequent iterations of
the iSpool operator would read from the temporary tables, there-
fore incurring only the shallow cost (if ρ′ has no spool operators,
DC(ρ′[ri]) = SC(ρ′[ri])). More formally,

SC(ρ)= max
i

(LC(χ(ρ′)[ri]) + SC(ρ′[ri])

DC(ρ)=
n∑

i=1

LC(χ(ρ′)[ri]) + DC(ρ′[r1]) +
n∑

i=2

SC(ρ′[ri])

We now reformulate the query slicing problem. Let q be a query
and ∆ be the cost threshold for any query slice. Slicing q for ∆
produces an extended execution plan P so that (i) SC(p) ≤ ∆ for
every subplan p of P , and (ii) DC(P ) is minimal.

3. FINDING OPTIMAL QUERY SLICES
In this section we introduce several optimization strategies to

solve the query slicing problem. Our approach results in a spec-
trum of alternatives that balance optimization cost and quality of
the resulting plans. We focus on SPJ queries, and extend the class
of queries that we can handle in Appendix B. To explain our algo-
rithms, we first show, in Figure 3, a simplified top-down3 version of
a dynamic programming algorithm that obtains the best execution
plan for an SPJ query. We assume that a global Memo associative
array is available, which takes a subset of tablesR and a sort order
S , and returns the best plan for such combination (R,S).

The optimization of a query starts by calling optimize(R, null)
or optimize(R, c) if an order by c is required due to an order-by
clause. Line 1 implements memoization and calculates the best
plan in lines 2-15 once for each distinct (R,S) (otherwise, it sim-
ply returns the cached version). To compute the best plan, lines 2-4
try to implement a candidate plan CP using an enforcer plan if an
3The top-down approach with on-demand interesting orders is very
similar to the traditional bottom-up dynamic programming approach of
System-R[13], but avoids explicitly enumerating all interesting orders up-
front, or otherwise generating unneeded alternatives.
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updateMemo (R:tables, S:order, P:plan)
01 if (P ̸= null and (Memo[R, S] = null or

cost(P) < cost(Memo[R,S]))
02 Memo[R, S] = P

optimize (R:tables, S:order)
returns best plan for R satisfying S
01 if (Memo[R, S] was not yet calculated)
02 if (S ̸= null)
03 CP = SortS(optimize(R, null))
04 updateMemo(R, S, CP)
05 if (|R| = 1)
06 CP = best single-table plan under S order
07 updateMemo(R, S, CP)
08 else for each valid partition (R1, R2) of R
09 for each join algorithm JA
10 S1,S2 = required orders of R1,R2 for JA
11 CP1 = optimize(R1, S1)
12 CP2 = optimize(R2, S2)
13 if (CP1 ̸= null and CP2 ̸= null)
14 CP = JA(CP1, CP2)
15 updateMemo(R, S, CP)
16 return Memo[R, S]

Figure 3: Top-down dynamic programming join reordering.

order is requested (i.e., S ̸= null). In that case, line 3 recursively
calculates the best plan for the same tables R without requesting
any order, and inserts a top-most sort operator which would en-
force the required order. Line 4 calls updateMemo with the resulting
plan, which updates the best plan found so far for (R,S).

For any value of S, lines 5-15 calculate the best plan satisfying
the required sort order. Lines 5-7 handle the case of a single ta-
ble in R, obtain the best single-table plan satisfying order S , and
update the memo with such candidate plan. For the general case
of |R|>1 line 8 obtains all valid partitions of R into R1 and R2
(e.g., if only considering left-deep trees, the partitions must satisfy
|R2|=1). For each such partition and join algorithm JA, line 10
calculates the required orders of the join inputs (e.g., a merge join
operator requires both inputs to be sorted on the respective join
columns). Lines 11-12 recursively obtain the best plans forR1 and
R2, and lines 14-15 assemble the join plan and update the memo.
After all partitions and join alternatives have been evaluated, line
16 returns the actual content of Memo[R,S], which contains the
best plan for the input set of tables and required order.

3.1 Handling Spool Operators
We next describe a simple extension to the algorithm of Figure 3

that considers spool operators (Section 2.1). To that end, every time
we create a candidate plan and call updateMemo in lines 4, 7, and
15, we additionally consider spooling such intermediate results by
adding after line 15 (and also after 4 and 7):

15.1 updateMemo(R, S, Scan(Spool(CP)))

We also need to consider only valid execution plans (i.e., those
that satisfy the cost threshold ∆). Thus, we modify the predicate
cost(P) < cost(Memo[R,S]) in line 1 of updateMemo as follows:

DC(P) < DC(Memo[R,S]) and ∀p ∈ P: SC(p) ≤ ∆

In other words, we reject plans that contain a subplan with shallow
cost exceeding the threshold ∆, and keep the one with the small-
est deep cost. These changes are necessary, but unfortunately not
sufficient to obtain the optimal slicing strategy. Suppose, as a very
simple example, that we call optimize({R},null) and that there is
a single-table predicate R.a < 10 on table R. The algorithm would
then generate the following two plans:

- P1 = FilterR.a<10(Scan(R))

- P2 = Scan(Spool(FilterR.a<10(Scan(R))))

updateMemo (R:tables, S:order, P:plan)
01 if (P ̸= null and ∀p ∈ P: SC(p)≤ ∆)
02 Memo[R, S] = skyline(Memo[R, S] ∪ P)

optimize-S (R:tables, S:order)
returns skyline of plans for R satisfying S
01 if (Memo[R, S] was not yet calculated)
02 if (S ̸= null)
03 for each (CP ∈ optimize-S(R, null))
04 updateMemo(R, S, SortS(CP))
05 updateMemo(R, S, Scan(Spool(SortS(CP))))
06 if (|R| = 1)
07 CP = best single-table plan under S order
08 updateMemo(R, S, CP)
09 updateMemo(R, S, Scan(Spool(CP)))
10 else for each valid partition (R1, R2) of R
11 for each join algorithm JA
12 S1,S2 = required orders of R1,R2 for JA
13 CP1 = optimize-S(R1, S1)
14 CP2 = optimize-S(R2, S2)
15 for each (pCP1, pCP2) ∈ CP1 × CP2
16 CP = JA(pCP1, pCP2)
17 updateMemo(R, S, CP)
18 updateMemo(R, S, Scan(Spool(CP)))
19 return Memo[R, S]

Figure 4: Handling Spool operators for query slicing.

Assume that SC(P1)=DC(P1)=100. Because the Spool operator
only materializes the tuples that satisfy R.a < 10, and only the
columns that are relevant upwards in the tree, the cost of reading
the temporary table would be smaller than that of scanning the orig-
inal table R. That is, it could be that SC(P2)=20 and DC(P2)=150.
In this case, it is not clear which one among P1 and P2 we should
keep in Memo[{R},null]. Suppose that we keep P1. In that case, if
∆ = 110 and the local cost of joining R with any of the remaining
query tables is over 10 units, we would get an infeasible solution
because we cannot join P1 without violating the cost threshold.
Had we kept P2 we could have obtained a solution. However, if
we keep P2 and ∆ is higher, we could return a suboptimal solution
that uses P2 rather than the more efficient P1.

The main problem is that the traditional principle of optimality
does not hold in our scenario. That is, a subplan that is suboptimal
in terms of deep cost might be part of the optimal execution plan
due to having a smaller shallow cost. To correctly handle spool
operators, we need to generalize the Memo data structure, so that
it keeps all candidate plans that might become part of the optimal
solution. Specifically, Memo[R,S] must contain, not just the plan
P with the smallest value of DC(P ), but instead all plans in the
two-dimensional skyline [1] of (SC, DC). Therefore, we extend the
Memo data structure so that it returns a set of plans for each input
(R,S) pair, and modify updateMemo to:

01 if (P ̸= null and ∀p ∈ P: SC(p)≤ ∆)
02 Memo[R, S] = skyline(Memo[R, S] ∪ P)

The last change we need to make to the algorithm in Figure 3
has to do with the search space itself. Since Memo[R,S] (and hence
optimize) returns a set of plans rather than a single plan, we need
to consider all different ways to combine such intermediate results
into larger execution plans. For instance, lines 11 and 12 returns
sets of plans in CP1 and CP2. Therefore, we change lines 13-14 to:

13 foreach (pCP1, pCP2) ∈ CP1 × CP2
14 CP = JA(pCP1, pCP2)

and we make similar changes in lines 3-4. The resulting algorithm
(denoted optimize-S in Figure 4) finds the optimal query slicing
for a given threshold when using Spool operators.
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3.2 Local Partitioned­Spools
A drawback of optimize-S is that it might fail to find any feasi-

ble solution for some values of ∆. Suppose, as a trivial example,
that just scanning a base table already exceeds ∆. In this case,
no matter where we place Spool operators, there would always be
a subplan p for which SC(p) > ∆, and thus optimize-S would
not return any valid solution. In general, for a query q with k
joins, it can be shown that optimize-S will not find a solution for
∆ < cost(q)/(2k), where cost(q) is the cost of the query obtained
by calling optimize(q, null) (i.e., without ∆ constraints).x=y x=yχx, {...}

χx, {...} χy, {...}Tx Ty
Figure 5: Local partitioned-spools.

To address the above shortcoming, we extend optimize-S to in-
clude local partitioned-spools. The idea is to also consider “sur-
rounding” each operator with partitioned spools, and thus avoid
having a single operator that is too big to fit in the threshold ∆.
Figure 5 shows an example of partitioned spools surrounding a join.
The join operator, which might be too large to fit the threshold ∆,
is modified into a partitioned join, which would fit ∆ by adjust-
ing the column ranges appropriately. We next discuss the two main
challenges to incorporate these alternatives into the search strategy,
namely, how to instantiate a local partitioned spool with the proper
column ranges, and how to enumerate the larger space of plans.

Obtaining column ranges. Suppose we are given a paramet-
ric plan like the one at the right of Figure 5, and we have to find
the right ranges to instantiate in the iSpool and oSpool operators.
Since the parametric plan contains oSpool operators right below
the join, the cost of the sub-plans below such oSpool operators
are independent of the actual ranges for the spool column (in that
sense, the choice of column ranges is local). We can then lever-
age the cost model of the optimizer and search for partitions that
minimize the overall execution cost. As in [12], we assume the
fewer the partitions (and therefore the larger the work done per
partition), the better the overall cost (however, see the discussion
in Appendix B.2). Therefore, we always choose the largest possi-
ble ranges that result in a query slice instance that fits ∆. Figure 6
shows a simple procedure based on binary search that incremen-
tally find ranges that make each iSpool iteration fit in ∆. Note that
the actual technique to find ranges is orthogonal to the enumeration
strategy itself, and thus we can replace the algorithm in Figure 6 by
more sophisticated alternatives such as interpolation search or the
optimal-splitter technique of [12].

Enumerating local partitioned spools. The original algorithm
optimize-S considers in the search space all relevant plans with the
template shown in Figure 5. Also, optimize-S considers putting a
Spool operator on top of every plan it considers. Thus, given a join
operator, it will consider execution plans for its children that are
spooled at the top (those plans would be part of the Memo skyline,
because the shallow cost of scanning a temporary table is minimal
and cannot be dominated). Consider line 18 in Figure 4:

18 updateMemo(R, S, Scan(Spool(CP)))
Plan CP is defined as JA(pCP1, pCP2) in line 16 for some join algo-
rithm JA and subplans pCP1 and pCP2. Whenever both pCP1 and

findPartitions (P:parametric plan)
returns RS:set of ranges
01 RS = ∅, L = −∞, H = ∞
02 while (L < H)
03 rMin = L, rMax = H
04 fMin = SC(P[L, rMin]), fMax = SC(P[L, rMax])
05 while (rMax-rMin > ϵ)
06 rMid = (rMin + rMax) / 2
07 fMid = SC(P[L, rMid])
08 if (fMid > ∆) rMax = rMid
09 else rMin = rMid
10 RS = RS ∪ {(L, rMid]
11 L = rMid
12 return RS

Figure 6: Finding ranges for partitioned spools.

pCP2 are themselves scans over temporary tables produced by a
spool operator, the resulting plan Scan(Spool(CP)) matches the
template that we consider for local partitioned spools. We consider
local partitioned plans by adding the following logic to optimize-S:

18.1 if (tempScan(pCP1) and tempScan(pCP2))
18.2 c = join column from pCP1
18.3 lpCP = Scan(iSpoolc(changeSpools(CP, c)))
18.4 findPartitions(lpCP)
18.5 updateMemo(R, S, lpCP)

Here, tempScan(p) determines whether p scans a temporary table
produced by a spool operator. Therefore, in addition to regular
Spool operators, the logic in lines 18.1-18.5 considers all possible
local partitioned spools in the search space. It does so by picking
every suitable plan pattern CP, and calling changeSpools(CP, c),
which replaces the top-most Spool or iSpool operator with oSpool
or ioSpool operators in path from the root of CP to the leaf node that
contains column c (modulo column equivalences). It then adds a
new iSpool operator at the root, and calls findPartitions to instan-
tiate a suitable partitioning strategy for the local partitioned spool.
Thus, we can always find query slices for given values of ∆. We
call the resulting algorithm optimize-LPS.

Additional Details: We next discuss some details that we omit-
ted earlier for simplicity. The first complication arises due to data
skew. Suppose that value R.x=10 in table R is repeated so many
times that the local cost of performing a partitioned join R ◃▹x=y S

with value R.x = S.y = 10 already exceeds ∆. Since we cannot
further subdivide R.x=10, optimize-LPS would return no solution.
Similar to techniques used in parallel database systems, we can ex-
tend the partitioning algorithm so that it also considers secondary
partitioning columns in case of extreme skew. For instance, we can
subdivide R.x=10 into R.x=10 and R.id ∈ {(−∞, 100], (100,∞]},
where R.id is another column in R (preferably a key). Each sec-
ondary partition of R.x=10 has to join with the partition S.y=10

in S. If both R and S are subdivided for the same value, the cross
product of joins is performed. The second detail in lines 18.1-18.5
above is that it assumes a single join predicate between the lpCP1

and lpCP2. In general, if the join graph contains cycles or the search
space includes bushy trees, there might be more than a single join
predicate. In such a case, we execute lines 18.2-18.5 for each join
predicate. Finally, a subtle detail is related to the cost model for
oSpool operators. The cost of an oSpool operator is not the same
as that of a regular Spool operator. An oSpool operator needs to
additionally evaluate range predicates to determine the temporary
table over which the current input tuple should be appended. The
number of range predicates depends on the number of temporary
tables, but this number is not known in advance, as it is only de-
termined after calling findPartitions. Algorithm optimize-LPS
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Figure 7: General partitioned spools.

assumes that a single partition would be required when construct-
ing the skyline bottom-up, and then modifies Spool operators into
the required oSpool operators in lines 18.3 using changeSpools.
A corner case happens when the optimal pCP1 (respectively pCP2)
(barely) fits ∆, but the modified subplan which uses oSpool does
not when adding the required range predicates. This would result
in missing a valid alternative plan pCP1’ that, while dominated by
pCP1, has the possibility to perform the required range predicates
within ∆. To address this limitation, we relax the dominance con-
dition in the skyline computation of updateMemo, so that whenever
p1 dominates p2, both p1 and p2 are scans over temporary tables,
and p2’s shallow cost of its spool child is smaller than that of p1,
we do not prune p2 from the skyline.

3.3 General Partitioned Spools
Although local partitioned spools always return feasible solu-

tions, there are scenarios (e.g., when leveraging existing indexes)
for which optimize-LPS returns suboptimal plans. Consider the lo-
cal partitioned spool for a three-way join on tables R, S and T (see
Figure 7(a)). Assume that a covering index on R.x is available (i.e.,
an index that contains all required columns from R). We can replace
the oSpool(x,{...}) operator by an access path that directly retrieves
the tuples in R satisfying each range predicate over R.x (see Fig-
ure 7(b)). If the remaining single-table predicates on R are not very
selective, this alternative can be more efficient than materializing
intermediate results. Now suppose that R is originally accessed in
Figure 7(a) using an index over column R.a (say there is a single-
table predicate on such column). An alternative similar to the plan
in Figure 7(b) is shown in Figure 7(c). This plan partitions table
R, not on the join column R.x, but instead on R.a (and thus it is
not a partitioned join). Then, for each range in R.a, the join is per-
formed with the whole right-side relation (which in the figure is
spooled into temporary table T). Figure 7(d) shows another alterna-
tive that uses a deep partitioning of column R.a. Each partition of
R is joined with both S and T before the partial result is written into
the common temporary table.

Depending on cardinality values and index availability, each al-
ternative in Figure 7 might be optimal. The plans in Figure 7(b-d),
however, are not found by optimize-LPS, since there is no oSpool
that immediately closes the top-most iSpool operator.

We next discuss how to extend optimize-LPS to exploit arbi-
trary placement of all spool variants. Since optimize-LPS places
spools tightly surrounding join operators, there is no need to handle
parametric selection predicates on execution subplans (the implicit
parametrization is done locally by the corresponding oSpool oper-
ators and the choice of column ranges is local). When considering
the full space of plans, however, we need to explicitly create and
propagate parametric plans. Function paramCols in Figure 11 re-
turns the set of columns that a given plan is parameterized upon.
For plans that do not have a spool operator at the root, paramCols
always returns a single column (since we consider single-column
partitioned spools), or null if the plan is not parameterized. In
contrast, if the plan p does have a spool operator at the root, the set
of parameterized columns are all those in join predicates between a
table in p and a table not in p. These columns would eventually be
used by changeSpools to instantiate oSpool operators.

Seek $l<c≤$h Scan S

R

Hash

Seek $l<c≤$h Seek S

R

Index

Figure 8: Parametric plan dominance.

A distinguishing feature of parametric plans is that we do not
know their costs until we instantiate the parameters. For that rea-
son, we cannot prune away a parametric plan p unless we are sure
that p will be dominated by other plans for all possible range in-
stances. Figure 8 shows a simple example where a hash-join and
an index-join alternatives might dominate each other depending on
the number of tuples satisfying the predicate on the outer table R.
Specifically, the dominance condition on the skyline operator needs
to be extended so that (i) plans parameterized on different columns
do not dominate each other, and (ii) parametric plan p1 dominates
parametric plan p2 (parameterized on the same column) whenever
p1 dominates p2 for every parameter instance.

The main algorithm for dealing with arbitrary spool variants,
which we call optimize-PS is discussed in detail in Appendix A.1.
Specifically, we show how to generalize the dominance condition
on the skyline operator, how to generate parametric plans for inter-
esting columns, and how to generate join combinations.

3.4 LPS with Single Table Optimization
The generic algorithm optimize-PS discussed above traverses

the full space of extended execution plans and considers all spool
variants. However, due to the large number of parametric plans
that are generated (and thus generally not pruned), optimize-PS

is usually much more expensive than the restricted variants dis-
cussed in Sections 3.1 and 3.2. At the same time, resulting plans
by optimize-PS are of better quality because of the extended search
space that is considered. We next introduce optimize-LPS*, a tech-
nique that generalizes optimize-LPS (and uses slightly more re-
sources), but gives results closer to those of optimize-PS.

As motivation, consider again the examples in Figure 7(b-c).
A common property of these extended plans is that whenever an
iSpool is placed on top of an operator p, either it is closed by an
oSpool operator immediately below p, or else the partitioning col-
umn (modulo join equivalences) is defined over a single-table sub-
plan of p. This is important because parametric plans are there-
fore only defined for single-table expressions, and therefore do not
propagate arbitrarily upwards in the enumeration strategy. Since we
can check for dominance of such parametric plans easily, complex
skyline computations (or heuristic approximations) are not needed.
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Figure 7(d) shows a plan that does not fall in the category ex-
plained above, because it uses a deep partitioning of column R.a.
However, note that such a plan necessarily executes multiple joins
between partitions of R and the whole of S and T. If the joins are
hash- or merge-based, S and T would be read multiple times. If
the joins are index-based, it means that some intermediate result
is small, and we could materialize such result earlier with a rel-
atively small penalty. Therefore, the plan in Figure 7(d) requires
rather specific circumstances to be significantly better than alter-
natives. This analysis motivates optimize-LPS*, which extends
optimize-LPS by allowing single-table parametric plans that can
take advantage of index strategies. We can obtain optimize-LPS*

by restricting the classes of joins that we consider in optimize-PS,
as shown in Appendix A.2. In general, optimize-LPS* produces
plans that are comparable to those given by optimize-PS at a frac-
tion of optimization time.

3.5 PS with Plan Pattern Optimization
We previously explained how optimize-LPS* reduces the over-

head of optimize-PS by restricting the places on which spool oper-
ators can be located (e.g., we forbid deep partitioned columns). In
this section we explore an alternative approach, in which we restrict
the plans on which spool operators can be placed (without restrict-
ing spool placement on such plans whatsoever). Our technique,
which we call optimize-PS*, can be seen as a generalization of
the post-processing techniques in parallel databases that “sprinkle”
parallelism over the best serial plan. Specifically, optimize-PS*
considers spool operators over plans that share the same pattern
with the optimal plan found without ∆ constraints. Two plans share
the same pattern if the join tree is the same modulo commutativity
(join algorithms can change, though).

Therefore, optimize-PS* starts by calling optimize (see Fig-
ure 3) and obtaining the optimal plan Popt independent of ∆. Then,
it proceeds very similarly to optimize-PS, but only exploring the
relevant plan fragments that appear in the optimal plan. The sim-
ple extensions required to implement optimize-PS* are discussed
in Appendix A.3. Algorithm optimize-PS* is much faster than
optimize-PS because it only considers a small number of execu-
tion plans. It might miss opportunities, however, since slicing the
optimal plan is not the same as obtaining the optimal query slicing.

3.6 Summary of Techniques
Table 9 summarizes both the search space enumerated by the

techniques (in order of generality), and also the distinguishing fea-
tures involved in their solutions. These strategies balance optimiza-
tion time with the quality of resulting extended execution plans.
Note that throughout this section we focused on SPJ queries to sim-
plify the presentation. Appendix B discusses several important ex-
tensions and optimizations, such as handling GROUP BY) and other
operators, more details on partitioning strategies, and various per-
formance improvements.

S LPS LPS* PS / PS*
Space χ +local χco

ci +single tables Full / Optimal
Features (SC,DC) +binary +single-table +cost skyline and

skyline search parametric plans parametric plans

Figure 9: Summary of optimization strategies.

4. EXPERIMENTAL EVALUATION
In this section we report an experimental evaluation of the tech-

niques described in this paper. We implemented the different query

slicing algorithms of Section 3 by extending the exhaustive opti-
mizer in [2]. The optimizer cost model was ported from that of Mi-
crosoft SQL Server’s optimizer. Unless explicitly stated otherwise,
we use binary search for determining range partitions, and an early
search bailout of 0.1% (see Appendix B.3). We used the workload
generator discussed in [2] to produce a synthetic queries, which al-
lowed us to vary different factors like the number of tables and their
sizes, join topologies, predicate selectivities and availability of in-
dexes. Query templates follow chain, snowflake, and star schemas
with foreign-key joins, optionally include single-table local selec-
tion predicates (with random selectivity in the range 0.1%-10%)
and group-by clauses. Table sizes range from kilobytes to giga-
bytes. For the case of snowflake schemas, workloads look similar
to those in a typical 10GB TPC-H database.

4.1 An Illustrative Example
To illustrate the different plans considered by our techniques, we

took a four-way star-join query and explored how the overall cost
of the query varies with decreasing values of ∆ using optimize-PS

(see Figure 10). When ∆ =∞ the overall cost is 12.5 units. As we
decrease ∆, the overall execution time gradually increases up to 25
units for ∆ = 0.2. The figure also shows selected extended exe-
cution plans for certain values of ∆. The query result size is rather
small, so when ∆ is slightly below the cost of the optimal plan, the
best extended plan in Figure 10(a) puts a Spool operator at the root.
For ∆ = 11.1 intermediate results become too expensive, so a sec-
ond Spool operator is placed on top of the first join in Figure 10(b).
For even smaller ∆ = 7.1, there is no plan that exclusively uses
Spool operators, and the optimal plan in Figure 10(c) introduces a
top-most iSpool with a deep partitioning attribute on table T0. The
materialized table T23 is read multiple times, once per partition on
T0.c. When we further decrease ∆ down to 1.9 units, the Spool
operator on top of tables T2 and T3 is transformed into a second
iSpool operator that induces a partitioned join. However, T2 cannot
be read completely under ∆ and therefore a third ioSpool operator,
which repartitions T2, is introduced. The cost of the optimal plan
gracefully degrades for smaller values of ∆, and the resulting plans
leverage all variants of Spool operators.

4.2 Summary of Experimental Results
We next summarize our experimental results, and refer to Ap-

pendix C for quantitative information that supports our findings.
Optimizer Efficiency: In our experiments, optimize-PS becomes

prohibitively expensive for queries with around or over 8 joins. All
other alternatives are practical for the whole range of workloads,
taking less than 400 msec. on average to optimize the most ex-
pensive 10-way star-join workload. Also note that optimize-LPS*
is cheaper than optimize-PS* for chain queries, but the trend re-
verses for more complex join topologies, and for star queries with
8 or more tables, optimize-PS* is the cheapest alternative overall.

Plan Quality: For each query in the workload and ∆ threshold,
we define the overhead ratio as the optimizer cost of the optimal
extended execution plan of our techniques divided by the optimizer
cost of the optimal execution plan with no ∆ threshold. An over-
head ratio of 1.25 for ∆ = C/4 means that the optimal query slic-
ing PS is 25% worse than the optimal –unsliced– plan PU , when
no slice in PS is allowed to use more than 25% of the overall cost
of PU . optimize-S does not produce a plan for the vast major-
ity of cases. optimize-LPS is the simplest technique that results in
valid queries for arbitrary ∆ values. However, the overhead ratios
are significantly higher than those of the more advanced strategies.
Finally, optimize-LPS* and optimize-PS* are almost identical in
quality to the optimal optimize-PS (under 2% difference).
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Figure 10: Optimizing a 4-way join for varying ∆ thresholds.

5. RELATED WORK
Managing long-running queries is an important problem in data

warehousing. A study of current workload management policies
is presented in [9, 10]. Techniques can be classified into admission
control, scheduling, and execution control. While most systems use
combinations of these techniques to manage long-running queries,
designing a truly robust technique remains an open research prob-
lem. Our query slicing techniques are applicable to various aspects
of resource management by slicing complex queries into pieces
that respect a cost threshold ∆. There has been recent work on
new server mechanisms to pause and resume a long-running query
(e.g., [3, 4]). These techniques are an interesting addition to the
repertoire of execution control mechanisms. In general, admission
control techniques need to be used in conjunction with execution
control mechanisms and it is interesting to examine how to best
combine query slicing techniques proposed in this paper with ap-
propriate execution control techniques (e.g., Pause/Resume).

The partitioned spool operator used in this paper is similar to the
“split” operator used in parallel database systems [6]. The split op-
erator partitions its output stream (using a split table) to an appro-
priate process while the oSpool operator partitions its output stream
to temporary tables. While the problem of choosing an appropriate
partitioning of an intermediate result in a query tree has been pre-
viously studied in the context of parallel query optimization [7, 8],
there are a number of differences. First, we need to handle the ad-
ditional constraint of a cost threshold, which significantly impacts
the resulting techniques. Second, physical design plays an impor-
tant role in our search space. Typically, in parallel query optimiza-
tion, the set of columns that are “interesting” for partitioning are
usually the columns on which the join predicates are defined. In
contrast, a column on which there is a covering index for a rela-
tion could still serve as an interesting partitioning column (see Fig-
ure 7(b)) because it can potentially lead to a plan in which all the
slices respect the cost constraint with no materialization. Finally,
some techniques in parallel databases exploit the current layout of
data (e.g., using small tables that are replicated in all nodes for join
processing). However, these techniques do not consider whether to
replicate a table during optimization. The search space of our tech-
niques include and generalize the equivalent of these strategies by
placing spool operators over small intermediate results.

6. CONCLUSIONS
In this paper we introduce the idea of query slicing, or dividing

a complex long-running query into components that are estimated
to run in a predefined amount of time. We studied a spectrum of
techniques for query slicing that extend the traditional optimization
search space with different tradeoffs between optimization time and
the quality of the “sliced” plan. Our experimental results indicate

that optimize-LPS* and optimize-PS* are almost undistinguish-
able in terms of quality and result in the best tradeoff between opti-
mization runtime and quality of resulting extended execution plans.
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APPENDIX
A. ALGORITHMIC DETAILS

A.1 General Partitioned Spools
In this section we discuss details for optimize-PS, which can

deal with arbitrary spool variants. Function updateMemo in Fig-
ure 11 generalizes that of optimize-LPS in two aspects. First, line
1 checks SC(p) ≤ ∆ only for non-parametric plans. Second, the
dominance condition on the skyline operator is extended so that
(i) plans parameterized on different columns do not dominate each
other, and (ii) parametric plan p1 dominates parametric plan p2 (pa-
rameterized on the same column) whenever p1 dominates p2 for ev-
ery parameter instance4. This condition can be very difficult to test
and in general involves detailed knowledge of the cost model. A
heuristic that works very well in practice is to try extreme selectiv-
ity ranges (say ϵ and 1−ϵ) for the parametric predicate, and declare
that p1 dominates p2 if it does it for both data points (similar to the
MNSA technique in [5]). This is correct when cost lines of both
plans do not intersect more than once, and a heuristic otherwise.

We now discuss the main algorithm for dealing with arbitrary
spool variants, which we call optimize-PS in Figure 11. The first
difference with respect to optimize-LPS is on lines 6-13, which
generate single-table execution plans. In addition to plans obtained
by previous techniques, lines 10-13 generate parametric plans for
every interesting column. A column is interesting if it is either part
of a join predicate in the query, or it is a key column of an in-
dex. There could be more than a single plan for a given column, to
cover the whole range of selectivity values. Consider a subquery
σR.a<10(R) and column R.b. Line 11 would generate a plan that
seeks Ib for $l≤b<$h, fetches the remaining columns and then ap-
plies R.a<10 on the fly (for low selectivity ranges on b). Addition-
ally, it will generate a plan that uses an index on R.a to obtain the
tuples that satisfy R.a<10 and then apply the range predicate on R.b

on the fly. If the query processor handles index intersection plans,
additional plans might be generated in line 11. All such parametric
plans are stored in Memo[R,S], as any of them could be part of the
overall optimal plan.

The second difference is how joins are generated in lines 14-20.
Rather than just considering plain spools and the extensions of
optimize-LPS for local partitioned spools, optimize-PS calls func-
tion generateJoins for each combination of plans pCP1 and pCP2

and join algorithm JA (contrast generateJoins with lines 16-18.5
in optimize-LPS). Function generateJoins considers each combi-
nation of parametric column for input plans P1 and P2 (recall that
except for plans with root spools, each plan has a single paramet-
ric column or is null). If at most one of P1 and P2 has a non-null
parametric column, or both have parametric columns that are joined
together in P1 ◃▹ P2, we can generate a new plan that is either para-
metric on one column or not parametric at all (depending whether
either P1 or P2 are parametric to begin with). In that case, lines
3-4 generate the –potentially parametric– plan CP, and lines 5-10
the corresponding plan that uses spool variants.

A.2 LPS with Single Table Optimization
As discussed earlier, optimize-LPS* extends optimize-LPS by

allowing single-table parametric plans that can take advantage of
index strategies. We obtain optimize-LPS* by simply restricting
the considered join classes in generateJoins in Figure 11:

1.1 if (c1 ̸=null and ¬validForLPS*(P1)) continue
1.2 if (c2 ̸=null and ¬validForLPS*(P2)) continue

4Strictly speaking, p2 is dominated whenever there is a plan (not necessar-
ily the same) in the skyline that dominates p2 for every parameter instance.

paramCols (P:plan)
returns columns for which P is parameterized
01 C = parametric(P) ? {parameter(P)} : {null}
02 if (tempScan(P))
03 C = C ∪ {c in cols(P):(c=c’) is join predicate}
04 return C

updateMemo (R:tables, S:order, P:plan)
01 if (P ̸= null and ∀p∈P:¬parametric(P)⇒SC(p)≤ ∆)
02 Memo[R, S] = skyline(Memo[R, S] ∪ P)

generateJoins (P1,P2:plan, JA:join algorithm)
01 for each (c1,c2) in paramCols(P1) × paramCols(P2)
02 if (c1=null or c2=null or (c1=c2) are joined)
03 c = (c1=null) ? c2 : c1
04 CP = JA(pCP1, pCP2)
05 updateMemo(R, S, CP)
06 if (c=null)
07 pCP = Scan(Spool(CP))
08 else
09 pCP = Scan(iSpoolc(changeSpools(CP, c)))
10 findPartitions(pCP)
11 updateMemo(R, S, pCP)

optimize-PS (R:tables, S:order)
returns skyline of plans for R satisfying S
01 if (Memo[R, S] was not yet calculated)
02 if (S ̸= null)
03 for each (CP ∈ optimize-PS(R, null))
04 updateMemo(R, S, Sort(CP))
05 updateMemo(R, S, Scan(Spool(SortS(CP))))
06 if (|R| = 1)
07 CP = best plan under S order
08 updateMemo(R, S, CP)
09 updateMemo(R, S, Scan(Spool(CP)))
10 for each ’interesting’ column C // see Section 3.3
11 CPS = parametric plans for σ$l≤C<$h(R)

using IC under S order
12 for each CP in CPS
13 updateMemo(R, S, CP)
14 else for each valid partition (R1, R2) of R
15 for each join algorithm JA
16 S1,S2 = required orders of R1,R2 for JA
17 CP1 = optimize-PS(R1, S1)
18 CP2 = optimize-PS(R2, S2)
19 for each (pCP1, pCP2) ∈ CP1 × CP2
20 generateJoins(pCP1, pCP2, JA)
21 return Memo[R, S]

Figure 11: Handling all Spool variants for query slicing.

where validForLPS* accepts plans that either have a spool operator
at the root, are defined over a single table, or else are not parametric.
That is, validForLPS*(p) is equivalent to:

tempScan(p) ∨ singleTable(p) ∨ ¬parametric(p)

A.3 PS with Plan Pattern Optimization
Algorithm optimize-PS* is similar to optimize-PS, but only ex-

plores plan fragments that appear in the optimal plan. For that pur-
pose, we need to slightly modify the search strategy in algorithm
optimize-PS, which originally iterates over all possible partitions
of the input tables, so that only trees that share their patterns with
the optimal Popt are explored. Specifically, we need to change line
14 in optimize-PS to:

14 else for each (R1, R2) sharing Popt’s pattern
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B. EXTENSIONS AND OPTIMIZATIONS

B.1 Handling Additional Operators
Section 3 focuses exclusively on SPJ queries, but the techniques

discussed there can be analogously extended to other operators.
Non-partitioned spool operators χ are straightforward to manip-
ulate with arbitrary operators since they can be placed anywhere in
a tree. Partitioned spool operators, however, require additional care
and the details are dependant on the operators they operate upon.

Consider the Sort operator, which orders an input relation by a
given column. If we want to slice Sorta(R) we can locally partition
the sort operator by using:

χ(a,{...})(Sorta(Scan(χ
(a,{...})(R))))

for suitable ranges over column a. If R can deliver ordered sub-
ranges of a by using an index plan, extensions to optimize-LPS*

can also consider such strategies. The only requirement is that each
iteration of the χ(a,{...}) operator be done in increasing order of a
ranges, so that the temporary table is fully sorted by a.

Consider now a group-by clause GBa,count(∗)(R) with grouping
column a. A local partitioned spool strategy can simply partition
the input relation R by column a exactly as for the Sort case above.
Since all tuples with the same a value belong to the same range,
this strategy works with no further changes. If R can be partitioned
by other columns due to some access path strategy, we can apply
the techniques in [15] and decompose the group-by into local and
global parts. For instance, if R can be partitioned by column c due
to an index strategy, we can partition GBa,count(∗)(R) as follows:

GBa,sum(B)

(
χ(c,{...})(GBa,B=count(∗)(σ$l<c≤$h(R)))

)
Other operators can be handled analogously.

B.2 Revisiting Partitioning Strategies
We next present extensions to the basic partitioning strategies for

query slicing and the challenges they introduce.

Optimal Partitioning for Opaque Cost Functions: Our par-
titioning techniques choose the largest possible ranges that result
in a query slice instance that fits ∆. This technique is optimal if
the cost model satisfies that cost(P ) ≤ cost(P1) + cost(P2) where
P1 and P2 partition P . In general, however, complex cost func-
tions might not satisfy this property. Consider R ◃▹ S using a hash
join alternative. If the whole join spills to disk but we use a 2-way
partitioned join for which both iterations do not spill to disk, the
partitioned strategy can be cheaper than the full join. This behavior
is also applicable for regular optimization, but current optimizers
do not handle such scenarios. Obtaining the optimal partitioning
to minimize global cost is an open problem, and our techniques
approximate that goal by maximizing the work per partition.

Multi-dimensional Partitioning: Our techniques handle a sin-
gle partitioning column in a χ operator. In general, we can par-
tition spools by multiple columns simultaneously, as long as the
sub-plans iterate over the cross product of the column ranges (note
that partitioned joins do not strictly partition over two different
columns because these are joined together and thus can be treated
as one). While multidimensional partitioning can result in better
plans for some scenarios, the corresponding techniques are con-
siderably more difficult and expensive. In this paper we take an
approach that is analogous to avoiding cross-products in traditional
optimization and do not consider multiple partitioning columns on
spool variants.

Heterogeneous plans: The techniques in this paper enforce that
every iteration of an iSpool operator executes the same plan. In
some situations, it might be more efficient to execute different plans

depending on the actual range predicates (e.g., for subplans of a
partitioned join with skewed distribution in the join columns). As
with multidimensional partitioning, this optimization might bring
some improvement in execution time in some scenarios but it would
significantly increase optimization time.

B.3 Performance Improvements
The main overhead of our techniques with respect to the tra-

ditional dynamic programming strategy comes from (i) consider-
ing many additional plans due to less aggressive pruning by the
(SC,DC) cost skyline, and (ii) significant number of cost evalua-
tions when searching for ranges. We next discuss heuristics that
reduce such overhead at the expense of slight quality degradation.

Early binary-search bailout: The binary-search technique to
identify partition ranges discussed in Section 3.2 can incur signifi-
cant overhead at the last iterations, where considering a handful of
different values does not change costs that much (and in any case,
cost estimation is done using histograms, which are approxima-
tions of the real data). An alternative approach is to stop the binary
search whenever successive attempts result in a selectivity change
of, say, 1%. This way, we would still return a valid range that fits ∆,
but the range would not be as tight as possible. At the same time,
optimization time is reduced significantly, since the binary-search
module is in the inner loop of our various techniques.

Skyline reduction: A heuristic to reduce the number of plans
considered during optimization is to prune the plan skylines in the
Memo structure (we suggest a similar approach with respect to ex-
treme selectivity ranges in Section 3.3). Rather than keeping all
plans that are not dominated in term of (SC,DC) costs, we can sim-
plify the dominance test and keep plans that are not dominated ei-
ther in SC or DC costs. In other words, we only keep two plans in
each Memo cell, the one with the smallest SC cost, and the one with
the smallest DC cost. This way, we reduce the number of plans that
are considered and thus make optimization faster, at the expense of
missing some alternatives.

B.4 Reoptimization/Cardinality Estimation
By design, our techniques depend on cost estimates produced by

the optimizer, and indirectly on cardinality estimates. These esti-
mates can sometimes be inaccurate, and there have been different
approaches in the literature to improve cardinality estimation and
optimization in general. These techniques are orthogonal to our
approach and can certainly be leveraged. An interesting approach
is to combine query slicing with ideas on incremental execution.
As slices are executed, we can gather information about the ma-
terialized slices and, if they deviate from the original estimates,
we can re-optimize the remaining query fragment. It is interest-
ing to note that the local partitioned-spools of optimize-LPS and
optimize-LPS* might be a better alternative than the potentially
deep partitioning strategies of optimize-PS and optimize-PS*, as
they would catch and reduce cardinality errors sooner.

C. EXPERIMENTAL RESULTS
In this section we provide experimental results that support our

conclusions in Section 4.

C.1 Optimization Efficiency
We first measure the efficiency of the different techniques dis-

cussed in Section 3 and also optimize-O, which is the traditional
dynamic programming algorithm of Figure 3, which does not con-
sider ∆ thresholds. We generated 100-query random workloads us-
ing different join topologies and covering indexes for a large frac-
tion of query predicates. We then optimized each query using a
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(a) Chain topology.
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(b) Snowflake topology.
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(c) Star topology.

Figure 12: Elapsed time of different query slicing techniques
for varying query complexity.

value of ∆ = ∞ and measured the elapsed time of each optimiza-
tion technique and also the plain dynamic programming alternative
(which does not perform query slicing). Figure 12 shows the av-
erage elapsed time of each algorithm for various 100-query work-
loads varying the number of joins.

The figure shows that the join topology has some influence in the
relative performance of the techniques. Specifically, chain queries
are cheaper to process than star queries, and snowflake queries lie
in between. In all experiments, optimize-PS quickly becomes pro-
hibitively expensive for queries with around or over 8 joins. All
other alternatives are practical for the whole range of workloads,
taking less than 400 msec. on average to optimize the most ex-
pensive 10-way star-join workload. Also note that optimize-LPS*
is cheaper than optimize-PS* for chain queries, but the trend re-
verses for more complex join topologies, and for star queries with
8 or more tables, optimize-PS* is the cheapest alternative overall
among those that consistently generate valid solutions. Note that
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(a) Chain topology.
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(b) Snowflake topology.
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(c) Star topology.

Figure 13: Elapsed time of different query slicing techniques
for varying ∆ values.

optimize-S (and for that matter, the baseline dynamic program-
ming), though faster than optimize-PS*, very frequently fails to
find any solution.

We noticed that with decreasing values of ∆, the optimization
time of our techniques initially increases, but at some inflection
point the trend is reversed. In qualitative terms, this can be ex-
plained as follows. For very large values of ∆, partitioning tech-
niques are usually not required, because the whole input can be
spooled completely (if necessary), and thus the number of plans
in the Memo skylines is smaller. As the value of ∆ decreases, the
techniques increase in optimization time due to larger skylines and
longer range searches. At some point, however, ∆ becomes small
enough that many plans are pruned from the Memo because they do
not fit in ∆, and the overall cost of the techniques starts slowly de-
creasing. This inflexion point, however, is different for each tech-
nique and also depends on query characteristics.

Figure 13 shows how optimization time varies when changing
∆ values for 8-way join queries (we omit optimize-PS since it is
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(a) Chain topology.
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(b) Snowflake topology.

������������������	

�� 
�� 
�� 
�	 
�� 
�� 
�
 
�� 
���������������	��
����
� ���������	
�����
���������
�������	������

� ��� ���� ��� ��27%      7% 
(c) Star topology.

Figure 14: Quality of different query slicing techniques for
varying query complexity.

significantly more expensive than the alternatives). Specifically, we
consider ∆=∞ and also vary ∆ from C to C/10 for each query,
where C is the cost of the optimal plan by optimize-O (i.e., with-
out ∆ thresholds). Again, the join topology influences the trends.
For chain queries, the inflexion point is reached sooner for all tech-
niques, and optimize-PS* is the least efficient alternative. This
trend is reversed for star queries, where optimize-PS* is the most
efficient technique among those that use partitioned spools. The
reason is that optimize-PS* is intrinsically more expensive, but
only operates over a single tree, and therefore benefits from com-
plex optimization instances. Figure 13(b) clearly shows that the in-
flexion point of optimize-PS* is smaller than that of optimize-LPS,
and the optimization costs cross each other at around C/3.
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Figure 15: Quality for chain queries with no indexes.

C.2 Overall Plan Quality
We now examine the quality of the plans returned by different

optimization strategies. For that purpose, we consider again the
100-query workloads with 8-way joins of the previous section (the
results extend for other query sizes). For each query in the work-
load and given ∆ threshold, we define the overhead ratio as the
optimizer cost of the optimal extended execution plan of our tech-
niques divided by the optimizer cost of the optimal execution plan
obtained by optimize-O (i.e., with no ∆ threshold). For instance,
an overhead ratio of 1.25 for ∆ = C/4 means that the optimal
query slicing PS is 25% worse than the optimal –unsliced– plan
PU , when no slice in PS is allowed to use more than 25% of the
overall cost of PU .

Figure 14 shows the results for different join topologies. We
make the following observations. First, optimize-S does not pro-
duce a plan for the vast majority of cases. For instance, in Fig-
ure 14(a), only 54% of queries have answers for ∆=C/2, just 15%
for ∆=C/3, and none for smaller values of ∆. Since overhead
ratio averages are computed only for successful optimizations, it
seems that optimize-S performs better overall than the other tech-
niques, when in reality is just the opposite. In fact, optimize-LPS
is the simplest technique that results in valid queries for arbitrary
∆ values. However, the overhead ratios are significantly higher
than those of the more advanced strategies. Finally, we see that
optimize-LPS* and optimize-PS* are almost indistinguishable in
terms of quality from the optimal optimize-PS. In general, the best
overall is optimize-PS, but the difference is below 2% in all cases.

We comment on an interesting result that we obtained when we
repeated the experiment of Figure 14(a) but changing the physi-
cal design so that only clustered indexes were available. Figure 15
shows overhead ratios that at first sight suggest virtually no over-
head for optimizing such queries even for values of ∆ = C/10.
Upon closer inspection, we found that more than half of the queries
behave similarly to the case in Figure 14(a), but a significant frac-
tion of the remaining queries result in overhead ratios smaller than
one. This happens because in absence of indexes, most joins are
hash-based. In such cases, evaluating a partitioned hash-join re-
quires materializing join results (which can be small) but avoids
spilling join inputs to disk (which can be large). Therefore, plans
that use partitioned spools can be more efficient than the optimal
unsliced plans. This strategy, although not implemented in prac-
tice, is also applicable for regular query optimization.
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