Generating Databases for Query Workloads-

Eric Lof Nick Cheng’ Wing-Kai Hon#
THong Kong Polytechnic University INational Tsing Hua University
T{ericlo, csutcheng}@comp.polyu.edu.hk ithon@(:s.nthu.edu.tw

ABSTRACT QAGen is a query-aware databaBethat conforms taH and a set

To evaluate the performance of database applications and DBMSs,Of parameter value®. Executing query) (with parametef values

we usually execute workloads of queries on generated databased”)yonD (denoteq an (D)) guarantee; that the constraints anno-

of different sizes and measure the response time. This paper intro-tat(_ed ory are satisfied. QA_Gen every time takes only one te_st case .
duces MyBenchmark, an offline data generation tool that takes a setds input and generates an independent test database that is specific
of queries as input and generates database instances for which théOr that test case. To carry out a tPTSt"?tGSt cases on a DBMS
users can control the characteristics of the resulting workload. Ap- product, the test team needs to maintaiseparate test databases,

plications of MyBenchmark include database testing, database ap-Wh.iCh require a prohibitively high storage cost [16] (imagine a test
plication testing, and application-driven benchmarking. We present Zu'tebOf 1000 test cases, where each test case demands a 10GB test
the architecture and the implementation algorithms of MyBench- database).

mark. We also present the evaluation results of MyBenchmark us- Differing_ from QA_Gen_, My_Benchmark takasset of annotated
ing TPC workloads. parameterized querig®r in this context, a set of DBMS test cases)

as input, and generatasninimal set of database instancegh the
1 INTRODUCTION same query cardinality and data distribution assurance as QAGen

does. As such, tests on DBMSs can be carried out more space effi-
Query performance is a key factor of a successful database (DB)ciently?

application and DBMS. To evaluate the performance of DB ap-

plications and DBMSs, we usually execute workloads of queries ¢ Stress testing database applications Consider a DB appli-

on generated databases in different sizes and measure the respons@tion withn SQL queries. Developers of that application can

time. use MyBenchmark to generate a variety of synthetic workloads
This paper presents a workload-aware data generator, MyBench-to stress the application. For example, a developer may use My-

mark. Given a database scherdaand a set of queries, MyBench- Benchmark to generate a 1GB database that guarantees all the ap-

mark allows users to generate databases in different sizes with theplication queries return millions of rowfsThis functionality allows

power to control not only the characteristics of the generated data the developers to test the functional and performance limits of their
(e.g., value distribution) but also the characteristics of the workload applications:

(e.g., cardinality of intermediate query operators). The applications

of MyBenchmark include the following: o Application-driven benchmarking Benchmarking requires the
generation of benchmark databases. Existing benchmarks such as
e Testing DBMSs Recent papers [5, 16, 4, 14] have pointed out TPC benchmarks, although comprehensive, may not 100% reflect
that Controlling the cardinalities of query operators in a test query the performance of a DBMS with respect to an enterprise’s envi-
is very useful in DBMS testing. For example, testers can study the ronment because of the differences in the schemas between TPC
performance of a hash-join implementation by varying the input penchmarks and the enterprise’s DB applications. By using My-
and output cardinalities of the join operator [5]. Recent data gener- Benchmark, an enterprise is able to study the performance of a
ation technology has made some progress in this respect. QAGenDBMS with respect to its own DB applications. Suppose a new
[4] is an offline test database generator designed for this purpose.start-up wishes to purchase a DBMS. The start-up may wish to
It takes a test case and a database schiéraainput. Atestcaseis know which DBMS (e.g., Oracle, SQL Server) performs the best
a parameterized query with operators and base tables annotated for its application when dealing with one billion customer records
with cardinality and data distribution constraints. The output of and selective user queries. The start-up can use MyBenchmark to
*Research supported by grant PolyU 525009E from Hong Kong RGC. generate the reIeyan'F data anq evaluate the D.BM.SS using.iFs own set
of database application queries. These application-specific bench-
Permission to make digital or hard copies of all or part of this work for ”_‘a”‘ results can complemen_t the TPC benchmark results and pro-
personal or classroom use is granted without fee provided that copies areVide supplementary information to the company when purchasing
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to 7
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17

In case MyBenchmark generates more than one test database, we may use
a database testing framework (e.g., DbUnit [1], HTpar [11]) to automati-
cally assign the generated databases to the test queries.

2010, Singapore. "2In this case, the developers need to specify only the output cardinalities
Proceedings of the VLDB Endowmevit]. 3, No. 1 of the final results and may leave the constraints of intermediate operators
Copyright 2010 VLDB Endowment 2150-8097/10/095.10.00. empty.

848

size=1 t11<$al‘<iply $b} t1:(4, 100) controls its output to its parent operator so that the parent operator

“TR.A <ipt Tpa <im 0, .., Canworkon t_he righ_t tuples. After symbolic query procz_essing, the
R . _\$A1 I?) A B [[ATB] §et of symbollp relations capture all the constraints deflned.on the
swe2 Iy:|3a2 %b% 25%2%5:”;% L%B% %; fo %88 input query (Figure 1c). In the final step, QAGen has a data instan-
Table RAint, Bint) TableR TableR TableR tiator to instantiate the symbolic tuples and the parameters and a
(a) Annotated Query); (b) The initial symbolic (©)Dy (d) Q:-aware query-aware database is generated (Figure 1d).
(:p1 is a parameter) database @r (Q:-aware symbolic database) database

SQP is an advanced data generation technology that is much
more complicated than traditional query-unaware data generation
technology such as [10]. Therefore, query-aware data generation
tools usually have a longer running time and run as an offline (back-
its DBMS. ground) process [14]. Nevertheless, the process can be easily par-
allelized using: machines to SQR queries.

To the best of our knowledge, we are the first to study the gener-
ation of workload-aware data. Compared with the state-of-the-art 3, MYBENCHMARK

(single)-query-avyare data generation technology, W‘?fk'F’ad'awa“? MyBenchmark uses the symbolic query processing technique de-

%/eloped in [4] as a building block. However, as we will show later,
the generation of aingle symbolic database for multiple queries
is N'P-hard; thus, we do not restrict ourselves to find a single
database instande for all input queries. Instead, given a database
schemaH, a set of annotated queri€d= {Q1,Q2,...,Qx»} (the
operator(s) inQ; are annotated with cardinality constraint(s)),
"MyBenchmark generates (m < n) database®):, D>, ..., Dp,
andm sets of parameter valudd, P, ..., P, such that (1) all

Figure 1: Symbolic query processing (SQP)

also more challenging. This paper contains our solution to the
problem, including the architecture and algorithms of implement-
ing MyBenchmark. This paper also contains the evaluation results
of MyBenchmark using TPC workloads.

The rest of this paper is organized as follows. Section 2 covers
the background and related work. Section 3 presents the architec
ture and algorithms of MyBenchmark. Section 4 summarizes the
methodology of generating workload-aware data using MyBench- database®); (I < j < m) conform toH, and (2) the resulting

mark. Section 5 shpws the experlmenta! res_ults. Section 6 con- cardinalitiesC; of executing@; on one of the generated databases
cludeg the paper with future resea}rch directions. The appendix Dj, using the parameter valu, approximately meef’; (the de-
contalnts qut?\ supplementary details and the proofs of the Iemmasgree of approximation defined is based on the relative error between
presented in the paper. actual cardinalities and annotated cardinalities; details are in Sec-
tion 3.2). Approximate cardinalities are sufficient for applications

2. BACKGROUND AND RELATED WORK such as DBMS testing [5, 16] and database application testing [3].
Query-aware data generation was first studied by [15] and has/ASsume that a DBMS test engineer wants to use MyBenchmark
received renewed attention in recent years. In [15], the authors {0 generate a workload with a 1GB database and ten application
studied the generation of test data that complies with functional de- queries, in which one of the queri&g,, is annotated by the tester
pendencies for simple relational queries. In [3], the authors studied @s & highly selective query that returns one row. In this case, a gen-
the generation of test data for functional testing database applica-€rated database that returns five rowsoris still very acceptable.
tions. The focus of [3] is to generateinimal sizetest databases for ~ AS SQP controls the data distributions through the operator cardi-
asingleapplication query. In [17], the authors discussed the extrac- Nalities, so we focus on the control of the operator cardinalities.
tion of example data to facilitate dataflow (e.g., MapReduce) pro- Also, we put our focus on SPJ (select-project-join) queries in this
gramming. However, it also focuses on getting the smallest amount Paper. . .)
of data as possible for the ease of human understanding. Of course, ifm = n, that essentially means MyBenchmark is
We now give a brief background on QAGen. We refer read- the same as QAGen in which each query has to be executed on a
ers to Appendix A or [4] for additional details. The QAGen sys- Separate generated database. Therefore, the goal of MyBenchmark
tem [4], the predecessor of MyBenchmark, is a query-aware test IS to minimizem, the number of generated databases, in best effort.
database generator that takes an annotated parameterizedquery .
and a database scherflaas input. Each operator or base tabl&in 31 SyStem Architecture
is annotated with a set of constraints (usually cardinality and data SQP was designed to generateseparate databases for the

distribution). Figure 1a shows an annotated selection q@ergs input annotated queries. If SQP is carried out on a “processed”
an example.Q; specifies that tablé& should be populated with symbolic database, SQP will generate many symbolic tuples with
two tuples and the query should return one tuplgl(is a param- contradictingconstraints (as different queries may impose different
eter)® Figure 1d shows the output of QAGen f6);, which is a constraints on theamesymbolic tuple) and they will be unable to
query-aware databade that conforms tod, and a set of parame- be instantiated with concrete values.

ter valuesP. Executing queryy (with parameter value®) on D To illustrate, assume that we need to generate a database for two
guarantees that the constraints definedjoare satisfied. (annotated) application queri€g and Q.. Let Qi be the query

To process a query like the one in Figure 1a before the data given in Figure 1a; an@- be a selection query in Figure 2a, which
is generated, QAGen introduces the concept of symbolic query specifies that tablé& should have two tuples and the query should
processing (SQP). SQP starts with the population of a symbolic return one tuplé. AssumeQ); is first symbolically processed by the
database (SDB) according to the sizes of the base tables specified ifQP engine and we obtain the symbolic datalias€Figure 1c).
the annotated query (Figure 1b). Tuples in an SDB contain symbols If the second query)- is directly processed of, the selection
rather than concrete values. During SQP, an operator evaluates th@perator ofQ. may annotate the positive constraint:p1] to ¢
input tuples according to its own semantics and at the same time, itand the negative constraint {=:p1] tot>. That will result in an

SEach input query is practically formulated as a number of SQL statements 4In fact, Q2 must annotate consistent constraints wth (e.g., two tuples
and expected cardinality/distribution. for table R) or otherwise MyBenchmark will return an error to the user.

849

Size

Size

size=1 size=2 size=1
A A

g A B g g
R.A >:pl .. - . S.A >:pl t1: $al> pl S.A <:p2 ts: $ab< p2
th: I<plA pl b1
‘ tii $§§>i§l/\ :;;i:p:pl 2132 ‘ tar | $a2>:pl ‘ te: | $a6>=:p2
R Table R(A int, Bin S ts: | $a3<=:pl S 7 | $a7>=:p2
se2 (b) An unsatisfiable symbolic NG ta: | $ad<=pl | stz ts: | $a8>=1p2 |
Table RAint, Bint) database after bad S@P, Table Aint) TableS (A int) Table JAint) TableS (A: int)
(a) Annotated Querg)» on Figure 1c'sDy (a) Annotated Querg)s (0) Da (c) Annotated Query), @ Ds
(:plis a parameter) (:p1is a parameter) (:p2 is a parameter)
Figure 2: Examples of SQP on a “processed” SDB Figure 4: Examples for symbolic database integration
A A
Schema # | tits — to] $al> :plA$al< p2 tit7; — to $al>:plA$al>=:p2
Annotated quenes—:j Exeouton Planner ‘ tole — thy]| $a2>:plA$a2>=:p2 | fots — tio] $a2> :plA $a2>=:p2
Qty v Gy -ovy G 7 !) tatr — th,] $a3<=:plA$a3>=:p2 | tst5 — t11] $ad3<=:plA $a3< :p2

TSize=200 St s A symbolic DB; [\,
ize = 10 "] Symoolic |/ A
o [Dy Y s [
) oo database
= 100 ™ symoatoos || meersor |\

|

EN Integrated |
|

MyBenchmark
minimize the number of symbolic tuples with contradicting con-

Figure 3: MyBenchmark architecture straints in the integrated SDB. For example, Figure 5b shows an
ideal symbolic database that is integrated frém and D4, and
does not contain any tuples with contradicting constraints.

SDB (Figure 2b) in which tuple is associated with a contradicting To integrate two symbolic relatiorfs; and.S; (whereS; andS;

=57 s /
y Data

4 instantiator [

"
yI—Q
2 =0

Figure 5: SDBs integrated from D3 (Figure 4b) and D, (Figure
4d)

| Size=10 C oy tats —> 1o} $ad<=:plA$ad>=p2 | tatc — t12] $ad<=:plA $ad>=:p2
sorcemnt oo ,, — _ TableS (A: inf) Tables Ay
\ | . ntegrated “ (a) D (t; contradictst}; andt},) (b) Ideal integrated symbolic database
\\

3 . F
g

2 .

g .

e

constraint [$ak:pl1 A $al>:pl]. share the same table definition), we model the problem as a graph
Figure 3 shows our proposed architecture for MyBenchmark. To problem.
generatem databases forn annotated querie®1,Q2, ..., Qn,

MyBenchmark first uses QAGen’s SQP engine as a black-box com- DEFINITION 1. (CONSTRAINEDNODE). A noden is constrained
ponent to process each annotated query separately (without data iniff it is associated with a propositional formula,,, composed of

stantiation) and generatessymbolic databaseB, Da, ..., D,. variables under a finite domain (SQL data typed)l
Each symbolic databasb; guarantees tha®;(D;) satisfies the
constraints annotated @p;. Then, a Symbolic Database Integra- DEFINITION 2. (SATISFIABLE EDGE). An edgee(u, v) is sat-

tor is used to integrate the SDBs. The integration algorithms are isfiableiff the conjunction of the propositional formula associated
designed to minimize the number of symbolic tuples with contra- with constrained nodes anduv is satisfiable. That isp., A ¢, is
dicting constraints (e.gt; in Figure 2b) and the number of gen- satisfiable. [
erated databases. Finally, we use the Data Instantiator of QAGen
to instantiate each integrated SDB with concrete values. The ma- As an examp|e’ consider an edg@7v) Connecting two con-
jor advantage of this architecture is that we can fully utilize the strained nodes andv. Assumex is associated with a propositional
capability of SQP in processing a variety of SQL queries. The Ex- formulaz > p andwv is associated with a propositional formula
ecution Planner is designed for integrating multiple SDBs and we , p, thene is not satisfiable. On the contrary, 4f is associ-
defer its discussion until Section 3.3. ated with a propositional formula > p andv is associated with a
ropositional formul 10, thene is a satisfiable edge.

3.2 Symbolic Database Integration prop y= d

We begin with the discussion of integrating two symbolic rela- DEFINITION 3. (CONSTRAINED BIPARTITE GRAPH) A graph
tions (with the same table definitions) that are separately generatedG = (U, V, E') with node setd/ andV and edge sek is acon-
by the SQP engine for two annotated queries. We discuss the inte-strained bipartite grapi{CBG) if G is a bipartite graph, all nodes
gration of multiple symbolic relations in the end of this subsection in U andV are constrained nodes, and all edge®’iare satisfiable
and the integration of multiple symbolic databases in Section 3.3. edges. O

We use the annotated SQL quer@s andQ in Figures 4a and

4c as the running example. For ease of exposition, batand Now, we can model a symbolic tuple(t;) of symbolic relation
Q4 are simple selection queries pos_ed on tahleFigures 4b and S; (S;) as a constrained node (v,) in a CBGG. For each pair of
4d show the corresponding symbolic databasgsand D, that tuplest; € S; andt; € S;, if the conjunction (of the constraints) of

are generated by the SQP engine @ and Q4. When only two t; andt; is satisfiable (i.e., no contradiction), we add a satisfiable
symbolic relations are involved, the major challenge for the sym- edgee(u;,v;) to G. As a result, the two symbolic relations in
bolic data integrator is to minimize the number of symbolic tuples Figures 4b and 4d can be modeled as a constrained bipartite graph
with contradicting constraints. In other words, the integrator can- G, shown in Figure 63.Now, we can model the integration 6f

not simply merge, with ¢, (i.e., treating symbols $al and $a5 as andS; as finding anaximum satisfiable matchirg a CBG.

the same symbol and joining the constraintg0find¢s together

to get [$al>:pl A $al<:p2]), t2 with tg, ts with 7, andty with DEFINITION 4. (SATISFIABLE MATCHING) Given a constrained
ts. Such a naive integration would result in an integrated symbolic pipartite graph? = (U, V, E), a matching) is satisfiableiff the
databaseD as shown in Figure 5a. The problem with is that conjunction of the propositional formulas associated with all con-

many symbolic tuples are contradicting with each othginduces strained nodes iV is satisfiable. [
arelationship:p2 > :p1, butt}; andt}, induce a relationship :p2
< :pl. As such, the integration algorithms should be designed to *Note thatG,, is not necessarilgomplete

850

t5: $ad < p2

[ti: $al > :pl J [ty: $al > :pl }L‘—[ts: $a5 < :p2 } [t: $al > :pl ts: $a3 < :p2 }
[ty: $a2 > :pl tg: $a6 >= 11)2} [to: $a2 > :pl]L—[to: $a6 >= :p'ZJ [ty: $a2 > :pl to: Sad >= :pQJ
[ty: $a3 <= :pl ty: $a7 >= qﬂ} [t3: $a3 <= :pl]i'—[ty: $a7 >= :1)2} [13: $a3 <= :pl t7: Sal >= :I)ZJ
[ty: $ad <= :pl ts: $a8 >= ZPQJ [ty: $ad <= :pl]ﬂ—[tg: $a8 >= :1)2} [ty: $ad <= :pl tg: $a2 >= :[)2}

(a) Ga (b) M,

(c) M,

Figure 6: (a) A constrained bipartite graph G, modeling the integration of databasesDs; and D, in Figure 4 (b) A maximum but not
maximum satisfiable matchingM; (c) A maximum satisfiable matchingM-

DEFINITION 5. (MAXIMUM SATISFIABLE MATCHING) Given
a constrained bipartite gragh = (U, V, E), a satisfiable matching
M is maximum satisfiabldf the size of M is largest among all
satisfiable matchings i&'. [

The size of a maximum satisfiable matching (MSM) could be
different from the size of a maximum matching. Figure 6b shows
a maximum but not satisfiable matchidg, of G,. Edgee; in
M, suggests that tuple of D3 in Figure 4b should be integrated
with tuplets of D4 shown in Figure 4d. Therefore, if the integra-
tion follows M, the resulting integrated database would become
D in Figure 5a. On the other hand, if the integration follaivs
(see Figure 6¢), which is a maximum satisfiable matching:of

Assume thatST takesG (Figure 6a) as input. As a first step, a
total-order relationship=[:p2 > :p1] induced by edges{, ts)
and (2, t5) and a total-order relationshig=[:p2 < :p1] induced
by edges 1(3, tﬁ), (tg, t7), (tg, tg), (t4, tﬁ), (t4, t7), and (1'21, tg)
are added tdR. Next, four constrained bipartite grapbis, Go,
G's andG4 are constructed according to Step 2 above. Specifically,
G4 (shown in Figure 7a) includes the edges that induce the total-
orderr; and the edges that induce no total-order (etg, t6)). G2
(shown in Figure 7b) includes the edges that induce the total-order
ro and the edges that induce no total-ord&s. includes the edges
that inducer; andr2 and the edges that induce no total-ord@f; (
is the same as the input graplt)., includes the edges that induce
no relationship$.

the resulting integrated database would become the ideal integrated By following the basic idea illustrated abové] has to search

symbolic databases shown in Figure 5b.
We cast the problem of finding an MSM of a constrained bipar-
tite graph as a decision problem:

DEFINITION 6. (k-SAT-MATCH PROBLEM). Given a constrained
bipartite graphG = (U, V, E)) and an input integek, the decision
problemk-SAT-MATCH is to answer if there is a satisfiable match-
ing M of size that is at leagt.

Searching a maximum matching from a bipartite graph can be
done in polynomial time. However, searching a maximum satisfi-
able matching from a CBG i8/P-hard (proof in Appendix C.1).
The main difficulty lies in the requirement of “satisfiability” among
the induced relationships of variables at run-time (e.qg., in Figure 6b,
adding edgdti, t5) to M; will induce a relationship that hinders
adding edgests, t7) and(ta, ts) to Mi). This is also the main rea-
son why applying SQP on a “processed” SDB online (mentioned
in Section 3.1) is not a good idea. Nevertheless, we have develope
many tricks to avoid the worst case in almost all circumstances.

Specifically, we have developed a best-effort symbolic database in-

tegration algorithm that utilizes the special properties of SQP to
reduce the search space. Our experiments showsthptactically
solves the problem and scales well under a variety of inputs.

The Symbolic Database Integration Algorithm

The symbolic database integration algorith#7) solves the max-
imum satisfiable matching by separating the induced relationship
problem and the maximum matching problem. The main idea is as
follows. Given a constrained bipartite graghas input, (1) it first
identifies all the total-order relationships that can be induced by the
satisfiable edges and puts them in aBet(2) For each possible
subsetR; of R, it constructs a new constrained bipartite graph

G, includes the edges that induce total-order relationship($);in

maximum matchings foe!®! constrained bipartite graphs. Al-
though it looks a lot on the surfacgr| is actually a small number

in practice. For example, in our experiments, the maximum values
of |R| found in TPC-W and TPC-C workloads 13 and 24, respec-
tively. Furthermore, we have incorporated four techniques.$ito
such that it actually visits only at most some tens CBGs in all our
experiments. We have also devised an approximation version of
ST that runs in linear time. However, our experiments show that
the exact version of I, in practice, scales well, and finds perfect
matchings easily such that the most time consuming part is usually
the preparation of SDBs using SQP. As such, we do not present the
approximation solution here.

Trick 1. Pruning CBGs that are constructed from contradicting
relationships The following lemma tells us that if a CBG; con-
tains somecontradictingrelationships,SI can ignoreG; because

dthere exists another CBG; with a larger MSM.

LEMMA 1. Letr; andr; be two contradicting total-order re-
lationships and le?;;, R;, and R; be three relationship sets. As-
sume{ri,rj} € Rij, Ri = Rij —{r;}, andR; = R;; —{r;}. Let
Gij;, Gi, andG; be the constrained bipartite graphs constructed
from R;;, R;, and R, respectively. 1f/;;, M;, and M; are max-
imum satisfiable matchings 6f;;, G, and G}, respectively, then
|Mij| = max (| M|, |M;]).

The proof of Lemma 1 is in Appendix C.2. In our example, by
Lemma 1,57 does not need to considél; because; andr: are
contradicting and therefore the size of the MSM(&f would not
be larger than the size of both the MSM@f and the MSM ofG>.

Trick 2. Compressing the problem instances ST's efficiency
can be further improved bgompressinghe symbolic tuples. For

and the edges that induce no total-order (edges that induce onlyinstance, in Figure 7a, tuplésandt. are capturing the same selec-

partial-order relationships). (3) Find a maximum matchidgfor
each constructed bipartite gragh. (4) Finally, for all the max-
imum matchings found, follow (any) one that has the maximum
matching size to perform tuple integration.

851

tion predicateS. A > : pl of queryQs. Therefore, they are com-
pressed into ainglenode. A maximum matching problem is often

Swe do not showG here for space reasons.

t5: $ab < :p2 } { ty: $al > :pl ts: $ab < p2 }
tg: $a6 >= IPQ} { ty: $a2 > :pl tg: $a6 >= :p2}
tr: $a7 >= ?PQ} { t3: $a3 <= :pl ¢ —/> tr: $a7 >= :PQ}
tg: $a8 >= :PQ} { ty: Sad <= plf - — - = tg: $a8 >= :pZ}
- - -:p2>:pl (d) Gy — No total-order - ——-p2<=1:pl (b) G2 __No total-order

Figure 7: Examples for algorithm ST
ty: $al > :pl ts: $ad < :p2 1 t: $al > :pl
ty: $a3 <= :pl tg: $a6 >=p2 3 t3: $a3 <= :pl

(h) Gy
Figure 8: Flow networks

ts $a5 < p2 K4

3

“

tg: $ab >= :p2

transformed into a maximum flow problem in network optimization
[2, 12]. Here,ST compresses the input constrained bipartite graph
G = (U,V, E) into a constrained flow netwo®’ = (U’, V' E’):

i. (Build node sets) for every group of nod@g, in U that cap-
tures the same predicate, add a nadec U’; similarly for
V.

ii. (Build edge set) add an edge betwe&nandn., if there was
an edge ., ny) in G wheren,, € N, andn, € N,.

ii. (Connecting source and sink) add an edge between safirce
andn.,,, and an edge betweetr), and sinkt’.

. (Calculate edge capacities) for edges of the f@emn;,), the
capacity is set tav,, |; for edges of the fornin,, t'), the capac-
ity is set to| N, |; for edges of the fornin.,, n.,), the capacity
is set tomin(|Nu|, | Nu|).

Figures 8a and 8b show the flow networks compressed from Fig-
ures 7a and 7b, respectively. We can see that the number of nodes i
only half of the original constrained bipartite graph. In general, for
select-project-join (SPJ) queries, the number of compressed node
mainly depends on the number of predicates, not data size.

Trick 3. DFS and subset pruning Consider Figure 9, which is
a more complicated constrained bipartite grépk= (U, V, E), as
an example G represents an instance of integrating two symbolic
relations after several rounds of integration, which often happens
when multiple queries are input to the system (see Section 3.3 for
details). For the time being, we focus on an MSM search for Figure
9.

In Figure 9, the set of edges induces the following set of total-
order relationshipR={r1=[:p1 > :p2], r2=[:p2 > :pl], r3=[:p2
> :pl]}. For example, edgée{, t7) induces a total order [:pt
:p2] and edget(, ts) induces a total order [:p2 :pl]. There

s $al<:pl A $b1>:p3 A $cl>:pd } ,{ t5: $a5<:p2 A $b5>:p3 A Sch<ipd
N

: $a2<:pl A $b2<p3 A $c2>:pd tg: $a6<:p2 A $b6<p3 A $c6>:pd

t7: $a7>:p2 A $b7>:p3 A $c7>pd

-
: $a3=:pl A $h3<:p3 A $c3<:p4 }"\/ ,/\
<

: $ad>:pl A $b4<:p3 A $cd<:p4d ts: $a8>:p2 A $b8>:p3 A $c8>:p4

J
J
J
J

No total-order

- - - pl >:p2 wemp2 >=:pl —=-p2 > pl

Figure 9: A CBG for a multiple-query integration instance.

852

Figure 10: Search tree ofSI. Lemma 1 prunes cases 1, 2 and 3.
Lemma 2 prunes cases 6, 7, and 8.

are no total-orders induced from symbols connecting parameters
:p3 and :p4. For the example in Figure 9, we can visualiz&’its
cases (all possible subsets) as a search tree (Figure 10). The left
branch of the search tree denotes the inclusion of a relationship
and the right branch of the search tree denotes the exclusion of a
relationship. As an example, leaf node 5 represents the case that we
need to construct a constrained bipartite graph by including edges
that induce relationship.=[:p2 > :p1] (e.g., (s, t5)), edges that
induce relationship-s=[:p2 > :p1] (e.g., €4, ts)), and edges that
induce no total-order (e.g.4 ts)). Looking at Figure 10, we see
that Lemma 1 prunes cases 1, 2, and 3, as those cases include edges
from contradicting relationships {rcontradicts bothry andrs).

ST traverses the search tree in a depth-first manner because the
order of node traversal helps prune the search space by the follow-
ing lemma:

LEMMA 2. Given two non-empty relationship subsgld, R, } €
R, if R; C Rj, the size of the MSM/;, of the constrained bipar-
tite graph constructed fromR;, must be less than or equal to the the
size of the MSMV/;, of the constrained bipartite graph constructed
from R; (i.e.,|M;| < |M;)).

Lemma 2’s proof is in Appendix C.3. By Lemma 3, can
rune cases 6, 7, and 8 because the MSM obtained from these cases
annot be larger than the MSM obtained from case 5. Up to this

goint, ST needs to consider only cases 4 and 5.

Trick 4. Early Stopping Our goal is to find the largest MSM
among all the possible CBGs. The last trick isSif finds a perfect
satisfiable matching in a CBG, it can stop early. Although simple,
experiments show that this trick is very useful sin€g is often
able to find a perfect satisfiable matching very early in the process.

Implementation, Pseudo-code, and Correctnes$he implemen-
tation details (e.g., choice of the maximum flow algorithm) and the
pseudo-code of I are in Appendix B. In Appendix C.4, we prove
that algorithmST returns an MSM of a CBG correctly.

Multiple Attributes and Multiple Tables GeneralizingS! to
handle multiple attributes is straightforward. In case a tuple con-
tains multiple attributes, a single node is created for the conjunction
of all the constraints in the attributes. In fact, Figure 9 is an exam-
ple of said idea. Integrating two SDBs that contain more than one
pair of symbolic relations is also straightforward. We can simply
apply ST on every pair of overlapping symbolic relations.

3.3 Multiple Queries

We now discuss how to integrate multiple symbolic databases
when each database is independently generated from a single input
annotated query by SQP. Intuitively, to integratesymbolic rela-
tions S1, S2, ..., S» (which share the same table definition and

SI_ 7SI

@ & b) . /
/SI\D Ds N /,S]\D Ds /SI\D Ds
SfSI\D 4 p L\\D 4 /SI 5 4
3 D3 SI 3
D/l \Dz D/] \Dz Tt Dg Dy
Figure 11: (a) An Integration Plan (b) An Execution Plan Figure 12: (a) A graph representing the (scaled-down) MSM

sizes between pairs of input SDBs (bolded edges represent the
MST) (b) An integration plan deduced from the MST.

are generated by SQP far queries), we can model the problem
as finding an MSM of a constrainedpartite graph; however, that
problem is obviously too difficult to be solved while maintaining
both a good running time and a good matching size. Therefore, our
method of integrating multiple symbolic databases resembles the
concept of joining.

We useSI(D;, D;) to denote the integration of two SDBS3;

summary about the quality of some cd¥é operations and exploit

that to estimate the best plan using a simple graph algorithm. More
specifically, our approach is to first pre-build a summary about the
sizes of the MSM between every pair of input SDBs. To obtain the

andD;, and useD;; to denote the resulting SDB. The integration size of the MSM betwef_en a pair of SDE3, an(_j D;, we have to

of three SDBsD;, D;, andDy,, can then be achieved by one of two carry outSI (D, D;),; Givenn a.nnotalted queries (thusSDBS),
integration plans, eithe¥1(S1(D;, D;), Dy) or SI(D;, SI(D;, Dy)). we h?vglto 51);%?}1@2 kSI ozeragcms f\'};‘g\ﬁ%’t@) has r:joDco_m-
Figure 11a shows an integration plan of five SDBs. SIBsand mon table, IS Skipped and the 1 be we@i andt;Is
D are first integrated, then the resulting databe is then set to the largest possible integer). To optimize this process, we first
further integrated Witl’bg and so on. An observation is that an scale down the the cardinalities requirements of the input queries
ST operation is commutative, i.eS1(D;, D;) = SI(D;, D;) in (e.g:, from ggnerating 1GB data to 1MB Fiata) by the test case gen-
terms of matching size. Nevertheless, for performance reaSdns, eratlgn toct)l n £_14]|'| For |e>(<ja(rjnple, tthﬁ mptigg?luery 'lnt F(ljgur_fh 4a
is designed to return any one of the possible maximum satisfiable can be automatically scaled-down 1o have annotated witn
matchings (if multiple MSMs exist). Therefore, the MSM;; re- two tuples and the_out_put annptated W'th one tupl_e (the t(.)Ol will
turned bySI(D;, D;) may have a different set of matching edges make sure the scaling is meaningful and in proportion). This scale

with the MSM M;; returned byS1(D;, D;). Consequently, af T gownf(iptlleztlon 'T l;uﬂt l#)on thg obseryatlontth?lt (1% t?r? nurp-
operation is not associative, i.&4](S1(D;, D;), Dy) # SI(D;, betr orto i/lsol:/l er rela ljotnhs 'g;gn. mgre |m(|cj)or atrt]1 y %) ? ra It(')
SI(Dj, Dy)), interms of running time and matching size. For in- etween size and the size depend on the charactenstics

. .] of the input queries (e.g., the selection predicates) but not the size

???E?Sé(%l(&, D;), Dr:) may find a larger MSM thass 1 (D, of the databases to be generated. Thus, there would be no differ-

ST ence in (1), (2), and thus the number of resulting databases between
generating 1MB and 1GB data (our experiments confirmed this).
However, there would be a significant time difference between the
two. More specifically, the running time of &Y operation mainly
consists of: (T1) scanning the SDBs and constructing the flow net-
work, (T2) running the maximum flow algorithm, (T3) loading and
merging tuples according to the MSM and inserting them into a
new SDB, and (T4) the algorithmic overhead (e.g., checking con-
tradicting total-orders). Using the fot tricks, experiments show
that (T1) often is the most time consuming step because QAGen
tive error between the annotated cardinality and the actual cardinal-l(fn(ithu; Mﬁ' Btﬁncdhnt”na_rk) storﬁ tk;e S}’mbOlt'C/ |f_rls_,tant|ated tup_lrehs ina
ity (obtained by posing the query on the generated data). Consider ostgresSQ .(€ data Is usually too farge to fitin memory). ere-
Figure 11a again. Assume that aft®f(Dy, D), SI(Diz, Ds) fore, m_uch time is spent on the overhead (e:g., JDBC)_ of reading
results in a databas®: 2 in which posing a query (e.gQs) on it symbolic tuples from th(_a database. By runnl_ﬁg operations on
finds some query operator with relative error exceeding the thresh-the scaled-down SDBs instead, We can obtain the summary about
old. Then, MyBenchmark will not further integrafe; 23 with Dy. thg (proportionally scaled-down) sizes Of.the MSM between every
Instead, it discard®; »; and integrate®s with D4 and so on (see pair of SDBs (at the leaf level) more efficiently. As a note, this

Figure 11b). In the example, two databags and Dsus are gen- f#mmar){ ctag getobt_alneddefﬁuenttly becda_lus?t_lt is independent of
erated to serve five queries. e annotated data size and operator cardinalities.

The summary obtained is represented as a graph. In the graph,
.. . . a node denotes an SDB, an edge denoteSlaoperation between
Determining a good integration plan a pair of SDBsD; and D;, and the edge weight denotes the MSM
Since there is an exponential number of possible integration plans, size betweerD; and D;. Figure 12a shows an example of such
deducing an optimal one that returns a minimum set of databases,a graph for the five SDBs. Recall that, one additional database is
which have the lowest error, is a challenging problem. In fact, itis required whenever the quality of the resulting instantiated database
as hard as finding the optimal joining plan [7], whichN&P-hard drops below the user-threshold. Actually, that is directly related
(see Appendix C.5). Traditional query optimization uses heuristics to the size of the MSM obtained from ea® operation. Since
and estimation to solve the join plan selection problem. Our solu- our goal is to minimize the number of generated databases, the
tion borrows ideas from there. Specifically, in traditional query best plan should be the one that maximizes the MSM size of each
optimization, we usually pre-build certain summaries (e.g., his- ST operation. Therefore, we suggest that the best integration plan
tograms) on the data and exploit those to estimate the best planshould be derived from the Maximum Spanning Tree (MST) of the
using some efficient algorithm. For MyBenchmark, we pre-build a graph. In Figure 12a, the MST of the graph is highlighted. Based

Recall that given the SDBs of annotated queries, our goal is
to integrate the: SDBs into as few databases as possible. As the
MSM returned by art1 operation may not be a perfect matching,
the size of the MSM may get smaller and smaller when the integra-
tion goes up to the root. In order to ensure the matching size, or the
quality, of an integrated database at a particular level of integration
is acceptable, MyBenchmark stops integrating two SDBs when the
quality of anST operation drops below a user-defined-threshold.
Since the size of an MSM is not readily known to the users, we
define thequality threshold (from the user perspective) as the rela-

853

on the MST, the suggested integration plan (Figure 12b) fadlaw reasons, we refer readers to the TPC-W specification for the de-
decreasingly ordered, by the edge weight (the MSM size), sequencetails of the queries (we name the TPC-W queries according to their
of the MST, i.e.,SI(SI(SI(SI(D2,D1),D3), Dy4), Ds). appearance order in the specification). After removing IUD and

The plan selection is taken care by the Execution Planner (seeindependent queries, 15 TPC-W queries remained. The expected
Figure 3) of the system. Similar to any query plan selection al- cardinalities annotated on the operators of the queries are specified
gorithm, our approach is also based on heuristics and estimation,according to the actual cardinalities obtained by running the queries
which may not find the optimal plan. Nevertheless, experimen- on the TPC-W data with scale factor 1.0 (they are scaled-down to
tal results about this approach are quite encouraging. In our ex- become a scale factor of 0.1 during the plan search process). The
periments on TPC-C and TPC-W workloads, the plans suggestedbreakdown of the whole plan search process is as follows (rows in
by our method successfully integrate all databases into only two gray mean they are not the implementations of this paper):
databases.

ltem Description / Sub-item Time
Ay scale-down the input queries <1s
4_ SUMMARY OF THE METHODO LOGY A, SQP all down-scaled queries orfce 6min
) . As Build a summary (graph) of MSM size 180s

Overall, the execution of MyBenchmark is composed of two A, Suggest a plai® by finding a MST from the graph _ 0.5s
steps: >4 9min

Running SQP on all scaled-down input queries to generate the
small SDBs (4-) is more time consuming than the other pass (
As, A4). This makes sense because query-aware data generation
is much more advanced than traditional query-unaware data gener-
ation technology and thus requires time to process symbolic data.
The time spent on running! on C3° pairs of SDBs {3) is 180s.

The following table shows the experimental result about &ep
i.e., executing the good integration plan in scale 1.0:

Step.A. Finding a good integration plan. This involves:

A1) Scale down the cardinalities in the input queries. This is done
by the tool in [14] using negligible time.

A2) SQP the scaled down input queries to get the small SDBs. This
step is don@nceby the SQP engine in [4] for each input quéry.

A3z) Build a summary (graph) of MSM size by runnisg on every

pair of small SDBs.

A4) Suggest a pla#® by finding a Maximum Spanning Tree from
the graph. We can use any Minimum Spanning Tree algorithm. In

our implementation, we used Kruskal's algorithm [13], which runs —em Description/Sub-tem Total Time Spent
in O(n’log n) time. Asn is generally a small number for typi- B: SQP all queries in original scale 53min
cal database applications (e.g., a TPC-W implementation has only B2 Follow P torun Si operations _ Gmin
. N . (a) After each S, instantiate the resulting SDB 46min
about 20 parameterlzed que”es)- this Step runs very fast. (b) Pose all the queries on the resulting database to check quality 0.26s
> s 1hrd6min

StepB. Executing P in the original scale This involves: o])
B1) SQP the input queries to get the SDBs in original scale. This The overall running time - , + ", is 1 hour 55 minutes. By

step is don@nceby the SQP engine in [4] for each input quéry. following the suggested plan, two databagesand D, were gen-
B2) Run ST operations according tB. erated. When posing the original queries on the generated database,

a) After eachS1, instantiate the resulting SDB. all queries obtairexactcardinalities as annotated in the input.

b) Pose the processed queries on the resulting database to check the We now study the efficiency &7 and the pruning effectiveness
quality, i.e., the relative error between the actual cardinality and the Of the tricks used bys'7. The efficiency of the5T algorithm can be

annotated cardinality of each operator. Add a new database if nec-Studied through the four items (T1 to T4) we mentioned in Section
essary. 3.3. The effectiveness of &Y can be characterized by (i) tbem-

pression ratio the total number of tuplesH;) vs. the total number
of nodes in the flow networkH,); and (ii) thepruning effective-
ness the number of all possible caseEs), the number of cases
5. EXPERIMENTS actually examinedX{s), and the number of cases pruned by Lem-
We have carried out experiments on MyBenchmark using work- mas 1 and 2F5). Es, the number of all possible cases, can also
loads from TPC-W and TPC-C benchmarks. The implementation be regarded as the performance of a “baseline” solution in which
and experimental setings are in Appendix D.1. In all experiments, no tricks are used and can be used for comparisons. In this experi-
we exclude IUD (INSERT, UPDATE, and DELETE) SQL queries. ment, we used the best plan found in st#¢and measured the total
We also exclude “independent” queries that share no common ta-values of the aforementioned items of all execu$ddoperations.
bles with the others (e.g., a SELECT query that accesses a table Figure 14 presents the time breakdown of all execufi&cop-
X is removed from consideration if no other SELECT queries also erations in different scale factors (1, 10, and 100). T1 is very
accessX). That is because the symbolic databases generated fortime consuming because it reads a large number of tuples from
independent queries can be “perfectly integrated” with other SDBs the SDBs. Thanks to compression, the number of nodes (E2) is
without any effort. significantly smaller than the original data (E1). Thus, the maxi-
We characterize the efficiency of MyBenchmark based on the mum flow running time (T2) and the time to integrate and instan-
items listed in Section 4. The quality of the generated databases istiate the compressed tuples (T3) are small. M&stoperations
characterized by the error between the annotated and actual cardiinvolved very few unique relationships and the number of unique
nalities of all queries and their sub-queries. relationships is the same across different scales. SIR®,;, Do)
Experimental Result: TPC-W Benchmark opergtion involved 13 disf[ingt relationshipg and thus the “baseline”
The TPC-W benchmark models a typical web-commerce databas&!ution needed to examing® = 8192 possible cases (E3). How-
application. We downloaded an open-source implementation of €Ver: with our tricks, 7642 cases (E5) were actually pruned and the

TPC-W from http://www.ece.wisc.edupharm/tpew.shtml. For space 51 operation actually examined only 8 CBGs (E4) before a per-
fect matching was found and stopped early. In séhi@perations

"SQP and data instantiation are not our focus as long as they scale. (e.9.,SI(D11, D10)), there were no common tables afd thus

854

Num. of Queries| 1

2 3

4

5| 6

7

8 9 10 11 12 13 14 15

>4 (inseconds) 24

Num. of DB

1

50 78

1 1

107

1

139 173 209
> (inseconds)| 416 634 1050 1466 188}52299 2716 3132 3549 3865 4382 4798 5214 5631 6377
1 2

2

247 287 329 373 419 467 517 569

2 2 2 2 2 2 2 2

Figure 13: Scaling up the number of TPC-W queries

Running time breakdown of ali /s executed in part/g) \ SF=1.0 SF=10.0 SF=100
T1 Constructing flow networks 122s 608s 5956s
T2 Maximum flow algorithm 0.383s 0.234s 0.255s
T3 Merging tuples & inserting them into SDBs 0.064 0.1s 0.111s
T4 Algorithmic work 251s 381s 419s

D osr | 374s 989s 63765
Effectiveness of 7 agorithm I
E1. Total num. of nodes in all SDBs 134K 1.2M 12M
E2. Total num. of nodes in all flow networks 56 72 67
—the below is same for all scales
Table customer | item |
Pruning Effectiveness E3/E4/E5 E3/E4/E5
ST(D11,D1o) = Da 0/0/0 0/0/0
SI(Da, D1a) = Dy 0/0/0 0/0/0
SI(Dy, D13) — D. 8/1/3 0/0/0
SI(Dc,Ds) = Dq 0/0/0 0/0/0
S1(Dg, D13) — D. 0/0/0 0/0/0
SI1(Ds, D15) — Dy 07070 07070
SI(Dy,Ds) — Dy 0/0/0 0/0/0
SI(Ds3, D) — Dy, 0/0/0 128/41124
SI(Dy, D7) — D; 1/1/0 0/0/0
SI(D;, D3) — D; 8/1/4 0/0/0
SI(Dj, Dg) — Dy, 0/0/0 8192/8/7642
SI(Dy,D1) — Dy 32/1/15 0/0/0
SI(Dy, Di2) = D, 1024 /1/512 0/0/0
SI(Dy,, Ds) — Dy, 0/0/0 4096 / 24/ 3872

Figure 14: Details of ST algorithm (TPC-W)

examined O cases. The overhead (T4) (e.g., checking contradicting
relationship) is relatively less significant when compared with T1.
Overall, we can see that th#®l algorithm scales linearly with the

size of the generated data.
To study the performance of the overall methodology with re-

spect to workloads of different sizes, we carried out an experiment (6]
that varies the number of annotated queries in the input. Table
13 summarizes the results (time is in seconds). The running time (7
roughly scales linearly to the number of input queries. After we
processed the 6-th query, the quality of the generated data was be-[8]
low threshold and thus one new database was added. All the gen-

erated databases are perfect (i.e,. no error).

We remark that experiments of this kind can only be carried out
by adding real queries. Other kinds of controlled experiments may [
not be applicable. Specifically, the number of queries cannot be
scaled up even higher by using randomly generated queries becausFll]
they often return empty results (i.e., cardinality equals 0 in the out-

put operator). Also, it is difficult to control the number of unique

relationships in the workload because that depends on the query[12]
semantic. Nevertheless, as TPC benchmarks are simulating real-
istic workloads, we believe that the number of queries we used is
enough to reflect realistic applications.

Other results and discussion. For space reasons, we put the ex-

perimental result of using TPC-C workload in the Appendix. Over- [14]
all, we see that MyBenchmark successfully minimizes the num-
ber of generated databases. The running time scales linearly to the
data size and the number of input queries. Nevertheless, the num
ber of input queries has some impact on the number of generate
databases. For all the experiments that we have conducted, we hav

dLl6]

generated databases (and O error) as the best plan we could find in
millions of plans, except in the experiment using TPC-C workload,
where we found a plan that integrated all databases into one with lit-
tle error, which is better than the one suggested by our method. As
a future work, we will study the better plans found in those random
trials to further improve our integration plan searching method.

6. CONCLUSION

MyBenchmark is a workload-aware data generator that takes as
input a set of queries and generates database instances for which the
users can control the characteristics of the resulting workload. Ap-
plications of MyBenchmark include database testing, database ap-
plication testing, and application-driven benchmarking. Although
the whole data generation process requires solving several diffi-
cult problems, our experiments show that our proposed methods
are able to practically solve them. Our future work will focus on
further improving the integration plan search methods.

7. REFERENCES

[1] Dbunit. http://www.dbunit.org.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. OrlilfNetwork flows: theory,
algorithms, and applicationsPrentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1993.

C. Binnig, D. Kossmann, and E. Lo. Reverse query processing. In
ICDE, 2007.

C. Binnig, D. Kossmann, E. Lo, and M. T. Ozsu. QAGen: Generating
Query Aware Test Databases.$hiGMOD, 2007.

N. Bruno, S. Chaudhuri, and D. Thomas. Generating Queries with
Cardinality Constraints for DBMS TestinggKDE, 2006.

B. V. Cherkassky and A. V. Goldberg. On implementing the
push-relabel method for the maximum flow probleRigorithmica
19(4):390-410, 1997.

1 S. Cluet and G. Moerkotte. On the complexity of generating optimal
left-deep processing trees with cross productsCIDT, 1995.

B. Cook, D. Kroening, and N. Sharygina. Cogent: Accurate theorem
proving for program verification. ICAV, pages 296-300, 2005.

M. R. Garey and D. S. Johnso@omputers and Intractability: A
Guide to the Theory of NP-Completenes390.

10] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickly generating billion-record synthetic databases. In
SIGMOD, 1994.

F. Haftmann, D. Kossmann, and E. Lo. A framework for efficient
regression tests on database applicativth$B Journal
16(1):145-164, 2007.

A. Kini, S. Shankar, J. F. Naughton, and D. J. DeWitt. Database
support for matching: limitations and opportunities SKIGMOD
Conference2006.

13] J. B. Kruskal. On the shortest spanning subtree of a graph and the
traveling salesman probleRroceedings of the American
Mathematical Society7(1):48-50, 1956.

E. Lo, C. Binnig, D. Kossmann, M. T. Ozsu, and W.-K. Hon. A
Framework for Testing DBMS FeaturégLDB Journal
19(2):203-230, 2010.

15] H. Mannila and K.-J. Raiha. Test data for relational queries. In
PODS pages 217-223, 1986.

C. Mishra, N. Koudas, and C. Zuzarte. Generating targeted queries
for database testing. RIGMOD, pages 499-510, 2008.

(3]
(4]
(5]

El

executed thousands to millions of extra randomly generated inte- [17] C. Olston, S. Chopra, and U. Srivastava. Generating example data for

gration plans (using a cluster of machines) to get a picture of how
the best plans for each workload could be. We found that the in-

dataflow programs. I8IGMOD Conferencepages 245-256, 2009.

tegration plans suggested by our method have the same number of

855

APPENDIX

their attributeA, the data instantiator will instantiate them with the
same concrete value. In SQP, the data distribution constraints are
A. BACKGROUND OF QAG EN controlled by the cardinalities.

The QAGen system [4] is the predecessor of MyBenchmark. QAGen is mainly composed of three components: a Query Ana-
QAGen is a query-aware test database generator that takes as inlyzer, a Symbolic Query Processing (SQP) Engine, and a Data In-
put an annotated parameterized qu@rand a database scherfia stantiator. The Query Analyzer is used to parse annotated-queries
as input. Each operator or base table&jns annotated with a set ~ and determine the cardinality or the data distribution if they are
of constraints (usually cardinality and data distribution). Figure 1a not specified on some query operator. The SQP Engine is used to
shows an annotated selection qué}y as an example. The SQL symbolically process the query and the Data Instantiator uses an
statement of); is SELECT A FROM R WHERE R A < :pl. external constraint solver called Cogent [8] to instantiate the pro-
Q1 specifies that tabl& should be populated with two tuples and cessed SDBs and the parameters with real values according to the
the query should return one tuple(l is a parameter). The output user-given data distributions. The SQP Engine includes the SQP
of QAGen is a query-aware databaBethat conforms toH, and implementations of most SQL operators including selection, pro-
a set of parameter valug®. Executing queny (with parameter jection, join, grouping, and aggregation. QAGen is thus able to
valuesP) on D guarantees that the constraints definedpare generate databases for a variety of SQL queries.
satisfied.

As a means to process a query like the one in Figure l1a beforeB
the data is generated, QAGen introduces the concept of symbolic
query processing (SQP). In SQP, each operator is implemented as OF s1
an iterator with methodspen() getNext() andclose() SQP starts Algorithm 1 presents the pseudo-code $f. We have gone
with the population of a symbolic database (SDB) according to the through Steps (1) to (3) in the main discussion. As the relation-
sizes of the base tables specified in the annotated query. Figureships are unweighted, so the search tree is constructed randomly.

IMPLEMENTATION AND PSEUDO-CODE

1b shows the SDB initialized for quel®:. A symbolic database
consists of a number of symbolic relations. A symbolic relation
is a collection of symbolic tuples. Inside each symbolic tuple, the
values are initially represented by symbols rather than by concrete
values. For instance, tupte in Figure 1b is a symbolic tuple of
symbolic relationk and symbol $al represents any value under the
domain of attributeA.

Since a symbolic database provides an abstract representation fo

In terms of implementation, Steps 4(a) and 4(b) are merged so that
we construct the flow network from the symbolic relations directly.
To implement Step 4(c), we use a push-relabel maximum flow algo-
rithm with complexityO(n®) [6] (n is the number of nodes in the
flow network). To implement Step 4(d), for each edge of the form
(n!,,n,) in the network flowG;, with flow value f, ST matchesf
members ofV,, to f members ofN,. Finally, in Step 5,57 fol-

fows the largest maximum satisfiable matching that it has found to

concrete data, SQP can control the output of each operator in accor-perform tuple merging.

dance with the user-defined constraints. Specifically, an operator in
SQP evaluates the input tuples according to its own semantics. It
manipulates the symbols in each input tuple in order to reflect the
constraints defined on the operator. At the same time, it controls its

output to its parent operator so that the parent operator can work on (2)

the right tuples. Continuing with the example in Figure 1b, when
the getNext()method of the selection operat®r. 4 <.p1 is first in-
voked, it reads tuplé; from R, annotates a “positive” constraint
[<:p1] (i.e., the selection predicate) to symbol $al and returns tu-
ple ($al<:pl, $bd to its parent. When thgetNext()method of

the selection operator is invoked a second time, the selection op-
erator reads the next tupte from R, and annotates a “negative”
constraint p=:p1] (i.e., the negation of the selection predicate) to
symbol $a2. However, this time it do@st returnt, to its parent
because the cardinality constraint (1 tuple) is already satisfied. Af-
ter symbolic query processing, the set of symbolic relations capture
all the constraints defined on the input query (see Figure 1c). In the
final step, a constraint solver is used to instantiate the symbolic tu-
ples and the parameters with concrete vafuBiyure 1d shows the
instantiated tablé? and we can see that executiGg on R (with
:p1=22) would get exactly one tuple as defined by the user. In SQP,
joins and groupings are implemented by symbol replacements. For
example, if a group-by query is annotated to return 1 group from
table R, the same symbolic relation in Figure 1b will be initial-
ized but the grouping operator will replace symbol $a2 with $al
during getNext(Jon t2. Since both tuples; andt, contain $al in

8A constraint solver takes as input a constraint formula and returns an in-
stantiation on each variable as output. E.g., if an input constraint formula
is 40<$al+$bk 100, a constraint solver may return $al=55, $b1=11 (or
any other correct instantiation) as output. Although the constraint satisfac-
tion problem on a finite domain 8 P-complete, there are many best-effort
constraint solvers that can practically solve many forms of constraints.

856

Algorithm 1 ST

) ldentifies all the total-order relationships that can liiged by the
satisfiable edges and puts them in aRet
Construct a search trdefor each subsek; of R that
(i) contains no contradicting relationships and
(i) R; is not a subset of another subget.
Initialize MAX -MSM=nui to store the largest MSM discovered so far.
Visit the search tre&’ in a depth-first order.
(a) construct a new constrained bipartite graphwhich includes
(i) the edges that induce the relationshipgiin
appear as a left branch of a node (inclusion); and
(ii) the edges that induce no total-order (edges that induce only
partial-order relationships);
(b) transformG; into its flow network counterpai®’;
(c) find a maximum flowM/ from G, by invoking a maximum
flow algorithm;
(d) transform the resulting maximum flow into maximum match-
ing MSM;
if a perfect satisfiable matching is found, stop searching.
if IMSM| > size-ofMAX -MSM
setMAX -MSM=MSM
(5) FollowmAX -MsM to perform the integration.

®3)
()

C. PROOFS
C.1 Proof of x--SAT-MATCH is nP-complete.

THEOREM 1. Problemk-SAT-MATCH is\VP-complete.

We begin with provingk-SAT-MATCH is in NP, and further
show that it isNP-hard by a reduction from tha/P-complete
problem known as X3C (Exact Cover Byset).

COROLLARY 1. k-SAT-MATCH is inVP.

PROOF Each “yes” instance has a polynomial-size proof, which

consists of the set of edges in the matching, and the set of values for

each variable. Thus, each “yes” instance can be verified in polyno-
mial time. [

COROLLARY 2. k-SAT-MATCH is\P-hard.

PROOF. Obviously, if we solely focus on the constraint satisfac-
tion problem (i.e., the condition on satisfiability required in Defi-
nition 4), k-SAT-MATCH is definitely A’P-hard. However, as we
want to show the difficulty of the matching problem itself (e.g.,
adding an edge to the matching set will induce some relationships
that hinder the matching of the other nodes), we assume here th
constraint satisfaction step is at no cost.

We are going to reduce X3C (Exact Cover by 3-Set) tokhe
SAT-MATCH problem. The X3C problem [9] takes as input a set
of elementsS= {51, S2,...,S3,} and a collection of 3-element
setC= {C1, Cs, ..., C\, } and asks whether there is a sub-collection
of C, whose size is, such that it exactly covers all elements&f
The reduction is to construct a constrained bipartite grapk=
(U,V, E) as follows.

1. Foreach 3-element st = {S;, Sk, S}, insert 3 constrained
nodesu; ;, u;, i, andu; ¢ to constrained node st The propo-
sitional formulas that are associated with;, w; , andw; .
would be [$; < w;], [$ar < w;]and [$u, < w;], respectively
($aj, $ax, $a, are symbols and; is any unique value).

. For each elemerti;, insert a constrained node to constrained
node sefl”. The propositional formula that is associated with
v; would be [$; > w] (value w would be the same for all
elements).

. Connect the nodes i andV if they are created from the same
elements;.

For instance, assume a 3-elementGet= {S4, S5, Ss} has
inserted 3 nodess 4, u2, 5, andus ¢ to U in Step 1 and element

S4 has inserted a node, into V' in Step 2. Then, nodes; 4
andwv, should be connected as both of them are created from
elementS,.

. For each 3-element s€t, insert a node.c, with propositional
formula [$; > w;] to U and insert a nodec, with proposi-
tional formula [$#/; < w] to V and connect the two nodes with
an edge.

The rest of the proof will establish:

PROPOSITION 1. There is an exact cover & if and only if the
size of maximum satisfiable matchingbis exactly3n+ (m —n).

Firstly, if the nodeu;,; appears in the MSM, it must be matched
with the nodev;, so that it will induce the total-order relationship
w; > w. On the other hand, if.c, appears in the MSM, it must
be matched with willyc,, so that it will induce the total-order re-
lationshipw > w;. Thus, if eitheru; j, u; x, or u,; . appear in the
MSM, we cannot havec, in the MSM at the same time.

Suppose we denote to be the number of's such thatu; ;,

U; k., OF u; ¢ @appear in the MSM. Then, the size of MSM is at most
3z + (m — z), which in turn is at mos$n + (m — n) sincez < n.

The “only-if” direction . Next, suppose there is an exact cover
of S. Inthat case, let’;,, Ci,, . . ., C;,, be the 3-sets such that they
exactly coverS. This implies the elements in these 3-sets must be
distinct from each other. Then, consider the following matching in
G:

857

e

1. Foreach € {i1,i2,...,1,}, the corresponding nodes 6%,
i.e., Wi, 5, Uiy i, Uiy ,0, Are matched te;, vg, andue, respec-
tively.

2. Foreach ¢ {ii1,i2,...,in}, uc, is matched tac, .

The above matching is also satisfiable because the edges induce
total-order relationships of the form; > wwheni € {i1,42,...,in},
and of the formw,; < w for other choice of. Thus, all edges can be
satisfied simultaneously. Finally, it is easy to check that the above
matching hasn + (m — n) edges, so that it is a maximum satisfi-
able matching.

The “if” direction . If the size of MSM is exactlgn + (m —n),
we claim thatz, which is the number of's such thatu; ;, w; x, or
;¢ appear in the MSM, must be exactly in addition, for each
suchi, all u; ;, u; i, u; c Must appear in the matching. If this claim
is true, it will immediately imply the corresponding 3-sétss (in
total n. of them) will cover exactlys.

Now, it remains to prove the claim. We first show that n. If
z < n, then the matching can contain at m8stedges connecting
someu; » With v, and at mostn — z edges connecting some:,
with ve,, so that the number of edges is at mBst+ (m — z),
which is less thaBn + (m — n). On the other hand, if > n, then
the matching can contain at mast edges connecting soms,
with v, (because,. is limited), and at most: — z edges connecting
someuc, with ve,, so that the number of edges is at mdst+
(m — z), which again is less thadn + (m — n). Thus, if the size
of MSMis 3n + (m — n), we must have = n.

Given z = n, there are at most. — n edges connectingc,
with vo,. Thus, at leas8n edges must be connecting somg.
with v,.. However, since there are only values ofi with u; ;,
u; K, Or u; ¢ appear in the MSM, the previous statement is possible
unless for each such all u;,j, u; k, u; ¢ appear in the matching.
Thus, the proof of the claim completes, and so do the proofs of the
Proposition 1 and Corollary 2.

C.2 Proofof Lemmal

PROOF. Sincer; andr; are contradicting, the maximum satis-
fiable matching\/;; in G;; must not simultaneously contain edges
inducingr; and edges inducing;. In other words)M;; must either
be a maximum satisfiable matching@ or in G;, so that either
|M;;| = |M;| or |M;;| = |Mj|. Since|M;;| is maximized, it
follows that|M;;| = max(|M;|, |M;|). O

C.3 Proof of Lemma 2

PROOF. SinceR; C Rj, the edges of\/; are all included in the
constrained bipartite grapf; constructed fronR;, so that)M; is
a satisfiable matching i&';. On the other hand/; is amaximum
satisfiable matching if;, so we must have\/;| < |M;]|. O

C.4 Proof of Algorithm s1 correctness

LEMMA 3. Given a CBG(G, algorithm ST returns a maximum
satisfiable matching af correctly.

PROOF If no pruning occurs, all relationship subsets with no
contradicting total-order relationships will be examined as in the
algorithm S1, so that the matching reported in the end (which is
the one whose size is largest among all maximum matchings) must
be a maximum satisfiable matching@f O

C.5 Proof sketch of the optimal integration
plan problem

Running time breakdown of ali7s executed in part (B | SF=1.0 SF=5.0 SF=10

T1 Constructing flow networks 670s 3062s 5864s
T2 Maximum flow algorithm 0.064s 0.035s 0.092s
T3 Merging tuples & inserting them into SDBs 0.047 0.049s 0.045s
T4 Algorithmic work 14870s 14887s 14867s
> osr 15541s 17949s 20732s
Effectiveness of5 T algorithm [
E1. Total num. of nodes in all SDBs 918K 4.1M 8.2M
E2. Total num. of nodes in all flow networks 30 32 32
—the below is same for all scales
Table customer [orders [district
Pruning Effectiveness E3/E4/E5 E3/E4/E5 E3/E4/E5
SI(D1,D2) — D 0/0/0 0/0/0 0/07/0
SI(Dg, D12) — Dy 0/0/0 0/0/0 0/0/0
SI(Dy, Ds) — D. 0/0/0 0/0/0 0/0/0
SI(D¢,Dg) — Da 0/0/0 0/0/0 0/0/0
SI(Dd,D13)—>D 2/1/1 0/0/0 0/0/0
SI(DF,DII)*)D] 0/0/0 64/1/31 0/0/0
SI(Dyf,D1s) — 512/1/255 0/0/0 4/1/1
SI(Dg,Dm)—>Dh 512/47266 0/0/0 0/0/0
SI(Dy, Ds) — D; 0/0/0 0/0/0 0/0/0
SI(D;, D1s) — Dj 0/0/0 0/0/0 0/0/0
SI(Dj, D7) = Dy 16777216 / 2 / 8388607 0/0/0 0/0/0
SI(Dy, Do) — Dy 0/0/0 0/0/0 0/0/0
SI(Dy, Dig) — D 0/0/0 0/0/0 0/0/0
SI(Dp,Ds) — Dy 0/0/0 0/0/0 64/2/34

Figure 15: Details of ST algorithm (TPC-C)

PROOFSKETCH. Given an instance of a cross product optimiza- ';fm Deslcrijp“"” t’hsu_b'"‘im _ Ti:‘e
: H H 1 Scale-down the Input queries <1s
tion [7], we cre_ate a corresponding symboll_c database such that Z» SOP all down-scaled queries orfce —
the matching size between two databases is always equal to the A, Build a summary (graph) of MSM size 2035
size of the cartesian product of the databases plus the size of the Ai__Suggesta plai by finding a MST from the graph_0.5s
two databases. Thus, finding the maximum (satisfiable) matching >4 S7min
equals to finding the optimal join ordering, which\§P-hard. [J Again, the most time consuming partis running SQP on all sealed

down input queries to generate the small SDBs)(AThe time

D. SUPPLEMENTARY EXPERIMENTALIN- spenton running'7 on C3° pairs of SDBs {s) is 403s.
FORMATION The following table shows the experimental result about Bep

i.e., executing the good integration plan in scale 1.0:

D.1 Experimental Setup

. . Item Description/Sub-item Total Time Spent
QAGen uses PostgreSQL to manage the symbolic/instantiated sop aI’|) queries in original scale e P
. . 1
.databas.e anq uses Java to implement the SQP operations. For easys, —Follow P to run ST operations Zhriomin
interacting with QAGen’s components, we also use Java and Post- () After each SI, instantiate the resulting SDB 2hr43min
greSQL to implement MyBenchmark. All experiments were car- (b) Pose all the queries on the resulting database to check quality 0.52s

> 5 10hr56min

ried out on a Pentium Dual-Core 2.5GHz PC with 8GB memory
running Ubuntu. In all experiments, we set the relative error tol- The overall running time} , + 3" ;, is 11 hours 53 minutes. By
erance to be 100% for cardinalities in range [1, 1000] (e.g., the following the suggested plan, two databaggsand D,, were gen-
acceptable range of cardinality 10 is [1, 20]; cardinality 0 is ex- erated. When posing the original queries on the generated database,
cluded), 10% for cardinalities in range [1001, 10000] (e.g., the ac- all queries obtairexactcardinalities as annotated in the input.
ceptable range of cardinality 5000 is [4500, 5500]), and 1% for Figure 15 presents the time breakdown of all executémper-
cardinalities>10001. ations in different scale factors (1.0, 5.0, and 10.0), using the best
. plan found in partd. Most items behave the same as TPC-W work-
D.2 EXpe”mental Result: TPC-C Benchmark load. We can see that the suggested plan favors the integration of
The TPC-C benchmark models a typical OLTP environment whereSDBs without any common table (as their MSMs are set to be the
users executes transactions against a database. We downloaded dargest possible integer in those cases), so the firstSféwpera-
open-source implementation of TPC-C from http://db.apache.org/ tions do not integrate anything. Slightly different from the TPC-W
derby/index.html. We refer readers to the TPC-C specification for experiment, the time spent on ti#& algorithm (T4) dominates
the details of the queries (we name the TPC-C queries according tothe overall running time. When we look at the number of cases
their appearance order in the specification). After removing IUD (E3), we quickly find out that is related to the current implemen-
and independent queries, 16 TPC-C queries remained. The ex-tation (not algorithmic issue) of MyBenchmark. Specifically, this
pected cardinalities annotated on the operators of the queries arelTPC-C workload has ong1 operation that needs to deal with 24
specified according to the actual cardinalities obtained by running distinct relationship, leading to 16+ million cases. That should not
the queries on the TPC-C data with scale factor 1.0 (they are scaled-be an issue originally because only two CBGs (E4) were actually
down to a scale factor of 0.1 during the plan search process). Theprocessed after a large number of cases were pruned (E5). How-
breakdown of the whole plan search process is as follows: ever, the current MyBenchmark implementation is implemented in

858

Num.ofQueries] 1 2 3 4 5 6 7 8 | 9 10 11 12 13

14 15 16

> i (inseconds)| 1497 2380 3878 5375 6873 8370 9867 113652862 14362 15860 17358 33815

> 4(inseconds) 192 380 574 773 974 1179 1388 16(J01815 2033 2255 2481 2710
Num. of DB 1 1 1 1 1 1 1 1 2 2 2 2 2

Figure 16: Increasing the number of TPC-C queries

Java and uses an external constraint solver called Cogent [8], which
is a C++ binary executable, to check Lemma 1. For each cross-
language Cogent call, it took about 0.3s overhead (by JNI). All to-
gether there were 49632 Cogent calls (same for all scales; because
that depends on the number of distinct relationships, not the data
size). So, those calls used a total of 14850 seconds, which almost
equals to time T4. Indeed we tried to use some constraint solvers
written in Java in our implementation and that bottleneck was gone
(the bottleneck is back to T1). However, we found that, in gen-
eral, Java constraint solvers are not very stable. As an experimental
prototype, we keep Cogent in our current implementation because
it is more stable (most constraint solvers are written in C++). We
are currently testing a more stable Java constraint solver that can
replace Cogent, and we are considering to re-implement the whole
SQP and MyBenchmark in C++ (so that it can work seamlessly
with Cogent). As a side-note, the above also explains why item
B> becomes the bottleneck in pa#t That is also due to the large
overhead spent on calling a non-Java external binary. Therefore, if
we find a stable Java constraint solver, the running tim8 ofn

be reduced by 4 hours.

Other than the above implementation issue, this experiment draws
similar conclusions as in the TPC-W experiments. The running
time scales linearly to the workload size. The experimental result
about varying the number of annotated queries in the input is sum-
marized in Figure 16. Overall, the running time scales roughly
linearly to the number of input queries. All the generated databases
are perfect (i.e., no error). When the 9-th query was added, one
more database was required.

Acknowledgment. We thank Byron Choi, Man Lung Yiu, Ming-

Hay Luk, Duncan Yung, and the anonymous reviewers for their
insightful comments.

859

2942 3177 3415
20353 21851 38996
2 2 2

