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ABSTRACT
In XML search systems twig queries specify predicates on
node values and on the structural relationships between
nodes, and a key operation is to join individual query node
matches into full twig matches. Linear time twig join al-
gorithms exist, but many non-optimal algorithms with bet-
ter average-case performance have been introduced recently.
These use somewhat simpler data structures that are faster
in practice, but have exponential worst-case time complex-
ity. In this paper we explore and extend the solution space
spanned by previous approaches. We introduce new data
structures and improved strategies for filtering out useless
data nodes, yielding combinations that are both worst-case
optimal and faster in practice. An experimental study shows
that our best algorithm outperforms previous approaches
by an average factor of three on common benchmarks. On
queries with at least one unselective leaf node, our algorithm
can be an order of magnitude faster, and it is never more
than 20% slower on any tested benchmark query.

1. INTRODUCTION
XML has become the de facto standard for storing and

transferring semistructured data due to its simplicity and
flexibility [6], with XPath and XQuery as the standard query
languages. XML documents have tree structure, where ele-
ments (tags) are internal tree nodes, and attributes and text
values are leaf nodes. Information may be encoded both in
structure and content, and query languages need the expres-
sional power to specify both.

Twig pattern matching (TPM) is an abstract matching
problem on trees, which covers a subset of XPath, which
again is a subset of XQuery. TPM is important because it
represents the majority of the workload in XML search sys-
tems [6]. Both data and queries (twigs) in TPM are node-
labeled trees, with no distinction between node types. Fig-
ure 1 shows a twig query and data with a match. A match is
a mapping of query nodes to data nodes that respects labels
and the ancestor-descendant (A–D) and parent-child (P–C)
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relationships specified by the query edges, respectively rep-
resented by double and single lines in figures here.

Twig joins are algorithms for evaluating TPM queries on
indexed data, where the index typically has one list of data
nodes for each label. A query is evaluated by reading the
label-matching data nodes for each query node, and com-
bining these into full query matches. There exist algorithms
that perform twig joins in worst-case optimal time [3], but
current non-optimal algorithms that use simpler data struc-
tures are faster in practice [10,11].

In this paper we present twig join algorithms that achieve
worst-case optimality without sacrificing practical perfor-
mance. Our main contributions are (i ) a classification of
filtering methods as weak or strict, and a discussion of how
filtering influences practical and worst-case performance;
(ii ) level split vectors, a data structure yielding linear-
time result enumeration with almost no practical overhead;
(iii ) getPart, a method for merging input streams that
gives additional inexpensive filtering and practical speedup;
(iv ) TJStrictPost and TJStrictPre, worst-case optimal al-
gorithms that unify and extend previous filtering strategies;
and (v ) a thorough experimental comparison of the effects
of combining different techniques. Compared to the fastest
previous solution, our best algorithm is on average three
times as fast, and never more than 20% slower.

The scope of this paper is twig joins reading simple
streams from label-partitioned data. See Section 6 for or-
thogonal related work that introduces other assumptions on
how to partition and access the underlying data.

2. BACKGROUND
A schema-agnostic system for indexing labeled trees usu-

ally maintains one list of data nodes per label. Each node
is stored with position information that enables checking
A–D and P–C relationships in constant time. A common

a1

b1 c1

c1

b1 c2 a1

a2

b2 a3

c3

y1 a4

c4 b3

z1 b4 z2

b5

x1 c5

c6

x2 b6

Figure 1: Twig query and data with matches.
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Figure 2: Work-flow of twig join algorithms, with input stream merge component, intermediate result con-
struction component, and result enumeration phase.

approach is to assign intervals to nodes, such that contain-
ment reflects ancestry. Tree depth can then be used deter-
mine parenthood [15].

An early approach to twig joins was to evaluate query tree
edges separately using binary joins, but when A–D edges
are involved, this can give huge intermediate results even
when the final set of matches is small [2]. This deficiency
led to the introduction of multi-way twig join algorithms.
TwigStack [2] can evaluate twig queries without P–C edges
in linear time. It only uses memory linear in the maximum
depth of the data tree. However, when P–C and A–D edges
are mixed, more memory is needed to evaluate queries in
linear time [13]. The example in Figure 3 hints at why.

More recent algorithms, which are used as a starting point
for our methods, relax the memory requirement to be linear
in the size of the input to the join. They follow a general
scheme illustrated in Figure 2. The scheme has two phases,
where the first phase has two components. The first compo-
nent merges the stream of data node matches for each query
node into a single stream of query and data node pairs. The
second component organizes these matches into an interme-
diate data structure where matched A–D and P–C relation-
ships are registered. This structure is used to enumerate
results in the second phase.

The algorithms broadly fall into two categories. So-called
top-down and bottom-up algorithms process and store the
data nodes in preorder and postorder, respectively, and filter
data nodes on matched prefix paths and subtrees before
they are added to the intermediate results. Many algorithms
use both types of filtering, which means the processing is a
hybrid of top-down and bottom-up.

Twig2Stack [3] was the first linear twig join algorithm. It
reorders the input into a single postorder stream to build
intermediate results bottom-up. The data nodes match-
ing a query node are stored in a composite data structure
(postorder-sorted lists of trees of stacks), as shown in Fig-
ure 4(a). Matches are added to the intermediate results only
if relations to child query nodes are satisfied, and each match
has a list of pointers to usable child query node matches.

HolisticTwigStack [8] uses similar data structures, but
builds intermediate results top-down in preorder, and fil-
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Figure 3: Hard case with restricted memory. It can-
not be known whether b1, . . . , bn are useful before
cn+1 is seen, or whether c1, . . . , cn are useful before
bn+1 is seen.
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Figure 4: Intermediate result data structures when
evaluating the query in Figure 1.

ters matches on whether there is a usable match for the
parent query node. It uses the getNext function from the
TwigStack algorithm [2] as input stream merge component,
which implements an inexpensive weaker form of bottom-up
filtering. The combined filtering does not give worst-case
optimality, but results in faster average-case evaluation of
queries than for Twig2Stack [8].

One approach for improving practical performance is
using simpler data structures for intermediate results.
TwigList [11] evaluates data nodes in postorder like
Twig2Stack, but stores intermediate nodes in simple vectors,
and does not differentiate between A–D and P–C relation-
ships in the construction phase. Given a parent and child
query node, the descendants of a match for the parent are
found in an interval in the child’s vector, as shown in Fig-
ure 4(b). Interval start indexes are set as nodes are pushed
onto a global stack in preorder, and end indexes are set as
nodes are popped off the global stack in postorder. A node is
added to the intermediate results if all descendant intervals
are non-empty. Compared to Twig2Stack, this gives weaker
filtering and non-linear worst-case performance, but is more
efficient in practice [11], according to the authors because of
less computational overhead and better spatial locality.

TwigFast [10] is an algorithm that uses data structures
similar to those of TwigList, but stores data nodes in
preorder. It uses the same preorder filtering as Holis-
ticTwigStack, and inherits postorder filtering from the get-
Next input stream merge component. There are several al-
gorithms that utilize both types of filtering, but among these
TwigFast has the best practical performance [1, 3, 10]. Fig-
ure 5 gives an overview of twig join algorithms, and various
properties that are introduced in Section 3.

3. PREMISES FOR PERFORMANCE
To make algorithms that are both fast in practice and

worst-case optimal, we need an understanding of how filter-
ing strategies and data structures impact performance.

For any graph G, let V (G) be its node set and E(G) be its
edge set. Let a matching problem M be a triple 〈Q,D, I〉,
where Q is a query tree, D is a data tree, and I ⊆ V (Q) ×
V (D) is a relation such that for q 7→q′ ∈ I the node label
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Filtering Checking of Interm.
Algorithm Ref. order path subtree results Optimal

getNext [2] GN none weak N/A N/A
TwigStack [2] GN+pre strict weak complex no
Twig2Stack [3] post none strict complex yes
1
2
PathStack + T2S [3] pre+post weak strict complex yes

1
2
TwigStack + T2S [1] GN+pre+post weak strict complex yes

HolisticTwigStack [8] GN+pre weak weak complex no
TwigList [11] post none weak vectors no
TwigMix [10] GN+pre+post weak weak vectors incorrect
TwigFast [10] GN+pre weak weak vectors no
TJStrictPost Sect. 4 pre+post strict strict vectors yes
TJStrictPre Sect. 4 GN+pre(+post) strict strict vectors yes

Figure 5: Previous combinations of prefix path and subtree filtering. Intermediate result storage order given
by last item in “filtering order”. GN is the node order returned by the getNext input stream merger.

of q equals the node label of q′. Each edge 〈p, q〉 ∈ Q has a
label L(〈p, q〉) ∈ {“A–D”, “P–C”}, specifying an ancestor–
descendant or parent–child relationship. Let a node map for
M be any function M ⊆ I. Assume a given M = 〈Q,D, I〉
when not otherwise specified.

Definition 1 (Weak/strict edge satisfaction).
The node map M weakly satisfies a downward edge e =
〈p, q〉 ∈ E(Q) iff M(p) is an ancestor of M(q), and strictly
satisfies e iff M(p) and M(q) are related as specified by L(e).

Definition 2 (Match). Given subgraphs Q′′ ⊆ Q′ ⊆
Q, the node map M : V (Q′) → V (D) is a weak (strict)
match for Q′′ iff all edges in Q′′ are weakly (strictly) satisfied
by M . If Q′′ = Q we call M a weak (strict) full match.

Where no confusion arises, the term weak (strict) match
may also be used for M(Q).

We denote the set of unique strict full matches by O. As
is common, we view the size of the query as a constant, and
call a twig join algorithm linear and optimal if the combined
data and result complexity is O(I +O) [3].1

The results presented in the following all apply to both
weak and strict matching, unless otherwise specified. The
following lemma implies that we can use filtering strategies
that only consider parts of the query.

Lemma 1 (Filtering). If there exists a Q′ ⊆ Q con-
taining q where no match M ′ for Q′ contains q 7→q′, then
there exists no match M for Q containing q 7→q′.

Proof. By contraposition. Given a match M 3 q 7→q′
for Q, for any Q′ ⊆ Q containing q, the match M \ {p 7→p′ |
p 6∈ Q′} matches Q′ and contains q 7→q′.

3.1 Preorder Filtering on Matched Paths
Many current algorithms use the getNext input stream

merge component [2], which returns data nodes in a relaxed
preorder, which only dictates the order of matches for query
nodes related by ancestry. This is not detailed in the original

1For Twig2Stack the combined data, query and result com-
plexity is O(I logQ+ IbQ +OQ), where bQ is the maximum
branching factor in the query [3]. The TJStrict algorithms
we present in Section 3 have the same complexity when using
a heap-based input stream merger, and O(IQ+OQ) com-
plexity when using a getNext-based input stream merger.
Note that the total number of data nodes references in the
input and output are |I| and |O| · |Q|, respectively.

description [2] and is easy to miss.2 The TwigMix algorithm
incorrectly assumes strict preorder [10] (See Appendix E).

Definition 3 (Match preorder). The sequence of
pairs q1 7→q′1, . . . , qk 7→q′k ∈ V (Q)× V (D) is in global match
preorder iff for any i < j either (1) q′i precedes q′j in tree
preorder, or (2) q′i = q′j and qi precedes qj in tree pos-
torder. The sequence is in local match preorder if (1) and
(2) hold for any i < j where qi = qj or 〈qi, qj〉 ∈ E(Q) or
〈qj , qi〉 ∈ E(Q).

The following definition formalizes a filtering criterion
commonly used when processing data nodes in preorder, lo-
cal or global.

Definition 4 (Prefix path match). M is a prefix
path match for qk ∈ Q iff it is a match for the (simple)
path q1 . . . qk, where q1 is the root of Q.

To implement prefix path match filtering, preorder algo-
rithms maintain the set of open nodes, i.e., the ancestors, at
the current position in the tree. Most algorithms have one
stack of open data nodes for each query node, and given a
current pair q 7→q′ pop non-ancestors of q′ from the stacks
of q and its parent [2,8,10]. Weak filtering can then be im-
plemented by checking if (i) q is the root, or (ii) the stack
for the parent of q is non-empty. If q′ is not filtered out,
it is pushed onto the stack for q, and added to the inter-
mediate results. This can be extended to strict checking of
P–C edges by inspecting the top node on the parent’s stack.
Strict prefix path matching is rarely used in practice, as can
be seen from the fourth column in Figure 5.

The implementation of prefix path checks is the reason for
the secondary ordering on query node postorder for match
pairs in Definition 3. Without the secondary ordering prob-
lems arise when multiple query nodes have the same label:
A data node could be misinterpreted as a usable ancestor of
itself when checking for non-empty stacks, or hide a proper
parent of itself when checking top stack elements.

Algorithms storing intermediate results in postorder use
a global stack for the query [3,11], and inspection of the top
stack node cannot be used to implement prefix path match-
ing when the query contains A–D edges, as ancestors may be
hidden deep in the stack. Extending these algorithms to im-
plement prefix path filtering requires maintaining additional
data structures.
2To be precise, getNext also returns matches for sibling
query nodes in order.
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The choice of preorder filtering does not influence opti-
mality, as illustrated by the following example.

Example 1. Assume non-branching data generated by
/(α1/)

n . . . (αm/)
nβ/γ, and the query �α1� . . .�αm/γ,

where α1, . . . , αm, β, γ are all distinct labels. Unless it is
signaled bottom-up that the pattern αm/γ is not matched
below, the result enumeration phase will take Ω(nm) time,
because all combinations of matches for α1, . . . , αm will be
tested.

3.2 Postorder Filtering on Matched Subtrees
The ordering of match pairs required by most bottom-up

algorithms is symmetric with the global preorder case:

Definition 5 (Match postorder). A sequence of
pairs q1 7→q′1, . . . , qk 7→q′k is in match postorder iff for any
i < j either (1) q′i precedes q′j in tree postorder, or (2) q′i = q′j
and qi precedes qj in tree preorder.

The second property is required for the correctness of both
Twig2Stack [3], where a data node could hide proper chil-
dren of itself, and TwigList [11], where a node could be
added as a descendant of itself.

Definition 6 (Subtree match). M is a subtree
match for q ∈ Q iff it is a match for the subtree rooted at q.

Example 1 also illustrates why strict subtree match check-
ing is required for optimality, because no node labeled γ is a
direct child of a node labeled αm in the data. As described in
Section 2, Twig2Stack and TwigList respectively implement
strict and weak subtree match filtering, and for these algo-
rithms strict filtering is required for optimality. TwigList
could be extended to strict filtering by traversing descen-
dant intervals to look for direct children, but this would
have quadratic cost if implemented naively, as descendant
intervals may overlap.

In algorithms storing data in preorder, nodes are added
to the intermediate results after passing preorder checks. If
nodes are stored in arrays, later removing a node failing a
postorder check from the middle of an array would incur
significant cost. Note that many of the algorithms listed in
Figure 5 inherit weak subtree match filtering from the input
stream merger used, as described later in Section 4.4.

3.3 Result Enumeration
Even if the strict subtree match checking sketched for

TwigList above could be implemented efficiently, results
would still not be enumerated in linear time, as usable child
nodes may be scattered throughout descendant intervals, as
shown by the following example:

Example 2. Assume a tree constructed from the nodes
{a1, . . . , an, b1, . . . , b2n}, labeled a and b. Let each node ai
have a left child bi, a right child bn+i, and a middle child
ai+1 if i < n. Given the query �a/b, each node ai is part
of two matches, one with bi and one with bn+i, but to find
these two matches, 2n−2i useless b-nodes must be traversed
in the descendant interval. This gives a total enumeration
cost of Ω(n2).

The following theorem formalizes properties of the inter-
mediate result storage in Twig2Stack that are key to its
optimality.

Theorem 1 (Linear time result enumeration [3]).
The result set O can be enumerated in Θ(O) time if (i) the
data nodes d such that root(Q) 7→d is part of a strict full
match can be found in time linear in their number, and (ii)
given a pair q 7→q′, for each child c of q, the pairs c 7→c′ that
are part of a strict subtree match for q together with q 7→q′
can be enumerated in time linear in their number.

3.4 Full Matches
When different types of filtering strategies are combined,

it may be interesting to know when additional filtering
passes will not remove more nodes.

Theorem 2 (Full Match). (i) A pair q 7→q′ is part
of a full match iff (ii) it is part of a prefix path match that
only uses pairs that are part of subtree matches.

Proof sketch. (i ⇒ ii) Follows from Lemma 1. (i ⇐ ii)
Let M = 〈Q,D, I〉 be the initial matching problem, and
M′ = 〈Q,D, I ′〉 be the matching problem where I ′ is the set
of pairs that are part of subtree matches in M. The theorem
is true for pairs with the query root, as for the query root
a subtree match is a full match. Assume that there is a
prefix path match M↓q 3 q 7→q′ for q in M′, and that p is
the parent of q. By construction, M↓q 3 p 7→p′ is also a
prefix path match for p. We use induction on the query
node depth, and prove that if p 7→p′ is part of a full match
Mp for p, then q 7→q′ must be part of a full match for q.
Let Qq be the subtree rooted at q, and Qp = Q \ Qq. Let
M ′p = Mp \{r 7→r′ | r ∈ Qq}. By the assumption q 7→q′ ∈ I ′,
there exists a subtree match M↑q 3 q 7→q′ for q. Then the
node map Mq = M ′p ∪M↑q is a full match for q, because (1)
p 7→p′ ∈ M ′p and q 7→q′ ∈ M↑q must satisfy the edge 〈p, q〉
as they are used together in M↓q, and (2) Qp and Qq can
be matched independently when the mapping of p and q is
fixed.

In other words, if nodes are filtered first in postorder on
strictly matched subtrees, and then in preorder on strictly
matched prefix paths, the intermediate result set contains
only data nodes that are part of the final result. The oppo-
site is not true: In the example in Figure 1, the pair c 7→c3
would not be removed if strict prefix path filtering was fol-
lowed by strict subtree match filtering.

Note that strict full match filtering is not necessary for
optimal enumeration by Theorem 1, and that the optimal
algorithms we present in the following do not use it. They
use prefix path match filtering followed by subtree match
filtering, where the former is only used to speed up prac-
tical performance. On the other hand, the input stream
merge component we introduce in Section 4.4 gives inex-
pensive weak full match filtering.

4. FAST OPTIMAL TWIG JOINS
In this section we create an algorithmic framework that

permits any combination of preorder and postorder filtering.
First we introduce a new data structure that enables strict
subtree match checking and linear result enumeration.

4.1 Level Split Vectors
A key to the practical performance of TwigList and Twig-

Fast is the storage of intermediate nodes in simple vec-
tors [11], but this scheme makes it hard to improve worst-
case behavior.
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Figure 6: Intermediate data structures using level
split vectors and strict subtree match filtering. As
opposed to in Figure 4(b), a2 does not satisfy.

To enable direct access to usable child matches below both
A–D and P–C edges, we split the intermediate result vectors
for query nodes below P–C edges, such that there is one
vector for each data tree level observed, as shown in Figure 6.
Given a node in the intermediate results, matches for a child
query node below an A–D edge can be found in a regular
descendant interval, while the matches for a child query node
below a P–C edge can be found in a child interval in a child
vector. This vector can be identified by the depth of the
parent data node plus one.

In the following we assume that level split vectors can be
accessed by level in amortized constant time. This is true
if level split vectors are stored in dynamic arrays, and the
depth of the deepest data node is asymptotically bounded
by the size of the input, that is, d ∈ O(I). If this bound does
not hold, which can be the case when |I| � |D|, expected
linear performance can be achieved by storing level split
vectors in hash maps.

When nodes are added to the intermediate results in pos-
torder, checking for non-empty descendant and child inter-
vals inductively implies strict subtree match filtering. This
is illustrated for our example in Figure 6. As each check
takes constant time, the intermediate results can be con-
structed in Θ(I) time, as for TwigList [11]. Result enu-
meration with this data structure is a trivial recursive itera-
tion through nodes and their child and descendant intervals,
which is almost identical to the enumeration in TwigList.
The difference is that no extra check is necessary for P–C
relationships, and that the result enumeration is Θ(O) by
Theorem 1 when strict subtree match filtering is applied.

4.2 The TJStrictPost Algorithm
Algorithm 1 shows the general framework we use for pos-

torder construction of intermediate results, extending algo-
rithms like TwigList [11]. It allows using any combinations
of the preorder and postorder checks described in Section 3,
from none to weak and strict, and allows using either simple
vectors or level split vectors. A global stack is used to main-
tain the set of open data nodes, and if prefix path matching
is implemented, a local stack for each query node is main-
tained in parallel. The input stream merge component used
is a priority queue implemented with a binary heap. The
postorder storage approach used here requires global order-
ing, and cannot read local preorder input (see Appendix E).

The correctness of Algorithm 1 follows from the cor-
rectness of the filtering strategies described in Sections 3.1
and 3.2, and the correctness of TwigList [11], with the enu-
meration algorithm trivially extended to use child intervals
when level split vectors are used.

Algorithm 1 Postorder construction.

While ¬Eof:
Read next q 7→d.
While non-ancestors of d on global stack:

Pop q′ 7→d′ from global and local stack.
If q′ 7→d′ satisfies postorder checks:

Set interval end index for d′

in the vector of each child of q′.
Add d′ to intermediate results for q′.

If d satisfies preorder checks:
For each child of q, set interval start index for d.
Push q 7→d on global stack.
Push d on local stack for q.

Clean remaining nodes from the stacks.
Enumerate results.

We now define the TJStrictPost algorithm, which builds
on this framework. Detailed pseudocode can be found in
Appendix A. The algorithm uses level split vectors, and,
as opposed to the previous twig join algorithms listed in
Figure 5, it includes strict checking of both matched prefix
paths and subtrees. The former is implemented by checking
the top data node on the local stack of the parent query
node, while the latter is implemented by checking for non-
empty child and descendant intervals. A Θ(I +O) running
time follows from the discussion in Section 4.1.

4.2.1 A note on TwigList:
As noted in the original description, chaining nodes with

the same tree level into linked lists inside descendant in-
tervals can improve practical performance in TwigList [11].
However, as the first child match with the correct level must
still be searched for, further changes are needed to achieve
linear worst-case evaluation. This can be implemented by
maintaining a vector for each query node with the previous
match on each tree level at any time. A node must then be
given pointers to such previous matches as it is pushed on
stack in TwigList. When the node is popped off stack, it can
then be checked if any children have been found, and inter-
mediate results can be enumerated in linear time, assuming
that d ∈ O(I), as for our solution.

4.3 The TJStrictPre Algorithm
Algorithm 2 shows the general framework we use to con-

struct intermediate results in preorder, extending algorithms
like TwigFast [10]. It supports any combination of preorder
and postorder filtering, simple or level split vectors, and
input in global or local preorder. As opposed to with pos-
torder storage, nodes are inserted directly into intermediate
result vectors after they have passed a prefix path check.
Local stacks store references to open nodes in the interme-
diate results. If strict subtree match filtering is required,
or weak subtree match filtering is not implied by the input
stream merger, intermediate results are filtered bottom-up
in a post-processing pass.

TwigFast is reported to have faster average case query
evaluation than previous twig joins [10], and we hope to
match this performance in a worst-case linear algorithm.
The TJStrictPre algorithm is similar to TJStrictPost, and
uses strict checking of prefix paths and subtrees, and stores
intermediate results in level split vectors. See detailed pseu-
docode in Appendix B. TJStrictPre uses the getPart in-
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Algorithm 2 Preorder construction.

While ¬Eof:
Read next q 7→d.
For the stack of both q’s parent and q itself:

Pop non-ancestors of d,
and set their end indexes.

If d satisfies preorder checks:
For each child of q, set interval start index for d.
Add d to intermediate results for q.
Push reference to d on stack for q.

Clean stacks.
Clean intermediate results with postorder checks.
Enumerate results.

put stream merger, which is an improvement of getNext
described in Section 4.4. If the post-processing pass can be
performed in linear time, then the algorithm can evaluate
twig queries in Θ(I +O) time, by the same argument as for
TJStrictPost.

The filtering pass is implemented by cleaning intermediate
result vectors bottom-up in the query, in-place overwriting
data nodes not satisfying subtree matches, as described in
detail in Appendix D. The indexes of kept nodes are stored
in a separate vector for each query node, and are used to
translate old start and end indexes into new positions. To
achieve linear traversal, the intermediate result vector of a
node is traversed in parallel with the index vectors of the
children after they have been cleaned. For level split vec-
tors, there is one separate index vector per used level, and
a separate vector iterator is used per level when the parent
is cleaned. Also, there is an array giving the level of each
stored data node in preorder, such that split and non-split
child vectors can then be traversed in parallel. Start values
are updated as nodes are pushed onto a stack in preorder,
while end values are updated as nodes are popped off in
postorder.

4.4 The getPart Input Stream Merger
The getNext input stream merge component implements

weak subtree match filtering in Θ(I) time, and is used to
improve practical performance in many current algorithms
using preorder storage [8, 10]. Assume in the following dis-
cussion that there is one preorder stream of label-matching
data nodes associated with each query node. The input
stream merger repeatedly returns pairs containing a query
node and the data node at the head of its stream, imple-
menting Comp. 2 in Figure 2.

The getNext function processes the query bottom-up to
find a query node that satisfies the following three prop-
erties: (1) when its stream is forwarded at least until its
head follows the heads of the streams of the children in pos-
torder, it still precedes them in preorder, (2) all children
satisfy properties 1 and 2, and (3) if there is a parent, it
does not satisfy 1 and 2. Property 2 implies that weak sub-
tree filtering is achieved, and Property 3 implies that local
preorder by Definition 3 is achieved.

The procedure is efficient if leaf query nodes have rela-
tively few matches, which can be the case in practice in
XML search when all query leaf nodes are selective text
value predicates. However, if the internal query nodes are
more selective than the leaf nodes, or if not all leaves are
selective, the overhead of using the getNext function may

outweigh the benefits.
To improve practical performance we introduce the get-

Part function, which requires the following property in ad-
dition to the above three: (4) if there is a parent, then the
current head of stream is a descendant of a data node that
was the head of stream for the parent in some previous sub-
tree match for the parent. This inductively implies that
nodes returned are also weak prefix path matches, and from
the ordering of the filtering steps, the result is weak full
match filtering by Theorem 2. To allow forwarding streams
to find such nodes, the algorithm can no longer be stateless,
as shown by the following example:

Example 3. Assume that the heads of the streams for
query nodes a1 and b1 in Figure 1 are a3 and b2, respectively.
Then it cannot be known by only inspecting heads of streams
whether or not any usable ancestors of b2 were seen before
a3, and b2 must be returned regardlessly.

Property 4 is implemented in getPart by maintaining for
each query node, the data node latest in the tree postorder
that has been part of a weak full match. This value is up-
dated when a query node is found to satisfy all four proper-
ties. To ensure progress, streams are forwarded top-down in
the query to match the stored value or the current head for
the parent node. Note that multiple top-down and bottom-
up passes may be needed to find a satisfying node, but each
such pass forwards at least one stream past useless matches.
See detailed pseudocode in Appendix C.

5. EXPERIMENTS
The following experiments explore the effects of weak and

strict matching of prefix paths and subtrees, different input
stream merge functions, and level split vectors.

We have used the DBLP, XMark and Treebank bench-
mark data, and run the commonly used DBLP queries from
the PRIX paper [12], the XMark queries from the XPath-
Mark suite part A [5] (except queries 7 and 8, which are
not twigs), and the Treebank queries from the TwigList pa-
per [11]. In addition, we have created some artificial data
and queries. Details can be found in Appendix F. The ex-
periments were run on a computer with an AMD Athlon 64
3500+ processor and 4 GB of RAM. All queries were warmed
up by 3 runs and then run 100 times, or until at least 10
seconds had passed, measuring average running-time.

All algorithms are implemented in C++, and features are
turned on or off at compile time to make sure the overhead of
complex methods does not affect simpler methods. Feature
combinations are coded with 5 letter tags. We use Heap,
getNext and getPart for merging the input streams, and
store intermediate results in prEorder or pOstorder. We use
no (-), Weak or Strict prefix path match filtering, and no
(-), Weak or Strict subtree match filtering. Intermediate
results are stored in simple vectors (-) or Level split vec-
tors. The previous algorithms TwigList and TwigFast are
denoted by HO-W- and NEWW-, respectively, while TJStrict-
Post and TJStrictPre are denoted by HOSSL and PESSL. Note
that filtering checks are not performed in intermediate result
construction if the given filtering level is already achieved
by the input stream merger. Strict subtree match filtering
is implemented by descendant interval traversal when not
using level split vectors. With preorder storage an extra
filtering pass is used to implement subtree match filtering.
Worst-case optimal algorithms match the pattern ***SL.
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Figure 7: Query //annotation/keyword on XMark
data. Cost divided into merging input, building in-
termediate results, and result enumeration.

We present no performance comparisons with the
Twig2Stack algorithm because it does not fit into our gen-
eral framework. Getting an accurate and fair comparison
would be an exercise in independent program optimization.
TwigList is previously reported to be 2–8 times faster than
Twig2Stack for queries similar to ours [11].

5.1 Checked Paths and Subtrees
Figure 7 shows results for running the XMark query

�annotation/keyword, with cost divided into different com-
ponents and phases. Filtering lowers the cost of building in-
termediate data structures because their size is reduced, and
the cost of enumerating results because redundant traversal
is avoided. Note that this query was chosen because it shows
the potential effects of prefix path and subtree match filter-
ing, and it may not be representative.

Figure 8 shows the effects of prefix path vs. subtree match
filtering averaged over all queries on DBLP, XMark and
Treebank. Heap input stream merging was used because
it allows all filtering levels, and postorder storage was used
to avoid extra filtering passes. Each timing has been normal-
ized to 1 for the fastest method for each query. Raw timings
are listed in Appendix G. As opposed to in Figure 7, there
is on average little difference between the methods using
at least some filtering both in preorder and postorder. The
benefits of asymptotic constant time checks when using level
split vectors seems to be outweighed by the cost of maintain-
ing and accessing them, but only by a small margin.

5.2 Reading Input
Figure 9 shows the effect of using different input stream

mergers. The labels in the artificial data tree used are Zipf

Prefix path

- W S

avg max avg max avg max avg max

S
u
b
tr

ee

-- 1.84 3.5 1.29 1.61 1.23 1.62 1.45 3.5

W- 1.24 1.45 1.03 1.13 1.01 1.06 1.09 1.45

S- 1.24 1.46 1.03 1.10 1.02 1.08 1.10 1.46

SL 1.32 1.55 1.09 1.19 1.06 1.20 1.16 1.55

1.41 3.5 1.11 1.61 1.08 1.62 1.20 3.5

Figure 8: The effect of parent match filtering. vs.
child match filtering. Running DBLP, XPathMark
and Treebank queries. Normalizing query times to
1 for the fastest method for each query. Showing
arithmetic mean and maximum for normalized time.
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Figure 9: Running queries on Zipf data. (a) Se-
lective leaves. (b) Selective internal nodes. (c) No
selective nodes.

distributed (s = 1), with a, b, y and z being the labels
on 30%, 13%, 1.0% and 1.0% of the nodes, respectively.
The data and queries were chosen to shed light on both the
benefits and the possible overhead of using the advanced
input methods.

For the first query, �a/b[y][z], the leaves are very selective,
and both getNext and getPart very efficiently filter away
most of the nodes. The input stream merging is slightly
more efficient for the simpler getNext. In the second query,
�y/z[a][b], the internal nodes are selective, while the leaves
are not. Here getPart efficiently filters away many nodes,
while getNext does not, making it even slower than the sim-
ple heap, due to the additional complexity. The third query
shows a case where getPart performs worse than both the
other methods. In this query, �a[a[a][a]][a[a][a]], all query
nodes have very low selectivity, and are equally probable.
The filtering has almost no effect, and only causes over-
head. Note the cost difference between HOSSL and HESSL,
which is due to the additional filtering pass over the large
intermediate results.

5.3 Combined Benefits
Figure 10 shows the effects of combining different input

stream mergers and additional filtering strategies. The same
queries as in Figure 8 are evaluated, and the first column
shows the same tendencies: There is not much difference
between the strategies as long as you do at least weak match
filtering on both prefix path and subtree.

Input stream merger

HO HE NE PE

avg max avg max avg max avg max avg max

M
a
tc

h
fi
lt

er
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g

--- 7.0 33 6.6 30 6.8 33

-W- 4.5 23 7.5 34 3.7 19 5.2 34

-S- 4.5 23 7.5 34 3.7 18 5.2 34

-SL 4.8 25 8.3 38 3.8 19 5.6 38

W-- 4.9 24 4.9 23 4.9 24

WW- 3.7 19 5.4 25 3.2 15 1.02 1.11 3.3 25

WS- 3.7 19 5.4 26 3.2 15 1.04 1.15 3.3 26

WSL 3.9 20 5.7 27 3.2 15 1.08 1.22 3.5 27

S-- 4.8 24 4.8 24 4.8 24

SW- 3.7 19 5.2 26 3.2 15 1.03 1.12 3.3 26

SS- 3.7 19 5.1 26 3.2 15 1.05 1.17 3.3 26

SSL 3.9 20 5.5 27 3.2 15 1.05 1.20 3.4 27

4.4 33 6.0 38 3.4 19 1.04 1.22 4.1 38

Figure 10: Input mergers vs. filtering strategies.
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In the second column all methods using any subtree match
filtering are more expensive, because with preorder storage,
subtree match filtering is performed in a second pass over
the intermediate results. A second pass is also used for for
subtree match filtering in the third and fourth columns, but
in practice the getNext and getPart components have al-
ready filtered away more nodes, the intermediate results are
smaller, and the second pass is less expensive.

Note the difference between using getNext and getPart.
The new method is more than three times as fast on av-
erage, and is more than one order of magnitude faster for
queries where only some of the leaf nodes are selective. The
getPart function also fast forwards through useless matches
for the leaves that are not selective, while getNext passes
all leaf matches on to the intermediate result construction
component. Also note that the maximum overhead of us-
ing PESSL, the fastest worst-case optimal method, is at most
20% in any benchmark query tested.

6. RELATED WORK
This work is based on the assumption that label-

partitioning and simple streams is used. Orthogonal pre-
vious work investigates how the underlying data can be ac-
cessed. If the streams support skipping, both unnecessary
I/O and computation can be avoided [7]. Our getPart al-
gorithm, which is detailed in Appendix C, can be modi-
fied to use any underlying skipping technology by changing
the implementation of FwdToAncOf() and FwdToDescOf().
Refined partitioning schemes with structure indexing can
be used to reduce the number of data nodes read for each
query node [4,9]. Our twig join algorithms are independent
of the partitioning scheme used, assuming multiple parti-
tion blocks matching a single query node are merged when
read. Another technique is to use a node encoding that al-
lows reconstruction of data node ancestors, and use virtual
streams for the internal query nodes [14]. Our getPart al-
gorithm could be changed to generate virtual internal query
node matches from leaf query node matches, as complete
query subtrees are always traversed. For a broader view
on XML indexing see the survey by Gou and Chirkova [6].
XPath queries can be rewritten to use only the axis self,
child, descendant, and following [16]. To add support for
support for the following-axis, we would have to add addi-
tional logic for how to forward streams, and modify the data
structures to store start indexes for the new relationship.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have shown how worst-case optimality

and fast evaluation in practice can be combined in twig
joins. We have performed experiments that span out and
extend the space of the fastest previous solutions. For com-
mon benchmark queries our new and worst-case optimal al-
gorithms are on average three times as fast as earlier ap-
proaches. Sometimes they are more than an order of mag-
nitude faster, and they are never more than 20% slower.

In future work we would like to combine the new tech-
niques with previous orthogonal techniques such as skip-
ping, refined partitioning and virtual streams. Also, it would
be interesting to see an elegant worst-case linear algorithm
reading local preorder input and producing preorder sorted
results, that does not perform a post-processing pass over
the data, and does not need the assumption d ∈ O(I).
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APPENDIX
A. TJSTRICTPOST PSEUDOCODE

Algorithm 3 shows more detailed pseudocode for
the TJStrictPost algorithm described in Section 4.2.
Tree positions are assumed to be encoded using BEL
(begin, end , level) [15]. The function GetVector(q, level) re-
turns the regular intermediate result vector if q is below an
A–D edge, or the split vector given by level if q is below a
P–C edge.

Algorithm 3 TJStrictPost

1: function EvaluateGlobal():
2: (c, q, d)← MergedStreamHead()
3: while c 6= Eof:
4: ProcessGlobalDisjoint(d)
5: if Open(q, d):
6: Push(Sglobal , (d.end, q))
7: (c, q, d)← MergedStreamHead()
8: ProcessGlobalDisjoint(∞)

9: function ProcessGlobalDisjoint(d):
10: while Sglobal 6= ∅ ∧ Top(Sglobal ).end < d.end:
11: (end, q)← Pop(Sglobal )
12: Close(q)

13: function Open(q, d):
14: if CheckParentMatch(q, d):
15: u← new Intermediate(d)
16: MarkStart(q, u)
17: Push(Slocal [q], u)
18: return true
19: else:
20: return false

21: function Close(q):
22: u← Pop(Slocal [q])
23: MarkEnd(q, u)
24: if CheckChildMatch(q, u):
25: Append(GetVector(q, u.d.level), u)

26: function MarkStart(q, u):
27: for r ∈ q.children:
28: u.start[r]← GetVector(r, u.d.level + 1).size + 1

29: function MarkStart(q, u):
30: for r ∈ q.children:
31: u.end[r]← GetVector(r, u.d.level + 1).size

32: function CheckParentMatch(q, d):
33: if Axis(q) = “�”:
34: return IsRoot(q) or Slocal [Parent(q)] 6= ∅
35: else:
36: if IsRoot(q): return d.level = 1
37: else: return Slocal [Parent(q)] 6= ∅ ∧ d.level =

Top(Slocal [Parent(q)]).level + 1

38: function CheckChildMatch(u):
39: for r ∈ u.q.children:
40: if u.end[r] < u.start[r]: return false
41: return true

B. TJSTRICTPRE PSEUDOCODE
Algorithm 4 shows more detailed pseudocode for the

TJStrictPre algorithm described in Section 4.3.

C. GETPART FUNCTION
Pseudocode for the getPart function is shown in Algo-

rithm 5, where what is conceptually different from the pre-
vious getNext function is colored dark blue.

GetPart forwards nodes both to catch up with the par-
ent and child streams, whereas getNext only does the latter.

Algorithm 4 TJStrictPre

1: function EvaluateLocalTopDown():
2: (c, q, d)← MergedStreamHead()
3: while c 6= Eof:
4: if ¬IsRoot(q):
5: ProcessLocalDisjoint(Parent(q), d)
6: ProcessLocalDisjoint(q, d)
7: Open(q, d)
8: (c, q, d)← MergedStreamHead()
9: for q ∈ Q:
10: ProcessLocalDisjoint(q,∞)
11: FilterPass(q.root)

12: function ProcessLocalDisjoint(q, d):
13: while Top(Slocal [q]).d.end < d.end:
14: Close(q)

15: function Open(q, d):
16: if CheckParentMatch(q, d):
17: u← new Intermediate(d)
18: V ← GetVector(q, d.level)
19: if ¬IsLeaf(q):
20: MarkStart(q, u)
21: Push(Slocal [q], (V, V.size))
22: Append(V, u)
23: return ¬IsLeaf(q)
24: else:
25: return false

26: function Close(q):
27: if ¬IsLeaf(q):
28: (V, i)← Pop(Slocal [q])
29: MarkEnd(q, V [i])

The getNext algorithm is completely stateless, and only in-
spects stream heads. When a match for a query subtree is
found, the stream for the subtree root node is read and for-
warded. Then it is not possible to know in the next call on
this point in the query, whether the child subtrees were once
part of a match or not. In the getPart function we save one
extra value per query node, stored in the M array, namely
the latest match in the tree postorder which was part of a
weak match for the entire query. When considering a query
subtree, the currently interesting data nodes are those that
are either part of a match using a previous head in the par-
ent stream, or part of a new match using the current head
in the parent stream (see Lines 9-13).

The forwarding of streams based on child stream heads is
very similar to in getNext (Lines 17-28). Unless the search is
short-circuit (Line 22), the stream is forwarded at least until
the head is an ancestor of all the child heads (Line 28). The
query node itself is returned if an ancestor of the child heads
was found, and unless the previous M value is an ancestor
of the current head, it is updated. When a child query node
is returned, it is known whether or not it is part of a match.

D. EXTRA FILTERING PASS
Algorithm 6 gives pseudocode for the extra filtering pass

used to obtain strict subtree match filtering when using pre-
order storage in TJStrictPre.

During the clean-up (Line 1-15), nodes failing checks are
overwritten, and it is stored in the C vectors which values
were not dropped. The query nodes are visited bottom-
up by the FilterPass function, updating the vectors of one
query node at a time, based on the cleanup in non-leaf child
query nodes. The FilterPass and FilterPassPost functions
go through all data nodes in preorder and postorder respec-
tively, updating interval start and end indexes.

The AllNodes call returns a special iterator to all interme-
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Algorithm 5 GetPart

1: function MergedStreamHead():
2: while true:
3: (c, d, q)← GetPart(Q.root)
4: if c 6= MisMatch:
5: if c 6= Eof:
6: Fwd(q)

7: return (c, d, q)

8: function GetPart(q):
9: if ¬IsRoot(q):
10: p← Parent(q)
11: FwdToDescOf(q,M [p])
12: if ¬Eof(q) ∧ ¬Eof(p) ∧M [p].end < H(q).end:
13: FwdToDescOf(q,H(p))
14: if IsLeaf(q):
15: if Eof(q): return (Eof, q,⊥)
16: else: return (Match, q,H(q))
17: (dmin , qmin)← (∞,⊥) ; (dmax , qmax )← (0,⊥)
18: for r ∈ q.children:
19: (cr, dr, qr)← GetNext(r)
20: if cr 6= Eof:
21: if cr = MisMatch: flag MisMatch
22: elif qr 6= r: return (Match, dr, qr)
23: if dr .begin < dmin .begin: (dmin , qmin)← (dr, qr)
24: if dr .begin > dmax .begin: (dmax , qmax )← (dr, qr)
25: else:
26: FwdToEof(q)
27: if qmin = ⊥: return (Eof,⊥, q)
28: FwdToAncOf(q, dmax )
29: if flagged MisMatch:
30: if Eof(q): return (Eof,⊥, q)
31: else: return (MisMatch,⊥, q)
32: if ¬Eof(q) ∧ H(q).begin < dmin .begin:
33: if IsRoot(q) ∨ H(q).end < M [p].end:
34: if M [q].end < H(q).end: M [q]← H(q)
35: return (Match,H(q), q)
36: else:
37: if dmin .begin < M [q].end:
38: return (Match, dmin , qmin)
39: else:
40: if Eof(q): return (Eof,⊥, q)
41: else: return (MisMatch,⊥, q)

42: function FwdToEof(q):
43: while ¬Eof(q): Fwd(q)

44: function FwdToDescOf(q, d):
45: while ¬Eof(q) ∧ H(q).begin ≤ d.begin: Fwd(q)

46: function FwdToAncOf(q, d):
47: while ¬Eof(q) ∧ H(q).end ≤ d.begin: Fwd(q)

diate data nodes for a query node, sorted in total preorder.
For query nodes with an incoming P–C edge and level split
vectors, the order in which nodes were inserted on different
levels was recorded during construction in TJStrictPre. De-
tails are omitted in Algorithm 4, where an extra statement
must be added after line 22, storing a reference to the used
vector.

The FwdIter function contains the logic for updating the
start and end indexes. Each query node has an iterator for
each vector, which is utilized when traversing the matches
for the parent query node. In essence, the segments of child
and descendant intervals which contain references to nodes
which were not saved during a cleanup pass are discarded.

E. GETNEXT AND POSTORDER
Many algorithms use the getNext function [2] for merging

the input streams instead of a heap or linear scan [8, 10],
because it cheaply filters away many useless nodes by im-
plementing weak subtree match filtering. In this Appendix
we show why using getNext with postorder intermediate re-

Algorithm 6 FilterPass

1: function CleanUp(q):
2: if Axis(q) = “�”:
3: CleanUpVector(GetVector(q, ·), C[q])
4: else:
5: for h ∈ used levels:
6: CleanUpVector(GetVector(q, h), Ch[q])

7: function CleanUpVector(V,C):
8: i← j ← 0
9: while i < V.size:
10: if CheckChildMatch(q, V [i]):
11: V [j]← V [i]
12: Append(C, i)
13: j ← j + 1

14: i← i + 1

15: Resize(V, j)

16: function FilterPass(q):
17: if IsLeaf(q): return
18: for r ∈ q.children:
19: FilterPass(r)
20: if NonLeafChildren(q) 6= ∅:
21: for u ∈ AllNodes(q):
22: FilterPassPost(u.d)
23: for r ∈ NonLeafChildren(q):
24: u.start[r]← FwdIter(r, u.start[r], u.d)

25: Push(Slocal [q], u)

26: FilterPassPost(∞)

27: CleanUp(q)

28: function FilterPassPost(q, d):
29: while Slocal [q] 6= ∅ ∧ Top(S).end < d.end:
30: u← Pop(S)
31: for r ∈ NonLeafChildren(q):
32: u.end[r]← FwdIter(r, u.end[r], u.d)

33: function FwdIter(q, pos, d):
34: if Axis(q) = “�”:
35: while I[q] < C[q].size ∧ C[q][I[q]] < pos:
36: I[q]← I[q] + 1

37: return I[q]
38: else:
39: h← d.level + 1
40: while Ih[q] < Ch[q].size ∧ Ch[q][Ih[q]] < pos:
41: Ih[q]← Ih[q] + 1

42: return Ih[q]

sult construction gives problems regardless of whether local
or global stacks are used.

The getNext function does not return the data nodes in
strict preorder, as assumed in the correctness proof for the
TwigMix algorithm [10], but in local preorder (see Defini-
tion 3). As explained in Section 3.1, the top-down algo-
rithms using getNext maintain one stack or equivalent struc-
ture for each internal query node. When a new match for a
given query node is seen, the typical strategy [2] is popping
non-ancestor nodes off the parent query node’s stack, and
the query node’s own stack.

If a global stack is combined with using getNext input,
errors may occur, as for the example query and data in Fig-
ure 11. With local preorder the ordering between the nodes
not related through ancestry is not fixed. Assume that the
ordering is

〈a1 7→a1, a
1 7→a2, b

1 7→b1, c
1 7→c1, d

1 7→d1, c
1 7→c2, e

1 7→e1〉.

Then c1 7→c2 will pop a1 7→a2 off stack before e1 7→e1 is
observed, and e1 7→e1 will never be added as a descendant
of a1 7→a2.

But using local stacks and a bottom-up approach also
gives errors, because data nodes are added to the interme-
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Figure 11: Problematic case with local preorder in-
put and postorder storage.

Name Size Nodes
Source

DBLP 676 MB 35 900 666
http://dblp.uni-trier.de/xml

XMark 1 118 MB 32 298 988
http://www.xml-benchmark.org

Treebank 83 MB 3 829 512
http://www.cs.washington.edu/research/xmldatasets

Figure 12: Benchmark datasets used in experiments.

diate structures as they are popped off stack when using
postorder storage, which is too late when using getNext and
local stacks. If the typical approach is used, c1 7→c2 will
only pop b1 off the stack of b1 and c1 off the stack of c1.
Then d1 7→d1 will never be added to the child structures of
b1 7→b1, because it is popped to late.

It may be possible to modify the local stack approach to
work with postorder storage and getNext input, but this
would require carefully popping nodes on ancestor and de-
scendant stacks in the right order.

F. BENCHMARK DATA AND QUERIES
Figure 12 gives some details on the benchmark data used

in our experiments, and Figure 13 lists the queries we have
used.

G. EXTENDED RESULTS
Figure 14 shows the timings that the aggregates in Sec-

tion 5 are based on.

H. BAD BEHAVIOR
In this appendix we list some experiments showing the

super-linear behavior of previous twig join algorithms.
Figure 15(a) shows the exponential behavior of TwigList

and TwigList (HO-W-) and TwigFast (NEWW-) with the
data and query from Example 1. The data is
/(α1/)

n . . . (αm/)
nβ/γ with m = 10 and n = 100, and the

query is �α1� . . .�αk/γ, with k varying from 1 to 7.
Figure 15(b) shows the results of an experiment based on

Example 2 with varying n = 10 000. The simple query �a/b
has quadratic cost even when strict prefix path and subtree
match filtering is used, if P–C child matches are not directly
accessible. Many of the a nodes in the data are nested, and
have a small number of b children, but a large number of
b descendants. For approaches using simple vectors, over-

# data Hits Source
xpath

D1 DBLP 6 [12]
//inproceedings[author/text()="Jim Gray"]
[year/text()="1990"]/@key

D2 DBLP 21 [12]
//www[editor]/url

D3 DBLP 13 [12]
//book/author[text()="C. J. Date"]

D4 DBLP 2 [12]
//inproceedings[title/text()=
"Semantic Analysis Patterns."]/author

X1 XMark 40 726 [5]
/site/closed auctions/closed auction
/annotation/description/text/keyword

X2 XMark 124 843 [5]
//closed auction//keyword

X3 XMark 124 843 [5]
/site/closed auctions/closed auction//keyword

X4 XMark 40 726 [5]
/site/closed auctions/closed auction
[annotation/description/text/keyword]/date

X5 XMark 124 843 [5]
/site/closed auctions/closed auction
[.//keyword]/date

X6 XMark 32 242 [5]
/site/people/person[profile/gender]
[profile/age]/name

T1 Treebank 1 183 [11]
//S/VP//PP[.//NP/VBN]/IN

T2 Treebank 152 [11]
//S/VP/PP[IN]/NP/VBN

T3 Treebank 381 [11]
//S/VP//PP[.//NN][.//NP[.//CD]/VBN]/IN

T4 Treebank 1 185 [11]
//S[.//VP][.//NP]/VP/PP[IN]/NP/VBN

T5 Treebank 94 535 [11]
//EMPTY[.//VP/PP//NNP][.//S[.//PP//JJ]//VBN]
//PP/NP// NONE

Figure 13: Benchmark queries used in experiments.
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(a) Varying query parameter k.
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PESSL
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(b) Varying total nodes.

PESS-
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Figure 15: (a) Exponential behavior without strict
matching. (b) Quadratic behavior without optimal
enumeration. Query time in seconds.

lapping descendant intervals are scanned for direct children,
and this results in quadratic running time.
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D1 D2 D3 D4 X1 X2 X3 X4 X5 X6 T1 T2 T3 T4 T5

HO--- 2.53 0.43 1.07 1.59 0.57 0.11 0.11 0.75 0.25 0.25 0.31 0.30 0.40 0.47 0.50
HO-W- 1.42 0.25 0.44 1.12 0.43 0.10 0.11 0.60 0.24 0.21 0.18 0.17 0.24 0.32 0.32
HO-S- 1.42 0.26 0.44 1.11 0.43 0.10 0.11 0.61 0.24 0.21 0.17 0.18 0.24 0.32 0.33
HO-SL 1.70 0.28 0.48 1.22 0.46 0.10 0.11 0.65 0.26 0.23 0.18 0.19 0.24 0.34 0.33
HOW-- 1.96 0.31 0.32 1.18 0.34 0.08 0.09 0.49 0.19 0.25 0.22 0.22 0.32 0.42 0.42
HOWW- 1.26 0.19 0.33 0.92 0.32 0.08 0.08 0.46 0.19 0.21 0.16 0.17 0.22 0.31 0.30
HOWS- 1.34 0.19 0.32 0.91 0.31 0.08 0.08 0.45 0.19 0.21 0.16 0.16 0.21 0.30 0.32
HOWSL 1.31 0.20 0.31 0.96 0.31 0.09 0.09 0.46 0.20 0.23 0.17 0.17 0.23 0.33 0.32
HOS-- 2.03 0.31 0.32 1.17 0.32 0.08 0.08 0.47 0.19 0.25 0.21 0.19 0.27 0.35 0.40
HOSW- 1.27 0.20 0.31 0.91 0.30 0.08 0.08 0.44 0.19 0.21 0.16 0.15 0.21 0.29 0.29
HOSS- 1.27 0.21 0.32 0.92 0.30 0.08 0.08 0.44 0.19 0.21 0.17 0.15 0.21 0.30 0.30
HOSSL 1.32 0.20 0.31 0.97 0.30 0.08 0.08 0.46 0.19 0.23 0.17 0.18 0.23 0.34 0.31
HE--- 2.46 0.40 1.07 1.48 0.55 0.09 0.09 0.70 0.20 0.23 0.30 0.29 0.36 0.45 0.48
HE-W- 2.73 0.40 1.25 1.67 0.72 0.09 0.10 0.89 0.21 0.27 0.35 0.34 0.43 0.50 0.54
HE-S- 2.74 0.40 1.25 1.66 0.72 0.09 0.10 0.89 0.21 0.27 0.34 0.34 0.43 0.49 0.54
HE-SL 3.14 0.42 1.47 1.83 0.80 0.09 0.10 0.97 0.23 0.32 0.37 0.40 0.45 0.54 0.58
HEW-- 1.97 0.31 0.34 1.13 0.34 0.08 0.08 0.48 0.19 0.24 0.23 0.22 0.28 0.42 0.42
HEWW- 2.13 0.32 0.34 1.24 0.38 0.08 0.09 0.53 0.19 0.27 0.29 0.28 0.35 0.45 0.49
HEWS- 2.13 0.32 0.34 1.24 0.39 0.08 0.09 0.52 0.20 0.28 0.29 0.28 0.35 0.44 0.49
HEWSL 2.33 0.33 0.35 1.31 0.42 0.08 0.09 0.57 0.20 0.32 0.28 0.30 0.37 0.48 0.51
HES-- 1.99 0.31 0.34 1.16 0.33 0.08 0.08 0.47 0.19 0.24 0.22 0.19 0.28 0.33 0.40
HESW- 2.15 0.32 0.34 1.26 0.36 0.08 0.09 0.51 0.20 0.28 0.25 0.21 0.31 0.35 0.45
HESS- 2.14 0.33 0.34 1.24 0.37 0.08 0.09 0.51 0.20 0.29 0.24 0.21 0.31 0.35 0.45
HESSL 2.35 0.33 0.36 1.33 0.40 0.08 0.09 0.55 0.21 0.34 0.26 0.24 0.36 0.38 0.48
NOWW- 0.96 0.22 0.09 0.71 0.49 0.11 0.15 0.85 0.34 0.30 0.08 0.08 0.16 0.34 0.22
NE-W- 1.03 0.25 0.08 0.93 0.59 0.12 0.15 0.99 0.40 0.33 0.08 0.09 0.17 0.34 0.27
NE-S- 1.03 0.25 0.08 0.89 0.68 0.12 0.16 1.10 0.39 0.35 0.08 0.09 0.17 0.34 0.29
NE-SL 1.06 0.26 0.08 0.92 0.77 0.12 0.16 1.20 0.42 0.36 0.09 0.09 0.17 0.34 0.29
NEWW- 0.94 0.23 0.08 0.72 0.51 0.11 0.14 0.87 0.35 0.31 0.07 0.07 0.15 0.31 0.23
NEWS- 0.95 0.23 0.08 0.72 0.54 0.11 0.15 0.90 0.36 0.32 0.08 0.08 0.15 0.32 0.24
NEWSL 0.95 0.23 0.08 0.73 0.55 0.11 0.15 0.93 0.37 0.33 0.08 0.08 0.15 0.32 0.24
NESW- 0.95 0.23 0.08 0.74 0.49 0.11 0.14 0.87 0.36 0.31 0.07 0.07 0.15 0.30 0.23
NESS- 0.93 0.23 0.08 0.72 0.51 0.11 0.15 0.89 0.36 0.32 0.08 0.07 0.15 0.31 0.23
NESSL 0.94 0.23 0.08 0.73 0.54 0.11 0.15 0.92 0.37 0.33 0.08 0.08 0.15 0.31 0.24
PEWW- 0.22 0.04 0.08 0.05 0.33 0.06 0.09 0.43 0.16 0.20 0.06 0.06 0.04 0.13 0.10
PEWS- 0.22 0.04 0.08 0.05 0.34 0.06 0.09 0.44 0.16 0.21 0.06 0.06 0.04 0.13 0.10
PEWSL 0.22 0.04 0.08 0.05 0.36 0.06 0.09 0.49 0.18 0.22 0.06 0.06 0.05 0.13 0.10
PESW- 0.22 0.04 0.08 0.05 0.31 0.06 0.09 0.45 0.18 0.20 0.06 0.06 0.04 0.12 0.10
PESS- 0.22 0.04 0.08 0.05 0.33 0.07 0.09 0.43 0.16 0.21 0.06 0.06 0.04 0.13 0.10
PESSL 0.22 0.04 0.08 0.05 0.35 0.06 0.10 0.44 0.17 0.22 0.06 0.06 0.05 0.13 0.10

Figure 14: Time for all tested methods on all benchmark queries. All queries were warmed up by 3 runs and
then run 100 times, or until at least 10 seconds had passed, measuring average running-time.
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