Automatic Rule Refinement for Information Extraction

Bin Liu Laura Chiticariu Vivian Chu
University of Michigan IBM Research - AlImaden IBM Research - Almaden
binliu@umich.edu chiti@us.ibm.com chuv@us.ibm.com
H.V. Jagadish Frederick R. Reiss
University of Michigan IBM Research - Almaden
jag@umich.edu frreiss@us.ibm.com
ABSTRACT If a match of a dictionary of common first names occurs in the text, followed

immediately by a capitalized word, mark the two words as a “candidate
Rule-based information extraction from text is increasingly being person name”.
used to populate databases and to support structured queries on
unstructured text. Specification of suitable information extraction Figure1l: An example information extraction rule, in English.
rules requires considerable skill and standard practice is to refine
rules iteratively, with substantial effort. In this paper, we show that
techniques developed in the context of data provenance, to deterfeature extraction stage of various machine learning algorithms, as
mine the lineage of a tuple in a database, can be leveraged to asin [15, 23, 26]. In either case, it is important for the rules to produce
sist in rule refinement. Specifically, given a set of extraction rules very accurate output, as downstream processing tends to be highly
and correct and incorrect extracted data, we have developed a techsensitive to the quality of the results that the rules produce.
nique to suggest a ranked list of rule modifications that an expert Developing a highly accurate set of extraction rules is difficult.
rule specifier can consider. We implemented our technique in the Standard practice is for the developer to go through a complex iter-
SystemTnformation extraction system developed at IBM Research ative process: First, build an initial set of rules; then run the rules

— Almaden and experimentally demonstrate its effectiveness. over a set of test documents and identify incorrect results; then ex-
amine the rules and determine refinements that can be made to the
1. INTRODUCTION rule sets to remove incorrect results; and finally repeat the process.

Of these steps, the task of identifying rule refinements is by far the
most time-consuming. An extractor can easily have hundreds of

enterprise applications, including semantic search, business intel-rUIes’ and the interactions between these rules can be very com-

ligence over unstructured data, and data mashups. The structurec{l}l)lex'I When chtargglng ruflelst to remove ;:hglvef? |rlcorrect .ret‘sult, the
data that information extraction systems produce often feed directly eveloper must be caretul to minimize the etects on existing cor-

into important business processes. For example, an application thafct reﬁ_ullts. Intour t_expenf? nce bulldéngtlnfOfmfathF&%):tl’?CdtIO? rqles
extracts person names from email messages might load this nam or multiple enterprise software products, we found that identifying

information into a search index for electronic legal discovery: or it PCSSiPle changes for a single false positive result can take hours.

may use the name to retrieve employee data for help desk problemt Itn the ?ﬁldlpf data p;ovetnalncg tec(?nthges h?hve beﬁn developed
determination. Because the outputs of information extraction are 0 trace the finéage ot a Wple In a database through a sequence

so closely tied to these processes, it is essential that the extracteci”c operators. This lineage also encodes the relationships between

information have very high precision and recall; that is, the system source and i_ntermediate res_ult tuples and the final result. Ir_1 this
must produce very few false positive or false negative results. paper, we bring these techniques to bear on the problem of infor-

Most information extraction systems use rules to define impor- mation extraction rule refinement. Intuitively, given a false positive
tant patterns in the text. For example, a system to identify person result of information extraction, we can trace its lineage back to

names in unstructured text would typically contain a number of Eﬂ.e spfurce tt(') understand de>t<actly Whyh't t'S n thti reshult. Based (?)n
rules like the rule in Figure 1. The example in the figure is written IS Information, we can determineé what possible changes can be

in English for clarity; an information extraction would typically use made to one or more operators along the way to eliminate the false

a rule language such as AQL [22], JAPE [12], or XLog [6, 30] positive, without eliminating true positives. Actually realizing this
In some systems, the outputs ’of these rljles may feéd directIyViSion' the central contribution of this paper, requires addressing

into applications [12, 14, 19, 24]. Other systems use rules as theSOMe challengeg, as outhne@ in Section 4. .
Most information extraction rules can be translated into rela-

- - . . tional algebra operations. Over such an operator graph, provenance-
Permission to make digital or hard copies of all or part of this work for . . .
personal or classroom use is granted without fee provided that copies arebased anaIySI$, developed ln“SeCtlon 5, produces a set of proposed
not made or distributed for profit or commercial advantage and that copies fulé changes in the form of “remove tuplefrom the output of
bear this notice and the full citation on the first page. To copy otherwise, to operatorO”. We refer to this class of rule changes ligh-level
republish, to post on servers or to redistribute to lists, requires prior specific changes. To remove a “problem” tuple from the output of a rule,
permission and/or a fee. Articles from this volume were presented at The the rule developer needs to know how to modify the extraction
36th International Conference on Very Large Data Bases, September 13'17'primitives that make up the rule. We call such chanigeslevel

2010, Singapore. . A - . .
Proceedings of the VLDB Endowmev). 3, No. 1 changes. (Extraction primitives include regular expressions and fil-

Copyright 2010 VLDB Endowment 2150-8097/10/0%.10.00. tering predicates like “is followed by”). These modifications may

Information extraction — the process of deriving structured in-
formation from unstructured text — is an important aspect of many

588

in turn result in the removal of additional tuples besides the “prob-
lem” tuple, and the developer needs to consider these side-effects
in evaluating potential rule changes, while simultaneously keeping
the rules as simple and easy to maintain as possible.

In Sections 5 and 6, we develop a framework for enumerating

Dictionary file first_names.dict: anna, james, sibel, ...
Dictionary file street_suffix.dict: ave, bivd, st, way,...

R1: create view Phone as
Regex(‘d{3}-\d{4}’, Document, text);

R2: create view FirstNameCand as
Dictionary(first_names.dict’, Document, text);

R3: create view FirstName as

Input document:
“Anna at James St. office (555-1234), or James, her
assistant - 555-7789 have the details.”
Document:
text

tp] Anna at James St. office (555-1234), or James,
her assistant - 555-7789 have the details.

Phone:
match

FirstNameCand:
match

FirstName:
match

select * from FirstNameCand F
where Not(ContainsDict('street_suffix.dict’,
RightContextTok(F.match,1))); 1

R4: create view PersonPhoneAll as t
select Merge(F.match, P.match) as match 2]
from FirstName F, Phone P
where Follows(F.match, P.match, 0, 60);

the low-level changes that correspond to a given set of high-level
changes. We also develop efficient algorithms for computing the
additional side-effects of each proposed low-level change. Using
this information, we then rank low-level changes according to how
well they remove false positives without affecting existing correct |75
answers or complicating the rule set. This ranked list of low-level
changes is then presented to the rule developer.

We have embodied these ideas in a software system that auto-
mates the rule refinement process and implemented it in the Sys-
temT information extraction system [11, 22, 27]. Given a set of ¥ .| Anna at James t. office (5551234
rules, a set of false positive results that the rules produce, and a tio
set of correct results, our system automatically identifies candidate

rule changes that would eliminate the false positives. The system Figure 2: Example extraction program, input documentD, and

then computes the overa_ll effects of these changes on result qual'ty\Qewinstances created by the extraction program orD.
and produces a ranked list of suggested changes that are presente

to the user. The system can be also used in fully automated mode,
where the highest ranked change is automatically applied in eaChto this previous work. Our system employs a semi-automatic itera-

iteration. We have extensively evaluated the system, and presentﬁve process with a human in the loop, which represents a new area
representative results to demonstrate its effectiveness in Section 7.Of the design space for information ex’traction systems. This design
prz\a,}i/?ni?\igrilgsvi\lgr]s:cﬁé)sr?gssmn of related work in Section 2, and choice allows our syste_zm to handle highly cc_JmpIex rl_JIe structures
' and to leverage expert input. Whereas machine learning models are
generally opaque to the user, the rules that our system produces can
2. RELATED WORK be understood and “debugged” by the rule developer.

The field of data provenancestudies the problem of explain- Recently, [13] has shown how introducing transparency in a ma-
ing the existence of a tuple in the output of a query. A recent chine leaming-based iterative IE system, by recording each step
survey [10] overviews various provenance notions for explaining Of the execution, enables the automatic refinement of the machine
whya tuple is in the resultwhereit was copied from in the source ~ leaming model via adjusting weights and removing problematic
database, anidowit was generated by the query. Itis the latter type seegl evu_:lence. Qur work differs from [13] in that we consider auto-
of provenancehow-provenancél7], that is leveraged in our sys- ~ matic reflnemeqt inthe context of rule-ba§ed systems, and therefore
tem to generate the set of high-level changes: place-holders in theour space of refinements is completely different. _
rule set where a carefully crafted modification may result in elim- In practice, information extraction systems that employ machine
inating one false positive from the output. However, this is only €arning generally use rules to extract basic features that serve as
the first step of our approach. In a significant departure from previ- the input, and our techniques can be used to assist in the process
ous work on data provenance, our system generates a ranked list off developing these rules. Additional previous work has used ma-
concrete rule modifications that remove false positives, while min- chine learning for extraction subtasks like creating dictionaries [28]
imizing the effects on the rest of the results and the structure of the @nd character-level regular expressions [25]. These techniques are
rule set. complementary to the work we describe in this paper. In particular,

Early work in information extraction produced a number of ~ our work provides a mechanism for “plugging in” these algorithms
rule-based information extraction systems based on the formalism@s low-level change generation modules. .
of cascading regular expression grammars. Examples include FRUMPFinally, [29] describes an approach for refining an extraction pro-
[14], CIRCUS [24], and FASTUS [19]. The Common Pattern Spec- 9ram by posing a series of questions to the user. Each question
ification Language [5] provided a standard way to express these a_sks for additional information about a §pecmc feature of _the de-
grammars and served as the basis for other rule-based systems likgired extracted data. The features considered are pre-defined. For
JAPE [12] and AFsT [8]. In recent years the database commu- each question, the correspondm_g selection predicate is added to the
nity has developed other rule languages with syntaxes based orXtraction program. Our work differs fundamentally from the ap-
SQL [21, 22, 32] and Datalog [6, 30]. The techniques that we prqach of [29] in that it automatically suggests fully-specified rule.
describe in this paper can be used to automate the rule refinementefinements based on labeled extracted data, as opposed to asking
process across all these different classes of rule languages. the user_to fill in the blanks in template qu_estlons. Furthgrmore,

Other work has used machine learning to perform information W€ consider a much broader space of refinements ranging from
extraction, and a variety of systems of different flavors have been adding/modifying selection/join predicates and dictionary extrac-
developed, ranging from entity relation detection (e.g., [36]) to it- tion specifications, to addlng sybtractlon sub-querles.l To the best
erative IE (e.g., Snowball [4]) and open IE (e.g., TextRunner [35]). Of our knowledge, ours is the first system for suggesting concrete
Researchers have employed a variety of techniques, including cov-Tule refinements based on labeled extracted data.
ering algorithms [31], conditional random fields [23, 26], support-
vector machines [36], and mixtures of multiple learning models
[15, 35]. The work that we describe in this paper is complementary 3. PRELIMINARIES

] 555-1234 2%
555-7789 t,]

Anna tg] Anna

James t,] James

t;] James

PersonPhoneAll:

match
--Create the output of the extractor

create table PersonPhone(match span); ty
insert into PersonPhone

(select * from PersonPhoneAll A)
except all to
(select A1.*

Anna at James St. office (555-1234

to] James, her assistant - 555-7789

Anna at James St. office (555-1234),
or James, her assistant - 555-7789

from PersonPhoneAll A1, PersonPhoneAll A2
where Contains(A1.match, A2.match)
and Not(Equals(A1.match, A2.match))

PersonPhone:
match

James, her assistant - 555-7789

Different information extraction systems have different rule lan-
Available for download at http://alphaworks.ibm.com/tech/systemt.guages [6, 12, 22, 30]. However, most rule languages in common

589

use share a large set of core functionality. In this paper, we use
SQL for expressing information extraction rules in order to de-
scribe the theory behind our system in a way that is consistent
with previous work on data provenance. Specifically, we use the
SELECT - PROJECT - JOIN - UNION ALL - EXCEPT ALL sub-
set of SQL. Note that UNION ALL and EXCEPT ALL are not
duplicate-removing, as per the SQL standard [1]. :

ONot(ContainsDict(street_suffix.dict’,
RightContextTok(F.match,1)));

Our use of SQL does not in any way preclude the application of &t 3
our work to other rule languages. As discussed in Appendix A, the R2 ... RL... [...... ,
pgsic structure of different IE rule languages contains key similar.- Dictionary Regex ;
ities to the SQL representation used here. These languages define | rsmame dict, text [11| ‘ag@agey. e | 1 N
H “Follows(N.match,P.match,0,60

the extractor as a set of rules with dependency relationships that can e R R
be used to construct a provenance graph for computing high-level
changes. Rules are made up of atomic operations that can be mod-
ified, added, or deleted to create low-level changes. As such, the

high-level/low-level change framework that we define in this paper

carries over easily to the rule languages in common use today. Figure 3: Canonical representation of rules in Figure 2.
Extensions to SQL.To make our examples easier to read, we aug-

ment SQL with some basic information extraction primitives. . .) .)

We add a new atomic data type callegun for modeling data andmaX|mu_m _character c_il_stan(_:e. This function retu:_'ue if the
values extracted from the input document.span is an ordered spans are Wlthln the spec!fled distance pf each other in the text. The
pair (begin, end) that identifies the region of an input document Mergefunctlon takes a pair of spans as input and returns a span that
between théveginandendoffsets. For clarity, we may sometimes ~ €Xactly contains both input spans. Toel ect clause ofR24 uses
identify a span using its string value in addition to the begin and Mergeto define a span that runs from the beginning of each name
end offsets, or we may simply drop the offsets when they are clear {0 the end of the corresponding phone number. _
from the context. For example, to identify the region starting at ~ Finally, Rs materializes the tabl@ersonPhone, which consti-
offset0 and ending at offsei in the document from Figure 2, we tute_s the output qf our extractor. It uses an EX_CEPT ALI__ _clause
may use the notation®, 5), or (0, 5): “Anna”, or simply, “Anna”. to filter out_ candidate name—phone spans _strlctly_contalnlng an-

We model the input document as a table calbedument with other candidate name—phone span. The_ join predicate of the sec-
a single attribute of typepan namedtext. We also add several ond operand of thg EXCEPT ALI__ clause |Ilgstrates two other text-
predicates, scalar functions, and table functions to SQL's standardPased scalar functiongquals, which checks if two spans are equal,
set of built-in functions. We define these functions as we use them, @nd Contains which tests span containment. Note that the false
and also include a complete list in Appendix B. positive tip in P'ers_onPhoneAII that gssoglates Anna_l with James’
Example Rules. Figure 2 shows an example rule program, ex- phone nurr_]ber is filtered out bys, since its span strictly contains
pressed in SQL, which extracts occurrences of person names andther candidate name-phone spans (i.e., ftmndto). _
their phone numbers. The program consists of individual rules, la- anonical rule representation. To simplify our subsequent dis-
beledR; throughRs. RulesR; throughR, define logical views, cussions, we shall assume a canonical algebraic representation of
while rule Rs materializes a table of extraction results. extraction rules as trees of operators, such that for each rule, there

Rule R, illustrates one of the shorthands that we add to SQL: the is a direct one-to-ong translation to _this_ canonic_al_ repl_resen_tation
Regexable function, which evaluates a regular expression over the e_md back. The canonical representation is very similar, if not iden-
text of one or more input spans, and returns a set of output spansfic@l for the SELECT - FROM - WHERE - UNION ALL - EX-

that mark all matches of the expression. In the case ofRuleghe CEPT ALL subset of the language, to the representation of SQL

regular expression finds phone numbers of the foma — zzzz. statements in terms of relational operators. A rule in the form “SE-
Rule R shows another addition to SQL: tiictionary table LECT attributes FROM Ry, ..., Rin WHERE join.predicates

function. Similar to theRegexable function Dictionary identifies AND selection_predicates” is represented in the usual way as the

all occurrences of a given set of terms specified as entries in a dic-S€gquence of project — select — join operators shown below:
tionary file. ForRs, the dictionary file contains a list of common
first names. The rule defines a single-column vigtNameDict
containing a span for each dictionary match in the document. When table functions likBictionaryandRegexappear in the FROM
Rule R3 uses a filtering dictionary that matches abbreviations for clause of a SELECT statement, we translate these table functions
street names on the right context of names, to filter out first namesto operators by the same names.
that are street names, e.g., “James St.”. The view definition uses Figure 3 illustrates the canonical representation of our example
two of the scalar functions that we add to SQightContextTok extractor from Figure 2, where the dashed rectangles indicate the
andContainsDict.RightContextTokakes a span and a positive in- correspondence between parts of the operator tree and rule state-
tegern as input and returns the span consisting of thefitstkens ments. (The part corresponding to the second operand of the EX-
to the right of the input span. Th€ontainsDictfunction, used CEPT ALL clause in ruleRs is omitted.) Note that when the
here as a selection predicate, takes a dictionary file and a span an®WHERE clause of a rule does not contain any selection predicates
returnstrue if the span contains an entry from the dictionary file. (e.g.,R4), the condition in the select operator of the corresponding
Rule R, identifies pairs of names and phone numbers that are canonical representation is simglyue.
between 0 and 60 characters apart in the input document. The view

definition uses two of the scalar functions that we add to SQL: 4. QOVERALL FRAMEWORK

FOHO.WS and Merge. TheFollows function, used herg as a join Given a set of examples in the output of an extractor, each labeled
predicate, takes two spans as arguments, along with a minimum ; .)
correct or incorrect by the user, our goal is to generate a ranked list

Tattributes (Uselection,preds (Njoin,preds (Rh ey Rn)))

590

of possible changes to the rules that result in eliminating the incor- level changes above are “Modify the maximum character distance
rectexamples from the output, while minimizing the effects on the of theFollowsjoin predicate in the join operator of rul&, from60

rest of the results, as well as the rules themselves. Our solution op-to 50", and “Modify theDictionaryoperator of ruleR» by removing
erates in two stages: High-level change generation (Section 5) andentryanna from dictionary file firstnames.dict”, respectively.

low-level change generation (Section 6). Ratherthan presenting the user with a large and rather unhelpful

The high-level change generation step generates a seglof list of high-level changes, our system produces a ranked list of low-
level change®f the form “remove tuple from the output of op- level changes, along with detailed information about the effects and
erator Op in the canonical representation of the extractomtu- side-effects of each one. Logically speaking, our approach works
itively, removing a tuple from the output of ruleR translates to by generating all low-level changes that implement at least one
removing certain tuples involved in thpgovenance of according high-level change; then computing, for each low-level change, the

to the canonical operator tree k. Our solution leverages pre- corresponding set of high-level changes. This high-level change
vious work in thedata provenancgl0] in generating the list of information is then used to rank the low-level changes.

high-level changes. These high-level changes have the potential to A naive implementation of this approach would be prohibitively
remove all incorrect examples from the output. For example, high- expensive, generating huge numbers of possible changes and mak-

level changes for removing the tuglg from the output of ruleR4 ing a complete pass over the corpus for each one. We keep the
would be “remove tupleé.o : (Anna, 555 — 7789) from the out- computation tractable with a combination of two techniques: prun-
put of the join operator in ruleR4”, or “remove tuplets : (Anna) ing individual low-level changes using information available at the
from the output of th®ictionaryoperator in rule Rs”. operator level and computing side-effects efficiently using cached

A high-level change indicateghatoperator to modify to remove provenance information.
a given tuple from the final output. However, a high-level change Since low-level changes are expressed in terms of our internal
does not telhow to modify the operator in order to remove the representation as canonical operator trees, we translate them back
offending tuple. High-level changes are only the first step towards to the level of rule statements (there is a direct one-to-one trans-
automating the rule refinement process. lation), prior to showing them to the user. For instance, our two

If a rule developer were presented with a set of high-level changesexample low-level changes would be presented to the usbtas
he or she would need to overcome two major problems in order to ify the maximum character distance of thellows join predicate
translate these high-level changes into usable modifications of thein the WHERE clause of rul&, from 60 to 50", and respectively,
information extraction rule set. “Modify the input of theDictionary table function of ruleR, by

The first problem is one dfeasibility: The rule writer cannot removing entryanna from input dictionary file firsmames.dict.”
directly remove tuples in the middle of an operator graph; she is The user chooses one change to apply, and the entire process is
restricted to modifying the rules themselves. It may not be pos- then repeated until the user is satisfied with the resulting rule set.
sible to implement a given high-level change through rule modifi-
cations, or there may be multiple possible ways to implementthe 5, GENERATING HIGH-LEVEL CHANGES
change. Suppose that the Dictionary operator in our example has
two parameters: The set of dictionary entries and a flag that controls DEFINITION 5.1 (HIGH-LEVEL CHANGE). Let ¢ be a tuple
case-sensitive dictionary matching. There are at least two possiblein an output tablel’. A high-level change fot is a pair (¢', Op),
implementations of the second high-level change described above:whereOp is an operator in the canonical operator graphéfand
Either remove the entrgnna from the dictionary, or enable case- ¢’ is a tuple in the output oDp such that eliminating’ from the
sensitive matching. It is not immediately obvious which of these output ofOp by modifyingOp results in eliminating from V.
possibilities is preferable.

The second problem is one sile-effects. A single change to a
rule can remove multiple tuples from the output of the rule. If the
rule developer chooses to remove the dictionary entryafoma,

Intuitively, for the removal of’ from the output ofOp to result
in eliminatingt from the final output, it must be that contributes
to generating. In other wordst’ is involved in theprovenance of

P P according to the rule set. Hence, to generate all possible high-level
hen every fal itive that matches that entry will di r from) ’
then every false positive that matches that entry will disappear fro changes fot, we first need to compute the provenance.dflext,

the output of the Dictionary operator. Likewise, if he or she enables : ; . :
case-sensitive matching, then every false positive match that is not/€ shall first dl_scuss how provenance IS cqmpu_ted In our system,
in the proper case will disappear. In order to determine the de- and then describe our algorithm for generating high-level changes.
pendencies among different high-level changes, the rule developer§_ 1 Computing Provenance
needs to determine how each high-level change could be imple-
mented and what are the effects of each possible implementation
on other high-level changes.

Just as modifying a rule to remove one false positive result can
simultaneously remove another false positive result, this action can
also remove one or momrrectresults. There may be instances in
the document set where the the current set of rules correctly iden-
tifies the string “Anna” as a name. In that case, removing the entry
anna from the dictionary would eliminate these correct results. A
given implementation of a high-level change may actually make the
results of the rules worse than before.

In the second step of our solution, we go beyond the work done
in data provenance and show how to address the issues of feasibilit)fi.
and side-effects. We introduce the concept td\a-level change,

a specific change to a rule that implements one or more high-level
changes. Example low-level changes implementing the two high-

Various definitions have been proposed for describingtbee-
nance of a tuplé in the result of a query): why-provenance: the
set of source tuples that contribute to the existencerothe result,
where-provenance: the locations in the source database where each
field of t has been copied from, arftbw-provenance: the source
tuples, and how they were combined by operator€)ofo pro-
ducet. Among these, how-provenance is the more complete ver-
sion, since it generalizes why-provenance, and “contains” where-
provenance in a certain sense [10]. It is also the most suitable in
our context, since knowing which source tuples and how they have
been combined by) to generate an undesirable output tupie a
re-requisite to modifying in order to remove from the result.
herefore, in this paper we shall rely on how-provenance extended
to handle text-specific operators (e BegexpDictionary).

Given a set of ruleg) and input document collectioP, a con-
ceptual procedure for computing how-provenance at the level of

591

ta

ot |Anna at ... assistant - 555-7789|

—

R3

UA
t’m:lAnna at ... assistant - 555-7789| R4

a,

t"10] Anna 555-7789
}RZ .
A

Figure 4: Provenance of tupletyo from Figure 2.

the operator graph d@ is as follows. Each tuple passing through

6. GENERATING LOW-LEVEL CHANGES

Interms of the relational algebral@awv-level changés defined as
the change to the configuration of a single operator (e.g., changing
the numerical values used in a join condition), or insertion of a new
operator subtree between two existing operators. Since the space
of all low level changes is unlimited, we limit the discussion in this
paper to low-level changes thagstrict the set of results returned
by the query, to make the problem tractable. This is in the same
philosophy as [25] — users generally start with a query with high
recall and progressively refine it to improve the precision.

6.1 Producing Low-Level Changes

Given a set of high-level changes, our goal is to produce a corre-
sponding set of low-level changes, along with enough information
about the effects of these changes to rank them. One semi-naive
way to compute these low-level changes is to iterate over the oper-

the operator graph (i.e., source , intermediate, or output tuple) is ators in the canonical relational algebra representation of the anno-

assigned a unique identifier. Furthermore, each operator “remem-

bers”, for each of its output tuples precisely those tuples in its
input responsible for producing This procedure can be thought
of as constructing @rovenance graph fo€ on D that contains

an edge{ti, ..., tn} 2P, ¢ for each combinatioty, ..., t,} of
input tuples to operataPp, and their corresponding output tugle

This provenance graph essentially embeds the provenance of eac

tuplet in the output ofQ on D. As an example, Figure 4 shows the
portion of the provenance graph for our example in Figure 2 that
embedds the provenance of tuple. A procedural definition for
the notion of provenance graph is given in Appendix C.

In computing the provenance graph, we use a query rewrite ap-

proach similar to [16]. The approach of [16] is to rewrite an SQL
query(@ into aprovenance querg)? by recursively rewriting each
operatorOp in the relational algebra representation@f The
rewritten version preserves the result of the original oper@ar

but adds additiongbrovenance attributethrough which informa-
tion about the input tuples t©p that contributed to the creation of
an output tuple is propagated. Givéyp and a tuplé in its output,

the additional information is sufficient to reconstruct exactly those
tuples in the input 0Op that generated Conceptually, the prove-
nance query)? records the flow of data from input to output@f

thus essentially computing the provenance grap® &r the input
document collection. The implementation of our system extends
the rewrite approach of [16] to handle text-specific operators. The
extensions are straightforward and details are omitted.

5.2 Generating High-Level Changes

Given a set of rule€), an input document collectio® and a
set of false positives in the output @f on D, our algorithmGen-
erateHLCs for generating high-level changes proceeds as follows.

tator, performing the following three steps:

1. For each operator, consider all the high-level changes that could
be applied at that operator.

2. Foreach such high-level change, enumerate all low-level changes
that cause the high-level change.

13- For each such low-level change, compute the set of tuples that

the change removes from the operator’s output.

4. Propagate these removals up through the provenance graph to
compute the end-to-end effects of each change.

This approach computes the correct answer, but it would be ex-
tremely slow. This intractability stems directly from the two chal-
lenges discussed in Sectionféasibilityandside-effects.

First, the feasibility problem makes step 2 intractable. Just as
there could be no feasible low-level change that implements a given
high-level change, there could easily be a nearly infinite number of
them. For example, consider a high-level change to remove an out-
put tuple of a dictionary operator. Suppose the dictionary has 1000
entries, one of which produces the tuple. By choosing different
subsets of the other 999 entries, one can gengfdte— 1 distinct
low-level changes, any of which removes the desired tuple!

We address this aspect of feasibility by limiting the changes our
system considers to a set that is of tractable size, while still con-
sidering all feasible combinations of high-level changes at a given
operator. In particular, we generate, for each operator, a single low-
level change for each of thebest possible combinations of high-
level changes; wherkis the total number of changes that the sys-
tem will present to the user. We enforce these constraints through
careful design of the algorithms for generating individual types of
low-level changes, as we describe in Section 6.2.

The side-effects problem causes problems at step 4 of the above
approach. Traversing the provenance graph is clearly better than re-

(The pseudocode appears in Appendix D.) First, the provenancenning the annotator to compute the effects of each change. How-

graph of@Q and D is recorded using the rewrite approach outlined
in Section 5.1. Second, for each false positivéhe algorithm tra-

ever, even if it generates only one low-level change per operator, the
overall cost of this approach is stil}(n?), wheren is the size of

verses the provenance graph starting from the node correspondingpe gperator tree. Such a computation rapidly becomes intractable,

to ¢ in depth-first order, following edges in reverse direction. For

everyedgq...} ©P, ¢ encountered during the traversal, one high-

level change “remové from the output ofDp” is being generated.
Suppose the algorithm is invoked on rulgs to R4, with nega-

tive output tuplet1o and input document from Figure 2. Referring

to Figure 4, the algorithm traverses the provenance graph start-

ing from ¢1o (thus visiting each node in the provenancetqf)
and outputs the following high-level changésio, 1), (t10,04),
(t10,5<4), (t2, Regex1), (te,7s), (6, 03), (ts, Dict).

592

as moderately complex annotators can have thousands of operators.

We can reduce this complexity from quadratic to linear time by
leveraging our algorithm for enumerating high-level changes. The
algorithm in Section 5.2 starts with a set of undesirable output tu-
ples and produces, for each input tuple, a set of high-level changes
that would remove the tuple. We can easily modify this algorithm
to remember the mapping from each high-level change back to the
specific output tuple that the change removes.

By running this modified algorithm over every output tuple, in-

cluding the correct outputs, we can precompute the end-to-end ef-top 2 entries, and so on, upientries. In addition to the dictionary
fectsof any possible side-effect of a low-level change. With a hash operator, this class of changes also applies, analoguously, to select
table of precomputed dependencies, we can compute the end-tooperators having a dictionary predicate suciMaschesDict().
end effects of a given low-level change in time proportional to the Add filtering dictionary. This class of changes targets the select
number of tuples the change removes from the local operator. operator. In addition to modifying, our system also generates new
Applying the optimizations described above to the semi-naive al- dictionaries and uses them to filter spans based on the presence of
gorithm yields the following steps for generating low-level changes. dictionary matches in close proximity. We produce filtering pred-
icates by composing a span operation likeftContextTokvith a
1. Precompute the mapping from intermediate tuples to the final dictionary predicate lik&lot(ContainsDict()ps in ruleR; (Fig. 2).
output tuples they generate. To generate filtering predicates our system considers the tokens
to the left or right of each span in a tuple affected by a high-level
change. The union of these token values forms a set of potential
dictionary entries. We rank the effects of filtering with these dictio-

2. For each operator and each category of low-level change, com-
pute a top-kset of low-level changes.

3. Compute the local effects of each low-level change. nary entries the same way that we rank changes involving removal
4. Use the table from step 1 to propagate these local effects to theof dictionary entries: we group together tuples according to which
outputs of the annotator. dictionary entries occur in the vicinity of their spans, and compute

the effect of each potential entry on end-to-end result quality.
Add filtering view. Unlike all low-level changes discussed above,
which apply to an individual operator, this last type of changes ap-

6.2 Specific Classes of Low-Level Changes plies to an entire view. Specifically, it involves using subtraction to

We now introduce the specific types of low-level changes that add a filter view on top of an existing view. It removes spans
. . . from V' that overlap with, contain, or are contained in some span of
our system currently implements, along with the techniques we use

to generate these low-level changes efficiently. We measure resultthe filtering view. As an example, rulg; in Figure 2 implements

quality using the classicd'1-measure- the harmonic mean of pre- \e/liél\:\t/gnggr\gfvér(i)tﬂrrt]ofoggg;srgne'\D/goneQilrl.ofae%é?sn;r:g?/a fsllltjirr:ng
cision (percentage of true positives among all extracted answers) ! 9 P 2

and recall (percentage of true positives among all actual answers). tcg?trgl rzrslgr‘faﬁgi g?ihdeef&igg?nésoffeggﬁ fﬁ?eorth?)? 'néngC;non"
Modify numerical join parameters. This type of change tar- P ! polay ’

gets the join operator. We use the predicate funcEolows as CONTAINS, .OrCON.TA'NE.D) th? algorithm identifies the tuples of
. - Vi that are in relationships with at least ol span according to

an example for all joins based on numerical values. Recall that the policy, and ranks the resulting filters according to their effects

Follows(spani, spanz, ni, n2) returns true ifspan; is followed policy, g 9

by spans by a distance value in the range [afi, n2]. Low-level on the overall end-to-end result quality.
changes to &ollowspredicate involve shrinking the range of char-
acter distances by moving one or both of the endpoints. 7. EXPERIMENTS

Our approach to generate low-level changes for numerical join We developed our refinement approach on top o8ystemT11,
predicates involves interleaving the computation of side-effects with 22, 27] information extraction system enhanced with a provenance
the process of iterating over possible numerical values. Recall thatrewrite engine as described in Section 5.1. In this section we present
the end goal of our system is to produce a ranked list of low-level an experimental study of our system in terms of performance, and
changes, where the higher-ranked changes produce a greater imguality of generated refinements.
provement in result quality according to an error metric. We use Extraction Tasks and Rule Sets.We use two extraction tasks in
this ranking function to compute @tility value for each value in our evaluationPerson (person entity extraction) arRkrsonPhone
the range and remove those with low utility. In particular, we com- (extraction of relationships between persons and their phone num-
pute utility by probing each value in the range: remove it, propagate bers). We choskerson because it is a classic named-entity extrac-
the change to the output, and compute the change in result qualitytion task and there are standard evaluation datasets available. We

In the next section, we explain in detail how we perform step 2
efficiently for several different types of low-level changes.

as the utility of the value in consideration. chosePersonPhone as an example of a relationship extraction task.

We now need to find the topdub-sequences [n1, n2] that cor- The Person extraction rule set consists of 14 complex rules for
responds to maximum summation of utility values. This problem identifying person names by combining basic features such as cap-
can be solved with Kadane’s algorithm [7]@(nk) time, wheren italized words and dictionaries of first and last names. Example
is the number of values, arkdis the number of ranges to find. rules include “CapitalizedWortbllowed by FirstName”, or “Last-

Remove dictionary entries. Another important class of low-level ~ Namefollowed by a comma, followed bZapitalizedWord”. We
change involves removing entries from a dictionary file so as to have also included rules for identifying other named-entities such
remove the corresponding dictionary matches from the annotator’s asOrganization,Address EmailAddressthat can be only used as
input features. Our approach to this type of change takes advantagdiltering views, in order to enable refinements commonly needed
of the fact that each dictionary entry produces a disjoint set of tuples in practice, where person, organizations and locations interact with
at the output of th®ictionary operator. each other in various ways (e.g., “Morgan Stanley” may be an orga-
As with numerical join parameters, we interleave the computa- nization, or a person, “Georgia” may be a person, or a U.S. state).
tion of low-level changes with the process of computing the effects ThePersonPhone extraction rule set consists of 11 complex rules
of each change and the resulting improvement in utility. We start for identifying phone/extension numbers, and a single rule “Per-
by grouping the outputs of thBictionary operator by dictionary sonfollowed within 0 to 60 chars bi?hone” for identifying candi-
entry. For each dictionary entry that matches at least one high-leveldate person—phone relationships (as in miefrom Figure 2). To
change, we compute the tuples that would disappear from the finalevaluate the system on the relationship task, we use a high-quality
query result if the entry was removed. We then rank the entries ac- Person extractor to identify person names in thersonPhone task.
cording to the effect that removing that entry would have on result Note that the system is evaluated separately or¢rson task, and
quality. We then generate a low-level change for the top 1 entry, the we focus on the relationship extractor for tPersonPhone task.

593

07 08 | 08

0.6 07

. 0.7
06]
05 g —— 06
—e—Enron 05 —e—Enron 05
04 -
03 -B-ACE 04 -B-ACE 04

CoNLL 031 CoNLL 0.3 —e—Enron

02 02 —m-ACE
N - —<EnronPP 02
01 EnronPP 01 CoNLL

01 -
0 T 0 0
Baseline n 12 13 14 15 Baseline 11 12 13 14 15

08 5 (a) F1- measure 0.9 (b) Precision 0.9 (c) Recall

—<EnronPP

Baseline 11 12 13 14 15

Figure 5: Result Quality After Each Iteration of Refinement: F'1-measure (a), Precision (b), and Recall (c).

Datasets. Appendix E lists the characteristics of the following 2 [Eesclr_'p“on 1 3’; 1 8’:(1 :; 1511 1[12]
H : aseline .4 . .

datasets used in our evaluation. A1,BiFilter Person by Person (CONTAINED) 57.3 83.7 68.01n/g

¢ ACE: collection of newswire reports, broadcast news and con- |42 [Dictionary filter on CapsPerson 70.3 839 76.34/4
A3, BylDictionary filter on Person 71.8 83.8 77.4

versations withPerson labeled data from the ACEO5 Dataset [3].

Ay Filter PersonFirstLast by DbINewLine (OVERLAPY2.6 84.0 77.99|5

e CoNLL collection of news articles witterson labeled data 35 Fi:tef PersonLastFirst gy DbINewLine (?VERLAPl);é-' 84.1 78.09|5

¢, BafFilter PersonLastFirst by PersFirstLast (OVERLARB.5 84.1 78.45|3

from the CoNLL 2003 Shared Task [34]. A, ByfFilter Person by Org (OVERLAP) 741 823 78.03| 1

e Enron, EnronPP: collections of emails from the Enron corpus |As [Filter Person by Address (OVERLAP) 74.3 82.4 78.1119

[2] annotated wittPerson and respectivelpersonPhone labels. As__[Filter Person by EmailAddress (OVERLAP) 773 811 794136
Detailed experimental settings are introduced in Appendix F. Table 1: Expert refinements and their ranks in the list of gen-

71 Quality Evaluation eratedrefinements after iterations 1 and 2 (1, I2).
The goal of the quality evaluation is to validate that our system
generates high quality refinements in that: 1) they improve the pre- Table 1 shows the refinements of both experts and corresponding
cision of the original rules, while keeping the recall fairly stable, improvements irF'1-measure achieved on the test set for exdert
and 2) they are comparable to refinements that a human expert(ExpertB’s refinements are a subset.4®.) The table also shows
would identify. To this end, we evaluate the quality of refinements the rank of each expert refinement in the list automatically gener-
produced by our system on various datasets, and perform a use@ated by our system in iteration 1, and iteration 2 (after applying
study where a rule refinement task is presented to human expertghe top-most refinement). We observed that the top refinement sug-
whose actions are compared with those suggested by our system. gested by the system (remove person candidates strictly contained
Experiment 1. We use 4 workloads in this experiment: tPerson within other person candidates) coincides with the first refinement
task onACE, CoNLLandEnrondatasets, and ttRersonPhone task applied by both experts (i.e4; and B:1). Furthermore, with a
on theEnronPPdataset. For each workload, we run the system for single exception, all expert refinements appear among the top 12
k iterations starting from the baseline rule set. After each iteration, results generated by our system in the first iteration. The dictionary
the refinement with the highest improvemenfiin-measure on the filter generated in iteration 1 consisted of 12 high-quality entries in-
training set is automatically applied. Figure 5 shows the quality of correctly identified as part of a person name (e.g., “Thanks”, “Sub-
k refined rule sets on the test set of each workload, vkhisrvaried ject”). It contains 27% of all entries in corresponding refinement
from 1 to 5. Note that the quality of the baseline rule sets is as ex- A2, and all entries in the filter dictionary on person candidates of
pected in practice, where developers usually start with a query with Bs. Furthermore, in both iterations, the system generated a slightly
reasonable recall and progressively refine it to improve precision. better refinement compared o and A5 that filters all person can-
As can be seen, our system achieves significant improvements indidates overlapping with a double new line. This achieves the com-
F1-measure between 6% and 26% after only a few iterations. This bined effect ofA4 and A5, while producing a refined rule set with
improvement inF'1-measure does not arise at the expense of re- a slightly simpler structure (a single filter, instead of two).
call. Indeed, as shown in Figures 5(b-c), the precision after 5 it- The system also suggested refinements not useful at first glance,
erations improves greatly when compared to the baseline rule set,for example, a dictionary filter on one token to the right of person
while the recall decreases only marginally. TRé-measure and candidates containing initials. This was due to the baseline rule set
precision plateau after a few refinements for two reasons. First, not identifying names with middle initial. While not helpful in im-
many false positives are removed by the first few high ranked re- proving precision, this refinement is helpful in improving recall, by
finements, therefore substantially decreasing the number of exam-signaling to the developer additional person candidate rules based
ples available in subsequent iterations. Second, removing some ofon contextual clues, However, this is subject of our future work.
the other false positives requires low-level changes that are not yetBased on the observations above, we believe it is reasonable to con-
implemented in our system (e.g., modifying a regular expression). clude that our system is capable of generating rule refinements that
Experiment 2. In this experiment we compare the top refinements are comparable in quality to those generated by human experts.
generated by our system with those devised by human experts. To, .
this end, we conducted a user study in which two expdr@nd 7.2 Performance Evaluation
B were given one hour to improve the rule set for Heeson task The goal of our performance evaluation is two-fold: to validate
using theEnrontrain set. Both experts are IBM researchers (not that our algorithm for generating low-level changes is tractable,
involved in this project) who have written over 20 information ex- since it should be clear that without the optimizations in section
traction rule sets for important IBM products over the past 3 years. 6, CPU cost would be prohibitive, and to show that the system can
To ensure a fair comparison, the experts were restricted to types ofautomatically generate refinements faster than human experts.
refinements supported in our current implementation (Section 6.2). The table below shows the running time of our system in the first

594

3 iterations with theéPerson rule set on theEnrondataset, when the

El

A. Chapman and H. V. Jagadish. Why Not?SitGMOD, 2009.

size of the training data is varied between 100 and 400 documents.[10] J. Cheney, L. Chiticariu, and W. Tan. Provenance in Databases: Why,

Trainset| I, I I3 F'1 afterIs
#docs (sec) | (sec)| (sec) (%)
100 35.3 1.8 1.1 74.9
200 445 | 6.0 4.2 70.2
300 72.9 9.9 6.3 72.1
400 116.4| 21.3 | 13.6 70.0

[11]

[12]

As shown above, the system takes between 0.5 and 2 minutes for[13]

the first iteration, which includes the initialization time required
for loading the rule operators in memory, running the extractor on

[14]

the training set, and computing the provenance graph, operationsyis)

performed exactly once. Once initialized, the system takes under

20 seconds for subsequent iterations. As expected, the running timeg16]
in each iteration decreases, since less data is being processed by the

system after each refinement. Also note thatfiemeasure of the

refined rule set after iteration 3 (refer to last column of the table)

varies only slightly with the size of the training set.

We note that in each iteration the system sifts through hundreds
of documents, identifies and evaluates thousands of low-level changges,
and finally presents to the user a ranked list of possible refinements,

[17]

(18]

along with a summary of their effects and side-effects. When done [20]

manually, these tasks require a large amount of human effort. Re-

call from Experiment 2 that the experts took one hour to devise, [21]
implement and test their refinements, and reported taking between
3 and 15 minutes per refinement. In contrast, our system generate$?2]

almostall expert’s refinements in iteration 1, in about 2 minutes!

8. CONCLUSIONS AND FUTURE WORK

[23]

As we seek to leverage database technology to manage the grow-

ing tide of poorly structured information in the world, informa-
tion extraction has gained growing importance. Most information

[24]

extraction is based on painstakingly defined extraction rules that [25]

are error-prone, often brittle, and subject to continuous refinement.
This paper takes a significant step towards simplifying IE rule de-
velopment through the use of database provenance techniques.
Specifically, this paper showed how to modify extraction rules
to eliminate false positives in the extraction result. Standard prove-
nance techniques only consider the provenance of tuples in the re-

[26]

[27]

sult set, and hence are not useful for addressing false negatives.
However, recent provenance work [9, 18, 20] has begun to develop[zg]
tools to reason about expected tuples not present in the result set.
We believe these techniques can be adapted to our framework to[29] W. Shen, P. DeRose, R. McCann, A. Doan, and R. Ramakrishnan.

address false negatives. However, this is the subject of future work.
AcknowledgementsWe thank Rajasekar Krishnamurthy and Yun-
yao Li for participating in our expert user study, and the anonymous

reviewers for their insightful comments.

9. REFERENCES

[1] Database languages — SQL — Part 1: Framework (SQL/Framework).

Technical report. ISO/IEC 9075-1:2003.

[2] The Enron corpus. www.cs.cmu.edu/enron/.

[3] Automatic Content Extraction 2005 Evaluation Dataset, 2005.

[4] E. Agichtein and L. Gravand&nowball: Extracting Relations from
Large Plain-Text Collections. IACM DL, 2000.

[5] D. E. Appelt and B. Onyshkevych. The Common Pattern
Specification Language. INIPSTER workshop, 1998.

[6] N. Ashish, S. Mehrotra, and P. Pirzadeh. XAR: An Integrated
Framework for Information Extraction. M/RI Wold Congress on
Computer Science and Information Engineering, 2009.

[7] J. L. Bentley. Programming Pearls: Algorithm Design Techniques.
Commun. ACM, 27(9):865-873, 1984.

[8] B. Boguraev. Annotation-based Finite State Processing in a
Large-Scale NLP Architecture. RANLP, 2003.

595

[30]

(31]
(32
(33]

[34]

How, and WhereFoundations and Trends in Databases

1(4):379-474, 2009.

L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, and

S. Vaithyanathan. SystemT: An Algebraic Approach to Declarative
Information Extraction. IrACL, 2010.

H. Cunningham. JAPE: a Java Annotation Patterns Engine. Research
Memorandum CS — 99 — 06, University of Sheffield, May 1999.

A. Das Sarma, A. Jain, and D. Srivastava. I4E: Interactive
Investigation of Iterative Information Extraction. 8iIGMOD, 2010.

D. DeJong. An Overview of the FRUMP System.Strategies for

Natural language Processing. 1982.

D. Freitag. Multistrategy Learning for Information Extraction. In

ICML, 1998.

B. Glavic and G. Alonso. Perm: Processing Provenance and Data on
the Same Data Model through Query Rewritingl@DE, 2009.

T. J. Green, G. Karvounarakis, and V. Tannen. Provenance Semirings.
In PODS, 2007.

M. Herschel and M. Hernandez. Explaining Missing Answers to
SPJUA Queries?VLDB, 2010.

9] J. R. Hobbs, D. Appelt, J. Bear, D. Israel, M. Kameyama, and

M. Tyson. FASTUS: a System for Extracting Information from Text.
In HLT, 1993.

J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the Provenance
of Non-Answers to Queries over Extracted D&&.LDB, 1(1), 2008.

A. Jain, P. Ipeirotis, A. Doan, and L. Gravano. Join Optimization of
Information Extraction Output: Quality Matters! IGDE, 2009.

R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, S. Vaithyanathan,
and H. Zhu. SystemT: a System for Declarative Information
Extraction.SIGMOD Record, 37(4):7-13, 2008.

J. Lafferty, A. McCallum, and F. Pereira. Conditional Random
Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data. InICML, 2001.

W. Lehnert, J. McCarthy, S. Soderland, E. Riloff, C. Cardie,

J. Peterson, F. Feng, C. Dolan, and S. Goldman. UMass/Hughes:
Description of the CIRCUS System Used for MUC-5NIUC, 1993.

Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. V.
Jagadish. Regular Expression Learning for Information Extraction. In
EMNLP, 2008.

F. Peng and A. McCallum. Accurate Information Extraction from
Research Papers Using Conditional Random FieldslLIFNAACL,
2004.

F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, and

S. Vaithyanathan. An Algebraic Approach to Rule-Based
Information Extraction. INCDE, 2008.

E. Riloff. Automatically Constructing a Dictionary for Information
Extraction Tasks. IiKDD, 1993.

Toward Best-Effort Information Extraction. IBIGMOD, 2008.

W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan. Declarative
Information Extraction Using Datalog with Embedded Extraction
Predicates. IIWLDB, 2007.

S. G. Soderland. Learning Text Analysis Rules for Domain-specific
Natural Language Processing. Technical report, U. Mass., 1996.
S. Tata, J. M. Patel, J. S. Friedman, and A. Swaroop. Declarative
Querying for Biological Sequences. IGDE, 2006.

C. Thompson, M. Califf, and R. Mooney. Active Learning for Natural
Language Parsing and Information Extractionl@ML, 1999.

E. F. Tjong Kim Sang and F. De Meulder. Introduction to the
CoNLL-2003 Shared Task: Language-independent Named Entity
Recognition. INCoNLL at HLT-NAACL, 2003.

[35] A. Yates, M. Banko, M.Broadhead, M. J. Cafarella, O. Etzioni, and

[36]

S. Soderland. TextRunner: Open Information Extraction on the Web.
In HLT-NAACL (Demonstration), 2007.

S. Zhao and R. Grishman. Extracting Relations with Integrated
Information Using Kernel Methods. IACL, 2005.

APPENDIX C. PROVENANCE ASSOCIATED WITH

A. RULE LANGUAGES OPERATORS

Figure 6 shows examples of rule languages referenced in recent, De_zfinition C.1 formalizes_the n_otion qn‘rovenanqe graphuse_d
work. The figure shows three different implementations of the rule 11 this paper. Note that the intention of the formalism below is not

that we had described earlier in Figure 1. Each implementation uses!® Propose yet another definition for provenance. In fact, when re-

a different rule language, but all three generate the same output,s‘triCtecI t_o _the SP‘.M _fragment of SQL, Definition C.1 corresponds
except in certain comner cases to the original definition of how-provenance of [¥7]Rather, our

In general, information extraction rule languages often differ in 902l iS to provide a pictorial representation of provenance that we
syntax and overall expressive power [27]. However, most rule lan- can use in discussing the algorithm for computing high-level changes.

guages in common use share a large set of core functionality. Fur-
thermore, the common core functionality of most information ex-
traction rule languages can be expressed as standard SQL, with
few text-specific extensions described next.

DerINITION C.1. [Provenance graph] Le) be a set of rules
and D be a document collection. Thiata flow graph of and
eb, or in short, the data flow graph of) when D is understood
from the context, is a hypergrapf(V, E), whereV is a set of
hypervertices, and is a set of hyperedges, constructed as follows.

For every operatoOp in the canonical representation of:

B. ADDITIONS TO SQL

In the examples in this paper, we augment the standard set of
SQL functions with the following text-specific functions:

1. Predicates and scalar functions for manipulating spans, used
for expressingoin andselection predicatesgnd creating new
values in the SELECT clause of a rule; and

2. Table functions for performing three crucial |E tastegular °
expression matchinglictionary matching.

Figure 7 lists these text-specific additions, along with a brief de-
scription of each.

The ability to perform character-levedgular expression match-
ing is fundamental in any |IE system, as many basic extraction tasks
such as identifying phone numbers or IP addresses can be achieved
using regular expressions. For our example rule in Figure 6, regular
expression matching is appropiate for identifying capitalized words
in the document, and is expressed, for instance, in AQL lines 5 — 6,
and xLog line 5 in Figure 6.

For this purpose, we have added to our languageriegexta- °
ble function (refer to Figure 7), which takes as input a regular ex-
pression, a relation nan@, and an attribute of type spat of R,
and computes an instance with a single span-typed attribute called
matchcontaining all matches of the given regular expression on the
A values of all tuples imR.

A second fundamental IE functionality @éctionary matching:
the ability to identify in an input document all occurrences of a
given set of terms specified as entries in a dictionary file. Dictio- °
nary matching is useful in performing many basic extraction tasks
such as identifying person salutations (e.g., “Mr”, “Ms”, “Dr”), or
identifying occurrences of known first names (e.g., refer to Fig-
ure 6, line 4 of JAPE, lines 3—4 of AQL, and line 3 of xLog). The
Dictionary table function serves this purpose in our language: it
takes as input the name of a dictionary file, a relation n&inand
an attribute of type spad of R, and computes an instance with a
single span-typed field calladatchcontaining all occurrences of
dictionary entries on thd values of all tuples irz.

A third component of information extraction rules is a toolkit of
span operations. Table 7 lists the text-based scalar functions that
our system uses to implement various operations overpage
type. Note the distinction between scalar functions that return a
boolean value (e.gFollows) and can be used as join predicates, and
scalar functions that return non-boolean values (e.g., Merge), used
as selection predicates, and to create new values in the SELECT

o If Op= Regex(regen, a)(R), OF Op = Dictionaryaict_ite, 4)(R),

thenfor everyt € R and every output tupl€ € Op(t), V

contains vertices;, v,; and £ contains edge, Lz, ver. We
say thatthe provenance df according taOp is ¢.

If Op = ma(R), whereA is a set of attributes, then for every
t € R and corresponding output tuplé = w4 (t), V con-
tains vertices, v, and E contains edge: ZA, vy We say
thatthe provenance af according tor, is t.

e If Op = oc(R), whereC'is a conjunction of selection pred-

icates, then for every € R and corresponding output tu-
plet = oc(t) (if any), V contains vertices);, v and £
contains edge; —< v,. We say thathe provenance of
according tar¢ is t.

If Op = (Ry,...,Rn), whereC is a conjunction of join
predicates, then for every € Ry,...,t, € R, and corre-
sponding output tuplé = (t1,. .., t,) (ifany),V contains
verticesvy, , ..., vy, and hypervertevy,, ..., v, }, andE

contains hyperedgéuvy, , ..., v, } =€, .. We say thathe
provenance of according tax<ic is {t1,...,t, }.

If Op = U(R1, R2), then for every, € R, (or t2 € R2) and

corresponding output tupl€ € U({t1},) (or respectively,
t' € U, {t21})), V contains vertices), (or v:,) and vy,

and E contains edge;, — v, (respectivelyp,, — v,/).

We say thathe provenance of according toU is ¢; (or re-
spectivelyits).

If Op = 6(R1, R2), then for every € Ry such thatt ¢ Ro
and corresponding output tuplé € {t} — R, V contains

verticesv:, v and E' contains edge; 3, vy We say that
the provenance df according taj is t.

clause of rules.

2Notethat since each tuple is assigned a unique identifier, we are

essentially in the realm of set semantics.

596

JAPE [12] AQL [27]

XLog [6, 30]

Rul e: Candi dat ePer sonNarne
Priority: 1

{ Lookup.kind == firstNanme }
{ Token.orthography == initial Caps }
): match
--> :match. ki nd = "Candi dat eNane";

create view Candi dat ePer sonNane as
sel ect Conbi neSpans(F. nane, L.nane) as name
(from (extract dictionary FirstNaneDict
on D.text as nane from Docunent D) F,
(extract regex /[A-Z][a-z]+/
on D.text as nane from Docunent D) L
wher e Fol | owsTok(F. name, L.nane, 0, 0)

Candi dat ePer sonNane(d, f,) :-
docs(d),
firstNamesDict(fn),
mat ch(d, fn, f),
match(d, "[A-Z][a-z]+", 1),
imBefore(f, |);

consol i date on nane;

Figure 6: The rule from Figure 1, expressed in three different information extraction rule languages

Type | Format

Description

Predicate| Follows/FollowsTok(span,spans,ni,ng)

Tests ifspana follows span, within n; to no characters, or tokens

functions | Contains/Contained/Equdlgpan,spanz)

Tests ifspani containsis contained within, or is equal tpans.

MatchesRegex/ContainsRegex{pan)

Tests ifspan matcheqcontains a match for, resp.) regular expression

MatchesDict/ContainsDict(dickparn)

Tests ifspan matchegcontains a match for, resp.) an entry of dictiondry

Scalar Merge(spamn, spanza) Returns the shortest span that completely covers both input spans

functions | Between(span, spana) Returns the span betweepan; andspana
LeftContext/LeftContextTok(spgmn) Returns the span containimgchargtokens immediately to the left afpan
RightContext/RightContextTok(span) Returns the span containimgchargtokens immediately to the right @pan

Table Regex(r R, A) Returns all matches of regular expressian all R.A values.

functions | Dictionary(d, R, A) Returns all matches of entries in dictionafyn all R. A values.

Figure 7: Text-specific predicate, scalar, and table functions that wadd to SQL for expressing the rules in this paper.

D. COMPUTINGHIGH-LEVEL CHANGES
Our algorithmGenerateHLCs for computing a set of high-level

changes, given a set of rulés an input document collectio®

and a set of false positives in the output@bn D, is listed below.

GenerateHLCs(G, X, D)

Input: Operator grapld+ of a set of rule€, setX of false positives in the
output of G (i.e., Q) applied to input document collectian.

Output: SetH of high-level changes.

Let H = 0.

1. Compute the provenance gra@ﬁ’D of @ andD;

2. Foreveryt € X do ColIectHLCs(G,?’D, t, H);
3. ReturnH.

ProcedureCollectHLCs(G), t/, H)

Input: Provenance grapf¥,,, nodet’ in G, set of high-level change.
If ¢’ is a tuple of theDocument instance, return.

Otherwise, lek: T 9P, 4/ be the incoming edge df in G,,. Do:

1. Add(t/,Op) to H;

2. If eis of typet” Lr, t',whereOp € {r,0,U,d, Regex, Dictionary},
do CollectHLCs(Gp, t”, H).

Otherwiseg is of type{t1, ..., tn} — t’. Do CollectHLCs(Gp, t:,
H),forallt;, 1 <i < n.

E. EVALUATION DATASETS

The characteristics of the datasets used in our experiments in

These datasets are realistic in practical scenarios, and in fact,
both ACE and CoNLL have been used in official Named Entity
Recognition competitions [3, 34]. We note that in practice, rule
developers are unlikely to examine a very large number of docu-
ments, and obtaining labeled data is known to be a labor intensive
and time consuming task. (Machine learning techniques such as
active learning [33] have been used to facilitate the latter task.)

F. EXPERIMENTAL SETTINGS

We developed our rule refinement approac8ystem70.3.6 [11,
22], the information extraction system developed at IBM Research
—Almaden, enhanced with a provenance rewrite engine as described
in Section 5.1. Our implementation uses SystemT’s AQL rule lan-
guage [27]. The experiments were run on a Ubuntu Linux version
9.10 with 2.26GHz Intel Xeon CPU and 8GB of RAM. All experi-
ments, unless otherwise stated, are from a 10-fold cross-validation.

terms of number of documents and labels in the train and test sets

are listed below.

Dataset Train set Test set
#docs | #labels| #docs | #labels
ACE 273 5201 69 1220
CoNLL 946 6560 216 1842
Enron 434 4500 218 1969
EnronPP | 322 157 161 46

597

