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ABSTRACT
Given a set of users, their friend relationships, and a distance
threshold per friend pair, the proximity detection problem is to
find each pair of friends such that the Euclidean distance between
them is within the given threshold. This problem plays an essential
role in friend-locator applications and massively multiplayer online
games. Existing proximity detection solutions either incur substan-
tial location update costs or their performance does not scale well to
a large number of users. Motivated by this, we present a centralized
proximity detection solution that assigns each mobile client with a
mobile region. We then design a self-tuning policy to adjust the
radius of the region automatically, in order to minimize communi-
cation cost. In addition, we analyze the communication cost of our
solutions, and provide valuable insights on their behaviors. Exten-
sive experiments suggest that our proposed solution is efficient and
robust with respect to various parameters.

1. INTRODUCTION
Given a set U of mobile users, the social network G among

them, and a spatial distance threshold εi,j per friend pair, the prox-
imity detection problem [1] reports each pair 〈ui, uj〉 that satis-
fies two conditions: (i) the users ui and uj are adjacent in G,
and (ii) the Euclidean distance dist(ui, uj) between them is at
most εi,j . Figure 1a illustrates the friend pairs among 4 users
u1, u2, · · · , u4. Locations of these users are shown in Figure 1b.
For instance, the pair 〈u2, u4〉 belongs to the result because they
are friends located within the distance ε2,4 from each other (see
their solid line). In contrast, u4 is not within the distance ε3,4 from
u3, so the pair 〈u3, u4〉 is not in the result (see their dotted line).

The proximity detection problem finds important applications
for moving users, in both the real and the virtual worlds. The
high availability of location positioning technologies (e.g., GPS)
integrated with powerful mobile communication devices enables a
new class of location-based online services. In particular, emerging
friend-locator services1 such as Google Latitude, Fire Eagle, and

1http://www.google.com/latitude/
http://fireeagle.yahoo.net/
http://www.ipoki.com/
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Figure 1: Example of proximity detection

Ipoki, allow a user to share his location with friends and find the
ones close to him. AdSocial [11] is yet another prototype that al-
lows users to share their locations with friends via mobile devices.
The proximity detection functionality is a natural extension of such
services, where a reasonable ε value could be the distance of 10
street blocks, for instance. Similarly, for massively multiplayer on-
line games, users wish to receive notifications when allied members
come sufficiently close.

For mobile applications, communication cost is the most im-
portant optimization goal, due to the limited bandwidth and bat-
tery power on the users’ mobile devices [4, 8, 9, 21]. In addition,
the optimization of communication cost also helps alleviating the
server’s computational load as the clients contact the server less
often. A straightforward proximity detection solution forces each
client (i.e., user) to report his location to the server periodically
(e.g., every second). Such a brute force solution requires that the
service provider must invest large amounts of resources on com-
munication bandwidth at the server side. Thus, it is essential to
develop an efficient proximity detection technique that reduces the
communication cost between the server and the users.

The importance of the above applications calls for the design of
communication-efficient proximity detection methods. The prox-
imity detection problem was first introduced by Efrat and Amir [1].
Recently, Xu and Jacobsen investigated a more general variant of
the problem [20]. Both solutions suffer from certain drawbacks.
The first is a distributed solution and requires each user to maintain
information for every friend, placing heavy burden at the clients.
The second solution is centralized and incurs a substantial commu-
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nication cost caused by frequent location updates of clients.
Motivated by this, we design a centralized solution that leverages

the wealth of research on location-tracking policies [17, 19]. In-
stead of maintaining the user’s exact position, the server represents
the user by a mobile region that is guaranteed to contain the user’s
exact position. A user updates his position, sending a message to
the server, only when he has moved out of his mobile region. The
server searches for pairs of users that satisfy the proximity detec-
tion constraints using the mobile regions, rather than the exact user
locations. This search process can result in false positives, which
need to be further filtered by probing a few users for their exact
locations.

The extent of a mobile region only affects the communication
cost of; it does not influence the correctness of our solution. Ide-
ally, the client should use an optimal extent value for his mobile
region such that the total communication cost is minimized. How-
ever, even for uniform data and workload, our experimental result
shows that the optimal extent varies with respect to the distance
threshold ε and the number of friends per user, as shown in Fig-
ure 1c. Our challenge resides in automatically and dynamically
tuning the right extent for each mobile region, in order to reduce
the total communication cost. This problem is difficult because: (i)
the right extent varies among different objects, and (ii) the right ex-
tent changes as time passes. We illustrate property (i) by Figure 1d,
where the mobile region of each user is represented by a moving
circle centered at the user’s location. Since u3 is far from u4, we
should assign a large extent to the mobile region of u3, in order to
reduce the frequency of updates sent from u3 to the server. As u2

and u4 are close together, we should assign small extents to both
the mobile regions of u2 and u4, such that the server has more ac-
curate information and reduces the frequency of probing them. The
transition from Figure 1d to Figure 1e illustrates property (ii). As
time passes, the distances among the users change, so their optimal
extents also change.

The contributions of this paper are summarized as follows.

• We present a basic client-server solution, called FMD, that
employs a fixed-radius policy for mobile regions and detects
the proximity among users by utilizing their mobile regions.
• We develop a communication cost model of FMD, which

enables us to demonstrate that the fixed-radius policy is not
powerful enough for minimizing the communication cost.
• We design two methods that dynamically tune the mobile

regions of the users, and analyze their dynamic behavior.

The rest of the paper is organized as follows. Section 2 surveys
the relevant related work. Section 3 discusses the assumed archi-
tecture of the system. Section 4 presents a tracking-based solution
for proximity detection and analyzes its communication cost, then
develops self-tuning solutions for the problem and analyzes their
dynamic runtime behavior. Section 5 presents the results of the
performance experiments, followed by conclusions in Section 6.
Table 1 (in Appendix A) summarizes the notation that will be used
throughout the paper. The Appendix also contains proofs of the
lemmas in this paper and supplementary experimental details.

2. RELATED WORK

2.1 Location Tracking and Adaptive Caching
A location tracking policy enables the server to track the loca-

tion of a mobile user with a given distance bound δ. The objective
is to minimize the communication cost between the server and its
clients. The point-based update policy [19] represents a user p by a
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Figure 2: Example of location tracking

static circle with its radius as δ and its center as the last reported lo-
cation of p. Instead of knowing the user’s exact position, the server
only knows that the user is located inside the circle (with the radius
δ). In Figure 2a, the user p is moving along the arrows. While
staying within the circle C1, the user does not need to send any
location update to the server. When p leaves C1, it defines a new
circle C2 and issues an update to the server. Subsequent circles are
created as p continues moving. Instead of using a static circle, the
vector-based update policy [17] uses a moving circle whose cen-
ter is predicted by using the last-reported location and velocity of
the object (see Figure 2b). The vector-based policy incurs lower
communication cost than the point-based policy in real world data
sets [17].

In the approximate caching problem [10], a remote data source
maintains the exact value v of a data item, whereas the server
caches an approximate copy V (i.e., an interval) of the item such
that V contains v. When the value v changes such that v /∈ V , the
data source performs a value refresh by enlarging the interval V and
updating its copy at the server. At the server, incoming queries are
evaluated by using V whenever possible. In case V is not precise
enough for answering a query q, the server performs a query refresh
by requesting the data source to shrink the interval V such that it
satisfies the precision requirement of q. Tzoumas et al. [16] apply
approximate caching to the two-dimensional domain for maintain-
ing an efficient index on moving objects at a centralized server.
Unlike our problem, their goal is to optimize the server-side com-
putation cost, but not the communication cost between the server
and the users.

2.2 Continuous Spatial Query Processing
Server-side continuous spatial query processing methods can be

divided into two categories: instant monitoring and predictive eval-
uation. Instant monitoring [6, 7] aims at maintaining the query re-
sult up-to-date only, based on the rationale that the future locations
of objects and queries are unpredictable. The server typically re-
freshes the result periodically (every ∆T time units), according to
location updates received from the moving objects. In this category,
SINA [6] and CPM [7] are representative solutions that employ
a spatial partitioning grid at the server side for efficiently main-
taining the result of range queries and k nearest neighbor queries,
respectively. Predictive evaluation [5, 22] models the future loca-
tions of objects by linear motion functions, and predicts the query
result from now to future. When the motion function of an object
changes, it issues an update to the server, which recomputes the
(future) query result associated with the object. Iwerks et al. [5]
examine temporal events that lead to future update of result, and
develop algorithms to maintain the result for k nearest neighbor
queries and spatial join queries on moving points. Zhang et al. [22]
study the continuous processing of intersection join between two
sets of moving rectangles, assuming that each rectangle issues an
update to the server within at most TM timestamps. Their solu-
tion exploits TM to reduce the effort of server-side processing. All
work above focuses on computational efficiency at the server but
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ignores communication cost between users and the server. In addi-
tion, techniques [5] and [22] ignore friend pairs and disallow per-
sonalized thresholds εi,j .

The safe region concept has been extensively studied for saving
the communication cost on processing continuous queries. For the
scenario of static (range or kNN) queries on moving objects [4, 8],
the safe region SR(p) of an object p is defined as a region such that
the result of any query is guaranteed to be unchanged by p while p
stays within SR(p). For the scenario of moving queries on static
objects [9,21], the safe region SR(q) of a query point is defined as
a region such that its query result remains unchanged in the region.
Regarding a kNN query, Zhang et al. [21] computes an order-k
Voronoi cell as the safe region of q. Nutanong et al. [9] formulates
a larger safe region for q by using the (k + ∆k) nearest neighbors
of q, where ∆k is a tunable parameter that decides the trade-offs
between communication cost and computational cost. None of the
above methods are directly applicable to proximity detection, in
which both the users and their friends are moving objects.

The proximity detection problem has been studied in [1, 14, 15,
20]. Efrat and Amir [1] propose a distributed solution where mo-
bile users communicate with each other. Specifically, for each pair
of friends p1 and p2, a strip of width ε is defined between their last-
reported locations. Since this solution does not employ a server, the
safe region of an object is defined per object pair. In Figure 3a, the
safe region SR(p1, p2) of p1 relative to p2 is the region above the
strip. While p1 travels within SR(p1, p2) it does not need to send
its location to p2. Otherwise, p1 must send its location to p2, and
p2 determines whether they are within proximity. In addition, p2

informs p1 of the new strip between them. This approach requires
each user to maintain a strip for each of his friends, thus its perfor-
mance does not scale well to a large number of friends. In the worst
case, when a user travels across the strips of all friends, he needs
to send a message to every friend. This problem can be avoided in
client-server solutions where the clients only need to communicate
with the server but not with all friends.

Treu et al. [14, 15] develop client-server solutions that focus on
reducing the communication cost of proximity detection. The dy-
namic centered circle method [14] assigns each user pi a circle
such that the minimum distance between any two circles is above ε
(see the example of Figure 3b). However, the circle is static, caus-
ing the user to move beyond it soon, triggering a location update
to the server. In a related work, Treu et al. [15] employ moving
sector regions for tracking users’ locations and detecting the prox-
imity among them at the server. The moving sector region of a
user is described by three parameters with predefined values: an
angular threshold θ, the minimum speed Vmin and the maximum
speed Vmax. Our analysis in Section 4.2 shows that such prede-
fined parameter values fail to achieve low communication costs in
all cases. Motivated by this, our solutions aim at optimizing the
communication cost by automatically tuning their parameters.

Xu and Jacobsen [20] generalize the proximity detection prob-
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Figure 3: Safe regions for different queries

lem to the constraint detection problem. A constraint is satisfied
when a specified set of k objects can be enclosed by a circle with a
diameter of at most ε. They propose a centralized solution, which
tracks objects in a space-partitioning grid. An object (i.e., client)
does not issue any location updates to the server until it enters an-
other cell of the grid. Based on the locations of the objects in the
grid, their solution identifies the objects that definitely satisfy the
constraints and the objects that definitely dissatisfy the constraints.
The remaining objects are probed to get their precise locations and
the constraints are checked for them. Their solution consists of an
adaptive procedure [20] for splitting and merging cells, in order to
reduce the computational cost at the sever. In contrast, our main
objective is to optimize the communication cost of our solutions.

Table 2 of Appendix A summarizes the characteristics of the
above proximity detection methods. Most of existing work adopt
the client-server architecture. The adaptive multi-layer grid [20]
is the only work that employs automatic tuning techniques but it
focuses on the server CPU cost. Our paper is the first to study au-
tomatic tuning techniques for optimizing the communication cost.

3. PROBLEM SETTING
We first present the system architecture for proximity detection,

and then introduce preliminary concepts.

3.1 System Architecture
Following the setting in continuous spatial query processing

[6–8], we adopt a client-server architecture (see Figure 4). Each
client (i.e., user) maintains a set of motion parameters that (con-
servatively) describe its current location and the predicted future
movement. The server stores the set U of users, their motion pa-
rameters, the set G of friend pairs, and the proximity detection
threshold εi,j for each friend pair.

We adopt the instant monitoring framework [6–8] as described
in Section 2.2. Each user measures his location periodically every
∆T time units (e.g., every second), and the server checks the prox-
imity among users periodically every ∆T time units. The value
∆T is termed as the epoch. In fact, periodic location measure-
ment is common for both real-world positioning (e.g., with GPS)
and virtual-world positioning in online games. Note that the value
∆T also captures the minimum latency in the communication net-
work [8].

Users communicate with the server via messages. A user may
send an update message to the server, updating its location and mo-
tion parameters stored at the server. The server can send a prob-
ing message to a user, requesting him to issue an update message.
When the server detects that two friends ui and uj are within prox-
imity (i.e., dist(ui, uj) ≤ εi,j), the proximity-notification message
will be sent to those two users. Our main goal is to reduce the
overall communication cost which is measured as the sum of all
messages (update, probing, notification) per epoch.

Users / Clients Server

Update (of location/  

motion parameters)

Proximity notification

ProbingMy motion 

parameters
Set of friend pairs

Motion parameters 

of all users

Set of users

Measure location Proximity detection

∆Τ ∆Τ

Figure 4: System architecture
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3.2 Preliminary Concepts
We first define the concept of a mobile region, which will be

used extensively in this paper. The movement of the user u can be
described by three motion parameters:

• u.Tref , the time at the user’s last update to the server
• u.Pref = (u.Xref , u.Yref ), the location of u at u.Tref
• u.Vref = (u.VX , u.VY ), the velocity of u at u.Tref

Given any time t such that t ≥ u.Tref , the predicted location
(u.X(t), u.Y (t)) of u at time t is modeled by two linear motion
functions [18] as shown in Equations 1 and 2. The type of motion
function used is independent of the correctness of our proposed so-
lutions (to be discussed in Lemma 3 later). The correctness is still
preserved even if the users have unpredictable motion patterns.

Let u.λ be the radius parameter of a user u. The mobile region
Rt(u) of u is defined as the time-dependent circle with its radius
u.λ and its center (u.X(t), u.Y (t)) (shown in Equation 3). Here,
u.λ serves a different purpose than the user-defined bound δ used in
location tracking (described in Section 2.1). Our u.λ is an internal
system parameter to be set by the application but not the user.

u.X(t) = u.Xref + u.VX · (t− u.Tref ) (1)
u.Y (t) = u.Yref + u.VY · (t− u.Tref ) (2)

Rt(u) =
⊙

( (u.X(t), u.Y (t)), u.λ ) (3)

The value of u.λ affects the communication cost, but not the
correctness of our proposed solutions. The server only knows that
a user is located in his mobile regionRt(u), but not the user’s exact
location. When a user moves outside his mobile region, he must
update his mobile region so that the server’s information is always
kept valid.

Given two circles R and R′, we use mindist(R,R′) to denote
the minimum distance between R and R′, and maxdist(R,R′) to
denote their maximum distance [20].

mindist(R,R′) = max{dist(R.c,R′.c)−R.λ−R′.λ, 0} (4)
maxdist(R,R′) = dist(R.c,R′.c) +R.λ+R′.λ (5)

where R.c denotes the center point of R, and R.λ represents the
radius of R. Based on these distance bounds, we obtain the follow-
ing lemmas, which enable the server to determine the proximity
between the users ui and uj without knowing their exact locations.
The server needs to probe the users ui and uj for their exact loca-
tions only when both condtions below do not apply.

LEMMA 1. Unqualified-pair pruning.
At time t, if mindist(Rt(ui), Rt(uj)) > εi,j , then the exact dis-
tance between ui and uj is greater than εi,j .

LEMMA 2. Qualified-pair detection.
At time t, if maxdist(Rt(ui), Rt(uj)) ≤ εi,j , then the exact dis-
tance between ui and uj is at most εi,j .

4. PROXIMITY DETECTION METHODS
Section 4.1 presents a basic solution for proximity detection, by

setting the radius u.λ of each user’s mobile region to a fixed value.
Section 4.2 studies the communication cost model of the basic solu-
tion, and reveals the drawback of using a fixed radius for the users’
mobile regions. Section 4.3, presents solutions that automatically
tune u.λ for each user, in order to optimize the communication cost.
Finally, Section 4.4 conducts an analysis on the dynamic behavior
of our self-tuning solutions.

4.1 Fixed-Radius Mobile Detection (FMD)
Based on the mobile region concept, we proceed to develop

our Fixed-Radius Mobile Detection Method (FMD) for continuous
proximity detection among the users. It consists of a client-side
algorithm and a server-side algorithm. Recall from Section 3 that
both the client algorithm and the server algorithm are invoked ev-
ery ∆T time units, via a timer event. At the end of this section we
discuss how to eliminate this restriction.

The client-side algorithm for user u proceeds as follows. First,
the user’s mobile region u.λ is set to a pre-defined, system-wide
value λ. The client waits for an event E, which can be either (i) a
timer event triggered by the timer, or (ii) a probing event sent by
the server. In case E is a timer event, the client checks whether its
current location falls outside its mobile region Rt(u). If so, then
it issues an update to the server (with updated motion parameters
u.Tref , u.Pref , and u.Vref ). In case E is a probing event, the
client needs to issue an update to the server as well. Algorithm 1
(in Appendix C) is the pseudocode for the FMD client algorithm.

The server maintains a set Γ that stores the result pairs per epoch.
The server algorithm examines each pair 〈ui, uj〉 in the set G of
friend pairs and employs the standard filter-refinement processing,
which covers the following three cases.

• The first case is to detect a pair that cannot belong to the
result, by checking whether the minimum distance between
the mobile regions Rt(ui) and Rt(uj) is greater than the
proximity threshold εi,j (see Lemma 1). If so, the server
needs not further process the pair.
• The second case is to detect a pair that must belong to the

result, by checking whether the maximum distance between
Rt(ui) and Rt(uj) is within εi,j (see Lemma 2). If so, the
pair is inserted into the result set Γ.
• The last case is the refinement step which probes the exact

locations of ui, uj , for deciding whether they are actually
within proximity. If so, the pair is inserted into the result set
Γ. A setU ′ stores the users who issued updates in this epoch,
so that they cannot be probed multiple times.

Finally, the server notifies the user pair to be within proximity if
it belongs to the result set Γ. Algorithm 2 (in Appendix C) is the
pseudocode for the server algorithm. The correctness of the FMD
algorithm is proved in this lemma.

LEMMA 3. Correctness of FMD.
The result set Γ computed by the FMD algorithm contains no false
positives and no false negatives, regardless of the prediction func-
tion (u.X(t), u.Y (t)) being used.

Example of FMD. We proceed to illustrate how the algorithms
work with an example. For simplicity, we assume that all friend
pairs use the same ε value, and each user is a friend of every
other user. Figure 5a shows the locations of users u1, u2, and
u3 at time t = 0. Each user ui is enclosed by a mobile re-
gion Rt(ui), whose radius equals to λ (a system parameter). The
velocity of each mobile region is indicated by an arrow. Since
mindist(Rt(u3), Rt(u1)) > ε, the server determines that the pair
〈u3, u1〉 cannot be within proximity. Similarly, the pair 〈u3, u2〉 is
found to be not in the result set. As mindist(Rt(u1), Rt(u2)) ≤
ε, it is possible for the users u1 and u2 to be within proximity. Thus,
the server probes the exact locations of u1 and u2, then detects
their proximity, and sends them a proximity message. Figure 5b
depicts the locations of the users at the next epoch (i.e., t = ∆T ).
Even though the users’ movements deviate slightly from their mo-
tion functions (i.e., the arrows defined in the last epoch), the users
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still travel within their mobile regions so they do not send any up-
dates to the server. Note that the minimum distance between the
mobile regions of each pair of users is greater than ε. Thus, the
server does not send proximity message to any user.

Optimizations. In Appendix D.1, we study how to reduce the
communication cost of proximity-notification messages in FMD by
using the incremental notification technique [6].

The time complexity of the server algorithm isO(|G|) per epoch
because all friend pairs in the set G are examined in every epoch.
In Appendix D.2, we optimize the computational cost of the server
algorithm by adapting event time triggers [5]. Furthermore, this
technique makes the server algorithm a truly continuous algorithm,
which avoids using the epoch parameter ∆T .

u
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u
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u
3

λ

ε

u
1

u
2

u
3

(a) at time t = 0 (b) at time t = ∆T

Figure 5: Example of mobile regions

4.2 Communication Cost Model of FMD
In this section, we develop a model for the communication cost

of the FMD method, which will reveal that the fixed-radius policy
is not suitable for minimizing the communication cost.

Similar to previous research [13], we make certain uniformity
assumptions in order to keep the cost model tractable. In addi-
tion, the uniformity assumptions represent the worst case for our
approach, which benefits from skew. The goal of the cost model is
to reveal the influences of problem parameters and guide us in the
development of advanced techniques in the next section.

We first discuss the parameters in our cost model. We use ∆T
to denote the length of an epoch, and λ to denote the radius of a
mobile region. Let N be the number of users and m be the av-
erage number of friends per user. For simplicity, all friend pairs
use the same ε for proximity detection, and locations of objects are
uniformly distributed in the spatial domain [0, 1]2.

In the following, we focus on deriving the total communica-
tion cost (i.e., the number of messages) of our solution per epoch.
Specifically, the total communication cost CTtotal can be decom-
posed into three components: (i) The proximity notification cost,
CTnotify , measures the notification messages from the server to
users that satisfy the proximity detection conditions. (ii) The up-
date cost, CTupdate, is caused by a client moving beyond its mo-
bile region. (iii) The probe cost, CTprobe, is caused by probing
messages from the server to users that are processed by the “refine-
ment step” of the server algorithm described above, as well as the
associated invoked location updates by these users.

We ignore CTnotify in our analysis because it is independent
of the mobile region radius λ. Also, the incremental proximity
notification technique only affects onlyCTnotify but notCTupdate
nor CTprobe, so it is not analyzed here.

Cost of update. To estimate the cost of updates caused by a client
moving beyond its mobile region, we need to estimate the average
interval between two updates of a user U(λ). The function U(λ)
is highly dependent on the movement type and the user’s velocity.
For simplicity, we assume the following movement model. First,

observe that the user ui issues an update when it reaches the border
of the (moving) circle Ci. At the time when Ci is built, the user
ui is located at the center of Ci and moves with some velocity
vector V . If the user would continue to move with this velocity, no
updates would be necessary. Instead, we assume that, in-between
the updates, the user moves with a different average velocity vector
V ′. Let ∆V = |V ′ − V |. Then, U(λ) = λ/∆V and the expected
number of epochs for the user to perform an update is U(λ)/∆T .
Thus, the probability for a user to update (per epoch) is shown in
Equation 6. By multiplying this probability with the number N of
users, we obtain the total update cost CTupdate in Equation 7.

Prupdate(λ) = min{
(∆V )(∆T )

λ
, 1} (6)

CTupdate = N ·min{
(∆V )(∆T )

λ
, 1} (7)

Cost of probing. When the minimum distance between two cir-
cles Ci and Cj is within ε, the distance between the centers of
Ci and Cj must be between 0 and ε + 2λ. Thus, the probabil-
ity that mindist(Ci, Cj) ≤ ε is given by Equation 8. When the
maximum distance between two circles Ci and Cj is within ε, the
distance between the centers of Cj and Cj must be between 0 and
max{ε− 2λ, 0}. Thus, the probability that maxdist(Ci, Cj) ≤ ε
is given by Equation 9. The refinement step of the server side al-
gorithm is executed when (i) the minimum distance between the
mobile regions of ui and uj is at most ε, and (ii) their maximum
distance is greater than ε. Therefore, the probability of invoking the
refinement step for the pair 〈ui, uj〉 is shown in Equation 10.

Pr(mindist(Ci, Cj) ≤ ε) = π(ε+ 2λ)2 (8)

Pr(maxdist(Ci, Cj) ≤ ε) = π(max{ε− 2λ, 0})2 (9)

Prrefine(λ, ε) = π(ε+ 2λ)2 − π(max{ε− 2λ, 0})2 (10)

Since we assume that each user has m friends on average, the
probing message is sent to the user ui if he participates in the re-
finement step of any of his friends. Thus, the probability of send-
ing a probing message to ui is: (1 − (1 − Prrefine)m). Further-
more, the probing message is only needed when ui has not issued
any update in the current epoch, which happens with probability
(1 − Prupdate(λ)). When the probing message is sent to ui, an
update message will be sent back from ui to the server, i.e., two
messages in total. Thus, the total probing cost for all users is:

CTprobe (11)

= N · (1− Prupdate(λ)) ·
(
1−

(
1− Prrefine(λ, ε)

)m) · 2
= 2N ·

(
1−min{

(∆V )(∆T )

λ
, 1}
)

·
(
1−

(
1− π(ε+ 2λ)2 + π(max{ε− 2λ, 0})2

)m)
.

Discussion. From the equations of CTupdate and CTprobe, we
observe that a small λ value leads to high update cost, whereas
a large λ value incurs high probing cost. In fact, there exists an
optimal value of λ that minimizes the total communication cost of
updating and probing. The optimal λ value also depends on other
factors such as ∆V , m, and ε. For instance, a large ∆V leads to
high update cost so the optimal λ should have a high value. A high
m leads to high probing cost so the optimal λ should be small.

In Appendix E.1, we apply our cost model to estimate the total
communication cost of the FMD method. From the estimation re-
sults, we observe two important properties regarding the optimal
value of λ: (i) Given the values of ε and m, there exists an optimal
λ such that the overall communication cost is minimized, and (ii)
The optimal λ varies for different values of m and ε.
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4.3 Self-Tuning Mobile-Region Algorithms
In real-life scenarios, the spatial distribution of users’ locations

can be skewed, and it can dynamically change over time. In addi-
tion, different users could use different proximity distance thresh-
olds. These factors make the cost model in Section 4.2 inaccu-
rate for estimating the optimal λ value for the FMD method. To
tackle this problem, we present self-tuning solutions for automati-
cally tuning the extent of each user’s mobile region.

Instead of fixing the value of λ, we now associate each user u
with an individual, variable radius value u.λ. Equation 3 is modi-
fied by replacing λ with u.λ. Initially, the value u.λ is initialized
to a predefined radius value, λ0. In addition, we employ a tuning
parameter α, which will be described shortly. Our tuning methods
should be designed in such a way that:

• the value of u.λ can be automatically tuned to its optimal
value fast, regardless of the initial value λ0

• the automatic tuning process should be robust for a wide
range of values for α

The rationale is that, the client needs not be worried about choos-
ing the values of λ0 and α, and yet the achieved performance is
comparable to that of using the optimal values of λ0 and α.

Expansion and contraction of mobile regions. We start by in-
troducing two operations, called contraction and expansion, for ad-
justing the extents of mobile regions.

Let α be the scale-factor parameter, where α > 1. The contrac-
tion operation recomputes the mobile region Rt(u) of the user u,
by multiplying u.λ with 1

α
and using the updated motion functions

u.X(t) and u.Y (t) of u. This operation is used to reduce the re-
finement probability in Equation 10, in order to save probing cost
in future. The expansion operation recomputes the mobile region
Rt(u), by multiplying u.λ with α and using the updated motion
functions of u. This operation is applied to reduce the update prob-
ability in Equation 6, in order to save update cost in future.

From the analysis in Section 4.2, we discover that the update cost
is high at a small u.λ whereas the probing cost is high at a large
u.λ. We thus propose the following intuitive principle to reduce
the update cost and the probing cost.

PRINCIPLE 1. Tuning Principle
If the update probability is too high (i.e., too small u.λ), the expan-
sion operation should be applied.
If the probing probability is too high (i.e., too large u.λ), the con-
traction operation should be applied.

Based on the above principle, we present two systematic techniques
for self-tuning u.λ for each client. They do not necessarily tune u.λ
to its optimal value; but they definitely safeguard against undesir-
able cases (e.g., against too small or too large values of u.λ).

Reactive Mobile Detection (RMD). Our Reactive Mobile Detec-
tion method (RMD) is an extension of FMD with the following
modifications. There are two cases for the client to issue an update
to the server. The first case is triggered when the client moves out-
side its mobile region; the client should then perform the expansion
operation in order to save update cost in the future. The second case
is caused by probing from the server; the client should then perform
the contraction operation in order to save probing cost in the future.

Let’s consider the friend pair 〈u1, u2〉 in Figure 6a, with the
value α = 2. The pair executes the refinement step as the mini-
mum distance between their mobile regions is within ε. The server
probes the locations of users u1 and u2, and then they apply the
contraction operation on their mobile regions. In Figure 6b, the
actual movement of the user u5 (dotted arrow) deviates from its
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Figure 6: Self-tuning of mobile regions, α = 2

estimated movement (solid arrow, known at time t = 0). At time
t = 1, the location of u5 falls outside the mobile region R1(u5).
The expansion operation is used to update the mobile region of u5.

Cost-Based Mobile Detection (CMD). Our Cost-Based Mobile
Detection method (CMD) is an extension of FMD with the follow-
ing modifications. Each user u maintains two local counters: (i)
CT update(u), for keeping the number of messages caused by up-
dates, and (ii) CT probe(u), for keeping the number of messages
caused by probing. Initially, the user sets both counters to zero.

When the user encounters an update, the value of CT update(u)
is incremented by one. When the user receives a probing mes-
sage from the server, the value of CT probe(u) is incremented by
two (because the user needs to send a message back to the server).
Each time the user is about to do an update or receives a prob-
ing message, the user compares CT update(u) and CT probe(u). If
CT update(u) > CT probe(u), the user aims to reduce the future
update cost by performing the expansion operation on his mobile
region. If CT probe(u) > CT update(u), the user aims to reduce the
future probing cost by performing the contraction operation.

The responsiveness of both self-tuning methods can be adjusted
by changing α. Intuitively, a large α value improves the self-
tuning ability of the algorithms but they can become over-sensitive
to small changes in the workload. We explore the effects of the
different values of α in our performance study.

4.4 Dynamic Behavior Analysis
In this section, we provide insights into the dynamic behavior of

the RMD method, from the perspective of a single user u. Figure 7
depicts the state diagram of a single user. The state of a user con-
sists of its λ value. Assume that the particular value of the user’s λ
is currently λi. The state diagram captures the transitions between
states which are of three kinds. First, with probability psi the user
remains in the same state λi if its mobile region did not contract or
expand. Second, with probability pci the user can move to a state
λi−1 = 1

α
·λi if its mobile region contracted. This incurs a commu-

nication cost of 2. Finally, with probability pei the user can move
to a state λi+1 = α · λi if its mobile region expanded. This in-
curs a communication cost of 1. Note that pei and pci are mutually
exclusive. Based on the equations in Section 4.2, we derive:

pei = Prupdate(λ)

pci = (1− Prupdate(λ)) ·
(
1−

(
1− Prrefine(λ, ε)

)m)
psi = 1− pei − pci

Using these probabilities, we apply the Monte Carlo method to
traverse the state diagram of Figure 7, for estimating a user’s com-
munication cost. Appendix E.2 demonstrates that RMD converges
fast to the optimal state, regardless of the initial value of λ used.
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5. EXPERIMENTAL STUDY
In this section, we experimentally evaluate the communica-

tion cost of the proposed algorithms. The communication cost
is our primary optimization goal, as elaborated in the introduc-
tion. It is also a platform-independent measurement. We imple-
mented our proposed solutions and the solutions developed in re-
lated work [1, 14, 20]. Table 3 (in Appendix A) summarizes the
used algorithms. For fairness to the AMLG algorithm [20], we set
its parameters according to those used in [20], i.e., the partition
split/merge parameter w is set to 0.0025 ·N , where N is the num-
ber of users.

Experimental setting. Table 4 (in Appendix A) summarizes the
default values and ranges of the parameters used in our experimen-
tal study. The proximity distance threshold ε is used for all algo-
rithms, whereas the parameters λ and α are only applicable to our
algorithms.

The network-based moving object data generator [3] is used to
generate the movement of N users on the Oldenburg road network
during 100 timestamps. We normalize the spatial domain size to
[0, 1000]2. A distance unit represents 1 meter and the interval time
between two adjacent timestamps is 1 second. The data genera-
tor allows us to control the speed limit Vlimit (i.e., the maximum
possible speed) of all users.

The default social network is a randomly generated social graph
called SYN. The graph contains N nodes and each node has an
average ofm adjacent edges (i.e., corresponding tom friends). We
also obtained a social network corresponding to the co-authorship
relation in the DBLP Bibliography2, where each node represents an
author and each edge indicates that the corresponding authors are
co-authors in some paper. The graph is obtained from the DBLP
records during the years 1998–2007; it hasN = 330354 nodes and
each node has an average degree of m = 6.261. We generate the
users’ locations for this DBLP network by using the data generator
[3] described above.

Sensitivity of internal system parameters. We first study the
effect of the parameters λ and α on our proposed methods (FMD,
RMD, and CMD).

Figure 8a shows the cost of the methods with respect to the initial
mobile-region radius λ. The cost trend of FMD agrees with our
analysis in Section 4.2, even though the moving objects generated
by [3] do not satisfy the uniformity assumption used in our analysis.
At very small λ value, the cost of FMD is high due to frequent
location updates. At very large λ value, FMD also has high cost
because it suffers from frequent probing by the server. On the other
hand, the cost of our proposed self-tuning methods RMD and CMD
is relatively insensitive to the value of λ. The reason is that they
adjust each user’s mobile region radius (ui.λ) dynamically based
on the location-update events and probing events they encounter.
Due to the high communication cost, the method FMD is removed
from the subsequent experiments.

Figure 8b plots the cost of our self-tuning methods RMD and
CMD as a function of the scale factor α. Observe that both meth-

2http://www.informatik.uni-trier.de/ ley/db/

ods achieve low cost for a reasonable range of α values, namely
from 1.25 to 8. At a very small α value (e.g., 1.01), the mobile
regions of users are adjusted slowly so the cost remains high. At a
large α value (e.g., 16), the methods over-adjust the mobile regions
frequently so the cost becomes high. Note that RMD incurs a lower
cost than CMD for all α values.

Additional experiments on studying the dynamic behavior of
RMD and CMD can be found in Appendix F.1.

Variants of RMD and CMD. We then study different variants
of RMD and CMD. By default, RMD and CMD are employing:
(i) the incremental notification technique for reporting proximity
status, and (ii) the vector-based update policy for location tracking.

A variant method is indicated with the suffix DN if it uses di-
rect notification (i.e., notifying the users for each epoch whenever
their proximity is detected). The suffix PT is shown with a variant
method that applies the point-based policy for location tracking.

Figure 8c plots the communication cost breakdown of the vari-
ants, at the default experimental setting. Note that the notification
method (i.e., with DN vs. the default) only affects the number of
proximity messages to be sent to the users, but not the number of
messages sent from the users. The location-tracking method (i.e.,
with PT vs. the default) influences both types of message cost.
A less effective tracking method (e.g., with PT) leads to a high
amount of update messages generated from clients.

In the above experiment, we also measure the number of prox-
imity events (per epoch) occurred at the client side. The number
of proximity events is the same for all the variants, even though
they employ different notification techniques and location tracking
techniques.

Scalability experiments. In the subsequent experiments, we com-
pare the communication cost of our self-tuning solutions (RMD and
CMD) with the competitors (DS, DCC, and AMLG), with respect
to various parameters.

Figure 9a shows the cost of the methods as a function of the num-
ber of users N . The cost of RMD/CMD is the lowest and it scales
linearly as N increases. This suggests that our proposed meth-
ods are practical for realistic applications involving a huge number
of users, like the friend-locator applications and massively multi-
player online games mentioned in the introduction.

Appendix F.2 presents additional experiments on studying the
scalability of the methods in terms ε, m, and the speed limit.

Results on real data. Finally, we study the performance of the
methods for the scenario using a real social network — the DBLP
co-authorship graph. This network possess some inherent proper-
ties of real network that may not be easily reflected by the random
graph SYN we used earlier. Thus, the DBLP graph would provide
us indicative performance of the methods on realistic social net-
works. Figures 9b,c show the cost of the methods on the DBLP
graph, as a function of the proximity detection distance ε and the
speed limit, respectively. DS incurs very high cost at large ε values.
AMLG and DCC can have high cost as they do not utilize the ve-
locity information of the users to reduce the update cost. Observe
that RMD/CMD outperforms others in the figures.

Summary. The experimental study shows that our proposed self-
tuning proximity detection methods (RMD and CMD) have robust
performance with respect to various parameters and their commu-
nication costs are scalable to a large number N of users and to a
large number m of friends per user. Furthermore, the sensitivity
experiments show that RMD and CMD incur low communication
cost for a wide range of internal system parameter values λ and α.
The dynamic behavior experiments demonstrate that, for extreme
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Figure 9: Scalability experiments

values of λ and α, the cost of RMD converges faster than CMD to
a steady state.

6. CONCLUSIONS
Motivated by applications like friend-locator location-based ser-

vices and massively multiplayer online games, we develop commu-
nication efficient client-server algorithms for continuous proximity
detection among mobile users. The algorithms build on the previ-
ous research on update policies in location tracking in order to issue
updates only when a user exits a moving region associated with its
predicted position. In addition, the number of location probes from
the server to the users is reduced by controlling the sizes of the
moving regions of the users. We develop self-tuning mechanisms
for providing continuous adjustment of the extents of moving re-
gions. Performance experiments show that our algorithms are ro-
bust with respect to various parameters and they have substantially
lower communication cost than existing solutions.
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APPENDIX
A. LIST OF SYMBOLS, ALGORITHMS,

AND EXPERIMENTAL PARAMETERS

Table 1: Summary of Notation
Symbol Meaning
U the set of users
ui a user in U
G the set of friend pairs (ui, uj): ui, uj ∈ U
εi,j proximity distance threshold for (ui, uj)

ui.X(t), ui.Y (t) (predicted) motion functions of ui
Rt(ui) mobile region of ui at time t
ui.λ the radius of the mobile region Rt(ui)

dist(p, p′) Euclidean distance between points p and p′
mindist(R,R′) minimum dist. between regions R and R′
maxdist(R,R′) maximum dist. between regions R and R′

α the scale factor (tuning parameter)

Table 2: Summary of Proximity Detection Methods
Method Architecture Goal Auto-tune Personal

εi,j

Distributed Strip [1] distributed comm. × X
Dynamic Centered Circle [14] client-server comm. × X

Dynamic Sector [15] client-server comm. × X
Adaptive Multi-Layer Grid [20] client-server server CPU X X

Iwerks et al. [5] client-server server CPU × ×
Zhang et al. [22] client-server server CPU × ×

RMD / CMD (this paper) client-server comm. X X

Table 3: Summary of Algorithms
Alg. Name Presented in
FMD Fixed-Radius Mobile Detection Section 4.1
RMD Reactive Mobile Detection Section 4.3
CMD Cost-Based Mobile Detection Section 4.3

DS Distributed Strip Ref. [1]
DCC Dynamic Centered Circle Ref. [14]

AMLG Adaptive Multi-Layer Grid Ref. [20]

Table 4: Summary of Parameters
Parameter Default Range

Number of users N 100K 25K – 400K
Speed limit Vlimit (metres/s) 8.00 4.00 – 16.00
Number of friends per user m 10 3 – 500
Proximity distance ε (metres) 10 2.5 – 50
Initial mobile region radius λ 20 2 – 100

Scale factor α 2 1.01 – 16
Length of an epoch ∆T 1 second

B. PROOFS OF LEMMAS
PROOF. Proof of Lemma 1.

The region Rt(ui) contains the actual location of ui at the time
t. Also, the region Rt(uj) contains the actual location of uj at
the time t. Therefore, mindist(Rt(ui), Rt(uj)) is smaller than or
equal to the exact distance between ui and uj . Since we are given
that mindist(Rt(ui), Rt(uj)) > εi,j , the exact distance between
ui and uj is greater than εi,j .

PROOF. Proof of Lemma 2.
The region Rt(ui) contains the actual location of ui at the time
t. Also, the region Rt(uj) contains the actual location of uj at

the time t. Therefore, maxdist(Rt(ui), Rt(uj)) is greater than or
equal to the exact distance between ui and uj . Since we are given
that maxdist(Rt(ui), Rt(uj)) ≤ εi,j , the exact distance between
ui and uj is at most εi,j .

PROOF. Proof of Lemma 3.
Lines 4–6 of Algorithm 1 (the client algorithm) guarantees that the
mobile region Rt(u) of the user contains the current location of
the user u at current time t, regardless of the prediction function
being used. Note that this property is the pre-condition of Lem-
mas 1 and 2.

In Algorithm 2 (the server algorithm), a friend pair 〈ui, uj〉 is
inserted into Γ either at Line 7 or at Line 15. In the former case, it
is guaranteed to be an actual result, due to Lemma 2. In the latter
case, the exact locations of the users ui and uj are probed at Lines
9–12, before computing their exact distance. Thus, the result set Γ
contains no false positives.

A friend pair 〈ui, uj〉 is not included into Γ if it does not satisfy
the condition at Line 6 or Line 14. In the former case, the pair is
guaranteed not to be a result, due to Lemma 1. In the latter case,
the exact distance between the users is computed for the checking
at Line 14. Therefore, Γ does not have any false negatives.

C. PSEUDO-CODES OF ALGORITHMS

Algorithm 1 Mobile Region Detection Client
algorithm MobileRegion-Detect-Client(User u, Event E, Radius λ)

1: let the current time be t;
2: measure the current location of u as (xcur, ycur) and velocity as

(VX , VY );
3: if E is a timer event then
4: if Rt(u) does not contain (xcur, ycur) then

. the client moved outside its mobile region
5: u.Tref :=t; u.Pref :=(xcur, ycur); u.Vref :=(VX , VY );

. location update message (contributes to cost CTupdate)
6: send Rt(u) (with its parameters) to the server;
7: else if E is a probing event (from the server) then

. the server probed for our exact location
8: u.Tref :=t; u.Pref :=(xcur, ycur); u.Vref :=(VX , VY );

. location update message (contributes to cost CTprobe)
9: send Rt(u) (with its parameters) to the server;

Algorithm 2 Mobile Region Detection Server
algorithm MobileRegion-Detect-Server(Distances εi,j , Set of usersU ,
Set of friend pairs G)

1: let the current time be t;
2: receive updates from the subset of users of U ′ ⊆ U issuing them;
3: Γ:= an empty set; . the result set in this epoch
4: for each friend pair 〈ui, uj〉 ∈ G do
5: if mindist(Rt(ui), Rt(uj)) ≤ εi,j then . Lemma 1
6: if maxdist(Rt(ui), Rt(uj)) ≤ εi,j then . Lemma 2
7: insert the pair 〈ui, uj〉 into Γ;
8: else . refinement step

. probe messages (contribute to cost CTprobe)
9: if ui /∈ U ′ then

10: send a probing event to ui for its update;
11: if uj /∈ U ′ then
12: send a probing event to uj for its update;
13: U ′:=U ′ ∪ {ui, uj};
14: if dist(ui.Pref , uj .Pref ) ≤ εi,j then
15: insert the pair 〈ui, uj〉 into Γ;
16: if 〈ui, uj〉 ∈ Γ then

. notification messages (contribute to cost CTnotify)
17: notify users ui and uj with a proximity message;
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D. OPTIMIZATIONS

D.1 Optimization on Proximity Notification
The original server algorithm (Algorithm 2) sends a proximity

message to the pair 〈ui, uj〉 if it belongs to the current result set
Γ (see Lines 16–17). For example, the pair 〈ui, uj〉 belongs to
Γ from epoch 1 to epoch 4, in Figure 10. This incurs expensive
communication cost as the server needs to send four notification
messages to those pairs.

We apply the incremental notification technique [6] to reduce the
number of proximity messages to be sent to the users. The idea is
to report the status change of proximity rather than the proximity
itself. Let Γ be the result set in the current epoch and Γ′ be the
result set in the previous epoch (see Figure 10).

• If the pair 〈ui, uj〉 belongs to Γ but not Γ′, then the current
epoch is the initial epoch for ui and uj to be within proximity.
Thus, a plus-status message is sent to that pair (e.g., the status
change in epoch 1 in the figure).

• At the client side, each user assumes that his proximity status
with his friends is identical to that of the previous epoch, un-
less he receives status message from the server. For instance,
the users ui and uj assume themselves to be within proximity
from epoch 2 to epoch 4 (see Figure 10), without needing the
server to send them any message.

• If the pair 〈ui, uj〉 belongs to Γ′ but not Γ, then the current
epoch is the initial epoch for ui and uj not to be within prox-
imity. Thus, a minus-status message is sent to that pair (e.g.,
the status change in epoch 5 in the figure).

This technique reduces the message cost to 2, when compared to
the message cost (4) paid in the original method discussed before.

To implement the above technique, it suffices to replace a few
lines of Algorithm 2 by the corresponding lines of Algorithm 3.
This optimization leads to significant savings in communication
cost, especially for the scenario where a pair of friends are stay-
ing or traveling together.

Epoch 0 1 2 3 4 5 6 7
〈ui, uj〉 ∈ Γ × X X X X × × ×
〈ui, uj〉 ∈ Γ′ × × X X X X × ×
Status change + −

Figure 10: Proximity status of a friend pair 〈ui, uj〉

Algorithm 3 Server Algorithm with Notification Optimization
· · · · · ·

3: Γ:= an empty set; Γ′:= the result set in the last epoch;
4: for each friend pair 〈ui, uj〉 ∈ G do
· · · · · ·

16: if 〈ui, uj〉 ∈ Γ ∧ 〈ui, uj〉 /∈ Γ′ then
17: notify users ui and uj with a plus-status message;
18: else if 〈ui, uj〉 ∈ Γ′ ∧ 〈ui, uj〉 /∈ Γ then
19: notify users ui and uj with a minus-status message;

D.2 Server Computational Cost Optimization
Algorithm 2 (at the server-side) needs to examine each friend

pair 〈ui, uj〉 in every epoch. This incurs substantial computational
cost at the server. In this section, we present an effective technique
for filtering out the friend pairs that cannot contribute to the result at
the current epoch. Furthermore, this technique enables the server

algorithm to become a truly continuous algorithm, which avoids
using the time epoch parameter ∆T .

Trigger time concept. The idea of trigger time originates from
[5]. Given two users ui and uj , the trigger time ω(ui, uj) is de-
fined as the earliest time t (after the current time tcur) such that
the minimum distance between their mobile regions Rt(ui) and
Rt(uj) at time t is within ε.

ω(ui, uj) = min{t | t ≥ tcur ∧mindist(Rt(ui), Rt(uj)) ≤ ε}

Unless ui or uj sends an update, the pair 〈ui, uj〉 is guaranteed to
be not within proximity until the time ω(ui, uj), so it needs not be
processed until that time.

The distance between two moving points have been studied in
[2,5,12]; we extend their work to computing the minimum distance
between two mobile regions (i.e., moving circles).

Computation of trigger time. To compute the trigger time
ω(ui, uj) between two moving circlesRt(ui) andRt(uj), we first
compute the possible time interval such that the distance between
two circles is within ε. Let λi and λj be the radii of the moving
circles Rt(ui) and Rt(uj) respectively. Without the loss of gener-
ality, let us assume that ui.Tref = uj .Tref = 0. Equations 1 and
2 then become simpler. The motion functions of a user ui along X
and Y dimensions are:

ui.X(t) = Si,X + Vi,X · t
ui.Y (t) = Si,Y + Vi,Y · t

where Si,X = ui.Xref , Si,Y = ui.Yref , Vi,X = ui.VX , and
Vi,Y = ui.VY .

The following inequality is used to find the possible time inter-
val such that the minimum distance between Rt(ui) and Rt(uj) is
within ε.

mindist( �((ui.X(t), ui.Y (t)), λi) ,

�((uj .X(t), uj .Y (t)), λj) ) ≤ ε

By applying Equation 4, the above inequality between two cir-
cles can be expressed as another inequality between their centers,
as shown below:

(ui.X(t)− uj .X(t))2 + (ui.Y (t)− uj .Y (t))2 ≤ (ε+λi +λj)
2

After expanding the terms ui.X(t), uj .X(t), ui.Y (t), uj .Y (t),
we then obtain:

((Si,X − Sj,X) + (Vi,X − Vj,X) · t)2 +

((Si,Y − Sj,Y ) + (Vi,Y − Vj,Y ) · t)2 ≤ (ε+ λi + λj)
2

The above inequality can be rearranged to a quadratic inequality:
A · t2 + B · t + C ≤ 0 where A, B, and C are constants based
on the values Si,X , Si,Y , Vi,X , Vi,Y , Sj,X , Sj,Y , Vj,X , Vj,Y , and
ε. We solve the above inequality to find the possible time interval
for t, and then set ω(ui, uj) to the earlier time t ≥ tcur in such an
interval (if any).

Efficient indexing of trigger times. Next, we investigate how
to index the trigger times of friend pairs in an efficient manner.
Specifically, we propose to use a main-memory heap for organiz-
ing the friend pairs 〈ui, uj〉 based on their trigger time ω(ui, uj).
A disk-based B+-tree can be used instead, if the main memory
is not large enough to store all friend pairs. At the current time,
the pairs satisfying ω(ui, uj) = tcur are retrieved from the top
of the heap H and then processed by Lines 5–17 of Algorithm 2.
When the server receives an update from a user ui, its trigger time
ω(ui, uj) for each friend uj is recomputed and the heap is updated
accordingly.
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Now, we show how this approach can be further improved us-
ing a two level heap structure. For every user ui, the trigger time
ω(ui, uj) of his friend pairs are stored in a local heap Hloci . Only
the top pair on Hloci is inserted into the global heap H. When the
trigger time ω(ui, uj) of a pair is changed, first its local heapHloci
is updated. If the top pair of Hloci is changed, then H is updated
accordingly. This two level heap structure reduces the update time
complexity to O(log(N) + log(m)), where N is the number of
users and m is the number of friends per user.

Note that this approach not only saves the computational cost but
also expands the applicability to the system. It enables the system
to support real-time event handling based on the trigger times of
objects, instead of the fixed epoch.

Experiments of computational cost saving techniques. We pro-
ceed to examine the computational cost saving offered by the above
trigger time technique. All methods were implemented in C++ and
the experiments were performed on an Intel Core2Duo 2.66GHz
CPU machine with 2 GBytes memory, running on Ubuntu 8.04.
We use the default experimental setting as discussed in Section 5.

Let RMD-H and CMD-H represent the heap-based models of
RMD and CMD respectively. For every timestamp (server’s algo-
rithm iteration), RMD, CMD, and AMLG need to process a fixed
number of pairs computation, which is equal to the number of pairs
in the system. For the heap-based models, the pairs computation is
invoked by two cases, (i) the pairs satisfying ω(ui, uj) = tcur are
retrieved from the top of the heap H and then processed by Lines
5–17 of Algorithm 2 and (ii) when ui issues an location update
message to the server, its trigger time for each friend is recomputed.

For RMD-H and CMD-H (both with the trigger time technique),
Figure 11a shows the effect of the number of users on the ratio
of the average number of pairs processed and the number of trig-
ger time updates, as a percentage to the total number of pairs, per
timestamp. Note that both of them are machine-independent mea-
surements. In the default case, the sum of pairs computation is
around 20% which helps reducing the response time significantly
as shown in next experiment.

Figure 11b demonstrates the total server CPU time of our ba-
sic approaches (RMD/CMD) and heap-based approaches (RMD-
H/CMD-H), for the entire workload (with 100 timestamps). Ob-
serve that the time of RMD-H/CMD-H ranges from 59% to 82%
of the time of RMD/CMD. Due to the overhead of heap main-
tenance, the improvement in CPU time is not as dramatic as the
improvement in the number of comparisons (in Figure 11a). Be-
sides, RMD-H/CMD-H performs almost the same to AMLG (±3
s in this experiment). In summary, our RMD/CMD methods have
better communication cost than AMLG at client side while they are
able to achieve similar computational cost to AMLG at server side.

E. ADDITIONAL ANALYTICAL RESULTS

E.1 Estimation Results of FMD Cost Model
We study a typical scenario where there are N = 100000 users,

each user having m = 10 friends, and the other parameters are
fixed to ∆T = 1 and ∆V = 0.001. Recall that the spatial domain
is [0, 1]2 in our analysis. Figure 12a shows the decomposition of
the communication cost with respect to λ, at a fixed ε = 0.05
value. Clearly, the notification cost is independent of λ. The update
cost becomes high at small λ values and the probing cost is high at
large λ values. Observe that there exists an optimal λ value that
minimizes the total communication cost. In the next study, we find
the optimal λ that minimizes the total communication cost for each
test case. Figure 12b depicts the optimal λ value as a function of

N
RMD-H CMD-H

pair trigger pair trigger
processing update processing update

ratio ratio ratio ratio
25 8.43% 18.82% 7.55% 20.45%
50 7.80% 15.68% 7.02% 16.44%
100 7.26% 13.63% 6.61% 14.19%
200 7.22% 13.29% 6.59% 13.77%
400 7.18% 13.23% 6.57% 13.70%

(a) average number of pairs computation
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Figure 11: Effect of N on the heap-based trigger time tech-
nique

ε, for three different number of friends m = 5, 10, 20. Observe
that no single λ value can minimize the communication cost in all
cases. The optimal λ value depends on the specific values of ε and
m being used.
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Figure 12: Estimation results, fixing N = 100000, ∆T = 1,
∆V = 0.001

E.2 State Transition Analysis of RMD
We apply the Monte Carlo method to traverse the state diagram

of Figure 7, in order to estimate the user’s communication cost.
We run the simulation for 1 million timestamps, with the other

parameters set to their default values: m = 10, ε = 0.05, ∆T = 1,
∆V = 0.001, α = 2. We test with three different values for the
initial λ and measure the relative frequencies of each state (i.e.,
current λ value) in each test. The simulation result is shown in
Figure 13. Regardless of the initial λ value used, the three runs have
almost identical frequency distribution of the states. This implies
that the RMD method is robust with respect to the initial λ setting.
It is worth noticing that RMD resides in three of the states for more
than 90% of time, and the optimal state (0.01, see Figure 12b) has
the highest relative frequency. This suggests that RMD tends to
stay at the optimal state for a number of consecutive timestamps,
leading to low amortized cost per timestamp.
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F. ADDITIONAL EXPERIMENTS
In the following, we present the results of additional experi-

ments, which have not been included into the main experimental
section due to space limit.

F.1 Dynamic Behavior Experiments
We then investigate in detail the dynamic behavior of our self-

tuning methods (RMD and CMD) over time, for some extreme λ
and α values. We measure the communication cost for each method
at each timestamp.

Figures 14a shows the cost of the methods at each timestamp, us-
ing a small (0.01) and a large (100) initial value of λ. The average
mobile region radius is continuously adjusted and the communica-
tion cost enters into a steady state as time elapses.

Figures 14b shows the cost of the RMD method, using a small
(1.1), a medium (2), and a high (8) value for α. At a low α value,
RMD adjusts the mobile regions slowly and it takes 30 timestamps
to enter into a steady state. At a high α value, RMD over-adjusts
the mobile regions so the cost has oscillations in the first few times-
tamps. Nevertheless, the oscillations diminish gradually and the
cost stabilizes. At a medium α value, RMD reaches the steady
state very fast and its cost does not oscillate.
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Figure 14: Dynamic behavior experiments, SYN graph

F.2 Scalability Experiments
Figure 15a plots the cost of the methods as a function of the prox-

imity detection distance ε. Our methods RMD and CMD have sim-
ilar cost and they outperform the competitors for all ε values. Since
AMLG has an adaptive procedure for spliting/merging the parti-
tions of users’ locations, it performs better than DCC. However,
both AMLG and DCC do not exploit the velocities of the users, so
they incur higher update cost than RMD/CMD. At a large ε value,
DS forces the users to exchange send messages with most of their
friends. Obviously, this is much more expensive than client-server
methods (RMD, CMD, DCC, AMLG) that require a user to send
his location to the server at most once per epoch.

We then study the effect of the number of friends m on the com-

munication cost of the methods, as shown in Figure 15b. Again, at
a largem value, DS becomes much more expensive than the client-
server methods. DCC and AMLG scale better than DS with respect
tom. Observe that the performance of RMD/CMD scales very well
with m, and outperforms the competitors by a wide margin at high
m values.

Figure 15c plots the cost of the methods with respect to the speed
limit. At a low speed limit, the users in DS seldom travel outside
their assigned safe regions defined by strips, thus DS has a low
cost compared to DCC and AMLG. Note that RMD/CMD has the
lowest cost for a wide range of speed limit values.
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Figure 15: Additional experiments

Figure 16a,b show the number of refinements of our methods
as a function of the number of users N and the number of friends
per user m, respectively. Since RMD and CMD are able to tune
the extents of users’ mobile regions automatically, they incur much
fewer refinements than FMD.
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Figure 16: Effect of the number of users and friends on the
number of refinements
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