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ABSTRACT
The tremendous growth of the Internet has significantly re-
duced the cost of obtaining and sharing information about
individuals, raising many concerns about user privacy. Spa-
tial queries pose an additional threat to privacy because the
location of a query may be sufficient to reveal sensitive in-
formation about the querier. In this paper we focus on k

nearest neighbor (kNN) queries and define the notion of
strong location privacy, which renders a query indistinguish-
able from any location in the data space. We argue that pre-
vious work fails to support this property for arbitrary kNN
search. Towards this end, we introduce methods that offer
strong location privacy, by integrating private information
retrieval (PIR) functionality. Specifically, we employ secure
hardware-aided PIR, which has been proven very efficient
and is currently considered as a practical mechanism for
PIR. Initially, we devise a benchmark solution building upon
an existing PIR-based technique. Subsequently, we identify
its drawbacks and present a novel scheme called AHG to
tackle them. Finally, we demonstrate the performance su-
periority of AHG over our competitor, and its viability in
applications demanding the highest level of privacy.

1. INTRODUCTION
The embedding of positioning capabilities (e.g., GPS) in

mobile devices facilitates the emergence of location-based
services (LBS), which is considered as the next “killer appli-
cation” in the wireless data market. Location-based services
allow clients to query a service provider (such as Google or
Bing Maps) in a ubiquitous manner, in order to retrieve de-
tailed information about points of interest (POIs) in their
vicinity (e.g., restaurants, hospitals, etc.). However, simi-
lar to web searches or online purchases, location-dependent
queries may disclose sensitive information about an individ-
ual’s health, financial status, political affiliations, etc.
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Assume, for example, that a user wishes to find the near-
est night clubs to his/her location. To conceal this infor-
mation, the user may choose to transmit the query through
an anonymizing network (e.g., Tor [1]) that hides his/her
real IP address. Nevertheless, simply removing the IP ad-
dress is not sufficient to protect the user’s identity, which
can be inferred from the coordinates of the query and back-
ground knowledge (e.g., the user’s home address). Hence,
truly private services necessitate location privacy, i.e., the
LBS should be oblivious of the query location. Addition-
ally, location privacy is desirable independently of the con-
cealment of the user identity. For instance, consider a mobile
user who asks for the nearest night clubs, but wishes to hide
that he/she has visited the specific area. In this case, the
user requires location privacy even if the provider can infer
his/her identity.

In this paper we focus on k nearest neighbor (kNN) queries
targeting at the highest degree of privacy, which we term
strong location privacy and define as follows:

Definition 1. A scheme provides strong location pri-

vacy, if the adversary cannot distinguish the query location
from any other location in the data space.

There exist numerous techniques that can provide a cer-
tain degree of location privacy, even if they were originally
proposed in a different security domain. These solutions can
be classified according to three major concepts: (i) location
obfuscation, (ii) data transformation, and (iii) private infor-
mation retrieval (PIR). We argue that currently no method-
ology can support arbitrary kNN queries providing strong
location privacy. More specifically, in location obfuscation
techniques (e.g., [20, 26]) the LBS can restrict the client
in a small sub space of the total domain, leading to weak
privacy. Schemes based on data transformation (e.g., [16,
25]) are vulnerable to access pattern attacks [24], which may
correlate the query with outliers, popular locations, etc.

Finally, PIR-based approaches utilize a PIR protocol (e.g.,
[19]) implementing a simple query primitive, which retrieves
a specific database block from the LBS without the latter
discovering which block was retrieved. This primitive is re-
sistant to access pattern attacks. The client reduces a spa-
tial query to a set of such private retrievals. To the best of
our knowledge, there exist only two PIR-based methods [17,
11]. [17] deals with kNN search, proposing algorithms that
may involve a variable number of PIR block retrievals per
spatial query. Although each retrieval is completely private,
the cardinality of the PIR requests per kNN query may re-
veal information, similar to that in access pattern attacks for
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data transformation techniques. Consequently, these meth-
ods violate strong location privacy. On the other hand, [11]
entails a single PIR retrieval per query. Therefore, it ren-
ders all queries indistinguishable, satisfying strong location
privacy. Nevertheless, it can only handle single NN queries.
Furthermore, it leads to a prohibitive computational and
communication cost even for very small POI databases (≃
1MB), because it relies on an expensive PIR protocol ([19]).
This is the first work to propose methods for arbitrary

kNN search with strong location privacy. There are two
main components in our schemes: (i) the PIR functional-
ity, and (ii) the query plan. The former ensures that the
LBS is oblivious of each block retrieved by the algorithms.
We employ secure hardware PIR [24], which is currently the
only practical choice for PIR in databases of non-negligible
size. In particular, this mechanism offers private block re-
trievals with constant communication cost and amortized
polylogarithmic computational cost. The latter translates
to processing times close to one second even for Gigabyte
databases, whereas other schemes (e.g., [19]) entail hours.
The query plan ensures that every query retrieves the

same number of blocks during its execution. A trivial so-
lution would enforce each query to retrieve a fixed and ar-
bitrarily large number of blocks. Nevertheless, such a so-
lution may gravely impact the performance of our schemes.
Therefore, we propose algorithms that compute a tight up-
per bound for the block accesses that any query in the data
space must perform, such that all its results are retrieved.
Initially, we construct a benchmark method, called BNC,

by optimizing [17] and generating a query plan in order to
enforce strong location privacy. Subsequently, we point out
its drawbacks and propose a novel solution, called AHG, to
tackle them. We experimentally compare AHG with BNC
using rigorous secure hardware simulations, and show that
AHG outperforms BNC in all settings. We also demon-
strate that AHG features response times in the order of a
few seconds when testing with moderate POI databases (≃
130 MB), and scales quite well under Gigabyte databases.
Therefore, AHG constitutes the first viable solution for ap-
plications where strong location privacy is critical.

2. RELATED WORK
Section 2.1 reviews location obfuscation methods, Section

2.2 describes schemes that employ data transformation to
protect location privacy, and Section 2.3 presents PIR-based
location privacy techniques.

2.1 Location Obfuscation
This category includes every method that expands the

LBS’s assumption about the actual query location to a wider
sub space of the spatial domain, called obfuscation region. In
[18, 7, 8], except for its actual query, the client sends to the
LBS an additional set of “dummy” queries. The obfuscation
region consists of the distinct locations included in the query
set sent to the LBS. Cheng et al. [4] assume that the clients
issue range queries, and the POIs are other clients’ locations.
All locations must be protected. Therefore, each location is
obfuscated into a circular region. The LBS processes the
query and returns a probabilistic answer, which is modeled
by the overlap of the circular regions with the query range.
SpaceTwist [26] is an incremental NN algorithm executed
at the LBS, which starts from a random location generated
by the client and terminates when the client receives all its

actual NNs. The obfuscation region is a subset of the data
space covered by the algorithm.

In the Spatial K-anonymity [20, 15, 9, 12] paradigm, the
client sends its query to a trusted anonymizer, which con-
structs an anonymizing spatial region (ASR) that contains
the querier’s location along with another K − 1 client lo-
cations. The anonymizer then sends the ASR to the LBS.
The latter executes the query with respect to the ASR, and
returns a superset of the results to the anonymizer, which
filters out the false positives. The obfuscation region is the
set of the K locations in the ASR.

All location obfuscation approaches guarantee weak lo-
cation privacy because the obfuscation region is usually a
small sub space of the total 2D domain. Nevertheless, they
typically feature low query processing cost, due to the inex-
pensive operations they entail.

2.2 Data Transformation
In this setting the data owner is different from the LBS.

The owner transforms the database (using some encoding
methodology) prior to transmitting it to the LBS. An au-
thorized client that possesses the secret transformation keys
issues an encoded query to the LBS. Both the database and
the queries are unreadable by the LBS and, thus, location
privacy is protected. The goal is to provide the LBS with
searching capabilities over the encoded data.

OPES [2] encodes the data in a way such that their nu-
meric order is preserved, thus allowing simple distance com-
parison operations. Wong et al. [25] propose a secure point
transformation, which preserves the relative distances of all
the database POIs to any query point. This property ren-
ders kNN processing feasible. Another solution [16] trans-
forms the points using the Hilbert mapping [21], and the
parameters of the transformation (order, scale, orientation,
etc.) are maintained secret. This technique allows approxi-
mate NN search directly on the transformed points.

Data transformation methods provide a stronger notion of
location privacy than obfuscation. However, they are more
computationally intensive due to the encoding/decoding op-
erations. Additionally, they are prone to access pattern at-
tacks [24] because the same query always returns the same
encoded results. For example, the LBS may observe the
frequencies of the returned ciphertexts. Having knowledge
about the context of the database, it can match the most
popular plaintext POI with the most frequently returned
ciphertext and, thus, unravel information about the query.

2.3 PIR-based Location Privacy
Suppose that a server maintains a database consisting of

N sequential blocks. PIR protocols enable a client to re-
trieve the ith block from the server, without the server dis-
covering which block was requested (i.e., index i). These
protocols safeguard against access pattern attacks. They
can be grouped into: (i) information theoretic [5, 3], (ii)
computational [19, 10], and (iii) secure hardware [14, 23, 24].
The former are secure against even a computationally un-
bounded adversary. Nevertheless, they assume the existence
of a fixed number of non-colluding servers. Computational
PIR methods are applicable even for a single server, and they
rely on the computational intractability of well-known prob-
lems (e.g., the φ-hiding hardness assumption in [10]). How-
ever, they entail expensive operations linear in the database
size, which lead to prohibitive processing costs (in the order
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of thousands of seconds even for moderate database sizes).
Secure hardware PIR is currently the only practical PIR

mechanism. It relies on a tamper-resistant CPU that is po-
sitioned at the server and is trusted by the clients. This
CPU receives a client block request, which is unreadable by
the server. It obliviously extracts the requested block from
the server’s disk, and returns it to the client in an encrypted
form decipherable solely by the client. This paradigm leads
to constant communication cost, and amortized polyloga-
rithmic computational cost. The latter translates to pro-
cessing times close to a second even for Gigabyte databases.
There exist two PIR-based solutions. [17] proposes kNN

algorithms that reduce the query to a set of PIR block re-
trievals performed via secure hardware PIR. An important
detail overseen is that two different queries may entail a
variable number of PIR requests. Therefore, although each
PIR retrieval is completely private as stated above, the car-
dinality of these retrievals may disclose location information
similar to that in access pattern attacks in data transforma-
tion. Consequently, [17] does not provide strong location
privacy. On the other hand, [11] satisfies this property be-
cause every query involves a single PIR request and, hence,
all queries are indistinguishable. Nevertheless, this scheme
focuses only on single NN processing. Moreover, it relies on
the computational PIR protocol of [19] and, thus, inherits
its excessive communication and computational costs.
In Section 4 we devise a competitor by optimizing [17]

and constructing a query plan in order to satisfy strong lo-
cation privacy. Moreover, note that [17] assumes that the
kNN algorithm runs inside the secure hardware. Consider-
ing that coding on the secure hardware is cumbersome, this
implementation choice makes application development diffi-
cult. On the contrary, we consider that the secure hardware
supports private block retrieval as an interface that can be
used by any external algorithm, thus enhancing the utility
of the secure hardware.

3. SYSTEM MODEL
Section 3.1 presents our general system architecture, and

Section 3.2 formalizes our security.

3.1 Architecture
Figure 1 illustrates the entities and their interaction in

our model. An LBS possesses a database of POIs DB, and a
client wishes to issue kNN queries on DB without disclosing
its location. The LBS constructs an index structure on DB.
Subsequently, it combines DB with the index and organizes
them into m disjoint databases DB1, DB2, . . ., DBm, where
m (≥ 1) depends on the proposed solution. The rationale
behind this decomposition will become clear soon. Every
DBi comprises of a set of blocks Bi,1,Bi,2, . . . of equal size.

Client

Q

LBS
DB + index

Database 

organization

,

PIR query 

processing

Adversary

kNN 

algorithm

QP
1 2 m

 ,i j ,u v ,... ,
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Figure 1: System architecture

The LBS utilizes the secure hardware PIR protocol of [24]

as a “black box”, which implements a query primitive Qi,j
1

performed on DBi. Its result is denoted by Ci,j and is a
ciphered version of the jth block of DBi (i.e., Bi,j). Qi,j and
Ci,j are readable only by the client and the secure hardware.
The protocol determines the block size. We refer the reader
to Appendix A for more details on the functionality of [24].

Let Q be the client’s kNN query. The client executes a
query algorithm locally, which processes Q in an informed
multi-step fashion. Specifically, the algorithm initially spec-
ifies a set of blocks to be privately retrieved from the LBS.
Subsequently, the client generates and sends to the LBS the
corresponding set Qi,j , Qu,v, . . . of PIR queries. The LBS
processes these queries and sends replies Ci,j , Cu,v, . . . to the
client, who extracts the respective plain blocks Bi,j , Bu,v, . . ..
These blocks contain either results or index data, which fa-
cilitate the algorithm to determine the blocks to be retrieved
in the next step. The above procedure is repeated until the
collection of Q’s results.

In other words, a kNN query translates to an ordered list
of PIR queries. There are two mandatory requirements for
the security of our model that all kNN queries must follow:
(i) the DB databases must be queried in the same order,
and (ii) each DB access in the order must involve the same
number of PIR queries. Due to these requirements, the LBS
must construct a query plan, which is defined as follows:

Definition 2. The query plan is an ordered list QP =
((db1, cnt1), (db2, cnt2), . . .), which specifies that every kNN
query Q must first issue exactly cnt1 PIR requests on DBdb1 ,
then cnt2 PIR requests on DBdb2 , etc.

QP depends on k, the kNN algorithm and the dataset.
The LBS creates QP in an offline pre-processing stage, and
makes it publicly available. The query algorithm at the
client’s side takes into account QP when generating the PIR
queries. Computing QP in a way that guarantees the suc-
cessful result retrieval of any query in the data space, with-
out compromising the efficiency of the query algorithm, is a
challenging task.

3.2 Threat Model and Security
The adversary’s access is limited in the shaded region of

Figure 1. In particular, the adversary can be either the LBS,
or anyone who can infiltrate the LBS’s machine and/or the
communication channel between the client and the LBS. We
assume that the adversary is polynomially bounded. It also
knows the query algorithm. The primary privacy target in
our framework is strong location privacy. We do not seek
to protect the database confidentiality. Therefore, we as-
sume that DB and the index are not encrypted. Finally,
the adversary is “curious but not malicious”, i.e., it does
not tamper with the authenticity of the results, or QP.

Theorem 1. Our model provides strong location privacy.

Proof. Due to the underlying secure hardware PIR pro-
tocol, Qi,j and Ci,j do not disclose information about the
corresponding requested block Bi,j to any party other than
the client and the tamper-resistant secure hardware. Fur-
thermore, access pattern attacks based on multiple pairs
(Qi,j , Ci,j) are prevented. Finally, the query plan forces ev-
ery kNN query to process the same number of PIR retrievals,
on the same databases, in the same order. Consequently, all
kNN queries become indistinguishable.

1We use calligraphic notation for the PIR elements.
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4. BENCHMARK SOLUTION - BNC
We devise a solution called BNC (for benchmark), by op-

timizing [17] and computing a query plan in order to enforce
strong location privacy. Section 4.1 describes the structures
and kNN algorithm of BNC, and Section 4.2 contains the
query plan calculation.

4.1 Structures and kNN algorithm
Structures. Let DB be a POI database, where P ∈ DB

has the form 〈P.id, P.x, P.y, P.tail〉; P.id is the unique iden-
tifier of P , (P.x, P.y) are P ’s coordinates, and P.tail rep-
resents additional data associated with P . The LBS con-
structs a regular g×g grid G over the POIs, where cell cij is
in the ith row and jth column. It then builds two databases
DB1 and DB2, which comprise of blocks B1,i and B2,i, re-
spectively. The size of each block is determined by the PIR
protocol (4KB in our implementation).
We first focus on DB1. For every cell c ∈ G, the LBS cre-

ates a block B, which stores an entry 〈P.id, P.x, P.y, P.ptr〉
for each POI P that resides in c; P.id, P.x, P.y have the
same meaning as mentioned above, and P.ptr will be ex-
plained soon. The block is padded with dummy (i.e., ran-
dom) entries d if it is not full. Furthermore, if B cannot
accommodate the entries of all POIs in c, the LBS creates
extra blocks that form a linked list with B. Subsequently,
the LBS stores the first block (i.e., the head of the list) of
each cell cij consecutively in DB1, in ascending order of cell
row and column numbers. The extra blocks are appended
in the end of DB1.
We illustrate the above in the example of Figure 2, which

assumes database DB = {P1, P2, . . . , P20}, a 6 × 6 grid,
and block capacity equal to four 〈id, x, y, ptr〉 entries. The
first block of DB1, B1,1, corresponds to the first cell in the
row/column order, c11. This cell contains only one POI
(P1). Therefore, B1,1 stores 〈P1.id, P1.x, P1.y, P1.ptr〉 and
three dummy entries. Block B1,2 stores only dummy entries,
since it corresponds to c12 that is empty. Now consider block
B1,24 associated with c46. This cell contains five POIs, whose
entries cannot fit in B1,24. Therefore, B1,24 stores the entries
of P13, P14, P15, P16, and extra block B1,37 stores the entry
of P17 (along with dummies). Observe that the extra block
is not appended after B1,24. Instead, it is added in the end
of DB1, and B1,24 stores the index of B1,37, i.e, 37.
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Figure 2: BNC example

In order to create database DB2, the LBS scans the cells
of G in the row/column order; for every encountered POI P ,
it appends entry 〈P.id, P.tail〉 in the end of DB2. Assuming
block capacity equal to three 〈id, tail〉 entries in Figure 2,
the LBS reads POIs P1, P2, . . ., P20 in this order, and thus

creates blocks B2,1 for P1, P2, P3, block B2,2 for P4, P5, P6,
etc. If the last block of DB2 is not full, it is padded with
dummy entries D. Finally, P.ptr in a block entry of DB1

points to the block of DB2 that stores 〈P.id, P.tail〉 (e.g.,
P1.ptr points to B2,1 in Figure 2). We assume that the
client is aware of the specifications of G (e.g., its granularity
g) and the block organization policy of DB1 and DB2.

Algorithm. The kNN algorithm runs at the client and
consists of two phases. The first phase implements CPM
[22], the state-of-the-art grid-based kNN technique. CPM
retrieves cells from the grid in ascending minimum distance
from the query. This method always leads to the optimal cell
retrieval, which corresponds to the cells that overlap with
the circle centered at the query, with radius its distance to
its kth NN. When the process determines that a cell cij must
be accessed, it privately retrieves all the blocks associated
with cij from DB1. This is feasible because the client can
identify the index of the head block of cij in DB1 as (i− 1) ·
g+ j, and thus access it issuing the respective PIR request.
Moreover, it can locate and privately retrieve the potential
extra blocks of cij via the linked list pointers. In the second
phase, the algorithm determines the kNN result based on
the coordinates included in the DB1 entries retrieved in the
first phase. Subsequently, it locates the DB2 blocks that
accommodate the result tails using the ptr pointers, and
extracts them through the appropriate PIR requests.

Consider in Figure 2 the 2NN query Q. The algorithm
privately retrieves from DB1 the blocks corresponding to
the cells in the light grey region, i.e., B1,19, B1,20, B1,25,
B1,26, B1,31 and B1,32. Next, it computes the final result
{P18, P19}, and extracts from DB2 the blocks that contain
their tails (i.e., B2,6 and B2,7).

Different kNN queries may involve a different number of
PIR requests on DB1 and/or DB2. For example, the 2NN
query Q′ in Figure 2 requires 4 PIR retrievals from DB1 (for
blocks B1,11, B1,12, B1,17 and B1,18, corresponding to the
cells in the dark grey area) and 3 from DB2 (for blocks B2,2,
B2,3 and B2,4). On the other hand, Q necessitates 6 and 2,
respectively. In order to render all queries indistinguishable,
the LBS provides a query plan QP = ((1, cnt1), (2, cnt2)) to
the client (its calculation is explained in Section 4.2). If the
PIR requests on DB1 (DB2) in the first (second) phase of
the kNN algorithm do not agree with QP , the client forms
dummy PIR requests. For example, if QP = ((1, 6), (2, 2))
in Figure 2, the client must issue 2 dummy PIR requests in
the first phase of Q′, whereas it does not need to issue any
dummy PIR request for Q. The pseudo code of the kNN
algorithm of BNC is included in Appendix B.

A final remark concerns the motivation behind the use
of two different databases DB1 and DB2. Alternatively, we
could create a single database DB, by including the tails in
DB1 and discarding DB2. Nevertheless, (i) a populated cell
is assigned a larger number of DB blocks than DB1 blocks,
because of the added tails, (ii) the block segmentation in
DB may lead to more PIR retrievals than in DB1 and DB2

collectively, and (iii) each PIR retrieval in DB is more ex-
pensive than in DB1/DB2, because of the increased size of
DB (the PIR cost raises with the database size). The above
facts suggest that using DB1 and DB2 is more likely to lead
to a lower total query cost than employing DB.

Comparison with [17]. In addition to some minor
structure differences, BNC differs from [17] mainly in three
respects: (i) BNC provides strong location privacy, whereas
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[17] does not support this property. (ii) All kNN techniques
in [17] lead to suboptimal cell accesses and, thus, subopti-
mal total PIR block retrievals from DB1. For example, the
progressive expansion technique first identifies a square re-
gion that contains at least k POIs, starting from query Q’s
cell, and expanding the search around it in a concentric pat-
tern. Then, it privately retrieves the corresponding blocks.
In Figure 2, this method accesses the cells within the thick
square. On the other hand, BNC always achieves optimal
cell accesses. (iii) [17] assumes that the secure hardware ex-
ecutes the kNN algorithm, whereas in our model the secure
hardware implements private block retrieval as an interface
(see related discussion in Section 2.3).

4.2 Query Plan
We present an algorithm for computing query plan QP =

((1, cnt1), (2, cnt2)), which forces all kNN queries first to
perform cnt1 PIR requests on DB1, and then cnt2 PIR re-
quests on DB2. cnt1 and cnt2 must be set in a way such
that any query Q following QP successfully retrieves all its
results (for algorithm correctness). This happens if and only
if cnt1 (cnt2) is larger than or equal to the number of PIR
retrievals performed in DB1 (DB2) by any Q, executing the
kNN algorithm without the plan. The challenge lies in the
fact that assigning to the above variables arbitrarily large
numbers may gravely impact the performance of BNC. Our
algorithm tightly bounds cnt1 and cnt2. It relies on the fol-
lowing construction and theorem:

Construction 1. Let GQP be a regular grid (potentially
different from index grid G) capturing the entire data space,
and c a cell of GQP . We run a range kNN algorithm [13]
with c as the input range, which computes the kNN sets of ev-
ery possible location in c. Let PS be the union of these sets.
We calculate for every vertex Vi of c its distance maxdisti to
its farthest POI in PS. Finally, we generate the Minkowski
sum [6] of c with a circle of radius max(∀Vi of c) maxdisti.
We call the derived region as the safe region of c, and de-
note it by SRc. We also denote the set of cells of G over-
lapping SRc as CSc.

Theorem 2. Consider Construction 1 for cell c ∈ GQP .
Let Q be a kNN query in c, and BSc represent the DB1

blocks associated with the cells in CSc. The number of PIR
requests performed on DB1 for Q is upper bounded by maxc =
|BSc|, where |BSc| is the cardinality of BSc.

Proof. See Appendix C.

Simply stated, based on Construction 1 and Theorem 2,
we can bound the maximum number maxc of PIR retrievals
on DB1 required by any query Q in a cell c. Additionally,
we can bound the maximum PIR retrievals on DB1 required
by any query Q in the entire data space, denoted by max1,
as follows. We perform Construction 1 for every c ∈ GQP ,
and calculate max1 = maxc∈GQP maxc. Furthermore, we
can trivially bound the maximum number of PIR retrievals
in DB2 by max2 = k · size(〈id, tail〉), where size(〈id, tail〉)
is the number of PIR blocks storing a DB2 entry. Finally, we
set cnt1 = max1 and cnt2 = max2 to derive query plan QP ,
which satisfies the correctness of BNC. Observe that QP

depends on k, the underlying kNN algorithm, the dataset,
and the granularity of GQP . The LBS generates QP in an
offline, pre-processing stage and publishes it.

Varying the granularity of GQP we can adjust a trade-off
between the plan computation time and the plan effective-
ness. The finer the granularity, the higher the effectiveness
of the plan because SRc becomes smaller in Construction
1 and, thus, leads to a smaller cnt1. Therefore, each query
entails fewer PIR retrievals. However, a finer granularity
implies more cells and, hence, more executions of the range
kNN algorithm involved in Construction 1. Consequently,
the plan computation time raises.

5. OUR SOLUTION - AHG
There are two main shortcomings in BNC: (i) it privately

retrieves one DB1 block for every empty grid cell accessed by
its kNN algorithm. (ii) The block segmentation in the DB1

blocks inflates the database size and, thus, the cost of each
PIR retrieval. As a result, BNC features an increased total
query response time. In this section we present AHG (for
Aggregate Hilbert Grid), which overcomes the above draw-
backs by eliminating the empty space in the database blocks
(i.e., the dummy entries). Section 5.1 discusses the database
organization in AHG and its kNN algorithm, and Section 5.2
explains the plan computation.

5.1 Structures and kNN algorithm
Structures. The LBS constructs a regular grid G over

the POI database DB, where P ∈ DB has the same form
as in BNC (i.e., 〈P.id, P.x, P.y, P.tail〉). Moreover, it cre-
ates a Hilbert curve [21] with the following properties: (i)
its underlying grid GH has the same cell size with G, and
granularity larger than or equal to that of G, and (ii) the
cells of G and GH coincide, and G is completely contained in
GH . Figure 3 depicts a Hilbert curve with granularity 8× 8
(i.e., with order 3) considering the example setting of Figure
2. Notice that the lower left cell of GH coincides with the
lower left cell of G (the figure omits GH for clarity). This
particular curve construction enables each cell cij ∈ G to
be mapped to a unique Hilbert value cij .H, e.g., c11.H = 0,
c21.H = 1, etc.
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Furthermore, cij is associated with an aggregate pair (cij .S,
cij .N); cij .N is the number of POIs contained in cij , and
cij .S signifies the sum of the N values of the cells preced-
ing cij in the order of their H values. In our example, pair
(c44.S, c44.N) = (3, 1) indicates that there exist 3 POIs in
the cells preceding c44 along the curve (i.e., P1, P2, P3), and
that there is 1 POI in c44 (i.e., P12). The LBS creates a
database DB1 from the aggregate pairs, by storing them se-
quentially according to the Hilbert values of their respective
cells. In our example and assuming that a block can accom-
modate 8 pairs, B1,1 contains the pairs that correspond to
the first 8 cells along the Hilbert curve.
The LBS builds a second database DB2 that stores entries

of the form 〈id, x, y, ptr〉. These entries are stored sequen-
tially according to the Hilbert values of the cells that accom-
modate the respective POIs (ties are broken arbitrarily). In
Figure 3, P1, P2, P3 and P12 are the first four POIs encoun-
tered along the Hilbert curve and, thus, are stored in the
first block of DB2 (i.e., B2,1). Finally, the LBS constructs
a third database DB3 that sequentially stores 〈id, tail〉 en-
tries for the POIs, based on their corresponding entries in
DB2. In our running example, block B3,1 stores the entries
of P1, P2 and P3, whose entries appear first in DB2. The
ptr pointer of a DB2 entry points to the DB3 block that ac-
commodates the respective POI tail. Observe that padding
is only necessary for the last block of each database (e.g.,
dummy entries d′ are inserted in B1,5 in our example). The
client is aware of the specifications of G, the Hilbert curve,
and the database organization.
As we shall see, DB2 and DB3 in AHG serve the same pur-

pose as DB1 and DB2 in BNC. Observe that DB2 in AHG
is smaller than DB1 in BNC, because it contains dummy
entries only in its last block. However, it lacks of index
structure, i.e., we cannot efficiently locate the entries asso-
ciated with a cell in DB2. This motivates the use of DB1

that acts as an index to DB2. Finally, the Hilbert order in
AHG allows a block to store entries based on the locality of
their associated POIs/cells. This is likely to lead to fewer
block retrievals during query processing.
Algorithm. We explain AHG focusing on the 2NN ex-

ample query Q of Figure 3. The algorithm consists of three
phases. The first phase entails two steps. In the first step,
the algorithm identifies the minimum set of cells that are
closest to Q and collectively contain at least k = 2 POIs.
This is achieved by privately retrieving and checking their
corresponding aggregate pairs from DB1. In our example,
the algorithm first finds that c52 is the closest cell to Q,
and locates its aggregate pair in B1,3 (since c52.H = 18 and
a DB1 block has capacity 8 aggregate pairs). Then, it re-
trieves B1,3 through the appropriate PIR request. Next, it
reads the pair of the next closest cell c51 (also in B1,3), at
which point it knows that the two cells store 2 POIs.
In the second step of the first phase, the algorithm calcu-

lates maxdist as the maximum distance from Q to c51 (the
farthest from the visited cells). Subsequently, it extracts
the pairs of the cells overlapping with the circle centered at
Q with radius maxdist, if they have not already been ex-
tracted. This step requires one additional block retrieval (of
B1,2). The examined cells (inside the thick square in the
figure) guarantee to include the actual 2NN result of Q.
In the second phase, AHG runs CPM [22] on the cells

in the thick square region (i.e., it visits them in ascending
order of their minimum distance from Q). c52 is the first

cell to be accessed by CPM. Using the aggregate pair of c52
(i.e., (10, 1)), AHG locates the entry of P19 ∈ c52 in block
B2,3 (since it appears 11th in DB2, and each DB2 block has
capacity 4 entries). The algorithm continues similarly until
CPM terminates its execution, which occurs when P18 is
read from B2,3. Note that AHG can determine if a cell is
empty (e.g., c41) through its aggregate pair and, thus, it
does not require a PIR retrieval in DB2. AHG leads to an
optimal PIR block retrieval from DB2 due to CPM.

The third phase involves retrieving only the 2NN results
(P18, P19) from DB3 (stored in B3,4), using the ptr pointers
of their correspondingDB2 entries. This phase is identical to
the second phase of BNC. Finally, in order to enforce strong
location privacy, the LBS must provide the client with a
query plan QP = ((1, cnt1), (2, cnt2), (3, cnt3)), whose com-
putation is described in Section 5.2. Every query Q must
perform exactly cnt1, cnt2 and cnt3 PIR retrievals on DB1,
DB2 and DB3, respectively. Similar to the case of BNC, if Q
requires fewer retrievals from a database than indicated by
the plan, the client issues additional dummy PIR requests.
The pseudo code of AHG is contained in Appendix D.

Compared to BNC, AHG incurs PIR retrievals from one
extra database, i.e., DB1. However, this cost is balanced
out by the following facts: (i) The DB1 retrievals are cheap
because DB1 is typically very small. (ii) DB2 in AHG is
smaller than DB1 in BNC and, thus, entails a lower PIR
cost. (iii) The cells visited by CPM in phase two of AHG
are the same as those accessed in phase one of BNC. Never-
theless, their associated DB2 entries in AHG appear in fewer
blocks than in DB1 in BNC. This is because of the elimina-
tion of the dummy entries and the effective entry grouping
due to the Hilbert order. Therefore, AHG involves fewer
PIR retrievals. For example, Q in AHG (Figure 3) entails a
single retrieval from DB2, contrary to BNC where it requires
6 retrievals from DB1 (Figure 2).

5.2 Query Plan
We present an algorithm that computes query plan QP =

((1, cnt1), (2, cnt2), (3, cnt3)), which forces every kNN query
to perform exactly cnt1 (cnt2/cnt3) PIR retrievals on DB1

(resp. DB2/DB3). Our algorithm is based on the following
construction and theorems:

Construction 2. Let GQP be a regular grid (potentially
different from index grid G) capturing the entire data space,
and c a cell of GQP . We run a range kNN algorithm [13]
with c as the input range, which computes the kNN sets of
every possible location in c. Let PS be the union of these
sets. We construct a square region R, by initially setting
it equal to the G cells that overlap with c, and expanding it
by including all the G cells that surround it in a concentric
pattern, until R covers PS. We calculate for every vertex
Vi of c its maximum distance maxdisti from the vertices of
R. Finally, we generate the Minkowski sum [6] of c with a
circle of radius max(∀Vi of c) maxdisti. We call the derived
region as the safe region of c, and denote it by SRc. We
also denote the set of cells of G overlapping SRc as CSc.

Theorem 3. Consider Construction 2 for cell c ∈ GQP .
Let Q be a kNN query in c, and BSc represent the DB1

blocks associated with the cells in CSc. The number of PIR
requests performed on DB1 for Q is upper bounded by max1

c =
|BSc|, where |BSc| is the cardinality of BSc.

Proof. See Appendix E.
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Theorem 4. Consider Construction 1 (Section 4.2) for
cell c ∈ GQP . Let Q be a kNN query in c, and BSc represent
the DB2 blocks associated with the cells in CSc. The number
of PIR requests performed on DB2 for Q is upper bounded
by max2

c = |BSc|, where |BSc| is the cardinality of BSc.

Proof. See Appendix F.

Similar to BNC, the query plan algorithm in AHG per-
forms Construction 2 for every cell c ∈ GQP , and computes
an upper bound for the maximum PIR requests in DB1 as
max1 = maxc∈GQP max1

c . In a similar manner, through
Construction 1 it bounds the maximum PIR requests in DB2

as max2 = maxc∈GQP max2
c . Next, it trivially bounds the

maximum PIR requests in DB3 by max3 = k ·size(〈id, tail〉)
(this is identical to the DB2 case of BNC). Finally, it sets
cnt1 = max1, cnt2 = max2 and cnt3 = max3. The derived
plan QP guarantees algorithm correctness.

6. EXPERIMENTAL EVALUATION
Setup. We implemented BNC and AHG in C++, and ex-

perimentally compared their performance on a Linux server
with an Intel Core2 Duo CPU 2.53GHz and 4GB of RAM.
The performance metrics under investigation are the com-
putational cost at the LBS, the query response time, and the
overall communication cost. We tested the algorithms using
a real (skewed) dataset2 containing postal addresses from
the North East USA (123K POIs). We assume that each
POI is associated with a 1KB tail, resulting in a database
DB of size 128MB. The DB databases of BNC and AHG
derived from DB reside on secondary storage at the LBS.
All database blocks consume 4 KB. We adopt rigorous mod-
els for simulating a private DB block retrieval with secure
hardware PIR, which are based on [24] and thoroughly de-
scribed in Appendix A. Our simulation assumes the IBM
4764 secure coprocessor, and the Seagate Barracuda 7200.11
SATA 3Gb/s 1TB, 7200RPM hard drive. Finally, the clients
submit their queries to the secure hardware (at the LBS) via
encrypted connections. The bandwidth at the client side is
1 MB/s, while the network round-trip time (RTT) is 50 ms.
Query processing. In the first experiment we fine-tune

the granularity of index grid G, setting k = 10. Moreover,
we assume that the query plans have been computed using
a 200 × 200 grid GQP , which provides high plan effective-
ness for both methods. Figure 4(a) shows the computational
cost of the two approaches. The colored regions in the bars
indicate the total processing cost at the LBS, whereas the
white regions correspond to the network overhead and the
computational burden at the client. Therefore, the complete
double bars represent the overall query response time. When
the granularity is very coarse (5× 5), each grid cell contains
a large number of POIs. Consequently, BNC performs nu-
merous DB1 PIR requests for every visited cell, in order to
retrieve the associated POI entries. Similarly, AHG entails
many PIR retrievals in DB2 for the same reason. As the grid
granularity raises, both methods converge to their optimal
configuration, which is 10×10 for BNC and 50×50 for AHG.
Increasing the granularity above the optimal configuration
has a negative effect because more cells are visited during
the kNN algorithms. In BNC, this increases the number
of PIR retrievals in DB1, since a PIR request is performed

2NE, available at www.rtreeportal.org.

even for an empty cell. The performance of AHG deterio-
rates mainly because more PIR accesses are involved in DB1;
the costly DB2 PIR retrievals are minimized in the presence
of empty cells due to the elimination of block segmentation.
Since the PIR accesses in DB1 are cheap (due to the small
size of DB1), AHG degrades more slowly than BNC.
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Figure 4: Performance vs. G granularity

Figure 4(b) depicts the overall communication cost be-
tween the LBS and the client for the same experiment. Note
that each PIR request involves one query from the client to
the LBS (128 bytes) plus the result block (4 KB) from the
LBS to the client. The communication cost follows the same
trend as in Figure 4(a), because it is determined solely by
the total number of PIR requests. In the remaining set of
experiments we set the grid granularity for BNC and AHG
according to their optimal configurations derived here.

The next experiment assesses the effect of k. Figure 5(a)
illustrates the computational cost for BNC and AHG. Based
on the secure hardware specifications described in Appendix
A, each PIR request in AHG consumes 34 ms at DB1, 367
ms at DB2, and 992 ms at DB3. For BNC, the PIR costs
are 384 ms for DB1 and 992 ms for DB2. As k increases,
the algorithms require more PIR retrievals from the LBS
(in all databases), and the cost at the LBS increases. The
response times are dominated by the processing at the LBS.
The performance of AHG is 3 to 6 times better than that of
BNC. The main reason is that AHG significantly reduces the
costly DB2 retrievals due to the effective Hilbert grouping,
and the elimination of empty cells. The query times in AHG
are within 7-29 seconds, and private 10NN queries (default
setting) require 18 seconds, which is acceptable for “real-
time” applications. The communication cost (Figure 5(b))
also increases slightly with k, with AHG being considerably
cheaper than BNC for the same reason as discussed above.
Furthermore, AHG requires less than 200 KB of data for all
cases, which is lower than 0.2% of the DB size.
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Query plan. Figures 6(a) and 6(b) illustrate the compu-
tational and communication cost as a function of the GQP

granularity (k = 10). A finer grid produces more effec-
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tive query plans for both methods, which reduce the total
PIR queries and, thus, the overall query response times and
bandwidth consumption. Observe that a granularity greater
than 50×50 has small impact on the effectiveness of the plan.
This is because the plan already tightly bounds the neces-
sary PIR retrievals, which cannot be decreased any further.
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The CPU time required to compute the query plan is dom-
inated by the involved range kNN queries, which are com-
mon in both the BNC and AHG plans. Consequently, this
cost is practically identical in the two methods. Further-
more, it raises quadratically as theGQP granularity elevates,
due to the quadratic increase in the number of cells (and,
thus, the range kNN executions), ranging from 248 seconds
for a 10 × 10 GQP , to 9755 seconds for a 200 × 200 GQP .
Recall, however, that the plan computation is offline.
Scalability. Finally, we discuss the scalability of AHG

under larger database sizes. We perform the same exper-
iment as in Figure 5, increasing this time the size of the
POI tails from 1KB to 10KB, and omitting BNC from the
discussion. This modification captures the case where the
POIs include large additional data (e.g., images). The size
of DB3 becomes larger than 1 GB, and a PIR retrieval re-
quires 1.51 seconds. DB1 and DB2 are unaffected. A POI
entry in DB3 now occupies 3 blocks instead of one, thus in-
creasing the total number of PIR requests during query pro-
cessing. The response times are now 11-99 seconds, whereas
the bandwidth consumption is 93KB-363KB. Although we
increased the database size by a factor of 10, the query cost
is only raised by a factor of 1.5-3.4, and the communication
cost by a factor of 1.1-1.9. This shows that AHG is quite
scalable with respect to the database size, which is mainly
justified by the fact that the PIR cost is polylogarithmic in
the database size. If we increase the POI cardinality instead
of the tail size to derive a Gigabyte-long DB3, the response
times become lower than the above. The reason is that the
costly DB3 retrievals are now fewer because the tails fit in
only one block. Moreover, the additional cheap PIR requests
in DB1 and DB2 do not significantly affect the overall cost.

7. CONCLUSION
This paper introduces the novel notion of strong location

privacy for arbitrary kNN search in spatial databases, which
renders a query indistinguishable from any location in the
data space. Prior work fails to support this property, since
an adversary may link the query to a small geographic area.
We propose sophisticated solutions that decompose a kNN
query into a series of database block retrievals. Each block
retrieval is performed via secure hardware PIR, preventing
the LBS from identifying the block. Moreover, all queries
follow a common query plan that obfuscates the block access

patterns. Initially, we devise a benchmark solution called
BNC, building upon an existing PIR-based technique. Next,
we identify its drawbacks and present a novel scheme called
AHG to tackle them. Through rigorous secure hardware
simulations, we show that AHG outperforms BNC in all
settings. More importantly, we demonstrate that AHG fea-
tures response times in the order of a few seconds and scales
well with Gigabyte databases, constituting a viable solution
in applications that demand the highest level of privacy.
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APPENDIX

A. SECURE HARDWARE PIR
We present in detail the secure hardware PIR scheme of

[24], which is utilized in our experimental evaluation in Sec-
tion 6. This technique allows a client to retrieve a block Bi

from a database DB = {B1,B2, . . . ,BN} hosted by a server,
without the latter discovering which block is requested (i.e.,
index i). Appendix A.1 describes the protocol, and Ap-
pendix A.2 discusses its performance.

A.1 Protocol
Figure 7 outlines the system architecture. A Secure Co-

processor (SCOP) is positioned at the server, which contains

a small cache capable of storing σ
√
N blocks, where N is the

total number of blocks in DB and σ (≃ 10) is a security pa-
rameter. The SCOP is a general-purpose, tamper-resistant
CPU, which can be trusted to carry out its processing un-
molested and unobserved, even if the adversary has physi-
cal access to it. The SCOP communicates with the client
through a secure SSL channel. Moreover, it has access to
the the server’s disk, where DB resides.
Setup. A setup stage occurs before the system is set to

motion. The SCOP scans DB, encrypts each block Bi ∈ DB
using a secret key, and secretly permutes the blocks. For
simplicity, we omit the algorithm that obliviously permutes
N blocks using cache capacity of σ

√
N blocks (for details

see [24]). The secret key and permutation are stored in the
cache of the SCOP, which is inaccessible to the adversary.
The SCOP creates a pyramid data structure with log4 N

levels in the server’s disk, where level i (1 ≤ i ≤ log4 N)
contains 4i buckets. Each bucket accommodates up to logN
blocks. We assume that the blocks in the same bucket are
stored sequentially in the disk. The pyramid structure is
constructed incrementally as follows. The SCOP inserts the
encrypted and permuted blocks of DB in the top level one
by one; each block is assigned to one of the buckets of this
level as determined by a hash function. When the level
becomes full, the SCOP empties it into the next level, after
re-encrypting the blocks, and obliviously re-permuting them
into the new buckets with a new hash function. The process
continues by always inserting every new block in the top
level, and performing level overflows recursively as described
above.
Query. Suppose that a client asks for block Bi. It forms

and sends a request Qi to the SCOP through the SSL chan-
nel, such that Qi is readable solely by the SCOP. The SCOP
accesses the pyramid structure top-down as follows. In every
visited level, it scans exactly one bucket as determined byQi

and the hash function used in this level. One of the scanned
buckets is guaranteed to contain the encrypted form of Bi.
The SCOP extracts Bi and sends it to the client through
the SSL channel in an encrypted form Ci, which is decipher-
able solely by the client. Finally, the SCOP re-encrypts Bi

and inserts it into the top level of the pyramid structure.
Note that this insertion may lead to level overflows that are
handled as previously discussed.
Security. The security of the scheme relies on two invari-

ants: (i) the SCOP does not disclose the level accommodat-
ing the result block of the query, and (ii) it never looks at
the same place for the same block. The former invariant
holds because the SCOP accesses one bucket per every level
of the structure. The latter is satisfied because the SCOP
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Figure 7: System architecture

re-encrypts and inserts the result block into the top level,
thus allowing the next query asking for the same block to
find it in a different bucket than its previous retrieval (and
also in a different encoded form).

A.2 Performance
The protocol features constant communication cost be-

tween the server and the client; Ci is the ciphered version of
the requested Bi, which typically consumes the same space
as Bi. We next analyze the computational time required
by the server to perform an oblivious block retrieval. This
overhead involves an online cost and an offline cost. The on-
line cost accounts for the overhead of the SCOP to retrieve
the encrypted Bi from the pyramid structure, re-encrypt it
and store it into the top level. The offline cost captures the
potential level overflows and re-shuffling.

In more detail, the online cost entails one bucket read per
pyramid level, and one block write to the top level. Let
disk seek be the disk seek time, disk rw the read/write
throughput of the disk, SCOP ed the encryption/decryption
throughput of the SCOP, and SCOP rw the read/write
throughput of the SCOP. The online cost is given by:

online cost = (log4 N + 1) · disk seek

+
(log4 N + 1) · logN · block size

disk rw

+
(log4 N · logN + 1) · block size

SCOP rw

+
(log4 N · logN + 1) · block size

SCOP ed
(1)

Next, we focus on the analysis of the offline cost. Note
that level i overflows (and thus is re-shuffled) every 4i queries
(i.e., block insertions in the top level). Instead of computing
the re-shuffling cost of each level i per 4i queries, [24] pro-
vides an amortized cost per query. Specifically, it estimates
that 42 · log4N · logN blocks are read from/written to the
disk and get re-encrypted in every query due to level over-
flows. Moreover, the disk seek time is hidden by the above
cost. Consequently, the amortized offline cost is calculated
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as:

offline cost =
42 · log4 N · logN · block size

disk rw

+
42 · log4 N · logN · block size

SCOP rw

+
42 · log4 N · logN · block size

SCOP ed
(2)

Table 1 illustrates typical values for the variables of Equa-
tions 1 and 2, assuming that we utilize the IBM 4764 se-
cure coprocessor3 (similarly to [24]), and hard drive Sea-
gate Barracuda 7200.11 SATA 3Gb/s 1TB, 7200RPM4. The
database size in this setting is larger than 1GB. Note that
the SCOP cache is equal to 32MB and, thus, can accommo-
date 8000 blocks. For σ = 10, σ

√
N = 5000 and, hence, the

protocol can work under this sample configuration. Evalu-
ating Equations 1 and 2 by substituting their variables with
the values of Table 1, we derive that the amortized process-
ing cost for one oblivious block retrieval in a 1GB database
is equal to 1.432 seconds (0.133 seconds for the online cost,
and 1.299 seconds for the offline cost).

Table 1: Sample Configuration
Variable Value

N 250,000
block size 4 KB
disk seek 5 ms
disk rw 100 MB/s
SCOP rw 80 MB/s
SCOP ed 10 MB/s

B. THE BNC PSEUDO CODE
Figure 8 illustrates the pseudo code of the kNN algorithm

in BNC. The procedure takes as arguments queryQ, value k,
and query plan QP = ((1, cnt1), (2, cnt2)) (treated as a two-
dimensional array), where cnt1 (cnt2) indicates the number
of PIR retrievals that must be performed on DB1 (DB2).
Lines 1-9 capture the first phase of the algorithm, whereas
lines 10-13 correspond to the second phase.

C. PROOF OF THEOREM 2
Proof. Figure 9(a) illustrates an example SRc generated

by Construction 1 for cell c ∈ GQP . We assume that c

(depicted in solid thin black lines) coincides with a cell of
grid G (shown in dashed grey lines) for simplicity. The proof
for the case when c partially overlaps G cells is very similar
and, thus, omitted. The illustrated points correspond to the
set of POIs PS retrieved by a range 2NN algorithm for c,
i.e., the 2NN result of any query Q in c is a subset of PS.
Distance maxdist3 represents the distance from vertex V3 to
P1, which is its farthest POI in PS. Moreover, maxdist3 =
max∀Vi of cmaxdisti. Therefore, SRc is the Minkowski sum
computed as the union of all circles with radius maxdist3
and center any point in c. The SRc is the shaded area in
our figure. The cells of G overlapping with SRc are within
the thick square region, and are denoted by CSc. Finally,
the DB1 blocks associated with the cells in CSc comprise
set BSc, whose cardinality is |BSc|.
3http://www-03.ibm.com/security/cryptocards
/pcixcc/overhardware.shtm
4http://www.seagate.com/www/en-us/products
/desktops/barracuda hard drives/

BNC kNN(Q, k, QP )

1. cnt1 = QP [0][1], cnt2 = QP [1][1]
2. entries DB1 = ∅

3. While entries DB1.size < k

4. c = cell with the next smallest minimum distance from Q

5. Privately retrieve the blocks from DB1 associated with c,
and insert their entries in list entries DB1

6. dst k = distance from Q to its kth NN in entries DB1

7. c set = set of yet unseen cells overlapping with circle
C(Q, dst k)

8. Privately retrieve the DB1 blocks associated with every cell
c ∈ c set, and insert their entries in entries DB1

9. Issue dummy PIR requests until the total number of PIR
accesses in DB1 becomes cnt1

10. kNN set DB1 = set of kNN result entries in entries DB1

11. Privately retrieve the blocks pointed by the ptr pointers of
kNN set DB1, and insert their entries in list entries DB2

12. Issue dummy PIR requests until the total number of PIR
accesses in DB2 becomes cnt2

13. Compute the final result by joining kNN set DB1 with
entries DB2 on id

Figure 8: The kNN query algorithm in BNC
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Figure 9: Illustration of Construction 1 and proof
of Theorem 2

Recall from Section 4.1 that a query Q in BNC retrieves
the DB1 blocks associated with the G cells overlapping circle
C(Q, dst(Q,Pk)), i.e., the circle centered at Q with radius
Q’s distance from its kth NN Pk. In Figure 9(a), the 2nd

NN of Q is P2 and circle C(Q, dst(Q,P2)) is illustrated in
dark grey. If this circle is completely included in SRc, then
its overlapping cells is a subset of CSc and, thus, the cor-
responding DB1 blocks are a subset of BSc. This means
that Q’s PIR accesses in DB1 are bounded by |BSc|. Con-
sequently, if we prove that C(Q, dst(Q,Pk)) is covered by
SRc for any Q ∈ c, we conclude the proof of our theorem.

Consider Figure 9(b), which shows a cell c ∈ GQP , a query
Q ∈ c and the kth NN Pk of Q. Pk can be either outside c,
or inside. We focus on the case Pk lies outside c. We draw
line segment QPk and extend it towards the direction of Q,
until it meets cell side V3V4 at point A. Angle a = ∠V3APk

is greater than or equal to 90◦. Consequently, in triangle
V3APk, side V3Pk is the largest as it lies opposite of a. This
means that dst(V3, Pk) ≥ dst(Q,Pk), where the equality
holds when Q coincides with V3.

According to Construction 1 and due to the definition of
the Minkowski sum, circle C(Q,max∀Viof cmaxdisti) is com-
pletely included in SRc. Moreover, dst(Q,Pk) ≤ dst(V3, Pk)
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≤ max∀Viof c maxdisti. Therefore, C(Q, dst(Q,Pk)) is cov-
ered by C(Q, max∀Viofcmaxdisti) and, thus, also by SRc.
The proof for the case when Pk lies inside c is identical.

D. THE AHG PSEUDO CODE
Figure 10 illustrates the pseudo code of the kNN algorithm

in AHG. The procedure takes as arguments queryQ, value k,
and query plan QP = ((1, cnt1), (2, cnt2), (2, cnt3)) (treated
as a two-dimensional array), where cnt1 (cnt2/cnt3) indi-
cates the number of PIR retrievals that must be performed
on DB1 (DB2/DB3). Lines 1-11 capture the first phase of
the algorithm, whereas line 12 corresponds to the second
and third phase.

AHG kNN(Q, k, QP )

1. cnt1 = QP [0][1], cnt2 = QP [1][1], cnt3 = QP [2][1]
2. entries DB1 = ∅, c set = ∅, num = 0
3. While num < k

4. c = cell with the next smallest minimum distance from Q

5. (S,N) = the aggregate pair of c, which is privately
retrieved from DB1

6. Insert c into c set, and (c, S,N) into entries DB1

7. num = num+N

8. maxdist = maximum distance from Q to the cells in c set

9. Visit all the cells c overlapping with circle C(Q,maxdist)
and insert them in c set

10. Privately retrieve the (not yet extracted) DB1 entries of the
cells in c set

11. Issue dummy PIR requests until the total number of PIR
accesses in DB1 becomes cnt1

12. Same as lines 2-13 of Figure 8, after substituting every
reference to cnt1, cnt2, DB1 and DB2 with cnt2, cnt3, DB2

and DB3, respectively, and facilitating the DB2 PIR
retrievals with the use of entries DB1.

Figure 10: The kNN query algorithm in AHG

E. PROOF OF THEOREM 3

Proof. Figure 11(a) illustrates an example SRc gener-
ated by Construction 2 for cell c ∈ GQP . We focus on the
case where c coincides with a cell of the index grid G for
simplicity. The proof for the case when c partially over-
laps G cells is very similar and, thus, omitted. The illus-
trated points correspond to the set of POIs PS retrieved
by a range 2NN algorithm for c, i.e., the 2NN result of any
query Q in c is a subset of PS. We calculate the square
range R by first setting it equal to c and checking whether
it contains all the POIs in PS. Since it does not, we ex-
pand it in a concentric pattern by including the G cells that
surround c. The resulting R covers all PS and, thus, con-
stitutes the final square region. Distance maxdist1 repre-
sents the maximum distance from vertex V1 to R. More-
over, maxdist1 = max∀Vi of cmaxdisti. Therefore, SRc is
the Minkowski sum computed as the union of all circles with
radius maxdist1 and center any point in c. The SRc is the
shaded area in our figure. The cells of G overlapping with
SRc are within the thick square, and are denoted by CSc.
Finally, the DB1 blocks associated with the cells in CSc

comprise set BSc, whose cardinality is |BSc|.
Recall from Section 5.1 that, in the first step of the first

phase, the kNN algorithm of AHG visits the minimum G

cells that are closest to Q and collectively include at least k
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Figure 11: Illustration of Construction 2 and proof
of Theorem 3

POIs (note that every cell access implies the private retrieval
of the associated DB1 blocks). In Figure 11(a), the 2NN
query Q visits the dark gray cells. Then, the maximum dis-
tancemaxdist ofQ to the vertices of these cells is calculated,
and all the cells overlapping circle C(Q,maxdist) are visited
in the second step of the first phase of AHG. Suppose that
the cells visited in the first step are included in R as shown
in our figure. Then, the cells accessed in the second step
are completely covered by SRc. This is because maxdist is
smaller than or equal to maxdist1 and, thus, C(Q,maxdist)
is included in C(Q,maxdist1), which is a part of SRc. Con-
sequently, the cells overlapping C(Q,maxdist) are a subset
of CSc and, therefore, their corresponding DB1 blocks are
a subset of BSc. This means that |BSc| upper bounds the
necessary PIR requests in DB1 by any Q ∈ c, which proves
our theorem. What remains is to prove that the cells vis-
ited by Q during the first step of the first phase of AHG are
always included in R, which we conduct below.

We prove by contradiction, utilizing Figure 11(b). Sup-
pose that cell c′ is the last cell retrieved in the first step,
which lies outside R. This means that (i) all cells in R have
already been visited before c′ because they are closer to Q,
and (ii) R contains strictly fewer POIs than k. However,
by definition R includes the kNN set of any query in c and,
hence, also of Q. Consequently, R accommodates at least k
POIs which reaches our contradiction.

F. PROOF OF THEOREM 4

Proof. Recall that, during the second phase of AHG and
due to CPM, the kNN algorithm extracts the DB2 blocks
associated with the cells overlapping circle C(Q, dst(Q,Pk)),
which is centered atQ and has radius the distance dst(Q,Pk)
from Q to its kth NN Pk. As we explained in Appendix C,
C(Q, dst(Q,Pk)) is completely contained in SRc. Therefore,
the cells overlapping this circle are a subset of CSc and,
thus, their associated DB2 blocks are a subset of BSc. Con-
sequently, |BSc| bounds the DB2 PIR retrievals of Q.
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