
An Adaptive Updating Protocol for Reducing Moving
Object Database Workload

Su Chen Beng Chin Ooi Zhenjie Zhang
School of Computing

National University of Singapore
{chensu,ooibc,zhenjie}@comp.nus.edu.sg

ABSTRACT
In the last decade, spatio-temporal database research focuses on
the design of effective and efficient indexing structures in support
of location-based queries such as predictive range queries and near-
est neighbor queries. While a variety of indexing techniques have
been proposed to accelerate the processing of updates and queries,
not much attention has been paid to the updating protocol, which
is another important factor affecting system performance. In this
paper, we propose a generic and adaptive updating protocol for
moving object databases with less number of updating messages
between the objects and database server, thereby reducing the over-
all workload of the system. In contrast to the approach adopted by
most conventional moving object database systems where the ex-
act locations and velocities last disclosed are used to predict their
motions, we propose the concept ofSpatio-Temporal Safe Region
to approximate possible future locations. Spatio-temporal safe re-
gions provide larger space of tolerance for moving objects, free-
ing them from location and velocity updates as long as the errors
remain predictable in the database. To answer predictive queries
accurately, the server is allowed to probe the latest status of some
moving objects when their safe regions are inadequate in returning
the exact query results. Spatio-temporal safe regions are calculated
and optimized by the database server with two contradictory ob-
jectives: reducing update workload while guaranteeing query ac-
curacy and efficiency. To achieve this, we propose a cost model
that estimates the composition of active and passive updates based
on historical motion records and query distribution. We have con-
ducted extensive experiments to evaluate our proposal on a variety
of popular indexing structures. The results confirm the viability,
robustness, accuracy and efficiency of our proposed protocol.

1. INTRODUCTION
Spatio-temporal databases, especiallyMoving Object Databases

(MOD), are well studied in the database community. Efficient disk-
resident indexing structures [5, 9, 12, 14, 19, 21] have been pro-
posed to support different types of queries for location-based ser-
vices. Two typical example queries are ”Which are the vehicles
remaining in Central Park after 10 minutes?” or ”Who will be the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09...$ 10.00.

query

query

update

Figure 1: Architecture of a moving object database system

policeman closest to City Hall after 30 minutes?”. These queries
can be formalized with range query and nearest neighbor query on
predicted locations of objects moving in a two-dimensional (2D)
space. A moving object database keeps track of all objects by re-
ceiving occasional location disclosures from objects. In the mean-
time, the database server also answers all incoming predictive queries.
Fig.1 shows a typical architecture of a moving object system.

While most existing studies on moving object databases focus on
index and query efficiency, less effort has been made to address the
issue on the updating mechanism/protocol, which is another crucial
factor affecting the system workload and performance even more.
Considering the limited room of technical advances on indexing
structures and query optimization, it is now important to reconsider
the design of the updating protocol. This paper is the first attempt
on a systematic investigation on this possibility. In particular, we
propose a new adaptive updating protocol, which reduces the object
updating frequencies by maintaining only approximate motions in-
stead of exact ones in the database system. The design of the pro-
tocol is on the basis of a careful analysis on the advantages and
disadvantages of the existing protocols.

The first generation of moving object databases tracks object
locations only. In particular, an object reports its location to the
database server every (logical) timestamp. It is inadequate to make
prediction with location information only. Later, in order to sup-
port predictive queries and reduce update frequency, motion mod-
els are introduced to approximate object movements. For example,
a linear model with object’s location and velocity can be used to
predict object’s location at any future time, assuming the object
moves with a fixed speed along a straight line. Currently, object
updating protocols follow some simple strategies, such asTempo-
ral Bounded Strategy andSpatial Bounded Strategy. In the tempo-

735

Figure 2: Example of spatial bounded strategy

ral bounded strategy, moving objects update their motion models
periodically after a fixed time interval. This scheme is neither ef-
fective nor efficient. An update is issued even if the model does not
change since the last update while the movement prediction imme-
diately becomes meaningless when the object changes its velocity
dramatically soon after the last update. On the other hand, the spa-
tial bounded strategy [13] adaptively decides the update time, de-
pending on the spatial error incurred by the movement model con-
structed on the previous update. Specifically, two motion models
are stored on both the object and the database server. The motion
model at the object side is always updated with current movement,
which is supposed to be more accurate. The object regularly mea-
sures the error of the motion model which has been sent to the
server previously [13]. An immediate update is issued if the pre-
diction error is larger than some specified threshold. In Fig.2, we
present an example of the spatial bounded strategy. In the figure,
solid points (hollow points resp.) represent the predicted locations
of the old model (new model resp.). When the distance between
the solid point and hollow point in the near future exceeds the tol-
erance, the object updates its movement model with the database
server. To ensure the accuracy of predictive query, the database
server is allowed to actively request the model update from the
object, when the candidate object does not necessarily satisfy the
query condition.

Compared with the spatial bounded strategy [13] introduced above,
our new generic updating protocol is equipped with three major fea-
tures to enhance the performance. First, we adopt the linear move-
ment model instead of the complex high-order models, which can
be seamlessly integrated into database system with optimized index
structures [4]. While achieving benefits on computational cost and
index efficiency with the simple motion model, our empirical stud-
ies show that there is no significant difference on prediction quality
even when more complicated motion model is employed instead.

Second, our protocol allows approximation on object motion in
both spatial and velocity spaces, providing better flexibility on the
tuning of the updating protocol. In particular, our protocol relies
on the new concept ofSpatio-Temporal Safe Region, or STSR in
short, which is a rectangle in spatio-temporal space bounding the
possible location and velocity. In Fig.3, we illustrate the basic idea
of our framework following the example in Fig.2. Our system as-
signs some rectangle to the object as spatial safe region, as well
as some maximal and minimal speeds as velocity safe region. A
series of rectangles, calledPredicted Regions, can then be derived
to bound the possible locations of the object on subsequent times-
tamps. An update is necessary if: 1) the location of the object can-
not be bounded by the predicted region at the current timestamp,
or 2) the movement inferences on the current location and velocity
violate some predicted regions in the future. In Fig.3, the object
is “safe” at timet + 1 since it stays in the predicted region and
its updated movement prediction remains bounded by the follow-

t

1
q

2
q

3
q

4
q
 5
q

Figure 3: Example of spatial-temporal safe region

ing predicted regions. At timet + 2, although its new location is
still within the predicted region, updating is invoked to ensure that
the prediction error on the server side remains within a tolerable
bound.

Third, our updating protocol takes both historical motion records
and query distribution into consideration, rendering a cost opti-
mization model and an automatic tuning mechanism highly adap-
tive to the changing world. Recall the example in Fig.3. Given the
locations of the recent queries shown in the figure,{q1, q2, q3, q4, q5},
careful design on the STSR avoids the potential overlaps between
the predicted regions and popular querying areas in the spatial space.
This enables our framework to outperform existing solutions on the
maximization of update savings. We summarize the contributions
of this paper as follows:

1. We present a generic and adaptive updating protocol for the
purpose of reducing the number of update messages while
guaranteeing the efficiency and accuracy of predictive queries.

2. We propose a cost model to estimate the update workload
incurred by specific moving object(s).

3. We propose cost-based optimization strategies to reduce the
updating frequencies.

4. We evaluate the performance of our proposal with a variety
of index structures.

2. PRELIMINARIES
Assume there aren moving objects, i.e.,O = {o1, o2, . . . , on},

being monitored in the system. Following the common assump-
tion on spatio-temporal indexing, the time axis is sliced into snap-
shots at discrete times, i.e.,T = {0, 1, . . . , t, . . .}. The exact
physical location of objectoi at timestampt is denoted by a vec-
tor lti = (lti .x, lti .y). Similarly, the velocity ofoi at t is denoted
by vt

i = (vt
i .x, vt

i .y). With the linear movement model, the pre-
dicted location ofoi at times ≥ t is estimated asplsi , i.e.,plsi .x =
lti .x + vt

i .x · (s − t) andplsi .y = lti .y + vt
i .y · (s − t).

Before delving into the details of our updating protocol, we first
introduce the concept ofSpatio-Temporal Safe Region, as defined
below.

DEFINITION 2.1. Spatio-Temporal Safe Region (STSR)
Given a moving object oi, a Spatio-Temporal Safe Region (STSR)
for oi is represented by a tuple R(oi) = (LR, V R, tr, te), where
LR is a rectangle in the physical space (i.e., the space where the
object moves), V R is a rectangle in the velocity space, tr is the
reference time, and te is the expiry time.

Given an STSRR(oi), the spatial rectangleLR is bounded by
[

LR.x⊢, LR.x⊣
]

,
[

LR.y⊢, LR.y⊣
]

on the two dimensions respec-
tively. Similarly, the velocity rectangleV R of R(oi) is bounded by

736

1
o

2
o

3
o

o
 1
 2

1

2

3

3

4

4
 5

5

6

6

1
Q

x

y

Figure 4: Example of STSR

STSR LR V R tr te

R(o1) [0.5, 1.5] × [0.2, 1.2] [0.5, 0.5] × [1, 1] 1 4
R(o2) [1, 2] × [5, 6] [1.2, 2] × [−1.4,−1] 2 5
R(o3) [5, 6] × [2, 3] [−1,−1] × [0.5, 0.75] 1 5

Table 1: Details on the STSR in Fig.4

[

V R.x⊢, V R.x⊣
]

,
[

V R.y⊢, V R.y⊣
]

. Intuitively, LR relaxes the
location ofoi at reference timetr, andV R approximates the pos-
sible velocities ofoi betweentr and te. A predicted region, as
defined below, infers the possible locations ofoi at timet before
the expiry timete.

DEFINITION 2.2. Predicted Region
Given an STSR R(oi) = (LR, V R, tr, te) and inferring time t
(tr ≤ t ≤ te), the predicted region of oi at time t, P t

i =
[

P.x⊢, P.x⊣
]

×
[

P.y⊢, P.y⊣
]

, is the maximal spatial rectangle expanded from LR
with respect to V R, where

P.x⊢ = LR.x⊢ + V R.x⊢(t − tr)

P.x⊣ = LR.x⊣ + V R.x⊣(t − tr)

P.y⊢ = LR.y⊢ + V R.y⊢(t − tr)

P.y⊣ = LR.y⊣ + V R.y⊣(t − tr)

The definition above assumes that the inferring timet is no ear-
lier than the reference timetr, which can be easily relaxed. When
t < tr, the predicted region is calculated with the “reverse” veloc-
ity bounding rectangle, which is

[

V R.x⊣, V R.x⊢
]

×
[

V R.y⊣, V R.y⊢
]

.
The predicted region is

P.x⊢ = LR.x⊢ + V R.x⊣(t − tr)

P.x⊣ = LR.x⊣ + V R.x⊢(t − tr)

P.y⊢ = LR.y⊢ + V R.y⊣(t − tr)

P.y⊣ = LR.y⊣ + V R.y⊢(t − tr)

An STSRR(oi) = (LR, V R, tr, te) is consistent with the mov-
ing objectoi at timet ≤ te, if both of the following two conditions
hold: 1) Current locationlti remains in the predicted regionP t

i in-
ferred fromR(oi); and 2) The predicted locationplsi remains in the
predicted regionP s

i for anyt < s ≤ te.
Note that the consistency only depends on the locations, which

remains valid even when the velocity ofoi at timet is out of the
velocity rectangleV R.

As an example, Tbl.1 lists the STSRs of three objects{o1, o2, o3}
which are illustrated in Fig.4. Based on Definition 2.1 and 2.2, we

)
(
 1
o
R

)
(
 2
o
R

o
 1
 2

1

2

3

3

4

4
 5

5

6

6

x

y

LR

LR

t
l
2

t

l
2

t
l
1

Figure 5: Examples of consistency verification

canderive the predicted regions of the objects at timestampt = 3,
as shown in Fig.4.

According to the above definitions, it is straightforward to verify
the consistency of the location with the given STSR on the client
side, i.e., the moving object, by simply checking the predicted lo-
cations of the object at every timestamp before the expiry timete.
Since we adopt the linear model on deriving the predicted regions,
the verification process can be simplified by checking the predicted
location (or exact current location) at only three timestamps. In
particular, the object first tests if the current timestamp is beyond
the expiry timete. If the STSR has already expired, the algorithm
returns a negative answer immediately. Otherwise, the object then
checks if the current locationlti and the predicted locationplte

i are
both covered by the predicted regionsP t

i andP te

i respectively. Fi-
nally, if the current timestampt is ahead of the reference timetr,
we also need to see if the predicted location attr is adequately
covered by the location rectangleLR. The verification algorithm
is summarized in Algorithm 1 in Appendix B.

In Fig.5, we give three examples to show why the conditions
above are sufficient to prove the validity of a STSR. Two STSRs,
R(o1) andR(o2), are shown in the figure. The solid dots denote
the current locations and hollow dots represent the predicted loca-
tions. The reference time ofR(o1) is the current timestamp. Since
the current locationlt1 is inside the location rectangle and the pre-
dicted location is covered by the predicted region,R(o1) remains
valid. The reference time ofR(o2), on the other hand, is after the
current timestamp. The predicted regions betweent andte are thus
extended backwards according to the location prediction formula.
If we test only the locations of the current timestamp and expiry
time, some false positive STSR may wrongly pass the verification,
e.g., the prediction based onlt2. However, when the location at the
reference time is also verified, all false positives are pruned, as the
movement prediction atl

t

2 implies.
In this paper, we focus on the processing of predictive range

queries. Given a querying rectangleQR in location space and the
querying timetq, the predictive range query returns all the objects
with predicted locations inQR at timetq. Although we constrain
our discussion in range query throughout the paper, it is easy to see
that other queries, e.g., k-nearest neighbor query, can be answered
with a series of range queries [9].

3. UPDATING PROTOCOL
Generally speaking, our updating protocol consists of two types

of updates: the active update and the passive update. In the database,
each objectoi is always associated with one (and only one) STSR

737

R(oi), which is kept in the database as well as the memory of the
client device. In the following, we discuss the two updates in detail.

Active Update
On each timestamp, the objectoi checks if the new motion predic-
tion model with its current location and velocity remains consistent
with its STSRR(oi), using Algorithm 1. If there is any inconsis-
tency, it issues an active update to the database server consisting of
its current location and velocity.

At the server side, the database system continuously listens to
any incoming active updates from the objects. If one of the moving
objectsoi updates its location and velocity at timet, the system
renews the record of the object in the database. The system then
calculates a new STSR foroi based on the the updated record. The
new STSR is sent to the objectoi, while the corresponding record
in the database is also refreshed accordingly. An outline of the
update procedure can be found in Algorithm 2 in Appendix B.

Query Processing and Passive Update
While active updates are initiated by the objects themselves, pas-
sive updates are issued when the database processes predictive range
queries. Typically, predictive range queries in most moving object
databases are processed using a filter-and-refine approach, which
determines candidate objects based on their predicted regions and
verifies them by probing passive updates if necessary. A candidate
set is constructed first by retrieving all objects overlapping with the
query rangeQR at query timetq, based on the predicted regions of
the STSRs. For each candidate objectoi, if the predicted region of
oi is covered by the query range, the object can be safely included
into the query result. Otherwise, a request is sent to the object for
an update on its current location and velocity, which will be used
on the server side to make a more accurate prediction. The object is
subsequently listed in the query result if the new predicted location
is still in the query range. A general framework for answering range
queries based on the concept of STSRs is presented in Algorithm 3
in Appendix B.

Let us recall the example shown in Fig.4, and see how predic-
tive range queries can be answered with STSRs. If a range query
is issued in the rectangle regionQR = [2.5, 4.5] × [2.5, 4.5] at
querying timetq = 3, the predicted regions can be calculated ac-
cording to the inference equations above. For objecto3, for ex-
ample, the predicted region at timestampt = 3, P 3

3 , is the rect-
angle[3, 4] × [3, 4.5]. SinceP 3

3 is covered by the query region
completely,o3 is a positive result if it remains consistent with its
current STSR. On the other hand, there is no overlap betweenP 3

1 ,
implying thato1 is a negative result. Unlike the othero1 or o3, the
case ofo2 is more complicated, since the predicted regionP 3

2 par-
tially overlaps withQR. To clarify if o2 is in the query result or
not, the system sends an update request too2 for its current motion
parameters, i.e., the location and velocity.

To put the updating protocol in use, there are two issues to re-
solve. First, to minimize the workload of the system, the STSR
calculation algorithm plays an important role in finding an opti-
mal STSR (Step 1 in Algorithm 2). Recall the example in shown
Fig.4, which demonstrates that overall update cost, including both
active and passive updates, can be reduced if we extend the pre-
dicted regions as much as possible without too many overlapping
query ranges. We will expand on this idea with further details in
Sec.4.1 and the corresponding optimization techniques for better
STSR design in Sec.4.3. Second, considering different index struc-
tures in moving object databases, objects are stored and searched in
different ways, even with the same linear motion model. Therefore,

it remains unclear so far how existing database systems support the
search for all objects whose corresponding predicted regions over-
lap with the query range. This is important in query processing
for efficient retrieval of candidate objects in the filter step (Step 1
in Algorithm 3). In Sec.C in the appendix, we answer this ques-
tion by showing that it does not take much effort to modify existing
moving object indexing structures to support these queries.

4. OPTIMIZATION TECHNIQUES

4.1 Cost Model
In this section, we present a cost model estimating the proba-

ble validity of a given STSR. As introduced in Sec.3, there are two
types of updates, namelyActive Update andPassive Update. Ei-
ther active update or passive update leads to a new STSR. We use
Pa(R(oi)) andPp(R(oi)) to denote the probabilities of active up-
date and passive update happening onR(oi) before the expiry time
te. An STSR remains valid until the expiry timete with probabil-
ity:

Pvalid(R(oi)) = (1 − Pa(R(oi))) · (1 − Pp(R(oi))) (1)

Obviously, a good STSR should maximizePvalid. Intuitively, a
largerLR and a largerV R lead to lower probability ofPa(R(oi))
but higher probability ofPp(R(oi)), and vice versa. To optimize
Equation 1, it is important to estimate both probabilities first.

Active Update Probability
An active update is issued by objectoi if the previous STSR is no
longer consistent with the current location and velocity. Given an
STSRR(oi), Pa(R(oi)) is the probability of inconsistency hap-
pening before the expiry timete of R(oi). Without knowing the
exact future trajectory ofoi, it is hard to estimatePa(R(oi)). If
we assume the previous motion model doesn’t change,R(oi) will
always be valid untilte; on the other hand, it is hard to indicate the
possible changes in the motion without any additional knowledge
on the future trajectory. However, if all the similar historical tra-
jectories are recorded in the database, the accumulated statistical
information provides probability estimation on the active update.
Unfortunately, this solution is impractical due to the high cost in
both storage and processing on the trajectories. To facilitate effec-
tive and efficient statistical estimation, the database system main-
tains a set of STSR update records, as defined below, to simulate
the historical trajectories of objects.

DEFINITION 4.1. STSR Update Record
An STSR update record is a tuple (R(ok), ok, ltu

k , vtu

k , tu) where k
is the identity of the associated moving object, tu is the time when
the update record is generated, ltu

k and vtu

k are the location and
velocity of ok at tu, and R(ok) = (LR, V R, tr, te) is the latest
STSR of ok before the update time tu.

The STSR update records are maintained in a separate table in
the database, called theUpdate Record Table. A record is inserted
into the table when: 1) an update fromok is received due to the
violation onR(ok), or 2) the previous STSRR(ok) expires. In the
first case, the location and velocity at update time are written into
the record. In the second case, NULL values are inserted instead.
This implies that each STSR issued in the past has a record kept by
the database system in the update history table.

Next, we introduce the concept ofRecord Coverage to evaluate
the robustness of a new STSR with respect to similar STSR update
records in the update record table. Specifically, an STSRR(oi)
covers an STSR update recordU = (R(ok), ok, ltu

k , vtu

k , tu), if

738

o

x

y

1
 2

1

2

3

3

4

4

LR
U
.
1

LR
U
 .
2

LR
U
 .
3

LR
U
 .
4

o

vx

vy

1
.
0
 2
.
0

1
.
0

2
.
0

3
.
0

3
.
0

4
.
0

4
.
0

VR
U
.
1
VR
U
 .
2

VR
U
 .
3

VR
U
 .
4

u
t

k
v
U
 .
2

u
t

k
v
U
.
1

u
t

k
v
U
 .
4

u
t

k
v
U
 .
3

LR
o
R
 i
).
(
 VR
o
R
 i
).
(

Figure 6: Coverage of STSR on update records

1) R(oi).LR coversR(ok).LR, and 2)R(oi).V R covers both
R(ok).V R andvtu

k . Without ambiguity, we useR(oi) ⊇ U to
denote the coverage relationship, in whichU is a specific update
record. In Fig.6, for example, we present an example on the cov-
erage relationship with an STSRR(oi) and four update records
{U1, U2, U3, U4}. The location rectangleLR of the update records
are shown with black thin lines in the spatial space on the left. Sim-
ilarly, the velocity rectangleV R and the velocity at update timevtu

k

are plotted in the velocity space on the right. Given the STSRR(oi)
marked with red thick lines in both spaces,R(oi) coversU2 by the
definition above. U3 is not covered byR(oi) since the updated
velocityvtu

k of U3 is out of the velocity rectangle ofR(oi).
If the STSRR(oi) covers an update recordU , it is able to remain

consistent until the expiry time, ifoi follows the same trajectory
of ok whenU was recorded forok. This motivates the following
definition of Coverage Rate to approximate the probability of an
active update on the new STSRR(oi).

DEFINITION 4.2. Coverage Rate
Given an STSR R(oi) and a group of similar STSR update records
UNN , the coverage rate of R(oi) is measured by |{Ui∈UNN | R(oi)⊇Ui}|

|UNN |

We now discuss the similar update record setUNN as shown in
the above definition. To get all update records related to the current
moving objectoi, the system retrieves all update records inUNN ,
if the location rectangleUi.LR and velocity rectangleUi.V R of
the recordUi cover the locationltr

i and velocityvtr

i at reference
time tr respectively. As a summary, we have

Pa(R(oi)) =
|{Ui ∈ UNN | R(oi) ⊇ Ui}|

|UNN |

Passive Update Probability
A passive update is issued when it is not sufficient to decide if an
object meets the query with its current STSR stored in the database,
i.e., the predicted region partially overlaps with the query region.
To estimate the number of passive updates for a given STSRR(oi),
it is necessary to predict the probability of the event of partial over-
lap. To simplify the model and save computational cost, we relax
the probability by including any overlap event even if the predicted
region is completely covered by the query range. This relaxation
does not greatly affect estimation error since the query range is usu-
ally not large enough to cover many predicted regions.

Following the existing assumptions on the performance analysis
of range queries [5, 12, 19], we assume the querying location and
querying time follow the uniform distribution in spatial space and
temporal space. The probability of a predicted region overlapping
any range query at timet is thus proportional to the volume of the
predicted region.

For an STSRR(oi) issued at update timetu, the total volume of
all predicted regions at timestamps betweentu andte is denoted by
V ol(R(oi)). By using the following notations to replace the side
lengths of location rectangle and velocity rectangle, i.e.,LDx =
LR.x⊣ − V R.x⊢, LDy = LR.y⊣ − V R.y⊢, V Dx = V R.x⊣ −
V R.x⊢, andV Dy = V R.y⊣ − V R.y⊢, the total volume can be
further simplified:

V ol(R(oi)) =

te
∑

t=tu

(LDx + V Dx(t − tr))·(LDy + V Dy(t − tr))

If the expected number of queries happening at each timestamp is
N and the volume of the whole spatial space isS, the probability
of not meeting any range query is approximated by the ratio of total
volume with respect to the expected query volume.

Pp(R(oi)) = max

{

1 −
V ol(R(oi)) · N

(t − tr)S
, 0

}

4.2 Calculation of Optimal STSR
In this section, we present an optimization method to find an

STSRR(oi) to minimize the expected update cost. Given the cost
model presented above, the estimation on the active update proba-
bility Pa(R(oi)) depends on the number of update records covered
by R(oi). This implies that there are only2|UNN | different values
for the possible active update probability forR(oi). Each possible
value is associated with a group of covered records. This motivates
our optimization technique of modeling the record covering with a
series of discrete events.

To find the optimized STSR, an initial STSRR(oi) is first cre-
ated with minimalLR and minimalV R covering onlylti andvt

i of
oi respectively. The optimization procedure executes iteratively. In
each iteration, it tries to expand the STSR to cover one more update
record from the remaining uncovered records inUNN . If the esti-
mated update cost does not further decrease after some iterations,
the optimization procedure stops and returns the final STSR. The
detailed algorithm for the optimization procedure is presented in
Algorithm 4 in Appendix B.

In Fig.7, we illustrate an example of the optimization algorithm,
using the data shown in Fig.6. The red square points are the loca-
tion and velocity of the objectoi at timetr. At the beginning of the
algorithm, the STSRR(oi) is initialized with the minimum square
covering the red squares in both spaces. Since the inclusion of any
update record has the same reduction effect onPa(R(oi)), the opti-
mal update record to cover next actually has the minimum increase
on the passive update probabilityPp(R(oi)). By testing all update
records,U2 is selected according to the selection criterion. The
STSRR(oi) grows in both spatial and velocity spaces to cover the
update recordU2, as shown in Fig.7(a). In the second iteration,
as shown in Fig.7(b), the update recordU1 is picked since the de-
crease onPa(R(oi)) is still larger than the increase onPp(R(oi)).
The algorithm terminates after the second iteration, when there is
no other expansion that can further reduce the estimated cost. Note
that this algorithm works in a greedy manner. Hence, it does not
guarantee convergence to the global optimum.

The retrieval of the similar update record setUNN discovers all
update records covering both the location and velocity of the cur-
rent object. To efficiently support such a retrieval process, an index
is built on the update records with respect to their location rect-
angle and velocity rectangle. Given the 4D index structure,UNN

is simply retrieved with the issuance of a point query at locationlti
and velocityvt

i . The computation ofPp(R(oi)) takes constant time
since the total volumeV ol(R(oi)) can be summed up quickly by
the formula. In each iteration, all the remaining update records are

739

o

x

y

1
 2

1

2

3

3

4

4

LR
U
.
1

LR
U
 .
2

LR
U
 .
3

LR
U
 .
4

o

vx

vy

1
.
0
 2
.
0

1
.
0

2
.
0

3
.
0

3
.
0

4
.
0

4
.
0

VR
U
.
1
VR
U
 .
2

VR
U
 .
3

VR
U
 .
4

u
t

k
v
U
 .
2

u
t

k
v
U
.
1

u
t

k
v
U
 .
4

u
t

k
v
U
 .
3

(a) In first iteration

o

x

y

1
 2

1

2

3

3

4

4

LR
U
.
1

LR
U
 .
2

LR
U
 .
3

LR
U
 .
4

o

vx

vy

1
.
0
 2
.
0

1
.
0

2
.
0

3
.
0

3
.
0

4
.
0

4
.
0

VR
U
.
1
VR
U
 .
2

VR
U
 .
3

VR
U
 .
4

u
t

k
v
U
 .
2

u
t

k
v
U
.
1

u
t

k
v
U
 .
4

u
t

k
v
U
 .
3

(b) In second iteration

Figure 7: Example of optimization algorithm

tested in sequence. This leads toO(m2) complexity in the worst
case, ifm update records are retrieved from the 4D index structure.

4.3 Reducing Computation Cost
The STSR calculation algorithm runs in quadratic complexity in

terms of the number of STSR update records. Thus, the compu-
tation cost on the STSRs can be very high if every single object
update runs the construction method. To reduce computation cost,
there are two simple methods, namelyStatic STSR, andGlobal Dy-
namic STSR. To distinguish from the basic strategy with indepen-
dent computation of STSR for each object, we call the basic solu-
tion Personal Dynamic STSR.

With static STSR strategy, there is a group of fixed parameters
{∆l, ∆v, ∆t}. ∆l and∆v are rectangles in the spatial and velocity
space, covering the origins, respectively.∆t is a positive constant
value that specifies the length between reference time and expiry
time. For any updating moving objectoi with locationlti , velocity
vt

i and timet, the location rectangleLR for the STSRR(oi) for oi

is computed by moving∆l aligninglti with the origin, i.e.,

LR.x⊢ = lti .x + ∆l.x
⊢

LR.x⊣ = lti .x + ∆l.x
⊣

LR.y⊢ = lti .y + ∆l.y
⊢

LR.y⊣ = lti .y + ∆l.y
⊣

Similarly, the velocity rectangleV R in R(oi) is also constructed
by expanding the velocity with margins in∆v on both dimen-
sions. The expiry time ofR(oi) is t + ∆t. This strategy is sup-
posed to incur minimal computation cost, since the parameters are
never updated after the specification at the beginning. As an ex-
ample, if the parameter set is{∆l = (−1, 1) × (−2, 1), ∆v =
(−0.2, 0.1) × (−0.1, 0.3), ∆t = 5}, object oi updates at time
tr = 10 with location lti = (10, 15) and velocityvt

i = (1, 2),
the new STSRR(oi) is constructed withLR = (9, 11)× (13, 16),
V R = (0.8, 1.1) × (1.9, 2.3) andte = 15.

With the strategy of global dynamic STSR, each global param-
eter set{∆l, ∆v, ∆t} is valid only in an interval on the time axis.

There is one and only one valid global parameter set at any times-
tampt. The object updates are handled with the global parameters
valid at the update time, as is done with the static strategy. There
is some computation cost incurred by this strategy to calculate a
new parameter set when the previous global parameter set is ex-
piring. The computation on parameter re-computation can be run
offline when the system has free CPU cycles for use, not affecting
the performance of the database system.

In Global Dynamic STSR Strategy a global STSR expansion plan
is designed and updated from time to time, with evolution on the
index structure. To make Algorithm 4 applicable on the search of
optimal STSR expansion plan, we present some modifications to
the original algorithm.

In the original algorithm, the STSR update records covering the
updating location of the current object,UNN , are first retrieved. On
the global expansion optimization algorithm, however, there does
not exist such similar update record set since the optimization is
not location dependent. Thus, instead of finding a group of update
records in the table, all records are utilized in the global parameter
search by aligning all of the centers of STSRs in the update records
to the origin. After the alignment operation, a virtual moving object
is created with location at the origin and the velocity at the average
speeds of the objects on both dimensions. The original algorithm
is then applied on the virtual object and the aligned records. The
final expansions on both spatial and velocity spaces are recorded
and stored in the parameter set{∆l, ∆v, ∆t}.

5. EXPERIMENTAL EVALUATION
We now report experimental results that evaluate effectiveness

and efficiency of the STSR based updating protocol. We first stud-
ied the performance of the basic STSR protocol under different
parameters and then compared it with another state-of-art update
mechanism. Finally, we evaluated the performance of different
STSR strategies on different indexes.

Experimental Settings:Three sources of real andsemi-real datasets
were used in our experiments:

[TRK] is a real dataset provided by R-tree Portal[2], which con-
tains trajectories of 276 trucks moving in Athens metropolitan area
(see Fig.16(a) in Appx.D.1). The trucks update at a rate of 30sec.

[EC] is another real dataset as a part of the e-Courier datasets[1].
e-Courier keeps track of the movement of all its couriers all over
UK (see Fig.16(b) in Appx.D.1). The couriers report their locations
(GPS records) every 10sec. We crawled e-Courier for one week and
extracted 587 objects (i.e., trajectories) that moved nonstop for over
120ts.

[SIN] Due to the lack of large real moving object datasets, we
used Brinkhoff generator[3] to generate a set of synthetic move-
ments based on the real road map of Singapore (see Fig.16(c) in
Appx.D.1). We generated SIN datasets of different sizes and used
the one containing 100K objects by default.

In Appx.D.1, Tbl.2 lists the specifications of the three data sources
above, including the data space, maximum object speed and the
mapping from physical time to logical time (a timestamp). The
query load of the experiments consists of a given number of pre-
dictive range queries. Each of these range queries is square-sized,
with a preset side length. Since the datasets differ in data space
size, we useqlen to represent the percentage of the side length of
the query over the length of the entire data space. In the experi-
ments,qlen is varied from 0.25% to 4% (e.g., 120m to 2058m for
SIN datasets). Queries follow the same distribution as the objects.
Specifically, the location of a randomly picked object is used as the
center of the query. The average predictive time of queries varies

740

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 40 160 640 2560

P
re

ci
si

on

δl

TRK
EC
SIN

(a) Query precision

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 40 160 640 2560

R
ec

al
l

δl

TRK
EC
SIN

(b) Query recall

1⋅103

1⋅104

1⋅105

1⋅106

1⋅107

10 40 160 640 2560

of

 r
eg

ul
ar

 u
pd

at
es

δl

TRK
EC
SIN

(c) # of active updates

1⋅104

1⋅105

1⋅106

1⋅107

10 40 160 640 2560

of

 u
pd

at
es

δl

TRK
EC
SIN

(d) # of all updates

Figure 8: Effect ofδl on STSR performance

1⋅103

1⋅104

1⋅105

1⋅106

1⋅107

 1 4 16 64 256

of

 u
pd

at
es

δv

TRK
EC
SIN

(a) # of active updates

1⋅104

1⋅105

1⋅106

1⋅107

1⋅108

 1 4 16 64 256

of

 u
pd

at
es

δv

TRK
EC
SIN

(b) # of all updates

Figure 9: Effect ofδv on STSR performance

1⋅104

1⋅105

1⋅106

1⋅107

1⋅108

 1 4 16 64 256

of

 u
pd

at
es

δt

TRK
EC
SIN

(a) # of active updates

1⋅104

1⋅105

1⋅106

1⋅107

1⋅108

 1 4 16 64 256

of

 u
pd

at
es

δt

TRK
EC
SIN

(b) # of all updates

Figure 10: Effect of∆t on STSR performance

from 1ts (current query) to 256ts. The query frequencyqfqy varies
from 1 to 256, which means the corresponding workload contains
0.25 to 4 queries per timestamp. Tbl.3 in Appx.D.1 summarizes the
parameters and their values used in the experiments, where default
values for variable parameters are shown in bold. All the programs
are implemented in C++ and run on a PC with 2.33GHz Intel Core2
Duo CPU, 2.25GB RAM and 200GB SATA disk.

Study of the basic STSR strategyWe first studied the perfor-
mance of the basic STSR strategy without regard of the underly-
ing index. We investigated the effect of the three elements of an
STSR: the spatial and velocity rectangles∆l and∆v; the temporal
length∆t, i.e., the length of time between expiry time and refer-
ence time. A static global parameter set is used in each experiment
in this section, where

∆l.x
⊢ = ∆l.y

⊢ = −δl

∆l.y
⊣ = ∆l.y

⊣ = δl

∆v.x⊢ = ∆v.y⊢ = −δl

∆v.y⊣ = ∆v.y⊣ = δl

The values ofδl, δv, and∆t are listed in Tbl.3.
Fig.8-Fig.10 shows the effect ofδl, δv and∆t on update work-

load and the quality of query result. It is worth noting that query
precision and recall are not affected by the size of STSRs. During
query processing, an object is added to or excluded from the results
if its predicted region is fully contained or disjoint with the query
region. Otherwise, a passive update is invoked. The query preci-
sion and recall are primarily decided by the predictability of data
itself, i.e., predicting based on the motion of the object at query is-
suing time. Asδl increases, meaning a larger initial spatial region,
the number of active updates decreases at the expense of more pas-
sive updates, resulting in an increase in the total number of updates.
As shown in Fig.9,δv has a similar effect on update times. With a
largerδv, the predicted region expands faster. STSR is more likely
to enclose the location of the object and fewer active updates are
incurred. On the other hand, a larger predicted region has higher
probability to intersect with the query region and more passive up-
dates are required as a result. The temporal length of STSRs∆t

affects the update performance differently. The number of active
updates and the total number of updates both decrease with a longer

temporal length∆t. When∆t is longer than 16ts, the number of
updates do not change much with∆t. For a small∆t, the STSR
expires quickly, resulting in a large number of active updates.

Motion Functions We next investigated the effect of different up-
date policies on update and query performance. We compared the
STSR update policy with the recursive function model proposed to-
gether with the STP-tree[13]. A client (object) keepsh historical
records and derives a recursive motion function from theh records.
A D dimensional polynomial function is used to approximate the
recursive motion function. For an update, the polynomial function
is sent to the server and the system can predict object location using
the polynomial function. An active update is issued if the distance
between the current location of the object and the location com-
puted from the last reported polynomial function is larger than an
error boundde in the nextH timestamps. In our experiments,h,
D, de andH are set to 8, 5, 160m and 30ts respectively. The query
processing of the STP is similar to that of the STSR, i.e., the system
asks for an update (passive) if it cannot determine if the object is
inside the query region or not.

Fig.11- Fig. 14 shows the results on TRK and EC datasets while
varying the query predictive timeqpdt1. For both TRK and EC, the
STP method results in a higher query precision, while the STSR
policy has a higher query recall. The differences in precision and
recall grow with query predictive time. On TRK, whenqpdt = 16,
the precision of STSR is about 10% less than that of STP, how-
ever, the recall is about 1.6 times of that of STP. On EC, when
qpdt = 64, the difference in query precision is less than 0.05,
while difference in query recall is as large as 0.5. Considering the
update load, the number of active updates are less affected by the
query predictive time for both methods and the STSR effectively
reduces the number of active updates. The number of total updates
increases with the query predictive time. Since the predicted region
is larger with longer predictive time, the objects are more likely to
issue passive updates. Whenqpdt = 16, the update times of STSR
policy is 20% less than that of STP. Whenqpdt = 64, on EC, the
update times of STSR is slightly higher than that of STP. As shown
in Tbl.2, one timestamp of TRK(EC) corresponds to 30sec(10sec).

1We also tested on SIN datasets and investigated the effect of query
side length, query frequency and etc. The results are omitted due
to space limitation, which can be found on [6].

741

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

P
re

ci
si

on

Query predictive time

STSR
STP

(a) TRK

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

P
re

ci
si

on

Query predictive time

STSR
STP

(b) EC

Figure 11: Effect of predictive time on precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

R
ec

al
l

Query predictive time

STSR
STP

(a) TRK

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

R
ec

al
l

Query predictive time

STSR
STP

(b) EC

Figure 12: Effect of predictive time on # of active updates

 10

 15

 20

 25

 30

 1 2 4 8 16 32 64

of

 u
pd

at
es

 (
K

)

Query predictive time

STSR
STP

(a) TRK

 10

 20

 30

 40

 50

 60

 1 2 4 8 16 32 64

of

 u
pd

at
es

 (
K

)

Query predictive time

STSR
STP

(b) EC

Figure 13: Effect of predictive time on # of active updates

 18

 20

 22

 24

 26

 28

 1 2 4 8 16 32 64

of

 u
pd

at
es

 (
K

)

Query predictive time

STSR
STP

(a) TRK

 30

 35

 40

 45

 50

 55

 60

 65

 70

 1 2 4 8 16 32 64

of

 u
pd

at
es

 (
K

)

Query predictive time

STSR
STP

(b) EC

Figure 14: Effect of predictive time on # of total updates

Therefore, a predictive time ofqpdt = 64 means to find the objects
in specific region after 32mins(10mins). Based on the reason above,
although our experiments show that STSR incurs higher updating
costs than STP on EC when query predictive time is larger than 64,
we argue that the prediction is meaningful only on a close future.

In summary, our STSR achieves good query precision and out-
performs STP update method with regard to query recall. In ad-
dition, STSR can effectively reduce update workload when query
predictive time is in a reasonable range.

6. CONCLUSION
In this paper, we propose a generic updating protocol for mov-

ing object databases that is independent of the underlying index
structure. By utilizing the concept of spatio-temporal safe region
(STSR), objects actively send motion updates including their loca-
tions and velocities to the database server only when the prediction
error of their current movement is no longer bounded. To guarantee
the accuracy of query prediction, the database server asks objects
for their latest motion, if they are potential results of the query. To
minimize the number of update messages between moving objects
and database system, we present a cost model that analysis the ap-
proximate cost depending on the recent update records stored in
the system. Based on the cost model, an effective optimization
technique is designed to reduce the expected update cost. We care-
fully evaluate three different implementation strategies, including
static STSR, dynamic global STSR and dynamic personal STSR.
Experiments on the TPR-tree and the Bx-tree show that our pro-
posed protocol significantly improves the accuracy of query results
and reduces the number of update messages.

7. ACKNOWLEDGEMENT
The work was in part supported by Singapore MDA grant R-252-

000-376-279.

8. REFERENCES
[1] eCourier. http://api.ecourier.co.uk/.
[2] R-tree Portal, http://www.rtreeportal.org/.
[3] T. Brinkhoff. A Framework for Generating Network-Based Moving Objects.

GeoInformatica, 6(2):153–180, 2002.
[4] S. Chen, C. S. Jensen, and D. Lin. A benchmark for evaluating moving object

indexes.PVLDB, 1(2):1574–1585, 2008.

[5] S. Chen, B. C. Ooi, K.-L. Tan, and M. A. Nascimento. St2b-tree: a self-tunable
spatio-temporal b+-tree index for moving objects. InSIGMOD, pages 29–42,
2008.

[6] S. Chen, B. C. Ooi, and Z. Zhang. Capturing the motions with adaptive
updating model in moving object database.
http://www.comp.nus.edu.sg/ chensu/stsr-tr.pdf.

[7] B. Gedik and L. Liu. Mobieyes: Distributed processing of continuously moving
queries on moving objects in a mobile system. InEDBT, pages 67–87, 2004.

[8] H. Hu, J. Xu, and D. L. Lee. A generic framework for monitoring continuous
spatial queries over moving objects. InSIGMOD, pages 479–490, 2005.

[9] C. S. Jensen, D. Lin, and B. C. Ooi. Query and Update Efficient B+-Tree Based
Indexing of Moving Objects. InVLDB, pages 768–779, 2004.

[10] D. Lin, C. S. Jensen, B. C. Ooi, and S. Saltenis. Efficient indexing of the
historical, present, and future positions of moving objects. InMDM, pages
59–66, 2005.

[11] M. F. Mokbel, X. Xiong, and W. G. Aref. Sina: Scalable incremental processing
of continuous queries in spatio-temporal databases. InSIGMOD, pages
623–634, 2004.

[12] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the
Positions of Continuously Moving Objects. InSIGMOD, pages 331–342, 2000.

[13] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and indexing of
moving objects with unknown motion patterns. InSIGMOD, pages 611–622,
2004.

[14] Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An Optimized
Spatio-Temporal Access Method for Predictive Queries. InVLDB, pages
790–801, 2003.

[15] Y. Tao, D. Papadias, J. Zhai, and Q. Li. Venn sampling: A novel prediction
technique for moving objects. InICDE, pages 680–691, 2005.

[16] O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha. Updating and querying
databases that track mobile units.Distributed and Parallel Databases,
7(3):257–387, 1999.

[17] W. Wu, W. Guo, and K.-L. Tan. Distributed processing of moving
k-nearest-neighbor query on moving objects. InICDE, pages 1116–1125, 2007.

[18] X. Xiong, M. F. Mokbel, and W. G. Aref. Sea-cnn: Scalable processing of
continuous k-nearest neighbor queries in spatio-temporal databases. InICDE,
pages 643–654, 2005.

[19] M. L. Yiu, Y. Tao, and N. Mamoulis. Thebdual-tree: indexing moving objects
by space filling curves in the dual space.VLDB J., 17(3):379–400, 2008.

[20] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighbor queries over
moving objects. InICDE, pages 631–642, 2005.

[21] M. Zhang, S. Chen, C. S. Jensen, B. C. Ooi, and Z. Zhang. Effectively indexing
uncertain moving objects for predictive queries. InVLDB, 2009.

[22] Z. Zhang, R. Cheng, D. Papadias, and A. K. H. Tung. Minimizing
communication cost for continous skyline maintenance. InSIGMOD, 2009.

[23] Z. Zhang, Y. Yang, A. K. H. Tung, and D. Papadias. Continuous k-means
monitoring over moving objects.IEEE Trans. Knowl. Data Eng.,
20(9):1205–1216, 2008.

742

APPENDIX

A. RELATED WORK

A.1 Moving Object Indexing
Generally speaking, the index structures for moving objects can

be divided into two categories, namely data-partition based struc-
tures and space-partition based structures. The TPR-tree [12] and
TPR∗-tree [14] are typical examples of data-partition based index
structures. Given the locations and velocities of moving objects at
their respective update times, the objects are inserted into a multi-
dimensional index after transformation into some standard refer-
ence time. On each intermediate node in the tree structure, the
maximal bounding rectangle (MBR) is used to bound the locations
of the objects in the subtree at the reference time. The maximal
and minimal speeds of the objects along both dimensions are also
recorded. Given a range query at the querying time, the query pro-
cessing algorithm follows the traditional pruning strategies in the
R-tree. In particular, when visiting an intermediate node in the in-
dex, the MBR expands with respect to its maximal and minimal
speeds. If the expanded MBR does not intersect with the query
range, this node can be safely pruned. Otherwise, its child nodes
are pushed into a queue for further examination. When the query-
ing time is faraway from the reference time of the index, the MBRs
have to be expanded accordingly and the resultant MBRs will have
a much higher likelihood of intersecting with the query, causing
many paths to be traversed. This is the major drawback of data-
partition based index structures.

Among space-partition based indexes, the Bx-tree and the Bdual-
tree are the two representative structures. In the Bx-tree, spatial
space is split into small cells, and the cells are mapped to a one-
dimensional space with some space filling curve, such as Z-curve
or Hilbert curve. To process a range query, the Bx-tree first trans-
forms the query range into a sequence of cells in the space. These
cells are used as queries, and during tree traversal, the query cells
are expanded since the B+-tree does not make use of any MBRs.
There are two logical sub-trees rolling with time, each of which is
responsible for the updates happening in an interval timeT , with
T as the maximal update interval. Unlike the Bx-tree, Bdual parti-
tions both spatial and velocity spaces into cells, with a similar index
structure built on the spatio-temporal cells. Some extensions have
been further developed to enhance the effectiveness and efficiency
of these structures. In [10], a forest of Bx-trees is constructed to
allow queries on both predicted movements and historical move-
ments. In [5], clusters are dynamically identified in each phase, and
different granularity of cells is used improve query efficiency. The
index is auto-tuned dynamically based on the object movement. In
[21], we show that uncertain models on the moving objects can be
easily incorporated into the Bx-tree, returning more meaningful re-
sults on predictive queries. Besides predictive queries for range and
nearest neighbor search, some research studies are devoted to other
queries, e.g. range aggregation [15].

A.2 Continuous Query Optimization
Continuous query processing is also one of the hot topics in the

database community. Different from predictive queries, continu-
ous query tries to keep accurate results on range query and nearest
neighbor query on the current timestamp, with minimal communi-
cation and update costs.

In [16], for example, Wolfson et al. proposed a general frame-
work, providing a mechanism to render approximate trajectories for
continuous query processing. In [11], a scalable hash-based frame-
work is proposed for k-Nearest Neighbor (k-NN) and range queries

monitoring on moving objects, with shared execution mechanism
on incremental evaluations of the queries. In [8], a generic frame-
work is formulated for an energy-efficient monitoring scheme on
moving objects for the range query and the k-NN query, with safe
regions constructed for each object of all concurrent queries mon-
itored on the server side. In [20] and [18], grid-based techniques
are exploited to reduce the number of messages and enhance quick
processing of k-NN queries on moving objects. While the problems
consider only queries on static location, more recent works study
the query processing problem when queries are moving around, e.g.
[17, 7]

Besides work that address traditional range queries and k-NN
queries, some extensions have been proposed to support more com-
plicated queries on moving objects. In [23], a safe-region based
method is proposed to monitor k-means clustering, utilizing some
efficient lower bound computation technique on the local optimum
of k-means clustering. In [22], cost models and optimization tech-
niques are deployed to evaluate and maintain skyline queries with
minimal communication costs between objects and central server.

B. ALGORITHMS
In this appendix, we show the detailed pseudocode for algo-

rithms referred in the paper.
Algorithm 1 shows the consistency verification procedure as in-

troduced in Sec.2.

Algorithm 1 Consistency Verification (timestamp t, current
location lti , current velocity vt

i , current STSR R(oi) =
(LR, V R, tr, te))

1: if t > te then
2: Report to the server and update with new STSR
3: Compute the predicted regionP t

i with respect toR(oi)
4: if lti is out ofP t

i then
5: ReturnFALSE
6: Compute the predicted regionP te

i w.r.t. R(oi)
7: Compute predicted locationplte

i w.r.t. lti andvt
i

8: if plte

i is out ofP te

i then
9: ReturnFALSE

10: if t < tr then
11: Compute the predicted locationpltr

i w.r.t. lti andvt
i

12: if pltr

i is out ofLR then
13: ReturnFALSE
14: ReturnTRUE

Algorithm 2 outlines the processing of an object update in Sec.3.

Algorithm 2 Object Update (objectoi, current locationltr

i), cur-
rent velocityvtr

i , reference timetr)

1: Calculate a new STSRR(oi) = (LR, V R, tr, te) depending
on ltr

i andvtr

i

2: SendR(oi) to oi

3: Renew the record ofoi in the database withR(oi), ltr

i andvtr

i

Algorithm 3 shows the processing of predictive range query as
presentedin Sec.3.

Algorithm 4 summarizes the optimization method for construct-
ing a new STSR for an object (Sec.4).

743

Algorithm 3 Range Query Processing(QueryrangeQR, query
time tq)

1: Find the object setO′ ⊆ O thatthe predicted regionP
tq

i over-
laps withQR for anyoi ∈ O′

2: for eachoi ∈ O′ do
3: if P

tq

i is totally covered byQR then
4: Includeoi in the query result
5: else
6: Send a probe request tooi for current location and veloc-

ity
7: Compute the newpl

tq

i with new location and velocity
8: if pl

tq

i ∈ RQ then
9: Includeoi in the query result

10: Return the complete query result

Algorithm 4 STSR Optimization (currentlocationlti , current ve-
locity vt

i , expiry timete)

1: Search all update records coveringlti andvt
i andstore them in

UNN .
2: InitializeR(oi) with LR = {lti}, V R = {vt

i} andte

3: Initialize covered update record setCR = ∅
4: Initialize the costCost(R(oi)) = ∞
5: while Cost(R(oi)) does not convergedo
6: Set optimal expansion recordU∗ as NULL
7: Set optimal expanded STSRR∗ as NULL
8: for each update recordUj in UNN do
9: ConstructR′ by expandingR(oi) to coverUj

10: EstimatePa(R′) andPp(R′)
11: if the cost ofR′ is smaller thanR∗ then
12: ReplaceR∗ with R′

13: ReplaceU∗ with Uj

14: if Uj is not NULL then
15: ReplaceR(oi) with R∗

16: MoveU∗ from UNN to CS
17: ReturnR(oi)

C. PROTOCOL IMPLEMENTATION WITH
EXISTING INDEX STRUCTURES

Our proposed protocol can be seamlessly implemented with al-
most all existing indexing structures on predictive queries for mov-
ing objects. In this section, we focus on incorporating our pro-
posed protocol into two popular data structures: the TPR-tree (and
its variants) and the Bx-tree. While these index structures feature in
different aspects, e.g., query processing, etc., we discuss primarily
the storage issue of STSRs in these structures.

C.1 TPR-tree and its variants
The STSR optimization algorithm (Algorithm 4) can be embed-

ded directly into the TPR-tree. In the TPR-tree and its variants such
as the TPR∗-tree, spatio-temporal bounding rectangles are used to
summarize the possible locations and velocities of a group of mov-
ing objects. To replace exact location and velocity with STSR as the
underlying object representation in the TPR-tree, we only need to
make some minor modifications on the leaf nodes of the TPR-tree.
Such changes do not affect the intermediate nodes in the TPR-tree,
since STSRs only enlarge the spatial temporal bounding boxes of
these intermediate nodes. This enables us to equip general STSRs
on TPR-tree, without any constraint on the location rectangles and
the velocity rectangles.

o

x

y

1
 2

1

2

3

3

4

4

LR
U
.
1

LR
U
 .
2

LR
U
 .
3

LR
U
 .
4

o

vx

vy

1
.
0
 2
.
0

1
.
0

2
.
0

3
.
0

3
.
0

4
.
0

4
.
0

VR
U
.
1
VR
U
 .
2

VR
U
 .
3

VR
U
 .
4

u
t

k
v
U
 .
2

u
t

k
v
U
.
1

u
t

k
v
U
 .
4

u
t

k
v
U
 .
3

Figure 15: Initial location and velocity rectangle for Bbdual-tr ee

Since the overall structure of the TPR-tree remains the same, the
existing update algorithms on the TPR-tree can be reused without
any modification. Similarly, the querying algorithm can be left un-
changed since we can regard every moving object as the traditional
spatial temporal bounding box. The concurrency control mecha-
nism, i.e. the RLink-tree, commonly used by the R-tree indexes
remains applicable.

C.2 Bx-tree
To extend the optimization technique from the TPR-tree to other

index structures, such as the Bdual-tree and the Bx-tree, recall the
difference between the TPR-tree and the other two index structures
on storage. In particular, the Bx-tree discretizes the spatial space
and the Bdual-tree discretizes both spatial and velocity space.

To facilitate the extension, the only modification of the algorithm
is on the initialization of the STSR. In particular, the STSR at the
beginning is initialized by expanding the location and velocity to
the minimal cells containing them. In Fig.15, we present the initial
STSR for the same moving object update in Fig.7. If the widths of
the cells in the spatial space and the velocity space are1 and0.1
respectively, the new STSR before the first iteration in Algorithm 4
is constructed withLR = (1, 2) × (2, 3) andV R = (0.1, 0.2) ×
(0.2, 0.3). The subsequent expansion iterations follow exactly the
same implementation of the optimization algorithm for the TPR-
tree.

In the Bx-tree, spatial space is divided into small cells of equal
width on both dimensions. In the original Bx-tree, the coordinates
of the object are transformed into the ID of the cell containing it.
This implies that the location rectangle in STSRs stored in the Bx-
tree must also be discretized before insertion. There are two pos-
sible solutions to support our protocol with the Bx-tree. The first
option is to allow STSRs to occupy a few spatial cells. With this
option, multiple copies of each STSR may be stored in different
leaf nodes in the tree, providing more flexible spatial constraints
but incurring extra processing costs on queries. The second option
requires the location rectangle for every STSR to cover exactly one
cell in the partitioned spatial space. This leads to some implemen-
tation on the Bx-tree, on which every moving object resides only in
one leaf node. However, it sacrifices some of the tuning ability on
the location rectangle if this strategy is adopted. In the empirical
studies, we employ the second implementation. Given a moving
object waiting for a new STSR, the location rectangle is fixed de-
pending on the space partition of the Bx-tree.

With such storage implementation, both the updating and query-
ing algorithms on the Bx-tree are simply adopted without any mod-
ification. Other optimizations, such as object grouping and cell size
tuning [5], can also be applied directly; the Blink-tree concurrency
control that is used by the Bx-tree remains applicable for handling

744

concurrency operations.

D. EXPERIMENTS

D.1 Experimental Settings
Fig.16 shows the maps of road networks for each datasets.

(a) TRK: Athens metropolitan

(b) EC: UK

(c) SIN: Singapore

Figure 16: Maps of various data sources

Tbl.2 shows some specifications on different data sources.
Tbl.3 lists parameters and there values used in the experiments

in Sec.5, where the default values are shown in bold.

D.2 More experimental results
We now proceed to study the performance of different STSR

strategies as introduced in Sec.3, including the static STSR, the
global dynamic STSR and the personal dynamic STSR. We im-
plement all the three STSR strategies on top of both the TPR-tree

Table 2: Specifics of data sources
Data source TRK EC SIN

Space (long side) 47255.6m 287409.0m 51455.0m
Maximum speed 33.5m/s 54.3m/s 325m/s
Unit of timestamp 30sec 10sec 1sec

Table 3: Experimental parameters and values
Parameter Setting
Datasets TRK, EC,SIN
Time duration 120ts
Data size 25K, 50K,100K, 200K, 400K
Query side lengthqlen 0.25%, 0.5%,1%, 2%, 4%
Query predictive timeqpdt 1ts, 4ts,16s, 64ts, 256ts
Query frequencyqfqy 1, 4,16, 64, 256
∆t 1ts, 2ts, 4ts, 8ts,16ts, 64ts, 256ts
δl 10m, 40m,160, 640m, 2560m
δv 1m/ts, 4m/ts,16m/ts, 64m/ts, 256m/ts

and the Bx-treeas explained in Appx.C. In the remaining part of
this section, ‘BX’/‘TPR’ denotes using the Bx-tree/TPR-tree with
static STSR; ‘BX-G’/‘TPR-G’ denotes using the Bx-tree/TPR-tree
with global dynamic STSR; ‘BX-P’/‘TPR-P’ denotes using the Bx-
tree/TPR-tree with personal dynamic STSR.

 0

 2000

 4000

 6000

 8000

 10000

25 50 100 200 400

C
P

U
 ti

m
e

(s
ec

)

Object cardinality (K)

TPR-G
TPR-P

TPR
BX-G
BX-P

BX

(a) Execution time

 0

 5

 10

 15

 20

25 50 100 200 400

N
um

be
r

of
 m

es
sa

ge
s

(1
e+

6)

Object cardinality (K)

TPR-G
TPR-P

TPR
BX-G
BX-P

BX

(b) # of all updates

 0

 2000

 4000

 6000

 8000

 10000

25 50 100 200 400

N
um

be
r

of
 a

ct
iv

e
up

da
te

s

Object cardinality (K)

TPR-G
TPR-P

TPR
BX-G
BX-P

BX

(c) # of active updates

 0.1

 1

 10

 100

 1000

 10000

25 50 100 200 400

N
um

be
r

of
 p

as
si

ve
 u

pd
at

es

Object cardinality (K)

TPR-G
TPR-P

TPR
BX-G
BX-P

BX

(d) # of passive updates

Figure 17: Effect of data size

We first examined the scalability of all update strategies by vary-
ing the object cardinality from 25K to 400K. Fig.17 illustrates the
total processing time and the number of updates. The total process-
ing includes all computations on queries, STSR computation and
updates of the moving objects, in 120 consecutive timestamps.

Comparing to the static and personal dynamic strategies, global
dynamic strategy largely decreases the amount of active updates,
while adds a number of passive updates. The personal dynamic
strategy, on the other hand, reduces the number of passive updates
at the expense of more active updates. This is because that the
with global dynamic strategy, the size of STSRs is much larger
than those generated by personal dynamic strategy.

Second, we examined the effect of various query parameters on
the performance of different STSR update strategies. From Fig.17,
we have already seen that the ‘TPR-G’ requires the highest exe-

745

cution time and is the least scalable in terms of object cardinality,
while the ‘TPR’ always incurs the highest update times. For clear
illustration, we leave ‘TPR-G’ and ‘TPR’ out. The results of these
two methods are omitted in the following figures and analysis.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

250 500 1000 2000 4000

C
P

U
 ti

m
e

(s
ec

)

Avg. query length (m)

TPR-G
BX-G
BX-P

BX

(a) Execution time

 0

 1

 2

 3

 4

 5

 6

250 500 1000 2000 4000
N

um
be

r
of

 m
es

sa
ge

s
(1

e+
6)

Avg. query length (m)

TPR-G
BX-G
BX-P

BX

(b) # of all updates

 0

 500

 1000

 1500

 2000

 2500

 3000

250 500 1000 2000 4000

N
um

be
r

of
 a

ct
iv

e
up

da
te

s
(K

)

Avg. query length (m)

TPR-G
BX-G
BX-P

BX

(c) # of active updates

 0.01

 0.1

 1

 10

 100

 1000

 10000

250 500 1000 2000 4000

N
um

be
r

of
 p

as
si

ve
 u

pd
at

es
 (

K
)

Avg. query length (m)

TPR-G
BX-G
BX-P

BX

(d) # of passive updates

Figure 18: Effect of query side lengthqlen

First, Fig.18 shows the performance of STSR strategies with re-
spect to different query size. Specifically, the query side length
varies from 250m to 4000m. In general, the Bx-tree with global dy-
namic STSR is the best among all considering both total processing
time and total number of updates. The Bx-tree with static STSR,
although performs good in terms of total proceeding time, sends
out the largest total number of updates. For all methods except
‘TPR-G’, the number of passive updates increases with the query
size, since the STSRs of more objects intersects with the query re-
gion. For the ‘TPR-G’, the STSR is relatively large, and thus the
performance is less affected by the query size.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

25 50 100 200 400

C
P

U
 ti

m
e

(s
ec

)

Prediction time

TPR-G
BX-G
BX-P

BX

(a) Execution time

 0

 1

 2

 3

 4

 5

 6

25 50 100 200 400

N
um

be
r

of
 m

es
sa

ge
s

(1
e+

6)

Prediction time

TPR-G
BX-G
BX-P

BX

(b) # of all updates

 0

 500

 1000

 1500

 2000

 2500

 3000

25 50 100 200 400

N
um

be
r

of
 a

ct
iv

e
up

da
te

s
(K

)

Prediction time

TPR-G
BX-G
BX-P

BX

(c) # of active updates

 0.1

 1

 10

 100

 1000

 10000

25 50 100 200 400

N
um

be
r

of
 p

as
si

ve
 u

pd
at

es
 (

K
)

Prediction time

TPR-G
BX-G
BX-P

BX

(d) # of passive updates

Figure 19: Effect of query predictive timeqpdt

Fig.19 shows the effect of query prediction time on different
STSR strategies. We vary the query prediction time from 0ts (cur-

rent query) to 120ts. As the prediction time changes, the total pro-
cessing time shows the similar trends as those of other parameters,
i.e., the ‘BX-G’ and ‘BX’ both run much faster than the ‘GX-P’
and ‘TPR-G’. As ‘BX-G’ tunes the parameters for the STSR peri-
odically, it has the best performance in terms of the total processing
time. ‘BX-P’ also minimizes the total number of updates, however,
at the expense of longer processing time (for computing the param-
eters for objects individually). In general, as the predication time
increases, more passive updates are incurred.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

0.25 0.5 1 2 4

C
P

U
 ti

m
e

(s
ec

)

Query frequency

TPR-G
BX-G
BX-P

BX

(a) Execution time

 0

 1

 2

 3

 4

 5

 6

0.25 0.5 1 2 4

N
um

be
r

of
 m

es
sa

ge
s

(1
e+

6)

Query frequency

TPR-G
BX-G
BX-P

BX

(b) # of all updates

 0

 500

 1000

 1500

 2000

 2500

 3000

0.25 0.5 1 2 4
N

um
be

r
of

 a
ct

iv
e

up
da

te
s

(K
)

Query frequency

TPR-G
BX-G
BX-P

BX

(c) # of active updates

 0.1

 1

 10

 100

 1000

 10000

0.25 0.5 1 2 4

N
um

be
r

of
 p

as
si

ve
 u

pd
at

es
 (

K
)

Query frequency

TPR-G
BX-G
BX-P

BX

(d) # of passive updates

Figure 20: Effect of number of queries per timestamppfqy

Finally, we study the effect of query frequency on the perfor-
mance Fig.20 shows the effect of query prediction time. For the
STSR strategies, with more frequent queries, the number of pas-
sive updates increases a lot while the number of active updates de-
creases slightly. It is worth noticing that the total processing time
is not much influenced by the query frequency, although the total
number of queries increases a lot (by 16 times). The time for com-
puting STSR dominates the processing time of the whole index.

746

