
Automatic Rule Refinement for Information Extraction

Bin Liu
University of Michigan

binliu@umich.edu

Laura Chiticariu
IBM Research - Almaden

chiti@us.ibm.com

Vivian Chu
IBM Research - Almaden

chuv@us.ibm.com

H.V. Jagadish
University of Michigan

jag@umich.edu

Frederick R. Reiss
IBM Research - Almaden

frreiss@us.ibm.com

ABSTRACT
Rule-based information extraction from text is increasingly being
used to populate databases and to support structured queries on
unstructured text. Specification of suitable information extraction
rules requires considerable skill and standard practice is to refine
rules iteratively, with substantial effort. In this paper, we show that
techniques developed in the context of data provenance, to deter-
mine the lineage of a tuple in a database, can be leveraged to as-
sist in rule refinement. Specifically, given a set of extraction rules
and correct and incorrect extracted data, we have developed a tech-
nique to suggest a ranked list of rule modifications that an expert
rule specifier can consider. We implemented our technique in the
SystemTinformation extraction system developed at IBM Research
– Almaden and experimentally demonstrate its effectiveness.

1. INTRODUCTION
Information extraction — the process of deriving structured in-

formation from unstructured text — is an important aspect of many
enterprise applications, including semantic search, business intel-
ligence over unstructured data, and data mashups. The structured
data that information extraction systems produce often feed directly
into important business processes. For example, an application that
extracts person names from email messages might load this name
information into a search index for electronic legal discovery; or it
may use the name to retrieve employee data for help desk problem
determination. Because the outputs of information extraction are
so closely tied to these processes, it is essential that the extracted
information have very high precision and recall; that is, the system
must produce very few false positive or false negative results.

Most information extraction systems use rules to define impor-
tant patterns in the text. For example, a system to identify person
names in unstructured text would typically contain a number of
rules like the rule in Figure 1. The example in the figure is written
in English for clarity; an information extraction would typically use
a rule language such as AQL [22], JAPE [12], or XLog [6, 30].

In some systems, the outputs of these rules may feed directly
into applications [12, 14, 19, 24]. Other systems use rules as the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment,Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09...$ 10.00.

If a match of a dictionary of common first names occurs in the text, followed
immediately by a capitalized word, mark the two words as a “candidate
person name”.

Figure 1: An example information extraction rule, in English.

feature extraction stage of various machine learning algorithms, as
in [15, 23, 26]. In either case, it is important for the rules to produce
very accurate output, as downstream processing tends to be highly
sensitive to the quality of the results that the rules produce.

Developing a highly accurate set of extraction rules is difficult.
Standard practice is for the developer to go through a complex iter-
ative process: First, build an initial set of rules; then run the rules
over a set of test documents and identify incorrect results; then ex-
amine the rules and determine refinements that can be made to the
rule sets to remove incorrect results; and finally repeat the process.
Of these steps, the task of identifying rule refinements is by far the
most time-consuming. An extractor can easily have hundreds of
rules, and the interactions between these rules can be very com-
plex. When changing rules to remove a given incorrect result, the
developer must be careful to minimize the effects on existing cor-
rect results. In our experience building information extraction rules
for multiple enterprise software products, we found that identifying
possible changes for a single false positive result can take hours.

In the field of data provenance, techniques have been developed
to trace the lineage of a tuple in a database through a sequence
of operators. This lineage also encodes the relationships between
source and intermediate result tuples and the final result. In this
paper, we bring these techniques to bear on the problem of infor-
mation extraction rule refinement. Intuitively, given a false positive
result of information extraction, we can trace its lineage back to
the source to understand exactly why it is in the result. Based on
this information, we can determine what possible changes can be
made to one or more operators along the way to eliminate the false
positive, without eliminating true positives. Actually realizing this
vision, the central contribution of this paper, requires addressing
some challenges, as outlined in Section 4.

Most information extraction rules can be translated into rela-
tional algebra operations. Over such an operator graph, provenance-
based analysis, developed in Section 5, produces a set of proposed
rule changes in the form of “remove tuplet from the output of
operatorO”. We refer to this class of rule changes ashigh-level
changes. To remove a “problem” tuple from the output of a rule,
the rule developer needs to know how to modify the extraction
primitives that make up the rule. We call such changeslow-level
changes. (Extraction primitives include regular expressions and fil-
tering predicates like “is followed by”). These modifications may

588



in turn result in the removal of additional tuples besides the “prob-
lem” tuple, and the developer needs to consider these side-effects
in evaluating potential rule changes, while simultaneously keeping
the rules as simple and easy to maintain as possible.

In Sections 5 and 6, we develop a framework for enumerating
the low-level changes that correspond to a given set of high-level
changes. We also develop efficient algorithms for computing the
additional side-effects of each proposed low-level change. Using
this information, we then rank low-level changes according to how
well they remove false positives without affecting existing correct
answers or complicating the rule set. This ranked list of low-level
changes is then presented to the rule developer.

We have embodied these ideas in a software system that auto-
mates the rule refinement process and implemented it in the Sys-
temT1 information extraction system [11, 22, 27]. Given a set of
rules, a set of false positive results that the rules produce, and a
set of correct results, our system automatically identifies candidate
rule changes that would eliminate the false positives. The system
then computes the overall effects of these changes on result quality
and produces a ranked list of suggested changes that are presented
to the user. The system can be also used in fully automated mode,
where the highest ranked change is automatically applied in each
iteration. We have extensively evaluated the system, and present
representative results to demonstrate its effectiveness in Section 7.

We begin with a discussion of related work in Section 2, and
preliminaries in Section 3.

2. RELATED WORK
The field of data provenancestudies the problem of explain-

ing the existence of a tuple in the output of a query. A recent
survey [10] overviews various provenance notions for explaining
whya tuple is in the result,whereit was copied from in the source
database, andhowit was generated by the query. It is the latter type
of provenance,how-provenance[17], that is leveraged in our sys-
tem to generate the set of high-level changes: place-holders in the
rule set where a carefully crafted modification may result in elim-
inating one false positive from the output. However, this is only
the first step of our approach. In a significant departure from previ-
ous work on data provenance, our system generates a ranked list of
concrete rule modifications that remove false positives, while min-
imizing the effects on the rest of the results and the structure of the
rule set.

Early work in information extraction produced a number of
rule-based information extraction systems based on the formalism
of cascading regular expression grammars. Examples include FRUMP
[14], CIRCUS [24], and FASTUS [19]. The Common Pattern Spec-
ification Language [5] provided a standard way to express these
grammars and served as the basis for other rule-based systems like
JAPE [12] and AFsT [8]. In recent years the database commu-
nity has developed other rule languages with syntaxes based on
SQL [21, 22, 32] and Datalog [6, 30]. The techniques that we
describe in this paper can be used to automate the rule refinement
process across all these different classes of rule languages.

Other work has used machine learning to perform information
extraction, and a variety of systems of different flavors have been
developed, ranging from entity relation detection (e.g., [36]) to it-
erative IE (e.g., Snowball [4]) and open IE (e.g., TextRunner [35]).
Researchers have employed a variety of techniques, including cov-
ering algorithms [31], conditional random fields [23, 26], support-
vector machines [36], and mixtures of multiple learning models
[15, 35]. The work that we describe in this paper is complementary

1Available for download at http://alphaworks.ibm.com/tech/systemt.

text

t A t J St ffi (555 1234) J

Dictionary file first_names.dict: anna, james, sibel, …

Dictionary file street_suffix.dict: ave, blvd, st, way,…

R1: create view Phone as
Regex(‘d{3}-\d{4}’, Document, text);

R2: create view FirstNameCand as

Input document:
“Anna at James St. office (555-1234), or James, her

assistant - 555-7789 have the details.”
Document:

match

t1: 555-1234

t0: Anna at James St. office (555-1234), or James,

her assistant - 555-7789 have the details.

R2: create view FirstNameCand as
Dictionary(‘first_names.dict’, Document, text);

R3: create view FirstName as
select * from FirstNameCand F

where Not(ContainsDict(‘street_suffix.dict’,

RightContextTok(F.match,1)));

Phone: FirstNameCand:

match

t3: Anna

FirstName:

match

t6: Anna

match

1

t2: 555-7789
R4: create view PersonPhoneAll as

select Merge(F.match, P.match) as match

from FirstName F, Phone P

where Follows(F.match, P.match, 0, 60);

R5: --Create the output of the extractor

3

t4: James

t5: James

6

t7: James

PersonPhoneAll:

t8: Anna at James St. office (555-1234

t9: James, her assistant - 555-7789

t10: Anna at James St. office (555-1234), 

or James, her assistant - 555-7789

create table PersonPhone(match span);

insert into PersonPhone

( select * from PersonPhoneAll A )

except all
( select A1.*

from PersonPhoneAll A1, PersonPhoneAll A2

match

t11: Anna at James St. office (555-1234

t12: James, her assistant - 555-7789

where Contains(A1.match, A2.match) 

and Not(Equals(A1.match, A2.match)) 

);

PersonPhone:

Figure 2: Example extraction program, input documentD, and
view instances created by the extraction program onD.

to this previous work. Our system employs a semi-automatic itera-
tive process with a human in the loop, which represents a new area
of the design space for information extraction systems. This design
choice allows our system to handle highly complex rule structures
and to leverage expert input. Whereas machine learning models are
generally opaque to the user, the rules that our system produces can
be understood and “debugged” by the rule developer.

Recently, [13] has shown how introducing transparency in a ma-
chine learning-based iterative IE system, by recording each step
of the execution, enables the automatic refinement of the machine
learning model via adjusting weights and removing problematic
seed evidence. Our work differs from [13] in that we consider auto-
matic refinement in the context of rule-based systems, and therefore
our space of refinements is completely different.

In practice, information extraction systems that employ machine
learning generally use rules to extract basic features that serve as
the input, and our techniques can be used to assist in the process
of developing these rules. Additional previous work has used ma-
chine learning for extraction subtasks like creating dictionaries [28]
and character-level regular expressions [25]. These techniques are
complementary to the work we describe in this paper. In particular,
our work provides a mechanism for “plugging in” these algorithms
as low-level change generation modules.

Finally, [29] describes an approach for refining an extraction pro-
gram by posing a series of questions to the user. Each question
asks for additional information about a specific feature of the de-
sired extracted data. The features considered are pre-defined. For
each question, the corresponding selection predicate is added to the
extraction program. Our work differs fundamentally from the ap-
proach of [29] in that it automatically suggests fully-specified rule
refinements based on labeled extracted data, as opposed to asking
the user to fill in the blanks in template questions. Furthermore,
we consider a much broader space of refinements ranging from
adding/modifying selection/join predicates and dictionary extrac-
tion specifications, to adding subtraction sub-queries. To the best
of our knowledge, ours is the first system for suggesting concrete
rule refinements based on labeled extracted data.

3. PRELIMINARIES
Different information extraction systems have different rule lan-

guages [6, 12, 22, 30]. However, most rule languages in common

589



use share a large set of core functionality. In this paper, we use
SQL for expressing information extraction rules in order to de-
scribe the theory behind our system in a way that is consistent
with previous work on data provenance. Specifically, we use the
SELECT - PROJECT - JOIN - UNION ALL - EXCEPT ALL sub-
set of SQL. Note that UNION ALL and EXCEPT ALL are not
duplicate-removing, as per the SQL standard [1].

Our use of SQL does not in any way preclude the application of
our work to other rule languages. As discussed in Appendix A, the
basic structure of different IE rule languages contains key similar-
ities to the SQL representation used here. These languages define
the extractor as a set of rules with dependency relationships that can
be used to construct a provenance graph for computing high-level
changes. Rules are made up of atomic operations that can be mod-
ified, added, or deleted to create low-level changes. As such, the
high-level/low-level change framework that we define in this paper
carries over easily to the rule languages in common use today.
Extensions to SQL.To make our examples easier to read, we aug-
ment SQL with some basic information extraction primitives.

We add a new atomic data type calledspan for modeling data
values extracted from the input document. Aspan is an ordered
pair 〈begin, end〉 that identifies the region of an input document
between thebeginandendoffsets. For clarity, we may sometimes
identify aspan using its string value in addition to the begin and
end offsets, or we may simply drop the offsets when they are clear
from the context. For example, to identify the region starting at
offset0 and ending at offset5 in the document from Figure 2, we
may use the notations〈0, 5〉, or 〈0, 5〉: “Anna”, or simply, “Anna”.

We model the input document as a table calledDocument with
a single attribute of typespan namedtext. We also add several
predicates, scalar functions, and table functions to SQL’s standard
set of built-in functions. We define these functions as we use them,
and also include a complete list in Appendix B.
Example Rules. Figure 2 shows an example rule program, ex-
pressed in SQL, which extracts occurrences of person names and
their phone numbers. The program consists of individual rules, la-
beledR1 throughR5. RulesR1 throughR4 define logical views,
while ruleR5 materializes a table of extraction results.

RuleR1 illustrates one of the shorthands that we add to SQL: the
Regextable function, which evaluates a regular expression over the
text of one or more input spans, and returns a set of output spans
that mark all matches of the expression. In the case of ruleR1, the
regular expression finds phone numbers of the formxxx − xxxx.

Rule R2 shows another addition to SQL: theDictionary table
function. Similar to theRegextable function,Dictionary identifies
all occurrences of a given set of terms specified as entries in a dic-
tionary file. ForR2, the dictionary file contains a list of common
first names. The rule defines a single-column viewFirstNameDict
containing a span for each dictionary match in the document.

RuleR3 uses a filtering dictionary that matches abbreviations for
street names on the right context of names, to filter out first names
that are street names, e.g., “James St.”. The view definition uses
two of the scalar functions that we add to SQL:RightContextTok
andContainsDict.RightContextToktakes a span and a positive in-
tegern as input and returns the span consisting of the firstn tokens
to the right of the input span. TheContainsDictfunction, used
here as a selection predicate, takes a dictionary file and a span and
returnstrue if the span contains an entry from the dictionary file.

Rule R4 identifies pairs of names and phone numbers that are
between 0 and 60 characters apart in the input document. The view
definition uses two of the scalar functions that we add to SQL:
Follows and Merge. TheFollows function, used here as a join
predicate, takes two spans as arguments, along with a minimum

σtrue

πMerge(N.match, P.match) as match�
Follows(N.match,P.match,0,60)

σNot(ContainsDict(‘street_suffix.dict’, 
RightContextTok(F.match,1)));

π*

Dictionary
‘firstName.dict’, text

Regex
‘d{3}-\d{4}’, text

Document

R2 R1

R3

R4

σtrue

π*

δ

R5

…

Figure 3: Canonical representation of rules in Figure 2.

andmaximum character distance. This function returnstrue if the
spans are within the specified distance of each other in the text. The
Mergefunction takes a pair of spans as input and returns a span that
exactly contains both input spans. Theselect clause ofR4 uses
Mergeto define a span that runs from the beginning of each name
to the end of the corresponding phone number.

Finally, R5 materializes the tablePersonPhone, which consti-
tutes the output of our extractor. It uses an EXCEPT ALL clause
to filter out candidate name–phone spans strictly containing an-
other candidate name–phone span. The join predicate of the sec-
ond operand of the EXCEPT ALL clause illustrates two other text-
based scalar functions:Equals, which checks if two spans are equal,
andContains, which tests span containment. Note that the false
positive t10 in PersonPhoneAll that associates Anna with James’
phone number is filtered out byR5, since its span strictly contains
other candidate name-phone spans (i.e., fromt8 andt9).
Canonical rule representation. To simplify our subsequent dis-
cussions, we shall assume a canonical algebraic representation of
extraction rules as trees of operators, such that for each rule, there
is a direct one-to-one translation to this canonical representation
and back. The canonical representation is very similar, if not iden-
tical for the SELECT - FROM - WHERE - UNION ALL - EX-
CEPT ALL subset of the language, to the representation of SQL
statements in terms of relational operators. A rule in the form “SE-
LECT attributes FROM R1, . . ., Rn WHEREjoin predicates
AND selection predicates” is represented in the usual way as the
sequence of project – select – join operators shown below:

πattributes(σselection preds(./join preds (R1, . . . , Rn)))

When table functions likeDictionaryandRegexappear in the FROM
clause of a SELECT statement, we translate these table functions
to operators by the same names.

Figure 3 illustrates the canonical representation of our example
extractor from Figure 2, where the dashed rectangles indicate the
correspondence between parts of the operator tree and rule state-
ments. (The part corresponding to the second operand of the EX-
CEPT ALL clause in ruleR5 is omitted.) Note that when the
WHERE clause of a rule does not contain any selection predicates
(e.g.,R4), the condition in the select operator of the corresponding
canonical representation is simplytrue.

4. OVERALL FRAMEWORK
Given a set of examples in the output of an extractor, each labeled

correct or incorrect by the user, our goal is to generate a ranked list

590



of possible changes to the rules that result in eliminating the incor-
rectexamples from the output, while minimizing the effects on the
rest of the results, as well as the rules themselves. Our solution op-
erates in two stages: High-level change generation (Section 5) and
low-level change generation (Section 6).

The high-level change generation step generates a set ofhigh-
level changesof the form “remove tuplet from the output of op-
erator Op in the canonical representation of the extractor”. Intu-
itively, removing a tuplet from the output of ruleR translates to
removing certain tuples involved in theprovenance oft according
to the canonical operator tree ofR. Our solution leverages pre-
vious work in thedata provenance[10] in generating the list of
high-level changes. These high-level changes have the potential to
remove all incorrect examples from the output. For example, high-
level changes for removing the tuplet10 from the output of ruleR4

would be “remove tuplet10 : (Anna, 555 − 7789) from the out-
put of the join operator in ruleR4”, or “remove tuplet3 : (Anna)
from the output of theDictionaryoperator in ruleR2”.

A high-level change indicateswhatoperator to modify to remove
a given tuple from the final output. However, a high-level change
does not tellhow to modify the operator in order to remove the
offending tuple. High-level changes are only the first step towards
automating the rule refinement process.

If a rule developer were presented with a set of high-level changes,
he or she would need to overcome two major problems in order to
translate these high-level changes into usable modifications of the
information extraction rule set.

The first problem is one offeasibility: The rule writer cannot
directly remove tuples in the middle of an operator graph; she is
restricted to modifying the rules themselves. It may not be pos-
sible to implement a given high-level change through rule modifi-
cations, or there may be multiple possible ways to implement the
change. Suppose that the Dictionary operator in our example has
two parameters: The set of dictionary entries and a flag that controls
case-sensitive dictionary matching. There are at least two possible
implementations of the second high-level change described above:
Either remove the entryanna from the dictionary, or enable case-
sensitive matching. It is not immediately obvious which of these
possibilities is preferable.

The second problem is one ofside-effects. A single change to a
rule can remove multiple tuples from the output of the rule. If the
rule developer chooses to remove the dictionary entry foranna,
then every false positive that matches that entry will disappear from
the output of the Dictionary operator. Likewise, if he or she enables
case-sensitive matching, then every false positive match that is not
in the proper case will disappear. In order to determine the de-
pendencies among different high-level changes, the rule developer
needs to determine how each high-level change could be imple-
mented and what are the effects of each possible implementation
on other high-level changes.

Just as modifying a rule to remove one false positive result can
simultaneously remove another false positive result, this action can
also remove one or morecorrectresults. There may be instances in
the document set where the the current set of rules correctly iden-
tifies the string “Anna” as a name. In that case, removing the entry
anna from the dictionary would eliminate these correct results. A
given implementation of a high-level change may actually make the
results of the rules worse than before.

In the second step of our solution, we go beyond the work done
in data provenance and show how to address the issues of feasibility
and side-effects. We introduce the concept of alow-level change,
a specific change to a rule that implements one or more high-level
changes. Example low-level changes implementing the two high-

level changes above are “Modify the maximum character distance
of theFollowsjoin predicate in the join operator of ruleR4 from60
to50”, and “Modify theDictionaryoperator of ruleR2 by removing
entryanna from dictionary file firstnames.dict”, respectively.

Ratherthan presenting the user with a large and rather unhelpful
list of high-level changes, our system produces a ranked list of low-
level changes, along with detailed information about the effects and
side-effects of each one. Logically speaking, our approach works
by generating all low-level changes that implement at least one
high-level change; then computing, for each low-level change, the
corresponding set of high-level changes. This high-level change
information is then used to rank the low-level changes.

A naive implementation of this approach would be prohibitively
expensive, generating huge numbers of possible changes and mak-
ing a complete pass over the corpus for each one. We keep the
computation tractable with a combination of two techniques: prun-
ing individual low-level changes using information available at the
operator level and computing side-effects efficiently using cached
provenance information.

Since low-level changes are expressed in terms of our internal
representation as canonical operator trees, we translate them back
to the level of rule statements (there is a direct one-to-one trans-
lation), prior to showing them to the user. For instance, our two
example low-level changes would be presented to the user as ‘Mod-
ify the maximum character distance of theFollows join predicate
in the WHERE clause of ruleR4 from 60 to 50”, and respectively,
“Modify the input of theDictionary table function of ruleR2 by
removing entryanna from input dictionary file firstnames.dict.”
The user chooses one change to apply, and the entire process is
then repeated until the user is satisfied with the resulting rule set.

5. GENERATING HIGH-LEVEL CHANGES

DEFINITION 5.1 (HIGH-LEVEL CHANGE). Let t be a tuple
in an output tableV . A high-level change fort is a pair (t′, Op),
whereOp is an operator in the canonical operator graph ofV and
t′ is a tuple in the output ofOp such that eliminatingt′ from the
output ofOp by modifyingOp results in eliminatingt fromV .

Intuitively, for the removal oft′ from the output ofOp to result
in eliminatingt from the final output, it must be thatt′ contributes
to generatingt. In other words,t′ is involved in theprovenance oft
according to the rule set. Hence, to generate all possible high-level
changes fort, we first need to compute the provenance oft. Next,
we shall first discuss how provenance is computed in our system,
and then describe our algorithm for generating high-level changes.

5.1 Computing Provenance
Various definitions have been proposed for describing theprove-

nance of a tuplet in the result of a queryQ: why-provenance: the
set of source tuples that contribute to the existence oft in the result,
where-provenance: the locations in the source database where each
field of t has been copied from, andhow-provenance: the source
tuples, and how they were combined by operators ofQ to pro-
ducet. Among these, how-provenance is the more complete ver-
sion, since it generalizes why-provenance, and “contains” where-
provenance in a certain sense [10]. It is also the most suitable in
our context, since knowing which source tuples and how they have
been combined byQ to generate an undesirable output tuplet is a
pre-requisite to modifyingQ in order to removet from the result.
Therefore, in this paper we shall rely on how-provenance extended
to handle text-specific operators (e.g.,Regex,Dictionary).

Given a set of rulesQ and input document collectionD, a con-
ceptual procedure for computing how-provenance at the level of

591



Anna at … assistant - 555-7789

σ5

Anna at … assistant - 555-7789

π4

Anna 555-7789

σ4�
4

555-7789

Regex1

Anna

π3

σ3

Dictionary2

Anna at…

Anna

Anna

R4

R3

R1

R2

t10:t6:t2:

t’10:

t’’10:

t3:

t’6:

t0:

Figure 4: Provenance of tuplet10 fr om Figure 2.

the operator graph ofQ is as follows. Each tuple passing through
the operator graph (i.e., source , intermediate, or output tuple) is
assigned a unique identifier. Furthermore, each operator “remem-
bers”, for each of its output tuplest, precisely those tuples in its
input responsible for producingt. This procedure can be thought
of as constructing aprovenance graph forQ on D that contains

an edge{t1, . . . , tn}
Op
−→ t for each combination{t1, . . . , tn} of

input tuples to operatorOp, and their corresponding output tuplet.
This provenance graph essentially embeds the provenance of each
tuplet in the output ofQ onD. As an example, Figure 4 shows the
portion of the provenance graph for our example in Figure 2 that
embedds the provenance of tuplet10. A procedural definition for
the notion of provenance graph is given in Appendix C.

In computing the provenance graph, we use a query rewrite ap-
proach similar to [16]. The approach of [16] is to rewrite an SQL
queryQ into aprovenance queryQp by recursively rewriting each
operatorOp in the relational algebra representation ofQ. The
rewritten version preserves the result of the original operatorOp,
but adds additionalprovenance attributesthrough which informa-
tion about the input tuples toOp that contributed to the creation of
an output tuple is propagated. GivenOp and a tuplet in its output,
the additional information is sufficient to reconstruct exactly those
tuples in the input ofOp that generatedt. Conceptually, the prove-
nance queryQp records the flow of data from input to output ofQ,
thus essentially computing the provenance graph ofQ for the input
document collection. The implementation of our system extends
the rewrite approach of [16] to handle text-specific operators. The
extensions are straightforward and details are omitted.

5.2 Generating High-Level Changes
Given a set of rulesQ, an input document collectionD and a

set of false positives in the output ofQ on D, our algorithmGen-
erateHLCs for generating high-level changes proceeds as follows.
(The pseudocode appears in Appendix D.) First, the provenance
graph ofQ andD is recorded using the rewrite approach outlined
in Section 5.1. Second, for each false positivet, the algorithm tra-
verses the provenance graph starting from the node corresponding
to t in depth-first order, following edges in reverse direction. For

every edge{. . .}
Op
−→ t′ encountered during the traversal, one high-

level change “removet′ from the output ofOp” is being generated.
Suppose the algorithm is invoked on rulesR1 to R4, with nega-

tive output tuplet10 and input document from Figure 2. Referring
to Figure 4, the algorithm traverses the provenance graph start-
ing from t10 (thus visiting each node in the provenance oft10)
and outputs the following high-level changes:(t10, π4), (t′10, σ4),
(t′′10, ./4), (t2, Regex1), (t6, π3), (t′6, σ3), (t3, Dict2).

6. GENERATING LOW-LEVEL CHANGES
In terms of the relational algebra, alow-level changeis defined as

the change to the configuration of a single operator (e.g., changing
the numerical values used in a join condition), or insertion of a new
operator subtree between two existing operators. Since the space
of all low level changes is unlimited, we limit the discussion in this
paper to low-level changes thatrestrict the set of results returned
by the query, to make the problem tractable. This is in the same
philosophy as [25] – users generally start with a query with high
recall and progressively refine it to improve the precision.

6.1 Producing Low-Level Changes
Given a set of high-level changes, our goal is to produce a corre-

sponding set of low-level changes, along with enough information
about the effects of these changes to rank them. One semi-naive
way to compute these low-level changes is to iterate over the oper-
ators in the canonical relational algebra representation of the anno-
tator, performing the following three steps:

1. For each operator, consider all the high-level changes that could
be applied at that operator.

2. For each such high-level change, enumerate all low-level changes
that cause the high-level change.

3. For each such low-level change, compute the set of tuples that
the change removes from the operator’s output.

4. Propagate these removals up through the provenance graph to
compute the end-to-end effects of each change.

This approach computes the correct answer, but it would be ex-
tremely slow. This intractability stems directly from the two chal-
lenges discussed in Section 4:feasibilityandside-effects.

First, the feasibility problem makes step 2 intractable. Just as
there could be no feasible low-level change that implements a given
high-level change, there could easily be a nearly infinite number of
them. For example, consider a high-level change to remove an out-
put tuple of a dictionary operator. Suppose the dictionary has 1000
entries, one of which produces the tuple. By choosing different
subsets of the other 999 entries, one can generate2999 − 1 distinct
low-level changes, any of which removes the desired tuple!

We address this aspect of feasibility by limiting the changes our
system considers to a set that is of tractable size, while still con-
sidering all feasible combinations of high-level changes at a given
operator. In particular, we generate, for each operator, a single low-
level change for each of thek best possible combinations of high-
level changes; wherek is the total number of changes that the sys-
tem will present to the user. We enforce these constraints through
careful design of the algorithms for generating individual types of
low-level changes, as we describe in Section 6.2.

The side-effects problem causes problems at step 4 of the above
approach. Traversing the provenance graph is clearly better than re-
running the annotator to compute the effects of each change. How-
ever, even if it generates only one low-level change per operator, the
overall cost of this approach is stillO(n2), wheren is the size of
the operator tree. Such a computation rapidly becomes intractable,
as moderately complex annotators can have thousands of operators.

We can reduce this complexity from quadratic to linear time by
leveraging our algorithm for enumerating high-level changes. The
algorithm in Section 5.2 starts with a set of undesirable output tu-
ples and produces, for each input tuple, a set of high-level changes
that would remove the tuple. We can easily modify this algorithm
to remember the mapping from each high-level change back to the
specific output tuple that the change removes.

By running this modified algorithm over every output tuple, in-

592



cluding the correct outputs, we can precompute the end-to-end ef-
fectsof any possible side-effect of a low-level change. With a hash
table of precomputed dependencies, we can compute the end-to-
end effects of a given low-level change in time proportional to the
number of tuples the change removes from the local operator.

Applying the optimizations described above to the semi-naive al-
gorithm yields the following steps for generating low-level changes.

1. Precompute the mapping from intermediate tuples to the final
output tuples they generate.

2. For each operator and each category of low-level change, com-
pute a top-kset of low-level changes.

3. Compute the local effects of each low-level change.

4. Use the table from step 1 to propagate these local effects to the
outputs of the annotator.

In the next section, we explain in detail how we perform step 2
efficiently for several different types of low-level changes.

6.2 Specific Classes of Low-Level Changes
We now introduce the specific types of low-level changes that

our system currently implements, along with the techniques we use
to generate these low-level changes efficiently. We measure result
quality using the classicalF1-measure– the harmonic mean of pre-
cision (percentage of true positives among all extracted answers)
and recall (percentage of true positives among all actual answers).
Modify numerical join parameters. This type of change tar-
gets the join operator. We use the predicate functionFollows as
an example for all joins based on numerical values. Recall that
Follows(span1, span2, n1, n2) returns true ifspan1 is followed
by span2 by a distance value in the range of[n1, n2]. Low-level
changes to aFollowspredicate involve shrinking the range of char-
acter distances by moving one or both of the endpoints.

Our approach to generate low-level changes for numerical join
predicates involves interleaving the computation of side-effects with
the process of iterating over possible numerical values. Recall that
the end goal of our system is to produce a ranked list of low-level
changes, where the higher-ranked changes produce a greater im-
provement in result quality according to an error metric. We use
this ranking function to compute autility value for each value in
the range and remove those with low utility. In particular, we com-
pute utility by probing each value in the range: remove it, propagate
the change to the output, and compute the change in result quality
as the utility of the value in consideration.

We now need to find the top-ksub-sequences in[n1, n2] that cor-
responds to maximum summation of utility values. This problem
can be solved with Kadane’s algorithm [7] inO(nk) time, wheren
is the number of values, andk is the number of ranges to find.
Remove dictionary entries.Another important class of low-level
change involves removing entries from a dictionary file so as to
remove the corresponding dictionary matches from the annotator’s
input features. Our approach to this type of change takes advantage
of the fact that each dictionary entry produces a disjoint set of tuples
at the output of theDictionaryoperator.

As with numerical join parameters, we interleave the computa-
tion of low-level changes with the process of computing the effects
of each change and the resulting improvement in utility. We start
by grouping the outputs of theDictionary operator by dictionary
entry. For each dictionary entry that matches at least one high-level
change, we compute the tuples that would disappear from the final
query result if the entry was removed. We then rank the entries ac-
cording to the effect that removing that entry would have on result
quality. We then generate a low-level change for the top 1 entry, the

top 2 entries, and so on, up tok entries. In addition to the dictionary
operator, this class of changes also applies, analoguously, to select
operators having a dictionary predicate such asMatchesDict().
Add filtering dictionary. This class of changes targets the select
operator. In addition to modifying, our system also generates new
dictionaries and uses them to filter spans based on the presence of
dictionary matches in close proximity. We produce filtering pred-
icates by composing a span operation likeLeftContextTokwith a
dictionary predicate likeNot(ContainsDict())as in ruleR3 ( Fig. 2).

To generate filtering predicates our system considers the tokens
to the left or right of each span in a tuple affected by a high-level
change. The union of these token values forms a set of potential
dictionary entries. We rank the effects of filtering with these dictio-
nary entries the same way that we rank changes involving removal
of dictionary entries: we group together tuples according to which
dictionary entries occur in the vicinity of their spans, and compute
the effect of each potential entry on end-to-end result quality.
Add filtering view. Unlike all low-level changes discussed above,
which apply to an individual operator, this last type of changes ap-
plies to an entire view. Specifically, it involves using subtraction to
add a filter view on top of an existing viewV . It removes spans
from V that overlap with, contain, or are contained in some span of
the filtering view. As an example, ruleR5 in Figure 2 implements
a filtering view on top ofPersonPhoneAll. To generate filtering
views, our algorithm considers every pair of viewsV1 andV2 such
that V1 andV2 are not descendants of one another in the canoni-
cal representation of the ruleset. For each filter policy (OVERLAP,
CONTAINS, orCONTAINED) the algorithm identifies the tuples of
V1 that are in relationships with at least oneV2 span according to
the policy, and ranks the resulting filters according to their effects
on the overall end-to-end result quality.

7. EXPERIMENTS
We developed our refinement approach on top of theSystemT[11,

22, 27] information extraction system enhanced with a provenance
rewrite engine as described in Section 5.1. In this section we present
an experimental study of our system in terms of performance, and
quality of generated refinements.
Extraction Tasks and Rule Sets.We use two extraction tasks in
our evaluation:Person (person entity extraction) andPersonPhone
(extraction of relationships between persons and their phone num-
bers). We chosePerson because it is a classic named-entity extrac-
tion task and there are standard evaluation datasets available. We
chosePersonPhone as an example of a relationship extraction task.

The Person extraction rule set consists of 14 complex rules for
identifying person names by combining basic features such as cap-
italized words and dictionaries of first and last names. Example
rules include “CapitalizedWordfollowed byFirstName”, or “Last-
Namefollowed by a comma, followed byCapitalizedWord”. We
have also included rules for identifying other named-entities such
asOrganization,Address,EmailAddress, that can be only used as
filtering views, in order to enable refinements commonly needed
in practice, where person, organizations and locations interact with
each other in various ways (e.g., “Morgan Stanley” may be an orga-
nization, or a person, “Georgia” may be a person, or a U.S. state).

ThePersonPhone extraction rule set consists of 11 complex rules
for identifying phone/extension numbers, and a single rule “Per-
sonfollowed within 0 to 60 chars byPhone” for identifying candi-
date person–phone relationships (as in ruleR4 from Figure 2). To
evaluate the system on the relationship task, we use a high-quality
Person extractor to identify person names in thePersonPhone task.
Note that the system is evaluated separately on thePerson task, and
we focus on the relationship extractor for thePersonPhone task.

593



0 5

0.6

0.7

0.8 (a) F1 measure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Baseline I1 I2 I3 I4 I5

Enron

ACE

CoNLL

EnronPP

(a) F1 measure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Baseline I1 I2 I3 I4 I5

Enron

ACE

CoNLL

EnronPP

(b) Precision

0 3

0.4

0.5

0.6

0.7

0.8

0.9

Enron

(c) Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Baseline I1 I2 I3 I4 I5

Enron

ACE

CoNLL

EnronPP

(c) Recall

Figure 5: Result Quality After Each Iteration of Refinement: F1-measure (a), Precision (b), and Recall (c).

Datasets. Appendix E lists the characteristics of the following
datasets used in our evaluation.

• ACE: collection of newswire reports, broadcast news and con-
versations withPerson labeled data from the ACE05 Dataset [3].

• CoNLL: collection of news articles withPerson labeled data
from the CoNLL 2003 Shared Task [34].

• Enron,EnronPP: collections of emails from the Enron corpus
[2] annotated withPerson and respectivelyPersonPhone labels.

Detailed experimental settings are introduced in Appendix F.

7.1 Quality Evaluation
The goal of the quality evaluation is to validate that our system

generates high quality refinements in that: 1) they improve the pre-
cision of the original rules, while keeping the recall fairly stable,
and 2) they are comparable to refinements that a human expert
would identify. To this end, we evaluate the quality of refinements
produced by our system on various datasets, and perform a user
study where a rule refinement task is presented to human experts
whose actions are compared with those suggested by our system.
Experiment 1. We use 4 workloads in this experiment: thePerson
task onACE, CoNLLandEnrondatasets, and thePersonPhone task
on theEnronPPdataset. For each workload, we run the system for
k iterations starting from the baseline rule set. After each iteration,
the refinement with the highest improvement inF1-measure on the
training set is automatically applied. Figure 5 shows the quality of
k refined rule sets on the test set of each workload, whenk is varied
from 1 to 5. Note that the quality of the baseline rule sets is as ex-
pected in practice, where developers usually start with a query with
reasonable recall and progressively refine it to improve precision.
As can be seen, our system achieves significant improvements in
F1-measure between 6% and 26% after only a few iterations. This
improvement inF1-measure does not arise at the expense of re-
call. Indeed, as shown in Figures 5(b-c), the precision after 5 it-
erations improves greatly when compared to the baseline rule set,
while the recall decreases only marginally. TheF1-measure and
precision plateau after a few refinements for two reasons. First,
many false positives are removed by the first few high ranked re-
finements, therefore substantially decreasing the number of exam-
ples available in subsequent iterations. Second, removing some of
the other false positives requires low-level changes that are not yet
implemented in our system (e.g., modifying a regular expression).
Experiment 2. In this experiment we compare the top refinements
generated by our system with those devised by human experts. To
this end, we conducted a user study in which two expertsA and
B were given one hour to improve the rule set for thePerson task
using theEnron train set. Both experts are IBM researchers (not
involved in this project) who have written over 20 information ex-
traction rule sets for important IBM products over the past 3 years.
To ensure a fair comparison, the experts were restricted to types of
refinements supported in our current implementation (Section 6.2).

ID Description P R F1 I1 I2

Baseline 35.2 85.0 49.8
A1,B1Filter Person by Person (CONTAINED) 57.3 83.7 68.01 n/a
A2 Dictionary filter on CapsPerson 70.3 83.9 76.54 4
A3,B4Dictionary filter on Person 71.8 83.8 77.4
A4 Filter PersonFirstLast by DblNewLine (OVERLAP)72.6 84.0 77.99 5
A5 Filter PersonLastFirst by DblNewLine (OVERLAP)72.7 84.1 78.09 5
A6,B2Filter PersonLastFirst by PersFirstLast (OVERLAP)73.5 84.1 78.45 3
A7,B3Filter Person by Org (OVERLAP) 74.1 82.5 78.03 1
A8 Filter Person by Address (OVERLAP) 74.3 82.4 78.111 9
A9 Filter Person by EmailAddress (OVERLAP) 77.3 81.7 79.412 6

Table 1: Expert refinements and their ranks in the list of gen-
erated refinements after iterations 1 and 2 (I1, I2).

Table 1 shows the refinements of both experts and corresponding
improvements inF1-measure achieved on the test set for expertA.
(ExpertB’s refinements are a subset ofA’s.) The table also shows
the rank of each expert refinement in the list automatically gener-
ated by our system in iteration 1, and iteration 2 (after applying
the top-most refinement). We observed that the top refinement sug-
gested by the system (remove person candidates strictly contained
within other person candidates) coincides with the first refinement
applied by both experts (i.e.,A1 and B1). Furthermore, with a
single exception, all expert refinements appear among the top 12
results generated by our system in the first iteration. The dictionary
filter generated in iteration 1 consisted of 12 high-quality entries in-
correctly identified as part of a person name (e.g., “Thanks”, “Sub-
ject”). It contains 27% of all entries in corresponding refinement
A2, and all entries in the filter dictionary on person candidates of
B4. Furthermore, in both iterations, the system generated a slightly
better refinement compared toA4 andA5 that filters all person can-
didates overlapping with a double new line. This achieves the com-
bined effect ofA4 andA5, while producing a refined rule set with
a slightly simpler structure (a single filter, instead of two).

The system also suggested refinements not useful at first glance,
for example, a dictionary filter on one token to the right of person
candidates containing initials. This was due to the baseline rule set
not identifying names with middle initial. While not helpful in im-
proving precision, this refinement is helpful in improving recall, by
signaling to the developer additional person candidate rules based
on contextual clues, However, this is subject of our future work.
Based on the observations above, we believe it is reasonable to con-
clude that our system is capable of generating rule refinements that
are comparable in quality to those generated by human experts.

7.2 Performance Evaluation
The goal of our performance evaluation is two-fold: to validate

that our algorithm for generating low-level changes is tractable,
since it should be clear that without the optimizations in section
6, CPU cost would be prohibitive, and to show that the system can
automatically generate refinements faster than human experts.

The table below shows the running time of our system in the first

594



3 iterations with thePerson ruleset on theEnrondataset, when the
size of the training data is varied between 100 and 400 documents.

Train set I1 I2 I3 F1 afterI3
#docs (sec) (sec) (sec) (%)

100 35.3 1.8 1.1 74.9
200 44.5 6.0 4.2 70.2
300 72.9 9.9 6.3 72.1
400 116.4 21.3 13.6 70.0

As shown above, the system takes between 0.5 and 2 minutes for
the first iteration, which includes the initialization time required
for loading the rule operators in memory, running the extractor on
the training set, and computing the provenance graph, operations
performed exactly once. Once initialized, the system takes under
20 seconds for subsequent iterations. As expected, the running time
in each iteration decreases, since less data is being processed by the
system after each refinement. Also note that theF1-measure of the
refined rule set after iteration 3 (refer to last column of the table)
varies only slightly with the size of the training set.

We note that in each iteration the system sifts through hundreds
of documents, identifies and evaluates thousands of low-level changes,
and finally presents to the user a ranked list of possible refinements,
along with a summary of their effects and side-effects. When done
manually, these tasks require a large amount of human effort. Re-
call from Experiment 2 that the experts took one hour to devise,
implement and test their refinements, and reported taking between
3 and 15 minutes per refinement. In contrast, our system generates
almostall expert’s refinements in iteration 1, in about 2 minutes!

8. CONCLUSIONS AND FUTURE WORK
As we seek to leverage database technology to manage the grow-

ing tide of poorly structured information in the world, informa-
tion extraction has gained growing importance. Most information
extraction is based on painstakingly defined extraction rules that
are error-prone, often brittle, and subject to continuous refinement.
This paper takes a significant step towards simplifying IE rule de-
velopment through the use of database provenance techniques.

Specifically, this paper showed how to modify extraction rules
to eliminate false positives in the extraction result. Standard prove-
nance techniques only consider the provenance of tuples in the re-
sult set, and hence are not useful for addressing false negatives.
However, recent provenance work [9, 18, 20] has begun to develop
tools to reason about expected tuples not present in the result set.
We believe these techniques can be adapted to our framework to
address false negatives. However, this is the subject of future work.
Acknowledgements.We thank Rajasekar Krishnamurthy and Yun-
yao Li for participating in our expert user study, and the anonymous
reviewers for their insightful comments.

9. REFERENCES
[1] Database languages – SQL – Part 1: Framework (SQL/Framework).

Technical report. ISO/IEC 9075-1:2003.
[2] The Enron corpus. www.cs.cmu.edu/enron/.
[3] Automatic Content Extraction 2005 Evaluation Dataset, 2005.
[4] E. Agichtein and L. Gravano.Snowball: Extracting Relations from

Large Plain-Text Collections. InACM DL, 2000.
[5] D. E. Appelt and B. Onyshkevych. The Common Pattern

Specification Language. InTIPSTER workshop, 1998.
[6] N. Ashish, S. Mehrotra, and P. Pirzadeh. XAR: An Integrated

Framework for Information Extraction. InWRI Wold Congress on
Computer Science and Information Engineering, 2009.

[7] J. L. Bentley. Programming Pearls: Algorithm Design Techniques.
Commun. ACM, 27(9):865–873, 1984.

[8] B. Boguraev. Annotation-based Finite State Processing in a
Large-Scale NLP Architecture. InRANLP, 2003.

[9] A. Chapman and H. V. Jagadish. Why Not? InSIGMOD, 2009.
[10] J. Cheney, L. Chiticariu, and W. Tan. Provenance in Databases: Why,

How, and Where.Foundations and Trends in Databases,
1(4):379–474, 2009.

[11] L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, and
S. Vaithyanathan. SystemT: An Algebraic Approach to Declarative
Information Extraction. InACL, 2010.

[12] H. Cunningham. JAPE: a Java Annotation Patterns Engine. Research
Memorandum CS – 99 – 06, University of Sheffield, May 1999.

[13] A. Das Sarma, A. Jain, and D. Srivastava. I4E: Interactive
Investigation of Iterative Information Extraction. InSIGMOD, 2010.

[14] D. DeJong. An Overview of the FRUMP System. InStrategies for
Natural language Processing. 1982.

[15] D. Freitag. Multistrategy Learning for Information Extraction. In
ICML, 1998.

[16] B. Glavic and G. Alonso. Perm: Processing Provenance and Data on
the Same Data Model through Query Rewriting. InICDE, 2009.

[17] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance Semirings.
In PODS, 2007.

[18] M. Herschel and M. Hernandez. Explaining Missing Answers to
SPJUA Queries.PVLDB, 2010.

[19] J. R. Hobbs, D. Appelt, J. Bear, D. Israel, M. Kameyama, and
M. Tyson. FASTUS: a System for Extracting Information from Text.
In HLT, 1993.

[20] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the Provenance
of Non-Answers to Queries over Extracted Data.PVLDB, 1(1), 2008.

[21] A. Jain, P. Ipeirotis, A. Doan, and L. Gravano. Join Optimization of
Information Extraction Output: Quality Matters! InICDE, 2009.

[22] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, S. Vaithyanathan,
and H. Zhu. SystemT: a System for Declarative Information
Extraction.SIGMOD Record, 37(4):7–13, 2008.

[23] J. Lafferty, A. McCallum, and F. Pereira. Conditional Random
Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data. InICML, 2001.

[24] W. Lehnert, J. McCarthy, S. Soderland, E. Riloff, C. Cardie,
J. Peterson, F. Feng, C. Dolan, and S. Goldman. UMass/Hughes:
Description of the CIRCUS System Used for MUC-5. InMUC, 1993.

[25] Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. V.
Jagadish. Regular Expression Learning for Information Extraction. In
EMNLP, 2008.

[26] F. Peng and A. McCallum. Accurate Information Extraction from
Research Papers Using Conditional Random Fields. InHLT-NAACL,
2004.

[27] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, and
S. Vaithyanathan. An Algebraic Approach to Rule-Based
Information Extraction. InICDE, 2008.

[28] E. Riloff. Automatically Constructing a Dictionary for Information
Extraction Tasks. InKDD, 1993.

[29] W. Shen, P. DeRose, R. McCann, A. Doan, and R. Ramakrishnan.
Toward Best-Effort Information Extraction. InSIGMOD, 2008.

[30] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan. Declarative
Information Extraction Using Datalog with Embedded Extraction
Predicates. InVLDB, 2007.

[31] S. G. Soderland. Learning Text Analysis Rules for Domain-specific
Natural Language Processing. Technical report, U. Mass., 1996.

[32] S. Tata, J. M. Patel, J. S. Friedman, and A. Swaroop. Declarative
Querying for Biological Sequences. InICDE, 2006.

[33] C. Thompson, M. Califf, and R. Mooney. Active Learning for Natural
Language Parsing and Information Extraction. InICML, 1999.

[34] E. F. Tjong Kim Sang and F. De Meulder. Introduction to the
CoNLL-2003 Shared Task: Language-independent Named Entity
Recognition. InCoNLL at HLT-NAACL, 2003.

[35] A. Yates, M. Banko, M.Broadhead, M. J. Cafarella, O. Etzioni, and
S. Soderland. TextRunner: Open Information Extraction on the Web.
In HLT-NAACL (Demonstration), 2007.

[36] S. Zhao and R. Grishman. Extracting Relations with Integrated
Information Using Kernel Methods. InACL, 2005.

595



APPENDIX

A. RULE LANGUAGES
Figure 6 shows examples of rule languages referenced in recent

work. The figure shows three different implementations of the rule
that we had described earlier in Figure 1. Each implementation uses
a different rule language, but all three generate the same output,
except in certain corner cases.

In general, information extraction rule languages often differ in
syntax and overall expressive power [27]. However, most rule lan-
guages in common use share a large set of core functionality. Fur-
thermore, the common core functionality of most information ex-
traction rule languages can be expressed as standard SQL, with a
few text-specific extensions described next.

B. ADDITIONS TO SQL
In the examples in this paper, we augment the standard set of

SQL functions with the following text-specific functions:

1. Predicates and scalar functions for manipulating spans, used
for expressingjoin andselection predicates, and creating new
values in the SELECT clause of a rule; and

2. Table functions for performing three crucial IE tasks:regular
expression matching,dictionary matching.

Figure 7 lists these text-specific additions, along with a brief de-
scription of each.

The ability to perform character-levelregular expression match-
ing is fundamental in any IE system, as many basic extraction tasks
such as identifying phone numbers or IP addresses can be achieved
using regular expressions. For our example rule in Figure 6, regular
expression matching is appropiate for identifying capitalized words
in the document, and is expressed, for instance, in AQL lines 5 – 6,
and xLog line 5 in Figure 6.

For this purpose, we have added to our language theRegexta-
ble function (refer to Figure 7), which takes as input a regular ex-
pression, a relation nameR, and an attribute of type spanA of R,
and computes an instance with a single span-typed attribute called
matchcontaining all matches of the given regular expression on the
A values of all tuples inR.

A second fundamental IE functionality isdictionary matching:
the ability to identify in an input document all occurrences of a
given set of terms specified as entries in a dictionary file. Dictio-
nary matching is useful in performing many basic extraction tasks
such as identifying person salutations (e.g., “Mr”, “Ms”, “Dr”), or
identifying occurrences of known first names (e.g., refer to Fig-
ure 6, line 4 of JAPE, lines 3–4 of AQL, and line 3 of xLog). The
Dictionary table function serves this purpose in our language: it
takes as input the name of a dictionary file, a relation nameR, and
an attribute of type spanA of R, and computes an instance with a
single span-typed field calledmatchcontaining all occurrences of
dictionary entries on theA values of all tuples inR.

A third component of information extraction rules is a toolkit of
span operations. Table 7 lists the text-based scalar functions that
our system uses to implement various operations over thespan
type. Note the distinction between scalar functions that return a
boolean value (e.g.,Follows) and can be used as join predicates, and
scalar functions that return non-boolean values (e.g., Merge), used
as selection predicates, and to create new values in the SELECT
clause of rules.

C. PROVENANCE ASSOCIATED WITH
OPERATORS

Definition C.1 formalizes the notion ofprovenance graphused
in this paper. Note that the intention of the formalism below is not
to propose yet another definition for provenance. In fact, when re-
stricted to the SPJU fragment of SQL, Definition C.1 corresponds
to the original definition of how-provenance of [17]2. Rather, our
goal is to provide a pictorial representation of provenance that we
can use in discussing the algorithm for computing high-level changes.

DEFINITION C.1. [Provenance graph] LetQ be a set of rules
and D be a document collection. Thedata flow graph ofQ and
D, or in short, the data flow graph ofQ whenD is understood
from the context, is a hypergraphG(V, E), whereV is a set of
hypervertices, andE is a set of hyperedges, constructed as follows.
For every operatorOp in the canonical representation ofQ:

• If Op = Regex(regex,A)(R), or Op = Dictionary(dict file,A)(R),
thenfor everyt ∈ R and every output tuplet′ ∈ Op(t), V

contains verticesvt, vt′ andE contains edgevt
Op
−→ vt′ . We

say thatthe provenance oft′ according toOp is t.

• If Op = πA(R), whereA is a set of attributes, then for every
t ∈ R and corresponding output tuplet′ = πA(t), V con-

tains verticesvt, vt′ andE contains edgevt
πA−→ vt′ . We say

that the provenance oft′ according toπA is t.

• If Op = σC(R), whereC is a conjunction of selection pred-
icates, then for everyt ∈ R and corresponding output tu-
ple t′ = σC(t) (if any), V contains verticesvt, vt′ and E

contains edgevt
σC−→ vt′ . We say thatthe provenance oft′

according toσC is t.

• If Op = ./C (R1, . . . , Rn), whereC is a conjunction of join
predicates, then for everyt1 ∈ R1, . . . , tn ∈ Rn and corre-
sponding output tuplet′ =./ (t1, . . . , tn) (if any),V contains
verticesvt1 , . . . , vtn

and hypervertex{vt1 , . . . , vtn
}, andE

contains hyperedge{vt1 , . . . , vtn
}

./C−→ vt′ . We say thatthe
provenance oft′ according to./C is {t1, . . . , tn}.

• If Op = ∪(R1, R2), then for everyt1 ∈ R1 (or t2 ∈ R2) and
corresponding output tuplet′ ∈ ∪({t1}, ∅) (or respectively,
t′ ∈ ∪(∅, {t2})), V contains verticesvt1 (or vt2 ) and vt′ ,

andE contains edgevt1

∪
−→ vt′ (respectively,vt2

∪
−→ vt′ ).

We say thatthe provenance oft′ according to∪ is t1 (or re-
spectively,t2).

• If Op = δ(R1, R2), then for everyt ∈ R1 such thatt 6∈ R2

and corresponding output tuplet′ ∈ {t} − R2, V contains

verticesvt, vt′ andE contains edgevt
δ

−→ vt′ . We say that
the provenance oft′ according toδ is t.

2Note that since each tuple is assigned a unique identifier, we are
essentially in the realm of set semantics.

596



JAPE [12] AQL [27] XLog [6, 30]

Rule: CandidatePersonName
Priority: 1

(
{ Lookup.kind == firstName }
{ Token.orthography == initialCaps }

):match
--> :match.kind = "CandidateName";

create view CandidatePersonName as
select CombineSpans(F.name, L.name) as name
from (extract dictionary FirstNameDict

on D.text as name from Document D) F,
(extract regex /[A-Z][a-z]+/

on D.text as name from Document D) L
where FollowsTok(F.name, L.name, 0, 0)
consolidate on name;

CandidatePersonName(d, f, l) :-
docs(d),
firstNamesDict(fn),
match(d, fn, f),
match(d, "[A-Z][a-z]+", l),
immBefore(f, l);

Figure 6: The rule from Figure 1, expressed in three different information extraction rule languages

Type Format Description

Predicate Follows/FollowsTok(span1,span2,n1,n2) Tests ifspan2 followsspan1 within n1 to n2 characters, or tokens
functions Contains/Contained/Equals(span1,span2) Tests ifspan1 contains,is contained within, or is equal tospan2

MatchesRegex/ContainsRegex(r, span) Tests ifspan matches(contains a match for, resp.) regular expressionr

MatchesDict/ContainsDict(dict, span) Tests ifspan matches(contains a match for, resp.) an entry of dictionaryd

Scalar Merge(span1, span2) Returns the shortest span that completely covers both input spans
functions Between(span1, span2) Returns the span betweenspan1 andspan2

LeftContext/LeftContextTok(span, n) Returns the span containingn chars/tokens immediately to the left ofspan

RightContext/RightContextTok(span, n) Returns the span containingn chars/tokens immediately to the right ofspan

Table Regex(r, R, A) Returns all matches of regular expressionr in all R.A values.
functions Dictionary(d,R, A) Returns all matches of entries in dictionaryd in all R.A values.

Figure 7: Text-specific predicate, scalar, and table functions that weadd to SQL for expressing the rules in this paper.

D. COMPUTING HIGH-LEVEL CHANGES
Our algorithmGenerateHLCs for computing a set of high-level

changes, given a set of rulesQ, an input document collectionD
and a set of false positives in the output ofQ onD, is listed below.

GenerateHLCs(G, X, D)
Input: Operator graphG of a set of rulesQ, setX of false positives in the
output ofG (i.e.,Q) applied to input document collectionD.
Output: SetH of high-level changes.
Let H = ∅.

1. Compute the provenance graphG
Q,D
p of Q andD;

2. For everyt ∈ X doCollectHLCs(GQ,D
p , t, H);

3. ReturnH.

ProcedureCollectHLCs(Gp, t′, H)
Input: Provenance graphGp, nodet′ in Gp, set of high-level changesH.
If t′ is a tuple of theDocument instance, return.

Otherwise, lete: T
Op
−→ t′ be the incoming edge oft′ in Gp. Do:

1. Add(t′, Op) to H;

2. If e is of typet′′
Op
−→ t′, whereOp ∈ {π, σ,∪, δ, Regex, Dictionary},

doCollectHLCs(Gp, t′′, H).

Otherwise,e is of type{t1, . . . , tn}
./
−→ t′. Do CollectHLCs(Gp, ti,

H), for all ti, 1 6 i 6 n.

E. EVALUATION DATASETS
The characteristics of the datasets used in our experiments in

terms of number of documents and labels in the train and test sets
are listed below.

Dataset Train set Test set
#docs #labels #docs #labels

ACE 273 5201 69 1220
CoNLL 946 6560 216 1842
Enron 434 4500 218 1969
EnronPP 322 157 161 46

These datasets are realistic in practical scenarios, and in fact,
both ACE and CoNLL have been used in official Named Entity
Recognition competitions [3, 34]. We note that in practice, rule
developers are unlikely to examine a very large number of docu-
ments, and obtaining labeled data is known to be a labor intensive
and time consuming task. (Machine learning techniques such as
active learning [33] have been used to facilitate the latter task.)

F. EXPERIMENTAL SETTINGS
We developed our rule refinement approach inSystemTv0.3.6 [11,

22], the information extraction system developed at IBM Research
– Almaden, enhanced with a provenance rewrite engine as described
in Section 5.1. Our implementation uses SystemT’s AQL rule lan-
guage [27]. The experiments were run on a Ubuntu Linux version
9.10 with 2.26GHz Intel Xeon CPU and 8GB of RAM. All experi-
ments, unless otherwise stated, are from a 10-fold cross-validation.

597




