
On Dense Pattern Mining in Graph Streams

[Extended Abstract]

Charu C. Aggarwal
IBM T. J. Watson Research Ctr

Hawthorne, NY

charu@us.ibm.com

Yao Li, Philip S. Yu
University of Illinois at Chicago

Chicago, IL

{yli70, psyu}@cs.uic.edu

Ruoming Jin
Kent State University

Kent, Ohio

jin@cs.kent.edu

ABSTRACT
Many massive web and communication network applications
create data which can be represented as a massive sequential
stream of edges. For example, conversations in a telecom-
munication network or messages in a social network can be
represented as a massive stream of edges. Such streams
are typically very large, because of the large amount of un-
derlying activity in such networks. An important applica-
tion in these domains is to determine frequently occurring
dense structures in the underlying graph stream. In gen-
eral, we would like to determine frequent and dense patterns
in the underlying interactions. We introduce a model for
dense pattern mining and propose probabilistic algorithms
for determining such structural patterns effectively and ef-
ficiently. The purpose of the probabilistic approach is to
create a summarization of the graph stream, which can be
used for further pattern mining. We show that this summa-
rization approach leads to effective and efficient results for
stream pattern mining over a number of real and synthetic
data sets.

1. INTRODUCTION
A number of recent network applications arise in the con-

text of graph data streams. In the graph streaming scenario,
it is assumed that edges are drawn on a network domain,
and are received in rapid succession. Such situations are
common for network applications, and are particularly chal-
lenging. Some examples are as follows: (a) In social net-
works, the participants may be represented by individual
nodes. The huge number of interactions between partic-
ipants are modeled as continuous edges streams. (b) In
telecommunication networks, each phone number is defined
as a node. The calls between participants are modeled as
rapid edge streams. (c) In communication networks, the
nodes correspond to IP-addresses and the edges correspond
to communications among these nodes.

In these cases, the node labels (eg. URLs in a web graph)
are distinct, but the complexity arises from the fact that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09...$ 10.00.

the data is received in the form of a stream. The stream
scenario creates constraints in terms of the choice of the al-
gorithms which may be used for the mining process. We as-
sume that the graph edge stream is received more generally
in the form of edge set streams. This is a more general model
than one which is based purely on the receipt of individual
stream edges. For example, many information network ap-
plications such as bibliographic networks, military networks,
or movie databases receive objects which are expressed as in-
dividual graphs. A bibliographic object may contain nodes
corresponding to authors, and the edges corresponding to
co-authorship relations among them for a particular publi-
cation object in the stream. Similarly, an object in a movie
database may contain nodes, which correspond to actors or
genres and the edges corresponding to relationships among
them. In general, any dynamic application which continu-
ously creates small subgraphs of a massive underlying social
or information network will create an edge-set stream.

In this paper, we will design a probabilistic model for
mining dense structural patterns in graph streams. Our no-
tion of density is based both on node co-occurrence and
edge density. This is particularly useful for problem do-
mains such as social networks, because of the large number
of possible combinations of nodes which could be considered
relevant patterns. Our probabilistic approach uses min-hash
summarization, in which the size of the summary is indepen-
dent of the length of the data stream. We provide theoretical
bounds on the accuracy of this approach, and present exper-
imental results illustrating its effectiveness and efficiency.

This paper is organized as follows. The remainder of this
section contains related work. In the next section, we will
model the dense pattern mining problem. In section 3, we
will present a carefully designed probabilistic algorithm for
the problem. The experimental results are presented in sec-
tion 4. Section 5 contains the conclusions.

1.1 Related Work
The problem of frequent and sequential pattern mining

has been studied extensively in the literature in the context
of market basket data both for the static and dynamic case
[4, 7, 12]. This problem has also been studied in the context
of data streams [7, 12]. The problem of frequent pattern
mining in graph data has been studied extensively in recent
work [2, 6, 10, 11]. Some of these techniques [6, 10] deviate
from the standard model of frequent pattern mining and at-
tempt to determine significant subgraphs. These techniques
are designed for relatively small graphs which can fit in main
memory. Furthermore, these techniques are not designed for
determining structurally dense graphs which is the focus of

975

this paper.
Some methods [8] have been proposed for graph summa-

rization, though these techniques cannot be used directly for
dense subgraph mining. The problem of dense graph mining
has been studied in the literature in the context of determin-
ing dense regions in massive graphs [1, 5, 13]. The problem
of determining dense subgraphs across multiple graphs has
been studied in [9]. All of the afore-mentioned techniques
are designed for the case of static graphs rather than graph
streams. In this paper, we will propose the first method
for determining significant and dense subgraphs in massive
structural streams.

2. MODELING GRAPH PATTERNS
The stream S is defined as the sequence G1 . . . Gr . . .,

where each graph Gi is a set of edges. An important as-
sumption here is that the graph is drawn over a massive
domain of nodes, but the individual edge set Gi contains
only a small fraction of the underlying nodes. This sparsity
property is typical for massive domains. Before defining the
pattern mining problem more formally, we discuss some de-
sired properties of the mined patterns:
(1) Node Co-occurrence: Since each graph represents a
relatively small sequence of edges in the stream, this means
that the node set for the graph is also relatively small. This
means that only a small fraction of the total set of nodes are
included in the graph. We would like to determine nodes
which co-occur frequently in the network. We refer to such
node sets as pseudo-cliques, since they occur together fre-
quently. We further note that node occurrence is defined
in terms of relative presence, so that irrelevant patterns are
pruned automatically.
(2) Edge Density: Within a given node set, we would like
these interactions to be as dense as possible. In other words,
we would like to determine pseudo-cliques, in which a large
fraction of the possible edges are populated.

The concept of node co-occurrence and edge density pro-
vides a natural way to determine node patterns which are
closely related both in terms of occurrence and linkage. The
node co-occurrence over a set of nodes P is defined by a
parameter called node affinity, and it is defined as follows:

Definition 1. Let f∩(P) be the fraction of graphs in G1 . . .
Gn in which all nodes of P occur. Let f∪(P) be the fraction
of graphs in which at least one of the nodes of P occur.
Then, the node affinity A(P) of pattern P is denoted by
f∩(P)/f∪(P).

We note that the above definition of node-affinity is focussed
on relative presence of nodes rather than the raw frequency.
This ensures that only significant patterns are found. This
is especially important in the graph domain because the use
of absolute frequencies may result in a very large number of
patterns, which may not be statistically interesting for the
problem at hand. On the other hand, node-affinity is a more
challenging measure from an algorithmic point of view. We
define the edge density D(P) of the node set P as follows:

Definition 2. Let Gi be a graph which contains all nodes
of P . Let h(P,Gi) denote the fraction of the |P | · (|P |−1)/2
possible edges defined on P which are included in the edge set
Ei of Gi. Then, the value of D(P) is defined as the average
of h(P,Gi) only over those graphs which contain all nodes
in P .

We note that both A(P) and D(P) are parameters which
are drawn from the range (0, 1). The closer these parameters
are to 1, the more significant the graph pattern is for mining
purposes. This suggests a natural way to define the signifi-
cant pattern mining problem with the use of two threshold
parameters (θ, γ) on node correlation and edge density.

Definition 3. A set of nodes P is said to be be (θ, γ)-
significant, if it satisfies the following two node-affinity and
edge-density constraints: (a) The node-affinity A(P) is at
least θ. In other words, A(P) ≥ θ. (b) The edge-density
D(P) is at least γ. In other words, D(P) ≥ γ.

The above constraints are quite different from the case of
the frequent pattern mining problem, and therefore a new
approach needs to be designed. Furthermore, computational
efficiency is an important concern for the stream scenario. In
order to achieve our goal of finding significant patterns, we
will use a probabilistic approach which utilizes the sparsity
property of the underlying graphs. We will first discuss a
solution which requires two passes over the data set. Then,
we will discuss how to consolidate the two passes into a
single one, so that the approach can be effectively used for
data streams.

One of the algorithmic advantages of our model is that
it can leverage the sparsity of the individual graphs in the
stream in order to determine relevant patterns. This is not
the case of the more general dense pattern mining problem
in which such sparsity does not exist. The sparsity will be
leveraged with the use of a min-hash approach which can
effectively capture the co-occurrence behavior in the under-
lying graph structure in an efficient way. The min-hash ap-
proach has been used for the problem of finding interesting
2-itemsets in [4], and this paper will extend it to the dense-
pattern mining problem.

3. PROBABILISTIC PATTERN MINING
The dense pattern mining algorithm requires two phases.

The first phase determines the correlated node patterns.
These are defined as patterns for which the affinity is greater
than the user-specified threshold θ. The second phase de-
termines the subset of those node patterns which satisfy the
edge-density constraint with user-specified threshold γ. We
will first describe a simplified algorithm in which each of
these phases will require one pass. Then, we will discuss
how to consolidate the two passes into a single pass, so that
the technique can be used for a data stream.

We can model the node inclusion data for our graph as
follows. Consider a binary data set with n rows and N
columns. The rows correspond to graph identifiers, and the
columns correspond to node identifiers. An entry takes on
the value of 1 if the corresponding node is included in the
graph. We would like to determine the probability that all
entries in a given subset S of columns take on the value of
1, even if one of them takes on the value of 1. The basic
idea of the min-hash approach is to implicitly sample sub-
sets of columns for which at least one of the entries takes
on the value of 1, by examining the first row for which at
least one entry in subset S takes on the value of 1 after
a row permutation process. The min-hash approach (im-
plicitly) generates a random hash-value for each row in the
data. Then it sorts each column by this hash-value. For
each column in the subset S, it determines the first row
number (or graph-identifier) for which the entry takes on

976

the value of 1. We refer to this index as the min-hash index
of that column. The probability that all columns take on
the value of 1 (given that any column takes on the value of
1) is simply equal to the probability that the min-hash index
for the subset S of columns is the same. This probability
can be estimated by repeating this process for k different
hash values. In such cases, it is possible to estimate the
probability that the subset of nodes S occurs together in
the graph, even if one of them occurs together. Note that
this is simply an estimate of the affinity-probability A(S).
We do not explicitly use the tabular representation because
of the space-inefficiency of such a representation for sparse
data. The min-hash approach is a space- and time-efficient
way to generate all possible groups of nodes satisfying the
affinity property.

The overall algorithm proceeds by maintaining a set of
min-hash statistics, which are constantly updated as the
stream graphs are received. We maintain a set of k · N
running minimum hash values together with a set of k · N
corresponding hash indices. Specifically, we have k hash in-
dices for each of the N nodes. We will see that the size of
the min-hash (and the corresponding accuracy bounds) are
independent of data stream size, and therefore this approach
scales particularly well for larger and larger data streams.
We scan the graphs in the data one-by-one and perform the
following operations. We generate k random hash values in-
dependently for each graph. For each graph, we sequentially
process its nodes in order to update their hash values and
indices. We update the corresponding running hash values
and indices if the newly generated hash values are less than
the (corresponding) current minimum values. At the end
of the process, we have a set of k independently generated
minimum hash values together with the corresponding in-
dices for each node. We create a table with k rows and N
columns. For the ith row and jth column, we set its value
to the ith hash index for the jth node. Note that every
entry in this k × N table will be in the range [1, n], where
n is the total number of graphs. Furthermore, the value of
k is chosen so that this table is significantly smaller than
the original graph data, and can typically be held in main
memory.

The process of creating a min-hash sample has the effect of
transforming the affinity-based mining problem on the orig-
inal data set, to a support-based mining problem on the
transformed data set. Specifically, the problem of finding
coherent patterns in the original data set is transformed to
the following problem on the min-hash sample:

Problem 1. Determine all subsets of columns for which
the corresponding min-hash indices are the same for at least
θ · k rows.

We note that this problem is closely related to the frequent
pattern mining problem, since the former can be transformed
to the latter. This transformation can be performed as fol-
lows. For each row, we break it up into a set of pseudo-
transactions. Each pseudo-transaction contains the set of
node indices which take on the same hash index in a partic-
ular row. Since each row may create more than one pseudo-
transaction, the transformed data will contain a set of at
least k pseudo-transactions. Thus, we have a set of pseudo-
transactions which are drawn on the node indices which are
drawn from 1 through N . Let us denote this transaction
set by T . Therefore, Problem 1 can be transformed to the

following:

Problem 2. Determine all frequent patterns in T with
support at least θ · k.

We note that since this is the standard version of the fre-
quent pattern mining problem, we can use any of the well
known algorithms for frequent pattern mining. Further-
more, since the frequent patterns are determined on a com-
pact min-hash sample, the underlying transaction set T is
main memory resident. This ensures that the process is very
efficient. Since we used a randomized method to create the
transaction set T , this approach will not lead to exact re-
sults. Next, we provide a probabilistic bound on the error
of this approach.

Lemma 1. Let us consider a set of nodes P for which
A(P) ≤ θ. Let A′(P) be the affinity probability estimated
with the use of k min-hash samples. Then, the probability

that A′(P) ≥ (1 + δ) · θ is given by e−k·θ·δ2/4. Here e is the
base of the natural logarithm.

Proof. We note that if the result holds true for the
boundary case when A(P) = θ, then it also holds true for
the case when A(P) ≤ θ. Let Zi represent the 0-1 random
variable which determines whether or not the pattern P is
included in the ith sample. Then, the estimated affinity
probability is defined as A′(P) =

∑k

i=1 Zi. We have effec-
tively expressed A′(P) as a sum of indicator random vari-
ables, which makes it a candidate for the Chernoff bound.
The expected value of the random variable A′(P) is µ = k ·θ
for the boundary case when A(P) = θ. We can use the
upper-tail Chernoff bound to estimate this probability as at

most e−µ·δ2/4. The result follows.

We can derive an analogous result with an identical proof
(but lower-tail bound):

Lemma 2. Let us consider a set of nodes P for which
A(P) ≥ θ. Let A′(P) be the affinity probability estimated
with the use of the probabilistic approach for k min-hash
samples. Then, the probability that A′(P) ≤ (1 − δ) · θ is

given by e−k·θ·δ2/2.

3.1 Determining Dense Patterns
Once the coherent node patterns have been found, they

can be used in order to determine the dense patterns in
the data. Let us assume that the total number of coherent
patterns that have been found so far is denoted by m. A
straightforward way of generating the dense subgraphs is to
use a single pass over the graph database in order to count
the fraction of graphs which are γ-dense for each frequent
pattern. This can however be prohibitively expensive for
large databases. The time complexity of this is O(n · m ·
p) operations, where p is the average number of edges in
each graph in the original database. This is because the
approach would require us to examine each edge in each
database graph one by one and determine if the ends of
that edge belong to each of the m node patterns. When
the database size n and the number of coherent patterns
m is large, the time complexity of performing these counts
can be prohibitive. For example, for a database with n =
107, m = 105, and p = 100, the number of edge checks
required is 1014 (hundred trillion). A modest “back-of-the-
envelope” calculation suggests that if we assume 50 cycles

977

for each edge-check operation, the time required by a 1 GHz
computer would be at least 5 ∗ 106 seconds, or 5.8 days.
Clearly, if we expand the database size or the number of
patterns, the approach can become impractical in terms of
running time.

It turns out that we can make good use of the min-hash
table generated in the first phase for finding coherent node
sets which have the required edge-density. More specifically,
we use the transaction set T for doing this. The main idea
is to generate a new graph fragment database from the trans-
action set T . We note that each transaction T ∈ T corre-
sponds to a particular input graph (or graph identifier), and
consists of a subset of nodes from that graph. We create a
graph fragment which consists of all the edges between this
subset of nodes, and add it to the fragment database F . We
note that the creation of the graph fragments from the node
transactions requires one more scan over the database. This
scan is required in order to determine the edges incident on
the high affinity node sets. These edges are used in order
to create the corresponding induced graph fragments. Thus,
one graph fragment is created for each transaction in T . We
make the following observation:

Property 1. The computed edge-density for a given sub-
set of nodes S from the fragment database F is an unbiased
estimate of the edge-density in the original graph database.

This observation is easy to prove, since the graph fragments
are samples from the original data, and they do not use
the edge distribution in the sampling process. Since the
graph fragment database is significantly smaller than the
original database, it is much more efficient to perform the
validation on F . As in the case of the transaction database,
we can assume that the graph fragment database F can be
held in main memory, and therefore more efficient counting
algorithms are possible. Furthermore, we know that each
coherent-node subset is guaranteed to be present at least
θ·k times in the fragment database, because of the properties
of the first phase. This property will also help us develop
bounds on the accuracy of our edge-density estimate.

The graph fragment database is used in order to compute
the edge density estimates for the different node subsets as
follows. We assume that we already have the frequencies of
presence of the difference coherent node subsets in the frag-
ment database. This is available as an output of the frequent
pattern mining process in the first phase on the transaction
set T . It remains to determine the fraction of these node
containments, which are also dense from the edge perspec-
tive. In order to do so, we maintain a counter associated
with each coherent node-pattern. This counter determines
the number of times that both the containment and the
edge-density conditions hold true. We can scan through the
graph fragment database one by one. For each graph frag-
ment, we increment the counter for a coherent node-pattern,
if both conditions are satisfied. We note that aside from the
smaller size of the database, the fact that we are working
only with graph fragments rather than the individual graphs
is useful from the perspective of computational efficiency.

We further note that the graph fragment database F has
the nice property that all the coherent node patterns have a
support of at least θ·k. This ensures that a sufficient number
of samples are available for each coherent node pattern in
order to test the edge-density property. This also ensures
that it is possible to determine a bound on the accuracy of

the edge-density estimation.

Lemma 3. Let P be a pattern for which at least θ · k sup-
porting samples are available in the min-hash scheme. Let
the true density D(P) be less than γ. Then, the probability
that the pattern P appears as a false positive with estimated
edge density of D′(P) at least γ · (1 + δ) is given by at most

e−2·θ·k·γ2
·δ2 .

Proof. LetW be a random variable which represents the
sum of the corresponding fraction of edges in each graph.
Note that the fraction of edges in each graph is a random
variable which lies in the range (0, 1). The mean of this
random variable is less than γ, since the true density is less
than γ. Since, the variable W can be expressed as an i.i.d.
sum of bounded random variables, this is a candidate for
the use of the Hoeffding inequality. Then, by using L ≥ θ ·k
samples, the estimated density must exceed the expected
density by at least R = L ·γ ·δ. By using the Hoeffding’s in-

equality, this probability is at most e−2·R2/L = e−2·L·(γ·δ)2 .
By substituting the inequality for L, the result follows.

We can derive a similar result with the use of an identical
proof (but using the lower tail bound).

Lemma 4. Let P be a pattern which has affinity probabil-
ity of at least θ in the entire data stream, and for which at
least θ ·k ·(1−δ) supporting samples are available in the min-
hash scheme. Let the true density D(P) be at least γ. Then
the probability that the pattern P appears as a false negative
with estimated edge density of D′(P) at most γ · (1 − δ) is

given by at most e−2·θ·k·(1−δ)·γ2
·δ2 .

Next, we will combine the results for the affinity probability
and density constraints in order to determine the probabili-
ties of δ-false positives and δ-false negatives. We first define
the concept of a δ-false positive and δ-false negative.

Definition 4. A pattern P is a δ-false positive, if it does
not satisfy either the affinity or edge-density constraint in
the overall data stream, and the corresponding constraint is
satisfied in the min-hash sample by a factor of at least (1+δ).

Definition 5. A pattern P is a δ-false negative, if it
satisfies both the affinity and edge-density constraint in the
overall data stream, and the corresponding constraint is not
satisfied in the min-hash sample by a factor of at least (1−δ).

We note that δ-false positives and negatives become less
desirable for larger values of δ. For smaller values of δ such
errors are reasonably acceptable, since they do not affect
the perceived quality of the output too much. We Will now
use our previous results in order to derive the probability of
δ-false positives and δ-false negatives.

Theorem 1. The probability of a pattern P being a δ-

false positive is given by at most e−k·θ·δ2/4 + e−2·θ·k·γ2
·δ2 .

Proof. The probability that a pattern is a false positive
on the basis of at least the affinity probability is given by

at most e−k·θ·δ2/4 (this expression is an upper bound since
we are ignoring the effects of the density constraint). The
probability that a pattern is a false positive on the basis

of at least the density constraint is given by e−2·θ·k·γ2
·δ2 .

The probability of the union of these two events is at most
the sum of the probability of these two events. The result
follows.

978

(a) δ-false positives

(b) δ-false negatives

Figure 1: DBLP data set, δ-error variation with δ
(different densities, affinity = 0.2, Min-Hash Sample
Size= 800)

Theorem 2. The probability of a pattern P being a δ-

false negative is given by at most e−k·θ·δ2/2+e−2·θ·k·(1−δ)·γ2
·δ2 .

Proof. In order for a pattern P to be a δ-false negative,
at least one of two mutually exclusive events must happen:
(a) The affinity probability of pattern P is greater than θ
in the data stream, but shows up with a affinity probability
of less than θ · (1 − δ) in the min-hash sample. Ignoring
the effects of the density constraint, an upper bound on the

probability of this event is at most e−k·θ·δ2/2. (b) The affin-
ity probability of pattern P is at least θ · (1− δ). However,
the edge-density for pattern P is less than γ ·(1−δ) Ignoring
the effects of the affinity probability, the probability of this

is at most e−2·θ·k·(1−δ)·γ2
·δ2 .

The probability of a δ-false negative is the sum of the
probabilities of the above two mutually exclusive events.
The result follows.

3.2 Extension to Data Streams
The approach can be easily extended to the case of data

streams. The main purpose of the second pass is to recon-
struct the graph fragments, which are attached to the trans-
actions. The graph fragments can be reconstructed with the
use of the edges which are specific to the particular graph
which is referred to in the corresponding transaction. Since
each fragment is specific to a particular input graph, it is
possible to keep track of these fragments during the first-
pass, which creates the min-hash index. This saves the time
for the second pass. Recall that in the process of min-hash
index creation, we need to store the graph identifier along
with the min-hash value. In this case, the only additional
information which needs to be stored along with the graph
identifier is the set of edges which are incident to that par-

ticular node and graph identifier combination. Therefore, if
the (i, j)th entry in the min-hash table corresponds to the
graph1 Gr(i) and node j, then we need to store the adja-
cency list for the jth node in graph Gr(i). This information
is sufficient to completely reconstruct the graph fragments.

The storage of additional adjacency lists increases the
storage requirement of the min-hash index. However, this
additional storage requirement is small, because it is as-
sumed that each individual graph is sparse and has a rel-
atively small adjacency list. Thus, the number of distinct
edges adjacent to a node may be very large over the entire
data stream, but is quite modest over a single graph. For
example, the total number of co-authors of a given author
node in the DBLP data set may be large, but the number
of co-authors which are specific to a particular paper may
be extremely small. It is these kinds of specific adjacent
nodes which need to be stored in the transaction database.
Therefore, the size of this extended min-hash structure (with
fragment database) is quite small.

Next, we derive the storage requirement of this represen-
tation in terms of the different parameters. When the adja-
cency lists are not stored, the total storage requirement of
the min-hash index is n ·k. This is independent of the num-
ber of elements in the data stream. Let m be the average
number of nodes in the different graphs. We note that the
size of the adjacency list is smaller than the size of the corre-
sponding graph. Therefore, the average storage requirement
of a min-hash index (with storage of the adjacency list) will
typically be less than n · m · k. Since m is not dependent
on the graph domain size (which is large), but on the size
of the individual graph itself, it implies that the value of m
is relatively small in the sparse scenario that is implied by
practical applications. Therefore, such an overhead could
be easily supported over practical values of m and k.

4. EXPERIMENTAL RESULTS
The dense pattern mining algorithm was tested for effec-

tiveness and efficiency. We present results on two real data
sets (DBLP data set2 and IBM Sensor Stream data set)
here. The detailed descriptions of the data sets are pro-
vided in the Appendix. We also present the results for an
additional synthetic data set in the Appendix.

Since our approach is an approximation of the exact method
with the use of a min-hash approach, it is useful to deter-
mine the number of false positives and false negatives which
are incurred with the scheme. Therefore, we determined the
number of δ-false positives and δ-false negatives determined
by the algorithm. While false-positives are easy to iden-
tify with the use of direct validation over the data streams,
false negatives are much more difficult to identify, because
we need to know the true set of patterns which satisfy these
constraints. We note that the true set of patterns can al-
ways be determined with the use of a brute-force level-wise
algorithm on the overall data set. This is possible, since the
affinity constraint satisfies downward closed properties. Of
course, such a solution is too time-consuming and requires
multiple passes over the data; therefore it is not possible
to use it for the stream scenario. However, it is useful for

1Note that r(i) is the min-hash index for the entry, and also
the identifier for the input graph referred to by the min-hash
index.
2Available at www.charuaggarwal.net/dblpcl/gstream.txt

979

(a) δ-false positives

(b) δ-false negatives

Figure 2: DBLP data set, δ-error variation with δ
(different affinities, density = 0.5, Min-Hash Sample
Size=800)

(a) δ-false positives

(b) δ-false negatives

Figure 3: Sensor data set, δ-error variation with δ
(different densities, affinity = 0.2, Min-Hash Sample
Size= 800)

(a) δ-false positives

(b) δ-false negatives

Figure 4: Sensor data stream, δ-error variation with
δ (different affinities, density = 0.05, Min-Hash Sam-
ple Size=800)

validation purposes. Therefore, we determined the percent-
age of δ-false positives and δ-false negatives obtained by the
scheme and reported them. We note that δ is a logical (eval-
uation) parameter only, and is not one of the inputs to the
algorithm. For higher values of δ, the same output yields
a smaller number of false positives and false negatives. We
will examine the behavior of the obtained outputs over dif-
ferent values of the logical parameter δ. We will present
results over different values of the affinity and the density
parameters. We also tested the sensitivity of the method to
increasing values of the min-hash data structure size.

4.1 Effectiveness and Performance Results
As discussed above, we tested the effectiveness of the

schemes in terms of the δ-false positive and δ-false negative
variation with δ. In Figures 1(a) and 1(b), we (respectively)
plot the variation in the number of δ-false positives and δ-
false negatives over different values of the parameter δ for
the DBLP data stream. The value of δ is illustrated on the
X-axis, whereas the false positive (or false negative) rate
is illustrated on the Y -axis. Each of the curves in the two
figures illustrate the behavior for different values of the den-
sity, when the affinity was fixed at 0.2. We used a min-hash
sample size of 800. In each case, the percentage of false pos-
itives and false negatives was less than 2% for all values of
δ. For example, when we used δ = 0.05, we obtained a false
positive (and negative) rate of only about 1.6%. The result
did not vary very much over different values of the density
parameter. We have illustrated similar results by varying
the affinity parameter in Figures 2(a) and 2(b) respectively.
In this case, the density was fixed at 0.5. The min-hash sam-
ple size was fixed at 800. The results are quite similar to the
case when the affinity was fixed and the density was varied.
While the results were often superior for lower values of the

980

(a) δ-false positives

(b) δ-false negatives

Figure 5: DBLP data stream, δ-error variation with
Min-Hash Sample Size (different affinities, density=
0.5, δ = 0.1)

affinity, the trends were not significant enough to overcome
the variations within a randomized scheme. Therefore, in
some cases, the trends were reversed.

We also tested the approach for the case of the IBM sensor
data stream. The results for the sensor data stream with in-
creasing value of δ, and with varying affinity (or density) are
illustrated in Figures 3(a), 3(b), 4(a) and 4(b) respectively.
For the first pair of figures, the value of the affinity was fixed
at 0.2. For the second pair of figures the value of the density
was fixed at 0.05. As in the previous case, the δ-false pos-
itives were lower than 1.5% in all cases. Furthermore, the
variation with affinity and density was not very significant
in these cases. This is consistent with the behavior of the
DBLP data set.

Since the size of the minimum hash data structure plays
a key role in the accuracy of the scheme, we tested the ef-
fectiveness of the scheme with increasing minimum hash-
size. The results for the DBLP data stream are illustrated
in Figures 5(a) and 5(b) respectively. The min-hash size
is illustrated on the X-axis, whereas the error is illustrated
on the Y -axis. The result was tested for different affinities,
when the density was fixed at 0.5, and the value of δ was
fixed at 0.1. We tested the scheme for different values of
the affinity. We note that the range of sizes for the mini-
mum hash was quite compact and varied between 200 and
800. It is evident that with increasing size of the min-hash
data structure, the accuracy of the scheme increases. This is
reasonable to expect, because a larger size of the minimum
hash table increases the statistical accuracy of representa-
tion. Therefore, it also increases the statistical accuracy of
determining the dense patterns. In all cases, when we used a
minimum hash table size of about 800, it was found that the
δ-false positive and the δ-false negative rates were typically
less than 2%. The results for the sensor data streams are

(a) δ-false positives

(b) δ-false negatives

Figure 6: Sensor data stream, δ-error variation with
Min-Hash Sample Size (different affinities, density=
0.05, δ = 0.05)

illustrated in Figures 6(a) and 6(b) respectively. The results
are quite similar to the case of the DBLP data stream. It
is evident that in all cases, the use of larger minimum-hash
sizes increased the accuracy of the scheme. At the same
time, the absolute error rate continued to be lower than 2%,
when a min-hash size of 800 was used.

We also tested the efficiency of the scheme with increas-
ing affinity and min-hash sample sizes. We picked these
two parameters to show the variation, because the scheme
was relatively insensitive to the other main input parame-
ter (density). In Figures 7(a) and 7(b), we have illustrated
the processing rate variations with increasing affinity and
min-hash size respectively for the DBLP data stream. The
processing rate in terms of the number of edges per second is
illustrated on the Y -axis, and the affinity (or min-hash size)
are illustrated on the X-axis. It is clear that the scheme is
extremely efficient, and is able to process thousands of edges
per second. Similar results for the sensor and synthetic data
streams are illustrated in Figures 8(a) and 8(b). It is evident
that the processing rate increased with increased values of
the affinity. This is essentially because more patterns are
found at lower values of the affinity, and therefore this in-
creases the processing time. The only case for which the
curves were insensitive with affinity values was for the case
of the sensor data stream. This was because the number
of patterns generated was more insensitive to the affinity
value for the particular case of the sensor data stream. As
a result, the processing rates also did not vary much with
affinity. The processing rates also varied linearly with the
min-hash sample size. This suggests that the dense pattern
mining scheme can be implemented efficiently with min-hash
samples of modest size. Since we have already shown that
the scheme is quite effective for these choices of parameters,

981

(a) Variation with Min-Hash Sample Size (density=0.5)

(b) Variation with Affinity (density=0.5)

Figure 7: Processing Rates for DBLP data stream

(a) Variation with Min-Hash Sample Size (density=0.05)

(b) Variation with Affinity (density=0.05)

Figure 8: Processing Rates for Sensor data stream

it suggests that our dense stream pattern mining scheme is
robust to choice of parameter size.

5. CONCLUSIONS
In this paper, we designed a method for mining dense pat-

terns in graph streams. We designed a min-hash approach
in order to summarize the graph stream and leverage the
summarization for efficiently determining patterns. We pre-
sented theoretical bounds quantifying the accuracy of the
technique. Furthermore, the technique is extremely efficient
because it requires only a linear pass over the data stream,
and the computations during this pass are very limited. We
presented the effectiveness and efficiency of our approach on
a number of real and synthetic data streams.

6. ACKNOWLEDGEMENTS
This work is supported in part by NSF through grant IIS-

0905215.

7. REFERENCES

[1] J. Abello, M. G. Resende, and S. Sudarsky. Massive
quasi-clique detection. LATIN Conference, 2002.

[2] C. Aggarwal, and H. Wang. Managing and Mining
Graph Data. Springer, 2010.

[3] Y. Chi, H. Wang, P.S. Yu, and R. R. Muntz. Moment:
Maintaining closed frequent itemsets over a stream
sliding window. ICDM Conference, 2004.

[4] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk,
R. Motwani, J. Ullman, and C. Yang. Finding
Interesting Associations without Support Pruning,
IEEE TKDE, 13(1), 2001.

[5] D. Gibson, R. Kumar, and A. Tomkins. Discovering
Large Dense Subgraphs in Massive Graphs, VLDB
Conference, 2005.

[6] H. He, and A. K. Singh. Efficient Algorithms for
mining significant substructures from graphs with
quality guarantees. ICDM Conference, 2007.

[7] R. Jin, and G. Agrawal. An algorithm for in-core
frequent itemset mining on streaming data. ICDM
Conference, 2005.

[8] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph
summarization with bounded error. SIGMOD, 2008.

[9] J. Pei, D. Jiang, and A. Zhang. On mining cross-graph
quasi-cliques. KDD, 2005.

[10] S. Ranu, and A. K. Singh. GraphSig: A scalable
approach to min- ing significant subgraphs in large
graph databases. ICDE Conference, 2009.

[11] X. Yan, and J. Han. CloseGraph: Mining Closed
Frequent Graph Patterns. KDD, 2003.

[12] J. Xu Yu, Z. Chong, H. Lu, and A. Zhou. False
positive or false negative: Mining frequent itemsets
from high speed transactional data streams. VLDB
Conference, 2004.

[13] Z. Zeng, J. Wang, L. Zhou, and G. Karypis.
Out-of-core Coherent Closed Quasi-Clique Mining from
Large Dense Graph Databases. ACM TODS, Vol 31(2),
2007.

982

APPENDIX

A. DATA SET DESCRIPTIONS
The detailed data set descriptions are as follows:

(1) DBLP Data Stream: The DBLP data set contains
scientific publications in the computer science domain. We
further processed the data set in order to compose author-
pair streams from it. All conference papers ranging from
1956 to March 15th, 2008 were used for this purpose. We
note that the authors are listed in a particular order for each
paper. Let us denote the author-order by a1, a2, . . . , aq. An
author pair 〈ai, aj〉 is generated if i < j, where 1 ≤ i, j ≤ q.
We removed the authors with an extremely small number
of papers, because these were not interesting for the dense
pattern mining algorithm. We also removed some outlier
papers with a large number of authors. Each conference pa-
per along with its edges was considered a graph. The data
set is presented temporally in the form of a stream.
(2) Sensor Data Stream: This data aet contained infor-
mation about local traffic on a sensor network from a private
corporate network. This local traffic issued a set of intru-
sion attack types. Each graph constituted a local pattern of
traffic in the sensor network. The nodes correspond to the
IP-addresses, and the edges correspond to local patterns of
traffic. We note that each intrusion typically caused a char-
acteristic local pattern of traffic, in which there were some
variations, but also considerable correlations. The data set
contained a stream of intrusion graphs from June 1, 2007
to June 3, 2007. Each consecutively received set of edges,
which corresponds to an intrusion attack type was converted
into a single graph. The graphs were presented temporally
in order to create a stream.
(3) Synthetic Data Stream: We used the R-Mat data
generator in order to generate a base template for the edges
from which all the graphs are drawn. The input parameters
for the R-Mat data generator were a = 0.5, b = 0.2, c = 0.2,
and S = 16 (using the CMU NetMine notations). If an edge
is not present between two nodes, then the edge will also
not be present in any graph in the data set. Next, we gen-
erate the base clusters. Suppose that we want to generate κ
base clusters. We generate κ different zipf distributions with
distribution function 1/iθ . These zipf distributions will be
used to define the probabilities for the different nodes. The
base probability for an edge (which is present on the base
graph) is equal to the product of the probabilities of the cor-
responding nodes. However, we need to adjust these base
probabilities in order to add further correlations between
different graphs.

Next, we determine the number of edges in each graph.
The number of edges in each of the generated graphs is de-
rived from a normal distribution with mean µ = 10 and stan-
dard deviation σ = 2. The proportional number of points
in each cluster is generated using a uniform distribution in
[α, β]. We used α = 1, and β = 2. In order to generate a
graph, we first determine which cluster it belongs to by using
a biased die, and then use the probability distributions to
generate the edges. The key here is that the different node
distributions can be made to correlate with one another.
One way of doing so is as follows. Let Z1 . . .Zκ be the κ
different Zipf distributions. In this case, we used κ = 20 in
order to generate the data set. In order to add correlations,
we systematically add the probabilities for some of the other
distributions to the ith distribution. In other words, we pick

r other distributions and add them to the ith distribution
after adding a randomly picked scale factor. We define the
distribution Si from the original distribution Zi as follows:

Si = Zi + α1 · (randomly picked Zj) + . . .

. . .+ αr · (randomly picked Zq)

α1...αr are small values generated from a uniform distribu-
tion in [0, 0.1]. The value of r is picked to be 2 or 3 with
equal probability. The derived values S1 . . . Sr are used in
order to define the node probabilities.

B. ADDITIONAL EXPERIMENTAL RESULTS
FOR SYNTHETIC DATA STREAM

In this section, we present some experimental curves for
the synthetic data set. The detailed charts are presented in
Figures 9 to 16. These figures are exactly analogous to those
presented for the case of the real data sets. The results on
the synthetic data set are quite similar to the case of the
real data sets. The results are presented for completeness,
and additional evidence of effectiveness of the algorithm.

Figure 9: Synthetic data stream, δ-false positive
variation with δ (different densities, affinity = 0.2,
Min-Hash Sample Size= 800)

Figure 10: Synthetic data stream, δ-false negative
variation with δ (different densities, affinity = 0.2,
Min-Hash Sample Size=800)

983

Figure 11: Synthetic data stream, δ-false positive
variation with δ (different affinities, density = 0.1,
Min-Hash Sample Size=800)

Figure 12: Synthetic data stream, δ-false negative
variation with δ (different affinities, density = 0.1,
Min-Hash Sample Size=800)

Figure 13: Synthetic data stream, δ-false posi-
tive variation with Min-Hash Sample Size (different
affinities, density= 0.1, δ = 0.1)

Figure 14: Synthetic data stream, δ-false nega-
tive variation with Min-Hash Sample Size (different
affinities, density= 0.1, δ = 0.1)

Figure 15: Synthetic data stream, Running time
variation with Min-Hash Sample Size (different
affinities, density= 0.1)

Figure 16: Synthetic data stream, Running time
variation with affinity (different Min-Hash Sample
Size, density= 0.1)

984

