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ABSTRACT
Probabilistic databases hold promise of being a viable means for
large-scale uncertainty management, increasingly needed in a num-
ber of real world applications domains. However, query evaluation
in probabilistic databases remains a computational challenge. Prior
work on efficient exact query evaluation in probabilistic databases
has largely concentrated on query-centric formulations (e.g., safe
plans, hierarchical queries), in that, they only consider character-
istics of the query and not the data in the database. It is easy to
construct examples where a supposedly hard query run on an ap-
propriate database gives rise to a tractable query evaluation prob-
lem. In this paper, we develop efficient query evaluation tech-
niques that leverage characteristics of both the query and the data
in the database. We focus on tuple-independent databases where
the query evaluation problem is equivalent to computing marginal
probabilities of Boolean formulas associated with the result tuples.
This latter task is easy if the Boolean formulas can be factorized
into a form that has every variable appearing at most once (called
read-once). However, a naive approach that directly uses previ-
ously developed Boolean formula factorization algorithms is inef-
ficient, because those algorithms require the input formulas to be
in the disjunctive normal form (DNF). We instead develop novel,
more efficient factorization algorithms that directly construct the
read-once expression for a result tuple Boolean formula (if one
exists), for a large subclass of queries (specifically, conjunctive
queries without self-joins). We empirically demonstrate that (1)
our proposed techniques are orders of magnitude faster than generic
inference algorithms for queries where the result Boolean formulas
can be factorized into read-once expressions, and (2) for the spe-
cial case of hierarchical queries, they rival the efficiency of prior
techniques specifically designed to handle such queries.

1. INTRODUCTION
The rise in uncertain data in a variety of applications has led

to much research in the area of probabilistic databases in recent
years [10, 1]. Since query evaluation is #P-complete in probabilis-
tic databases that use the possible world semantics (the dominant
semantics on which most systems are based), two broad approaches
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have been suggested for tractable query execution. Either the sys-
tem opts to compute approximate query results [21, 18, 25], or the
query language is restricted to allow for efficient exact query eval-
uation. The research on hierarchical queries [11, 25] has identified
many such classes of queries (reviewed in the next section) that
can be evaluated in PTIME on tuple-independent databases (mutual
exclusivity correlations may be permitted in some cases). Unfortu-
nately several negative dichotomy and trichotomy results [11, 21,
26] developed in recent years suggest that the class of hierarchical
queries is likely to be too restrictive. More importantly, a query-
centric approach is pessimistic by definition; it may be the case
that a non-hierarchical query can be tractably evaluated on most
probabilistic databases encountered in practice.

In this paper, we develop novel techniques for query evaluation
in tuple-independent probabilistic databases by drawing connec-
tions to the literature on read-once functions. It is well known that
in probabilistic databases with independent tuples, every result tu-
ple is associated with a Boolean formula [3, 13] (often called lin-
eage), and the query evaluation problem reduces to computing the
marginal probabilities for the result tuple Boolean formulas holding
true. Further, if a result tuple’s Boolean formula can be factorized
into a form where every Boolean variable appears at most once,
also known as read-once functions [15, 17], then the marginal prob-
ability can be computed easily in linear time. Hierarchical queries
always admit a query evaluation plan such that the result tuple for-
mulas are generated in read-once form, thus providing a connection
to efficient query evaluation in probabilistic databases [22].

Here we further explore and exploit the connection by first show-
ing how to incorporate previously developed Boolean formula fac-
torization algorithms into a probabilistic database query engine. In
this naive approach, we run the user-submitted query using any
query plan to generate all the result tuples along with their lin-
eages, and then we factorize them into read-once form (if possible)
to compute marginal probabilities. This approach by itself allows
us to tackle a superset of hierarchical queries more efficiently than
has been previously possible. However, it is quite inefficient be-
cause prior factorization algorithms require the disjunctive normal
form (DNF) of the input Boolean formula; DNF expansion of a for-
mula may result in an exponential blowup (in the size of the query).

We instead develop novel algorithms that allow us to construct
the read-once expression for an output tuple (if one exists) on-the-
fly during query evaluation, for the class of conjunctive queries
without self-joins. Our proposed technique subdivides the result
tuple lineage into smaller formulas for which we build read-once
expressions separately. We then merge these read-once expressions
to produce a read-once expression of the result tuple lineage. Both
these steps are challenging. In the first step, we have to carefully
strategize how to sub-divide the result tuple lineage into smaller
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L: X
x1 x1
x2 x2
x3 x3

J: X Y
z1 x1 y1
z2 x1 y2
z3 x2 y3
z4 x3 y3

R: Y
y1 y1
y2 y2
y3 y3

q() :−L(X), J(X, Y), R(Y)
r =x1z1y1 + x1z2y2 + x2z3y3 + x3z4y3
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Figure 1: (a) A query q and its singleton result r along with its Boolean formula. (b) Computing the marginal probability from a
co-tree where ch(e) denotes children of v. (c) ab + bc + cd, the P4 structure. (d) c(ab + d), co-occurrence graph is P4-free. (e) The
co-occurrence graph of r from (a), and (f) its co-tree.

components. The divisions should be such that if a sub-division
does not admit a read-once rewriting, then the result tuple does not
have a read-once expression either. In the main body of the paper,
we show that if we are using deep query evaluation plans (where at
least one input to every join operator is a base relation), it is pos-
sible to divide the result tuple’s lineage into such sub-divisions. In
the appendix, we show that the same logic can extended to include
bushy query plans. The second step is where we combine the read-
once expressions of the various sub-divisions together. Read-once
expressions are usually represented using tree-like data structures
known as co-trees [6]. Thus, this step is an instance of the tree
alignment problem [20] which in general is MAX SNP-hard; we
propose a novel polynomial-time algorithm for solving this prob-
lem in our setup. We evaluate our approach by experimenting with
several datasets, including the TPC-H benchmark. We show that
not only are our proposed techniques orders of magnitude faster
than generic inference algorithms when evaluating non-hierarchical
queries, they rival the performance of techniques specifically devel-
oped to handle hierarchical queries.

Two of the state-of-the-art probabilistic database systems that
solve hierarchical queries efficiently are heavily dependant on query
compilation techniques. MystiQ [4] looks at the query and con-
structs a plan that allows efficient evaluation. SPROUT [24] takes
the query’s hierarchical representation and constructs a signature
which is used in subsequent operations. These works also propose
the use of functional dependencies described in the schema to sim-
plify the query. It is possible that a non-hierachical query results
in a hierarchical query when the functional dependencies are taken
into account. Our premise, in this paper, is very simple. If the query
results in read-once result tuples (either because of the structure in
the query or because the data satisfies functional dependencies or
for any other reason) then we should be able to compute marginal
probabilities easily. In that sense, the techniques we propose in
this paper are data-centric and largely disjoint from the techniques
employed in SPROUT and MystiQ which are query-centric. This
obviates the need for a fair amount of compile time analysis involv-
ing the query and functional dependencies. We evaluate against
SPROUT and MystiQ extensively in Section 4.

Recently, Olteanu et al. [25] also proposed using factorization
algorithms within a probabilistic query engine, to compile lineages
into decision diagrams called d-trees. D-trees allow Shannon ex-
pansion and hence are a stronger formalism than read-once func-
tions. However, that work assumes that the DNF of the result tuple
is provided as input which, as we mentioned earlier, can be expen-
sive to construct. An interesting open question here is whether it
is possible to directly compute small d-trees during query execu-
tion similar to what we do with read-once expressions in this work.
Another issue with the current work on hierarchical queries is that,
with some exceptions (e.g., Olteanu et al. [23, 22]), most of those

deal almost exclusively with equality join predicates (e.g., Dalvi et
al. [11]). Extending the approach to other operators requires ef-
fort, and dealing with queries composed of different operators is
even more cumbersome. On the contrary, viewing result tuples as
Boolean formulas allows us to restrict our attention to only two
operators, viz. ∧ (and) and ∨ (or). We do not care what kind
of join predicate (equality or inequality or anything else) gave rise
to the Boolean formula associated with the result tuple. Thus, our
techniques are likely to be more widely applicable than prior work.
Outline: In the next section, we discuss preliminaries and show
how to incorporate prior factorization algorithms into the query en-
gine. In Section 3, we devise novel and efficient algorithms to con-
struct read-once functions for result tuples produced by conjunctive
queries without self-joins. In Section 4, we experimentally demon-
strate the efficacy of our proposed techniques. In Section 5, we
discuss related work before concluding with Section 6. Full proofs
appear in the accompanying appendix due to space constraints.

2. PRELIMINARIES
Let R denote a relation defined over a set of attributes Attr(R).

Each tuple t ∈ R is a mapping from Attr(R) to values. We also
associate a unique (Boolean-valued) random variable with t de-
noted by xt and a probability of existence pt. Often, when it is
clear from the context, we will abuse notation and refer to the tu-
ple’s random variable by the tuple itself. A (probabilistic) database
D = {R1, . . . Rm} is a set of relations and represents a distribution
over many possible worlds each obtained by choosing a (sub)set of
tuples in Ri to be present. If t is present we say xt is assigned
true or t and false or f, otherwise. Each possible world w is
associated with a probability:

Pr(w) =

mY
i=1

Y
t∈Ri,xt=t

pt

Y
t∈Ri,xt=f

(1− pt)

Given a query q to be evaluated against database D, the result
of the query is defined to be the union of results returned by each
possible world along with the marginal probabilities of each result
tuple [9]. More precisely, the marginal probability of result tuple
t is obtained by adding the probabilities of all possible worlds that
return t as a result: µ(t) =

P
t∈q(w) Pr(w), where q(w) denotes

the result of the query on that possible world.
One way to compute the marginal probability of result tuple t

produced by (relational algebra) query q is to extend each (rela-
tional algebra) operator in q so that it builds a Boolean formula for
each (intermediate) tuple generated during query evaluation. We
refer to the Boolean formula for t by φt. Below we show these ex-
tended definitions for operators σ, × and

Q
.

φt = xt ∀t ∈ R, φσc(t) = if c(t) then φt else f,

φt×t′ = φt ∧ φt′ , φQ
(t1,...tk) =

Wk
i=1 φti
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The marginal probability of the result tuple can then be obtained
by computing the probability of the corresponding Boolean for-
mula holding true. We refer the interested reader to prior work that
illustrates the equivalence between query evaluation under possible
world semantics and via Boolean formulas [3, 13, 27]. Figure 1(a)
shows a three-relation join query which produces a singleton result
and the corresponding result tuple’s Boolean formula.

2.1 Read-Once Functions; Definitions
Although marginal probability computation is #P-Complete in

general, efficient computation is possible in many cases.

DEFINITION 1 (Read-Once Function [17]). A Boolean for-
mula φ is read-once if there exists a factorization such that each
variable appears not more than once.

The read-once factorized form of the Boolean formula is known as
its read-once expression. r in Figure 1(a) is a read-once function
with the read-once expression x1(z1y1+z2y2)+y3(x2z3+x3z4).

THEOREM 1 ([15]). A Boolean formula is read-once iff it is
unate, P4-free and normal.

A Boolean formula φ is unate [15] if every variable only appears
in either its positive or negated form. E.g., ab and āb+ āc are unate
but āb + ac is not. For any Boolean formula φ, the co-occurrence
graph Gφ is formed by drawing a vertex for every variable and
drawing an edge between two variables if they appear in the same
clause in φ’s disjunctive normal form (DNF). Let X denote a subset
of vertices, then the subgraph of G induced by X is the subgraph
formed by restricting edges of G to edges with end points in X .

The special graph P4 denotes a chordless path with 4 vertices
and 3 edges (Figure 1(c)). φ is P4-free if no induced subgraph of
Gφ forms a P4. Figure 1(c) and (d) show two formulas and the
former is not read-once because it forms a P4. Figure 1(d) is P4-
free because of the presence of the edge a − c. Figure 1(e) shows
the co-occurrence graph for the result tuple r from Figure 1(a). A
formula φ is said to be normal if every clique in its co-occurrence
graph is contained in some clause in its DNF [15]. For instance,
even though both φ1 = abc and φ2 = ab + bc + ca have the same
co-occurrence graph (the triangle), φ1 is normal while φ2 is not.

Traditionally, co-trees [6] have been used to represent read-once
expressions. Co-trees are trees where leaves correspond to Boolean
variables while internal node 1© represents ∧ and 0© represents ∨.
A given read-once expression can be represented by many co-trees
but there exists a canonical co-tree, where 1© and 0© alternate on
every path. See Figure 1(f) for an example. Given the co-tree for
a read-once result tuple, the marginal probability can be computed
using the simple, bottom-up procedure shown in Figure 1(b).

Our goal in this paper is essentially to construct the co-trees
corresponding to all the result tuple lineages efficiently, if they exist.

2.2 Hierarchical Queries
Earlier work on query evaluation in probabilistic databases has

identified tractable queries, known as hierarchical queries [11], for
which probability computation is efficient. For the ensuing discus-
sion, we will assume that all queries are projected onto the empty
set (in other words, our goal is simply to compute the probability
that there exists at least one result tuple). Queries projected onto
a non-empty set of attributes can be handled by replacing these at-
tributes with constants. Let q denote a query in Datalog notation.
Let a denote an attribute and sg(a) denote the set of relations in q
that refer to a. In Figure 1(a), sg(X) = {L, J}, sg(Y) = {J, R}.

DEFINITION 2 (Hierarchical Query [11]). A (conjunctive) query
q is hierarchical if, for any two attributes a and b, either sg(a) ⊆
sg(b), sg(b) ⊆ sg(a) or sg(a) ∩ sg(b) = ∅.

For instance, the query q in Figure 1(a) is not hierarchical (sg(X)∩
sg(Y) = {J} 6= ∅, sg(X) * sg(Y), sg(Y) * sg(X)) but
q′() :−S(X,Y), T (Y) is (because sg(Y) = {S, T} ⊃ {S} =
sg(X)). Dalvi et al. [11] (also, Olteanu et al. [22]) illustrated the
connection between hierarchical queries and read-once functions:

PROPOSITION 1 ([11, 22]). Hierarchical queries produce re-
sult tuples with read-once expressions.

The converse is clearly not true. In Figure 1(a), we show a query
that is not hierarchical, but the result tuple it produces has a read-
once expression (Figure 1(f)). In this paper, we would like to de-
velop techniques that help us identify such cases efficiently.

2.3 A Naive Approach
One viable approach to evaluating queries is to generate Boolean

formulas for result tuples (using the extended operators shown ear-
lier) and then determine whether it is a read-once function. If the
result tuple lineage is read-once then we compute its probability
from its read-once expression’s co-tree, else we resort to a general-
purpose inference engine or approximations.

Checking for read-once result tuples is possible in polynomial
time. In what follows, let φ denote a result tuple’s Boolean for-
mula in DNF, |φ| its length (with different occurrences of the same
variable counted multiple times) and V ars(φ) the set of distinct
variables in it. To check for unateness, a linear scan of the formula
is sufficient which requires O(|φ|) time. To check for P4’s in φ’s
co-occurrence graph Gφ, a handful of algorithms are available [7,
16, 5]. The common aspect of all of these algorithms is that they
all require Gφ to be provided as input and they run in time linear in
size of Gφ (O(|V ars(φ)|+ |E|), where |E| is the number of edges
in Gφ). Gφ can be obtained easily from the formula’s DNF. A nice
property of these algorithms is that not only do they check for the
absence of P4’s, but they also return the co-tree representing the
read-once expression which can subsequently be used for probabil-
ity computation. Checking for normality is also possible in poly-
nomial time. [15] describes a way to do this in O(|V ars(φ)||φ|)
time using the co-tree obtained in the previous step.

2.4 Limitations
Even though the above approach to query evaluation is both sound

and complete, it can be expensive for large probabilistic databases.
Two steps in our query evaluation procedure are of particular con-
cern: (1) checking for normality because of its quadratic time com-
plexity, and (2) checking for P4’s. All the algorithms that check
for P4’s that we are aware of expect the co-occurrence graph (Gφ)
as input for which we will likely require the formula to be pre-
sented in DNF. Our extended relational algebra operators do not
guarantee that a result tuple’s formula will be returned in its DNF
form (instead they return a more compact representation that we
call lineage-trees; see next section). Moreover, converting a for-
mula into its DNF form can result in an exponential blowup. More
specifically, if a result tuple produced by query q involves n tuples
from each relation and there are k relations being joined in q, then
the corresponding formula’s DNF form could require O(nk) units
of space and time to compute.

3. READ-ONCE EXPRESSIONS FOR CON-
JUNCTIVE QUERIES

In this section, we present our key technical contribution: an ef-
ficient algorithm for directly constructing co-trees corresponding to
result tuple lineages (if they exist) for conjunctive queries without
self-joins, executed using a deep query evaluation plan. Conjunc-
tive queries form a fairly large subset of database queries, and a
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number of prior works in probabilistic databases have focused their
attention to (subclasses of) conjunctive queries [9, 22].

We begin with formally defining conjunctive queries, and ob-
serving a key property of the result tuple lineages generated by
a conjunctive query. This property enables us to eliminate the
normality-checking step, resulting in significant efficiency gains
(Section 3.1). We then show how to sub-divide the result tuple
lineage so that co-trees can be built for resulting sub-formulas in-
dependently of each other; if any of the resulting sub-formulas is
not P4-free, then the result tuple lineage is guaranteed to contain
a P4 (Section 3.2). We then develop an algorithm for merging the
co-trees corresponding to the sub-formulas (Section 3.3). We end
the section with a discussion of further optimizations (Section 3.4).

3.1 Properties of Conjunctive Queries
Let A denote an attribute. An atomic predicate is of the form

A op B where B is either an attribute or a constant conforming
to the type of A and op is any binary operator conforming to the
same type such as =, >, <, 6= etc. A conjunctive query q involving
the set of relations Rels(q) = {R1, . . . Rk} is a relational algebra
query that involves the three operators σ, ./ and

Q
such that all

selection and join predicates are either atomic predicates or con-
junctions of atomic predicates. If Rels(q) does not contain any
repeated relations then q is a conjunctive query without self-joins.

Since conjunctive queries do not allow negations, the result tu-
ples’ Boolean formulas will be unate (variables appear only in their
positive form). We next show that for result tuples we will be deal-
ing with, the normality check is also not required. In the ensu-
ing discussion, let φDNF = C1 + C2 + · · · denote the DNF of
Boolean formula φ where each Ci denotes a clause or a conjunc-
tion of Boolean variables x1x2 . . .. Often we will treat clauses as
sets, and use x ∈ C to denote a variable x present in the clause C.

For result tuple φ produced by conjunctive query q without self-
joins, two properties easily follow. First, every clause C in φDNF

consists of exactly one tuple existence random variable from each
relation in Rels(q). This is often referred to as φDNF being a k-
monotone DNF. Second, given a collection T of k (= |Rels(q)|)
tuples, one each from a different relation, if T satisfies all the se-
lection and join predicates in q and agrees with φ on the final set of
projected attributes, then T must form a clause in φDNF . The sec-
ond property can be restated in terms of φ’s co-occurrence graph
Gφ. If Gφ contains a k-sized clique then it must form a clause in
φDNF . We now state the main result of this subsection (proof can
be found in the appendix):

THEOREM 2. Let φ denote a result tuple produced by a con-
junctive query without self-joins. If φ is P4-free, then it is normal.

Theorem 2, along with the guarantee of unateness, means that
whenever we are working with result tuples produced by conjunc-
tive queries without self-joins, we only need to check if they are
P4-free. As long as they are P4-free we can rest assured that a
read-once expression exists. Recall that, the normality check was
the most expensive step while checking for read-once functions.
So this represents a significant gain. We next proceed towards con-
structing an efficient P4-checking algorithm.

3.2 Piecewise Building of Co-Trees
Like prior P4-checking algorithms, we would prefer an algo-

rithm that not only checks for the absence of a P4, but also re-
turns the co-tree representation of the read-once expression (if no
P4 exists). Recall that, unlike other algorithms, we don’t want use
the co-occurrence graph or the DNF expression as input to our P4-
checking algorithm. Instead we use the representation of the re-
sult tuple Boolean formula as constructed by the query engine dur-
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Figure 2: Lineage-trees of r from Figure 1(a) using plans:
(a)

Q
∅(R ./Y

Q
Y(L ./X J)), (b)

Q
∅(R ./Y (L ./X J)).

ing evaluation. That way we do not have to make any significant
changes to the query engine, and further the query optimizer is free
to choose the best query evaluation plan (subject to the constraint
that the query plan be deep).

We call such a representation a lineage-tree. A lineage-tree de-
picts how tuples join and project among one another to produce
the result tuple. Going back to the example in Figure 1 (a), Fig-
ure 2 (a) shows the lineage-tree of r obtained using the query planQ
∅(R ./Y

Q
Y(L ./X J)) for q. Note that, lineage-tree is not the

same as the co-tree (x1 appears twice in Figure 2 (a)). Further note
that, the lineage-tree of the result tuple depends on the query plan
used. Figure 2 (b) shows the lineage-tree obtained using the planQ
∅(R ./Y (L ./X J)) instead. Part of our challenge now is to de-

sign an algorithm that constructs the correct read-once expression
given any lineage-tree of the result tuple.

In what follows, we need to refer to nodes in the lineage-tree
and for this, we need some extra notation. Let ∂ denote a left/right
deep plan of query q. More specifically, let ∂ denote a plan such
that every join in the plan involves at least one base relation. With-
out loss of generality, we will assume ∂ is of the form op1(R1 ./θ1

op2(R2 ./θ2 . . .)) where θi denotes a join predicate and opi de-
notes a sequence of projections and selections (opi could also be
identity). Lineage-trees produced by left/right deep plans are such
that every join node (./) always has at least one base tuple’s ex-
istence variable as a child. In fact, we can use this as a way of
identifying nodes in the lineage-tree.

DEFINITION 3 (JOIN PATH, COFACTOR). Let ./k denote a join
node in lineage-tree L. Let ./k−1, . . . ./1 denote all join nodes
along the path from ./k to the root of L such that ./i−1 is ./i’s
immediate ancestor. Further, let bi denote (one of) the base tu-
ple child of ./i. Then we refer to the sequence [b1, b2 . . . bk] as
a join path and ./k as a join node identified by it. Further, we
denote the remaining child of ./k as cofactorL([b1, b2 . . . bk]) or
cofL([b1, . . . bk]), in short.

For instance, inL shown in Figure 2 (a), join path [y3] identifies the
node enclosed in the rectangle, [y3, x2] identifies the node enclosed
in the ellipse and cofL([y3, x2]) is z3.

In general, a join path identifies a set of nodes in the lineage-tree.
For instance, in lineage-tree L in Figure 2 (b), join path y3 identi-
fies the two nodes enclosed in rectangles. In such cases, we define
the cofactor to be the set of non-base tuple children of the identi-
fied join nodes. Alternatively, we can also represent the cofactor by
its Boolean formula, in other words the disjunction of the formu-
las of the (intermediate) tuples representing the nodes the cofactor
contains. For instance, in Figure 2 (b), cofL([y3]) = x3z4 + x2z3.
Another interesting aspect of cofactors is that they can be expressed
in a recursive manner. cofL([Γ]) can be expressed in terms of
cofL([Γ, b]), where b denotes a base tuple. For instance, in L in
Figure 2 (b), cofL([y3]) = x3cofL([y3, x3]) + x2cofL([y3, x2]).
This also illustrates how cofL([Γ, b]) is a sub-formula of cofL([Γ])
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1. T (b1, . . . bn) = 0©(b1, . . . bn), s.t. bi ∈ R

2. ∪ (op(t11, . . . t
1
n), t2 . . . tm) = {t11, . . . t1n,∪(t2, . . . tm)}

3. T (op(t11, . . . t
1
n), t2, . . . tm) = T (∪(op(t11, . . . t

1
n), t2, . . . tm))

4. T (b1 ./ t1, . . . bn ./ tm) = 1©(b1, T (tb1
1 , . . . tb1

m1))

⊕ 1©(b2, T (tb2
1 , . . . tb2

m2)) . . .⊕ 1©(bn, T (tbn
1 , . . . tbn

mn
))

Figure 3: Co-tree building procedure. op is
Q

or σ.

and is contained within it.
Just like many other tree-building algorithms, our co-tree build-

ing algorithm is a recursive algorithm that builds co-trees for sub-
formulas of the result tuple and combines them to construct the
complete read-once expression. However, choosing sub-formulas
is tricky – this is because having a P4 is not a monotonic prop-
erty. Let φ = φ1 + φ2. Then φ1 (or φ2) containing a P4 does
not imply that φ contains a P4. This is illustrated by the formula
a1b1x1y1 + a1b2x1y2 + a2b1x2y1 + a2b2x2y2 where the sum of
any three terms gives us a P4 even though the complete formula is
read-once ((a1x1+a2x2)(b1y1+b2y2)). Figure 10 in the appendix
shows the query and database that produce this result tuple.

In the previous example, essentially, picking any three summands
gives us a P4 for which the fourth summand provides a chord. For
instance, if we set φ1 = a1b1x1y1 +a1b2x1y2 +a2b1x2y1, which
contains the P4 : b2 − a1 − b1 − a2, then the fourth summand
φ2 = a2b2x2y2 contains the edge a2 − b2. Recall that, a P4 is a
chordless path of length 3 edges. Thus, when we consider φ1 + φ2

we no longer have the P4
∗. To express this more concretely we

define the notion of interference:

DEFINITION 4 (INTERFERENCE, TYPE 1). Two formulas φ1

and φ2 interfere if ∃a, b ∈ V ars(φ1), V ars(φ2) such that a−b /∈
Gφ1 and a− b ∈ Gφ2 .

where a − b /∈ G denotes that a and b do not form an edge in G.
Interference can also arise due to a triplet of formulas:

DEFINITION 5 (INTERFERENCE TYPE 2). Three formulas φ1, φ2

and φ3 interfere if ∃a, b such that a ∈ V ars(φ1), a /∈ V ars(φ2), b /∈
V ars(φ1), b ∈ V ars(φ2) and a− b ∈ Gφ3 .

Essentially, if we consider φ1 + φ2 as one formula then type 2
interference reduces to type 1 interference.

For our task of building read-once expressions, we would like to
divide the result tuple into non-interfering sub-formulas; and this is
where the lineage-tree, with its cofactors, comes to our rescue:

LEMMA 1. Let φ denote a result tuple, L its lineage and Γ a
join path. If φ is P4-free then the set of cofactors {cofL([Γ, b])|b
is a base tuple and a valid extension of Γ} is non-interfering.

For instance, in Figure 2(a), the base tuples y1, y2 and y3 form valid
extensions of the empty join path. The lemma says that cofL([y1]) =
x1z1, cofL([y2]) = x1z2 and cofL([y3]) = x2z3 + x3z4 do not
interfere with each other if the lineage of r is read-once.

The lemma immediately gives us a way to sub-divide the result
tuple lineage properly, to build its co-tree. Figure 3 outlines a re-
cursive procedure T that takes a number of (base or intermediate)
tuples t1, t2, · · · , tn as arguments and returns the co-tree repre-
senting φt1 ∨ φt2 ∨ · · · ∨ φtn , if possible (recall that φt denote the
lineage of tuple t). T begins at the root of the input lineage-tree
and proceeds downwards.
∗φ2 also has a chord for φ1’s other P4, y2 − x1 − y1 − x2.

1. S(x, y) =


1 if x ≡ y
0 otherwise

2. S(T1, T2) = 0, if ¬C(T1) ∧ ¬C(T2)

3. S( 0©(A1, A2, . . . An), 1©(. . .)) =
n

max
i=1

(S(Ai, 1©(. . .)))

4. S( 0©(A1, A2, . . . An), 0©(B1, . . . Bm)) =8<: S( 0©(A2, . . . An), 0©(B1, B2, . . . Bm)), if ¬C(A1)
maxm

i=1(S(A1, Bi))
+ S( 0©(A2, . . . An), 0©(B1, . . . Bm \Bi))

5. S( 1©(AR1 ,AR2 , . . .ARk), 1©(BR1 ,BR2 , . . .BRk)) =
−∞, if ∃AR,BR′ s.t. N (AR) ∧N (BR′)Pk

i=1 S(ARi ,BRi)

Figure 4: Computing score for ⊕ operation. In the last rule
bold font denotes sets.

We use prefix notation to denote co-trees. So 0©(b1, . . . bn) in-
dicates a 0© node with children b1, . . . , bn, where bi may denote a
leaf (base tuple) or another node in the co-tree.

The first rule (the base case) returns a co-tree representing the
disjunction of numerous base tuples. The third rule, of which the
second rule is a helper, simply goes down a node in the lineage-tree
when it encounters a σ or a

Q
operator. Note that, rule 2 assumes

that if the first tuple fed to T is a tuple produced by a selection
(projection) then the rest of the tuples present in the argument list
are also selection (projection) tuples. This assumption is guaran-
teed to hold because lineage-trees are produced by a query (plan)
expressed in a high-level language (e.g., relational algebra).

The critical rule here is the fourth rule (join rule) which is a direct
translation of Lemma 1. We denote by tb a node in the lineage-tree
(representing an intermediate tuple) that joins with base tuple b.
In this case, given a set of join tuples we take each base tuple bi

and form its co-tree with the co-tree of its cofactor represented by
the set of intermediate tuples it joins with. It is in this rule that
the real benefit of Lemma 1 shows up. If a cofactor contains a
P4 then we know that no other cofactor can provide a chord for it
since cofactors are non-interfering. This implies that if a cofactor
contains a P4 then the result tuple contains a P4 and we can bail out
immediately. In fact, Lemma 1 guarantees that if we discover a P4

during the process of merging co-trees produced out of cofactors
then the result tuple is not P4-free. Note that, we form a co-tree per
base tuple. Once the various T calls return, we need to combine
them and form the disjunction of the various co-trees. Even though
the cofactors do not interfere (if the result tuple is read-once), they
can still have variables in common which is why we use the ⊕
operator to merge these co-trees and form their disjunction. We
describe details of the ⊕ operator in the next subsection.

Note that, in Figure 3, at no stage do we compute the DNF of
any formula. Also, one of the limitations of the approach presented
here is that it only applies to left/right deep plans. The example
presented earlier in the section to motivate the need for choosing
non-interfering formulas is the result of a plan with a bushy join
(Figure 10). See Appendix C for ways to handle such plans.

3.3 Merging Co-Trees
In this section, we discuss how to merge the co-trees generated

in the recursive step above (in other words, the implementation of
the⊕ operator from Rule 4). For this purpose, we maintain and use
an augmented version of a co-tree where every edge from a parent
node u to child node v is annotated with a set of relations A(u →
v). R ∈ A(u → v) if some tuple from R forms a leaf in the sub-
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tree rooted at v. Figure 1(f) shows the annotated co-tree for result
tuple r in Figure 1(a). Two simple properties about annotated co-
trees should be apparent. First, if ∃R ∈ A(u → v1),A(u → v2),
where u is a 1© node, then this would imply a self-join so this is not
possible (recall that 1© represents an ∧ which corresponds to a join
operation). Further, let u denote any 0© node and T , the co-tree in
which u is present. If T represents a k-monotone DNF,A(u → v1)
has to be equal to A(u → v2) for any pair of children v1, v2.

We implement ⊕ as a binary operator using a recursive proce-
dure. Let T1 and T2 denote the two input co-trees to be merged,
then⊕(T1, T2) returns a pair consisting of a score and the resulting
merged co-tree. Since the merged co-tree must necessarily have ev-
ery variable as at most a single leaf, one of the main goals of⊕ is to
align the variables common to both T1 and T2. The score returned
is simply the number of common variables aligned. Soundness of
⊕ follows the semantics of the various operations we subsequently
describe. Completeness follows by showing that a P4 exists if any
of the assumptions we make do not hold. The score computation is
described in Figure 4, where we use S(T1, T2) to denote the score
of merging co-trees T1 and T2. We describe the creation of the
merged co-tree in the text below. We bootstrap the merging pro-
cess by computing two Boolean quantities for each node in either
co-tree: C(u) is true if the subtree rooted at u contains any variable
common to both input co-trees, and N (u) is true if it contains a
variable not present in the other co-tree. At the end of the merging
process before returning the result, we check if the returned score
matches the number of variables common to both co-trees.

The first rule in Figure 4 is one of the base cases: given a pair of
leaves x and y, it returns a score of 1 if they correspond to existence
variables for the same tuple and 0 otherwise. In case they represent
the same tuple, we return x, else we return 0©(x, y) as the merged
co-tree. The second rule is always the first thing we check for.
Given S(T1, T2), we return the score 0 if the co-trees don’t contain
any common variables. The merged co-tree is simply 0©(T1, T2).
We may need to make minor adjustments to the returned co-tree so
that it is canonical ( 0© and 1© nodes alternate along every path).

Rule 3 in Figure 4 computes the score for merging co-trees T1 =
0©(A1, . . . An) and T2 = 1©(. . .), where each Ai represents a

sub-co-tree. Note that, T1 and T2 must share some common vari-
ables otherwise we would have applied rule 2. Here, we match T2

versus each subtree Ai and pick the one whose score is the high-
est. If Ak denotes the best match then the returned merged co-tree
is 0©(A1, . . . Ak−1, Ak+1, . . . An, A) where A denotes the co-tree
obtained by merging Ak and T2. Note that we do not compare T2 to
sets of subtrees {Ai}. It can be shown that for a successful merge
all common variables present in T2 must be present in the same sub-
tree Ak. In rule 4, we merge two co-trees T1 = 0©(A1, . . . An) and
T2 = 0©(B1, . . . Bm). In this case also, we follow similar steps.
For any Ai, we first check if C(Ai) is true. If yes, then we find
the best matching subtree in T2. We do this for every subtree Ai.
The returned merge result is a co-tree rooted at a 0© node with Ai

as a subtree, if C(Ai) is false, otherwise we add the co-tree ob-
tained by merging Ai with Bk as a subtree, where Bk is the subtree
from T2 Ai best matches with. The same lemma, referred to above,
applies. We do not need to match sets of subtrees of T1 and T2.

The last rule merges co-trees of the form T1 = 1©(AA1 , . . . AAn)
and T2 = 1©(BA1 , . . . BAm), where the subscripts denote the an-
notations on the edges connecting roots of the co-trees to roots of
the subtrees. In this case, we first attempt to form disjoint mini-
mal subsets of sub-trees {AAi1

, . . . AAik
} and {BAj1

, . . . BAjl
}

such that Ai1 ∪ . . .Aik = Aj1 ∪ . . .Ajl . In other words, each
pair of minimal subset of sub-trees should contain variables from
the same (sub)set of relations. Let AR denote the minimal subset

of subtrees from T1 involving variables from the set of relations
R, similarly, let BR denote its counterpart from T2. For example,
if T1 = 1©(AR1 , AR2,R3) and T2 = 1©(BR1 , BR2 , BR3) denote
the input co-trees, then A{R1} = {AR1} and B{R1} = {BR1}
and A{R2,R3} = {AR2,R3} and B{R2,R3} = {BR2 , BR3}. Sub-
sequently, we attempt to merge each pair AR and BR. The re-
turned score is the sum of scores returned by the recursive calls.
If either of AR or BR is not a singleton set then we first create a
dummy 1© root to form a single co-tree out of the non-singleton
set before making the recursive merge call. It can be shown that if
both AR and BR are non-singleton then a P4 exists. It can also
be shown that if AR and BR′ are such that N (AR) ∧ N (BR′)
is true then the merge result has a P4. Otherwise, the merge re-
sult is a co-tree rooted at a 1© node with the co-trees returned from
the recursive calls as it child subtrees. An exception to the con-
dition involving AR and BR′ described above is when none of
AR, BR, AR′ or BR′ have any common variables. Here, we add
0©( 1©(AR,AR′), 1©(BR,BR′)) as a subtree to the merge result.

Time Complexity: It can be shown that the time complexity of
⊕(T1, T2) is O(nmk2), where n and m denote the number of
nodes from the two co-trees and k denotes the number of relations
the leaves from either co-tree belong to. Note that, the most expen-
sive rule in Figure 4 is rule 5, for which we need to do, at most,
k2 + k work (dividing the subtrees based on their annotations can
be done in k2 time). For the simpler case where no new dummy
nodes get created (due to rule 5) during the merging process, ap-
plying this rule to every pair of nodes from both co-trees incurs a
complexity of O(nmk2). For the more complex case when rule 5
generates dummy nodes also, it is possible to show that this com-
plexity does not increase. However, based on our empirical obser-
vations (reported in the next section), this time complexity is rarely,
if ever, achieved. In the next subsection, we describe a handful of
optimizations that can further reduce the time spent to construct
co-trees for result tuples. Coupled with the fact that to construct
the co-tree we need simply make one pass over its lineage-tree,
means that we have a reasonably efficient approach to computing
the marginal probabilities of read-once result tuples produced by
conjunctive queries without self-joins.

3.4 Further Optimizations
A number of optimizations are possible in the basic algorithms

we presented in this section. One reason why our co-tree build-
ing algorithm (Figure 3) slows down is because of the join rule
wherein we construct one co-tree per base tuple. Let T = {b1 ./
t1, . . . , bn ./ tm} denote a set of (intermediate) join tuples. We
say that T is block-structured if it can be rearranged into the form
B1 ./ T1, . . . , Bk ./ Tj where the Bis and Tis form a disjoint par-
titioning, or blocks, over the base tuples {b1, . . . bn} and the (inter-
mediate) tuples {t1, . . . tm}, respectively. A corollary of Lemma 3
is that, unless joins are block-structured, the result tuple contains a
P4. It is possible to check if a join is block-structured in linear time.
If it is, then we call T on each block Ti thus producing one co-tree
per block which usually results in a smaller number of co-trees.

Another possible optimization lies in the merging process itself.
One possible option is to initialize an empty tree and merge each
co-tree, produced out of each block of base and intermediate tuples,
into it (sequential merge). Another option is to arrange the per-
block co-trees into a queue and then dequeue a pair of co-trees,
merging them and enqueueing the result, in turn (pairwise merge).
It is possible to trace the pairwise merging process by using a tree
where the leaves form the co-trees produced by the join rule and
the intermediate nodes represent co-trees produced by merging a
pair from the queue. Empirically, we noticed pairwise merge to be
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Figure 5: Results of evaluating (a) two, (b) three and (c) four re-
lation Boolean conjunctive queries on synthetic databases gen-
erated with d = 150, . . . 250. Note that, y-axis is log-scale.

significantly faster than sequential merge.
A third optimization is possible in the implementation of ⊕. Re-

call from Figure 4 that, in various rules we check if sub-trees con-
tain common variables before calling S on them (in Rule 4, for
instance). In our implementation, we never call S on two sub-trees
unless they contain the same exact number of common variables.
This does not in any way affect the correctness of our algorithm
since a prerequisite of a successful alignment of two co-trees is
that they contain the same number of common variables. Instead,
the count of common variables acts as a much more stringent fil-
ter, cutting down on the number of calls made to S. An empirical
check to determine the effectiveness of this filter showed that in
general, each call to ⊕ to merge two co-trees of sizes n and m
nodes gave rise to min(n, m) recursive calls which represents a
favourable case (much smaller than O(nm)).

4. EXPERIMENTS
Our aim is to evaluate how our approach compares with state-

of-the-art probabilistic databases with respect to query evaluation
time and whether there is any merit to the paradigm of per-result
tuple evaluation. To demonstrate scalability, we experiment with
synthetic databases of varying sizes. We show that, not only do
we far outperform current probabilistic databases when evaluat-
ing non-hierarchical queries, but that our techniques also compare
favourably to query compilation techniques specifically developed
to handle hierarchical queries. We also ran experiments using the
TPC-H benchmark [28]. Five of the first TPC-H queries are not
hierarchical. Of these, one query’s result solely comprised of read-
once functions and two others generated ≈ 50% read-once result
tuples thus lending credence to the paradigms of database instance-
optimal and per-result tuple query evaluation.

We compare our approach (henceforth referred to as CoTree)
against two state-of-the-art probabilistic databases, MystiQ [4] and
SPROUT [24], and the naive approach (Section 2.3) referred to
as CoOccur using a prior P4 checking algorithm [7]. MystiQ
contains an implementation of Dalvi et al. [9]’s hierarchical query
recognition/safe plan generation technique. For SPROUT, we only
consider the conf() function for comparison since we are mainly
interested in exact confidence computation.

To keep our experimental methodology simple, we only exper-
iment with Boolean conjunctive queries (final set of projected at-
tributes is empty) and hence do not perform the normality check
for CoOccur. To generate tuples for the synthetic dataset, we take a
domain size d as a parameter and randomly generate attribute val-
ues from that domain. For TPC-H queries, we use the dbgen pro-
gram [28] to generate the database. Tuple probabilities are picked
randomly. Our code is written in JAVA. All experiments were run
on an Intel 2.26GHz Core 2 Duo machine with 2GB RAM.
Synthetic Dataset: Figures 5(a), (b) and (c) depict the results of

Q2’ Q3’ Q4’ Q5’ Q7’ Q8’ Q9’ Q10’
TPC-H Queries (scale factor 0.1)
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Figure 6: Results on the TPC-H benchmark. “*” indicates the
approach ran out of memory. Note that, y-axis is log-scale.

running the four approaches on two, three and four relation Boolean
join queries over synthetic databases generated with d varying from
150, . . . 250. All three plots report runtimes (in seconds) on the y-
axis averaged over ten different queries and number of tuples per
relation (in thousands) along the x-axis. Partial plots indicate the
approach ran out of memory or took too long to run. For the case
of two relation joins (Figure 5 (a)), the queries are guaranteed to
be hierarchical [11] so MystiQ does very well. The interesting
thing in this case is that CoTree matches MystiQ’s performance toe-
to-toe. CoOccur’s performance deteriorates drastically with larger
databases because the result tuples produced have larger and denser
co-occurrence graphs. Perhaps surprisingly, SPROUT performs
worst even though it has specialized algorithms to handle hierar-
chical queries. The likely reason† for this is that SPROUT prefers
plans which defer marginal probability computation till the end
(lazy plans [24]) as opposed to MystiQ, which computes marginals
as soon as an (intermediate) tuple is produced (eager plans [24]).
In this case, the eager plan works better than the lazy plan. Note
that, SPROUT is capable of running both lazy and eager plans. For
three and four relation joins, Figures 5 (b) and (c) respectively, it is
no longer necessary that the queries be hierarchical. However, it is
possible to extend the idea behind the running example (Figure 1
(a)) to larger relations and larger number of joins to generate read-
once result tuples. For these queries, MystiQ immediately switches
to its approximate inference method (a slow MCMC technique).
SPROUT fares the worst in these cases also (SPROUT is grazing
the y-axis which is in log-scale). CoTree performs the best, pro-
viding performance that is orders of magnitude faster than any of
the other approaches. Varying d alters performance in expected
ways. Upon reducing d (thus increasing join selectivity), the co-
occurrence graphs of the result tuples become denser thus deterio-
rating performance of SPROUT, MystiQ and CoOccur even further,
while increasing d reduces the difference among the approaches.
TPC-H: We also experimented with queries Q1 through Q10 in the
TPC-H specification on a 0.1GB database. Since we do not con-
sider running aggregation nor self-joins, we modified the queries
slightly. We added random probabilities to all TPC-H relations.
This leads to Q2, Q5, Q7, Q8 and Q9 being non-hierarchical. In-
terestingly, despite the queries being non-hierarchical, all of Q2’s
result tuples turned out to be read-once, for which SPROUT, CoOc-
cur and CoTree were able to compute marginals easily. Moreover,
Q8 and Q9’s result comprise 52% and 43.4% read-once result tu-
ples, respectively. This illustrates the merit of evaluating on a per-
result tuple basis. However, all of these queries still present fairly
easy marginal probability computation problems (no query spent
more than 15% of the time computing probabilities). Thus, we
picked the queries with more than 1 joining relation and modified
them even further by dropping attributes from the SELECT clause
and/or predicates from the WHERE clause all the while ensuring
that all generated result tuples were read-once. Figure 6 denotes

†Dan Olteanu, personal communication.
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the performance of the four approaches on these modified queries
where we use bars to denote run-time and Qi’ denotes the modified
query obtained from TPC-H Query Qi. In Figure 6, except for Q4’
(a two relation join query), all other queries were non-hierarchical.
MystiQ ran out of memory while running Q5’ and Q7’, and both
MystiQ and CoOccur ran out of memory while running Q9’. The
missing bars are denoted by “*”. CoTree performs best on all the
queries, with CoOccur coming a close second. For five of these
queries, CoTree outperforms SPROUT by at least an order of mag-
nitude and on two, CoTree is two orders of maginitude faster.
Discussion: Besides the experiments described above, we exten-
sively evaluated our co-tree merging algorithm and our pairwise
approach to merging multiple co-trees. We also conducted an ex-
periment to check if we are repeating work while factorizing each
result tuple in isolation by possibly rediscovering the same query
plan. Sometimes, by running the correct query plan, the lineage-
tree of the result tuple itself turns out to be its co-tree (this is the
main idea behind MystiQ [9]). To check for this, we took the three
relation join Boolean query (Figure 5 (b)) and ran it with all pos-
sible query plans (various early projections, various join orders).
For each query plan, we measured the hardness of computing the
result tuple’s marginal probability from the generated lineage-tree
by measuring treewidth [2]. If a query plan recovered the co-tree
then the treewidth would be 1. Invariably, the query plans produced
very hard inference problems with treewidth sometimes approach-
ing 250. This implies that to exactly evaluate factorizable result tu-
ples, only employing query rewriting techniques is insufficient and
our approach of considering each result tuple separately is justified.

5. RELATED WORK
Olteanu and Huang [22, 23] showed that hierarchical queries

can be extended to include inequality operators, 6=, >, <, in cer-
tain cases. These queries may not produce read-once functions.
Dalvi et al. [8] propose an approach to efficiently handle disjunc-
tive queries with self-joins. Jha et al. [19] consider unifying hi-
erarchical queries with graphical models-based query evaluation
[27]; these techniques however, do not cover the class of read-once
functions. Olteanu et al. [25] use a generalized version of co-
trees known as d-trees but require input in DNF to construct them.
Darwiche [12] proposes using Boolean formula factorization algo-
rithms to compile a probabilistic model into a more tractable form.
However, he relies on the use of an exponential-sized intermedi-
ate representation called multi-linear formula. Our work on merg-
ing co-trees is related to tree alignment [20] which comes in two
flavours, ordered and unordered. Ordered trees have an ordering
defined over the children as opposed to unordered trees. Unordered
tree alignment is MAX SNP-hard [20]. So it is noteworthy that,
even though our co-trees contain unordered nodes ( 0© nodes), we
can still merge them in polynomial time.

6. CONCLUSION
In summary, we considered the problem of efficiently evaluating

queries over tuple-level uncertainty probabilistic databases. Earlier
approaches have mainly concentrated on query-centric notions of
solvability (hierarchical queries). In this paper, we went beyond
just looking at the query to decide whether it is PTIME-solvable
or not. We first showed how to incorporate Boolean formula fac-
torization techniques into the query engine that exploit structure
present in both query and data to efficiently evaluate result tuples’
marginal probabilities. We also proposed novel, especially efficient
algorithms to evaluate a large class of queries, viz. conjunctive
queries without self-joins. We empirically showed that our pro-
posed techniques are much faster than prior Boolean formula fac-

torization techniques, techniques specifically developed for hierar-
chical queries, and generic inference algorithms.

Even though our discussion mainly involved tuple-independent
probabilistic databases, the techniques we proposed are likely to be
useful for databases with correlated tuples also. In that case, by
plugging in the factorized co-tree generated by our algorithms into
the graphical model describing the correlations among the base tu-
ples [27], we should be able to obtain a combined graphical model
of lower treewidth. As part of our future work, we intend to ex-
tend our techniques to query probabilistic databases with tuple and
attribute uncertainty. Also, we would like to explore various gener-
alizations such as P4-tidy graphs [14] to see if these can be advan-
tageously used for querying probabilistic databases.
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APPENDIX
A. PROOFS

Theorem 2 crucially depends on the following lemma where x−
y ∈ G denotes variables x and y form an edge in G.

LEMMA 2. Let C1, C2 denote two clauses in φDNF s.t. C1 ∩
C2 = z = {z1, . . . zl}, x ∈ C1, x /∈ C2, y /∈ C1, y ∈ C2. If φ is
P4-free and x−y ∈ Gφ then ∃C3 in φDNF s.t. {x, y, z1, . . . zk} ⊆
C3.

PROOF. Let q denote the conjunctive query (without self-joins)
that produced result tuple φ. Notice that x, y, z form l + 2 sized
clique in Gφ. If |Rels(q)| = l + 2 then this clique will form a
clause in which case we have found C3. We will assume this is not
the case and |Rels(q)| > l + 2. The basic idea is to show that
a selection of the remaining variables from C1 and C2 along with
x, y and z form a |Rels(q)|-sized clique in Gφ. This, in turn will
imply the presence of the clause containing x, y and z. Let us first
complete the cliques C1 and C2:

• C1 \ ({x} ∪ z) = {y′, w1, . . . wn}
• C2 \ ({y} ∪ z) = {x′, v1, . . . vn}

where wi 6≡ vi and wi, vi ∈ Ri ∈ Rels(q) ∀i = 1 . . . n (re-index
Rels(q) if necessary). First, notice that one of the edges x − vi

or y − wi (or both) has to exist in Gφ ∀i = 1 . . . n if φ is to be
P4-free else wi − x − y − vi is a P4 (wi and vi cannot form an
edge because they belong to the same relation Ri). This gives us a
selection procedure: if x − vi then pick vi else pick wi. Further,
two variables vi and wj (i 6= j) selected this way must have an
edge between them otherwise φ has a P4 : wj − x − vi − vj (vj

and x do not form an edge otherwise we would have selected vj

not wj). Thus, x, y, z along with the selected w’s and v’s form a
|Rels(q)|-sized clique in Gφ.

THEOREM 2. Let φ denote the result tuple produced by a conjunc-
tive query q without self-joins. If φ is P4-free, it is also normal.

PROOF. To prove the proposition, we need to show that any
clique in Gφ is contained in some clause in φDNF . Notice that
a clique of size greater than |Rels(q)| is not possible since this
would imply a self-join in q and a clique of size equal to |Rels(q)|
directly translates to a clause in φDNF . Proving the proposition
for cliques of size < |Rels(q)| is slightly trickier. We prove this
by induction on the size k of the clique. The base case is when
k = 3 (k = 2 is simply an edge which has to be contained in a
clause). Let {a, b, c} denote the clique. Assume that clause C1

contains a and b but not c and C2 contains b and c but not a. (If
either C1 contained c or C2 contained a then we have found the
clause we are looking for and the base case is proved.) Now we
invoke Lemma 2 with x = a, y = c and z = {b}. Thus, there
must exist a clause containing all three variables. For the inductive
case, we will assume that any k−1 sized clique in Gφ is fully con-
tained in some clause in φDNF . Now we need to show that given
a k-sized clique {a1, . . . ak}, a clause containing it exists. Notice
that {a1, . . . ak−1} forms a k − 1 sized clique and thus there must
be a clause C1 containing it (by inductive hypothesis). Similarly,
there must also be a clause C2 containing {a2, . . . ak}. Notice that
if ak ∈ C1 or a1 ∈ C2 then we have shown what was needed. As-
suming that is not true, invoke Lemma 2 with x = a1, y = ak and
z = {a2, . . . ak−1}. Thus, a clause containing {a1, . . . ak} must
exist.

LEMMA 1. Let φ denote a result tuple, L its lineage-tree and Γ a
join path. If φ is P4-free then the set of cofactors {cofL([Γ, b])|b ∈
R} is non-interfering.

PROOF. It is straightforward to show that type 1 interference is
not possible. Let us assume that cofL([Γ, bi]) and cofL([Γ, bj ])
interfere, where bi, bj ∈ R. In other words, ∃x, y such that x −
y ∈ GcofL([Γ,bi]) and x�−y ∈ GcofL([Γ,bj ]) even though x, y ∈
V ars(cofL([Γ, bj ])). This implies that the DNF of cofL([Γ, bj ])
must contain two distinct clauses one of which contains x but not y
and the other y but not x. Coupled with the fact that cofL([Γ, bj ])
joins with bj and tuples in join path Γ, this implies that φDNF con-
tains two distinct clauses one of which contains the set {γ1, . . . γk, bj , x}
and the other {γ1, . . . γk, bj , y}, where γi denotes a tuple from Γ.
Since x − y ∈ GcofL([Γ,bi]), we can now set z = {γ1, . . . γk, bj}
and invoke Lemma 2 to claim the presence of a clause in φDNF that
contains all of γ1, . . . γk, bj , x, y. If that is true, then there should
be a clause in DNF of cofL([Γ, bj ]) that contains both x and y and
these two variables should form an edge in GcofL([Γ,bj ]) which is
not true. Hence we have a contradiction.

For type 2 interference, assume that ∃x, y such that x − y ∈
GcofL([Γ,bh]), x ∈ V ars(cofL([Γ, bi])), x /∈ V ars(cofL([Γ, bj ])),
y /∈ V ars(cofL([Γ, bi])) and y ∈ V ars(cofL([Γ, bj ])), where
bh, bi, bj belong to the same relation R. Note that, this gives us
a P4 in φ : bi − x − y − bj , unless bi − y or x − bj exists in
Gφ (bi and bj belong to the same relation so they cannot form
an edge). Without loss of generality, let us assume bi − y ex-
ists in Gφ so we do not have the P4. Clearly, this edge is not
present in GcofL([Γ,bi]) (since cofL([Γ, bi]) does not contain y )
so it has to come from some other part of L. We now backtrack
along Γ = γ1, . . . γk in the reverse direction. Let k′ ≤ k de-
note the maximum index such that ∃γ′k′ 6= γk′ and bi − y ∈
GcofL([γ1,...γk′−1,γ′

k′ ])
. Note that, cofL([γ1, . . . γk, bi]) is a sub-

formula of cofL([γ1, . . . γk′−1, γk′ ]) (due to the recursive nature
of cofactors). Let Γ′ denote the join path γ1, . . . γk′−1 then this
implies cofL(Γ

′, γk′), which does not contain an edge between y
and bi, and cofL(Γ

′, γ′k′), which does, exhibit type 1 interference.
As we have already seen, this is not possible. Hence we have a
contradiction.

LEMMA 3 (BLOCK-STRUCTURED CO-FACTORS). Let Γ de-
note a join path in lineage-tree L of result tuple φ. If φ is P4-
free then cofL([Γ]) = b1cofL([Γ, b1]) + . . . + bncofL([Γ, bn]),
where bi denotes a base tuple, is block-structured. In other words,
if ∃ (intermediate) tuples ti, tj such that ti ∈ cofL([Γ, bi]), ti ∈
cofL([Γ, bj ]) but tj ∈ cofL([Γ, bi]), tj /∈ cofL([Γ, bj ]) then φ
has a P4.

PROOF. Notice that, since bj joins with ti, Gφ contains an edge
between bj and any variable present in the formula of ti. Also, for
a variable x that is present in tj but not in ti we have a P4 in φ if
bj�−x ∈ Gφ (the P4 is bj−x′−bi−x, where x′ belongs to the same
relation as x and is present in ti). Thus, unless bj is connected to all
variables in tj in Gφ, φ has a P4 and there is nothing left to prove.
Now, we go back to cofL(Γ). Since Γ joins with bj and Γ joins
with any clause in DNF of tj , we can apply Lemma 2 repeatedly to
show that bj joins with tj obtaining a contradiction.

B. LEMMAS FOR MERGING ALGORITHM
Recall from Section 3.2 that, if two cofactors interfere then the

result tuple has a P4. Also recall that, in the description of the ⊕
operator (Section 3.3) we check to see if the returned score matches
the number of common variables. This check is a crucial step be-
cause it helps detects P4s in the result tuple. It is possible to show
(by tracing S) that if T1 and T2 (co-trees being merged) are such
that x − y ∈ GφT1

and x, y ∈ V ars(T2) but x�−y ∈ GφT2
then

the returned score will always be less than the number of variables
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Case: x ∈ R1, z ∈ R3 are common
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Case: only x ∈ R1 is common
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Case 3: only y ∈ R2 is common
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Figure 8: When merging two co-trees rooted at 1© nodes, the child sub-trees must be divisible into sets that cater to the same relations,
else the merging has a P4. Moreover, at least one such subset should be singleton.
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Figure 7: Separated common nodes indicate a P4.

common to T1 and T2. A simple intuitive explanation is by con-
sidering least common ancestors (LCA) of the two variables in the
co-trees T1 and T2. One of the basic properties of a co-tree is that
given a pair of variables, their ancestor is a 1© node if the variables
form an edge and a 0© node, if not [15]. This implies that the LCA
of x and y in T1, LCA1, is a 1© node and their LCA in T2, LCA2,
is a 0© node. Now, as per merging rules 3 and 4 (Figure 4), we
only match one rooted subtree against another. This implies that
whenever we match the subtrees rooted at LCA1 and LCA2 we
are bound to misalign at least one of either x or y thus detecting
that the result tuple contains a P4. In what follows, we prove three
lemmas required to justify our algorithm for ⊕(T1, T2) presented
in Section 3.3. In none of these proofs do we consider cases leading
to edge discrepancies where two variables x, y form an edge in T1

(T2) and do not form an edge in T2 (T1) because, as we just showed,
these cases lead to P4s and by comparing the returned score we can
easily capture such cases.

LEMMA 4. Let T1 = 0©(A1, . . . An) such that x ∈ V ars(Ai)
and y ∈ V ars(Aj), where i 6= j. Let T2 denote another co-tree
rooted at 1© node such that x, y ∈ V ars(T2). If T1 and T2 involve
variables from the same set of relations then φT1 ∨ φT2 contains a
P4.

PROOF. If LCA of x and y in T2 is a 1© node then we have an
edge discrepancy between T1 and T2 which implies interference
and a P4. Assuming LCA of x and y in T2 is a 0© node, Figure 7
shows the setup described in the lemma where LCA denotes LCA
of x and y in T2 and α denotes root of T2. Dashed edges indicate
ancestor-child (not necessarily parent-child) relationships. Notice
that, besides LCA, α must have at least one other descendant (oth-

erwise there is no point of having α). Let c1 denote one such de-
scendant leaf and let R denote the relation c1 belongs to. Now,
the merging rules (Figure 4) ensure that sub-trees being aligned
involve variables from the same relations. This implies that vari-
ables from R are present in both child sub-trees of A. Notice that
c1’s presence in either of these sub-trees will lead to edge discrep-
ancies that would indicate the presence of a P4 and there would
be nothing left to prove. Thus, let c2 (6≡ c1) denote the variable
from R that is present in the child sub-tree containing x, and let
c3 (6≡ c1) denote the variable from R that is present in the child
sub-tree containing y. Again, neither c2 nor c3 can be present in B
because if they were then we would have edge discrepancies indi-
cating a P4 and there would be nothing left to prove. Now, we have
a P5 : c2 − x− c1 − y − c3 that contains two P4’s.

The next two lemmas relate to rule 5 in Figure 4. The first one
shows that when aligning two co-trees rooted at 1© nodes, the child
sub-trees need to be such that we can divide them into minimal sub-
sets such that each pair of subsets involves variables from the same
(sub)set of relations (see Section 3.3). This will not be possible if
there exists relations R1, R2, R3, two child sub-trees in the first co-
tree rooted at a1, a2 and two child sub-trees in the second co-tree
rooted at b1, b2 such that R1 ∈ A(a → a1), {R2, R3} ⊆ A(a →
a2), {R1, R2} ⊆ A(b → b1), R3 ∈ A(b → b2) where a and b
denote the roots of the two input co-trees, respectively. The proof
of the lemma considers various cases that satisfy this property and
shows that a P4 exists in each case. The second lemma deals with
the placement of variables that are not present in both co-trees.

LEMMA 5. Let a and b denote two 1© roots of two co-trees A
and B, respectively. Let a1, a2 and b1, b2 denote two children
of a and b, respectively, such that there is at least one common
variable present in the sub-trees rooted at a1, a2 and b1, b2. If
∃R1, R2, R3 s.t. R1 ∈ A(a → a1), {R2, R3} ⊆ A(a → a2),
{R1, R2} ⊆ A(b → b1), R3 ∈ A(b → b2) then the merging of A
and B contains a P4.

PROOF. The assumption of sub-trees rooted at a1, a2 and b1, b2

having at least one common variable is important because if this is
not the case then we have work arounds. For instance, if the in-
put co-trees rooted at a and b do not have any variable in common
then we apply merging rule 2 not 5 (Figure 4). Figure 8 explains the
proof. In Figure 8, x, x1, x2 denote variables from R1, y, y1, y2 de-
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Figure 9: Proof showing that merging co-trees after application of rule 5 in Figure 4 is simple. If the presence of new variables
complicate things then a P4 exists in the merge result.

note variables from R2 and z, z1 denote variables from R3. There
are three cases depicted in Figure 8:

• In the first case, we assume that x and z are common (y may
or may not be common), i.e., x is present in both sub-trees
rooted at a1 and b1, and z is present in both sub-trees rooted
at a2 and b2. Note that in this case, if y1 is present under b1

or y2 under a2 then we will introduce an edge discrepancy, in
which case we know there is a P4 and there is nothing left to
prove. The figure depicts the P4 when y1 exists only under
a2 and y2 exists only under b1.

• In the second case, we assume only one of x or z are common.
Since both cases are symmetric, we assume x is common.
Notice that in this case, a common variable y can exist in both
sub-trees rooted at a2 and b1 but this does not contradict the
existence of y2 which cannot exist in the sub-tree rooted at a2

without introducing an edge discrepancy. The figure depicts
the P4 obtained.

• In the last case, we assume y is the only variable common
to both co-trees. If either x or z or both are also common
then we fall under the previous cases. Since there are not
common variables x or z present in sub-trees rooted at a1, a2

and b1, b2, x1, x2, z1 must exist such that x1 is not present
in the sub-tree rooted at b1, x2 does not exist in the sub-tree
rooted at a1 and z1 does not exist in the sub-tree rooted at a2.
This gives us a P4 (see Figure 8).

The second lemma which deals with merging rule 5 in Figure 4,
has implications on how we actually merge co-trees formed by the
various recursive calls once they have returned. We first illustrate
an example that explains the kind of problem we might run into had
the following lemma not been true. Assume that {x1, x2}, {v1, v2}
and {u1, u2} belong to the same relations. Now, consider merg-
ing 1©( 0©( 1©(x1, v1), 1©(x2, v2)), u1) (or x1v1u1 + x2v2u1) and
1©(x1, u2, v1) (or x1u2v1). When we apply S on these two, we

will need to apply rule 5. Merging rule 5 will then make two recur-
sive calls S( 0©( 1©(x1, v1), 1©(x2, v2)), 1©(x1, v1)) and S(u1, u2).
Assume that the co-trees returned, 0©( 1©(x1, v1), 1©(x2, v2)) and
0©(u1, u2), are correctly formed. Thus, we now need only worry

about putting these together. The simple thing that we do is to put
a 1© node as root and make the roots of the co-trees returned by
the recursive calls its children. But in the case of this example this
would not work. This is because in doing so, we would introduce
an edge between v2 and u2 (among other spurious edges that will

also get introduced). Taking a closer look at the correct merge re-
sult, x1v1u1 +x2v2u1 +x1u2v1, we should notice that it contains
a P4 : v2 − u1 − x1 − u2 (among others). This kind of a tricky
merge situation occurs everytime we produce two separate recur-
sive calls one of which involves variables from the first co-tree not
present in the second and the other containing variables from the
second co-tree not present in the first (e.g., v2 and u2, respectively,
in the example). In the case of this example, as it turned out we
were lucky and the result was not read-once. The question is, is
this always the case? The next lemma answers this question in the
affirmative.

LEMMA 6. Let application of merging rule 5 (Figure 4) pro-
duce two recursive calls S(T A

1 , T B
1 ) and S(T A

2 , T B
2 ), where A

and B denote the input co-trees, T A
1 , T A

2 minimal subsets of sub-
trees formed from A and T B

1 , T B
2 minimal subsets formed from B.

If N (T A
1 ) ∧ N (T B

2 ) ∨ N (T A
2 ) ∧ N (T B

1 ) is true then the merge
result contains a P4.

PROOF. Just as in the previous proof of Lemma 5, we will as-
sume that A and B share at least one common variable (otherwise
we will not apply merging rule 5 but rule 2 instead). Moreover, if at
least one common node is not present in T A

1 , T A
2 and T B

1 , T B
2 then

we still have work arounds that will not allow the S calls stated in
the lemma to occur. We will denote by x the common variable and
by Rx the relation it belongs to. Let v∗ and u∗ denote the new vari-
ables from A and B, respectively, such that v∗ is not present in B
and u∗ is not present in A. Moreover, in at least one co-tree, either
A or B, the child sub-tree containing the new variable must contain
a common variable in it. Otherwise, we have work arounds that do
not let the S calls stated in the lemma to occur. WLOG, we will
assume that the new variable present with the common variable in
the same sub-tree is v∗ (present in co-tree A) and if the common
variable is not x then rename it. Now, we have three cases, they
are shown in Figure 9. In Figure 9, v1 and u1 belong to relations
Rv and Ru, respectively, where Ru contains u∗ and Rv contains
v∗. The first case contains two subcases, depending on whether
the LCA of x and v∗ is a 0© or 1© node. In either case, we find a
P4. Also, note that in the first case when LCA is a 0© node, v∗

could belong to Rx so there is no separate Rv but the stated P4 still
exists. The rest of the figure should be self-explanatory.

Time Complexity: Recall that in Section 3.3, we showed that for
the simple case when no new dummy 1© nodes are introduced by
rule 5 in Figure 4,⊕(T1, T2) incurs a time complexity of O(nmk2),
where n and m denote the number of nodes in T1 and T2, respec-
tively, and k denotes the total number of relations. For the more
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R1: A
a1 1
a2 2

R2: B
b1 1
b2 2

R3: A
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Q
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Figure 10: Query plan with a bushy join. Finding non-interfering sub-formulas is an issue.

general case when dummy nodes are introduced, we first note that
two dummy nodes generated from, say, T1 introduced by an invo-
cation of rule 5 never get matched with the same node in T2. Also,
due to Lemma 5, dummy nodes always get matched against real
nodes that were present in the original co-tree. This implies that
extra work incurred per 1© node in T1 is at most O(mk2), which
implies the total extra work done due to dummy nodes cannot ex-
ceed O(nmk2). So, the total time complexity remains O(nmk2).

C. PLANS WITH BUSHY JOINS
Plans with bushy joins can also be handled but they require slightly

more work. Let us first consider an example that helps illustrate the
issues in this case. Figure 10 shows how a plan with a bushy join
between R1 × R2 and R3 × R4 can cause complications. More
specifically, the subtree in the lineage-tree rooted at ./2 contains
variable y2 but not x2, the subtree rooted at ./3 contains x2 but not
y2 whereas the subtree rooted at ./4 contains both variables with
an edge between them in the corresponding co-occurrence graph
(type 2 interference). Another way of stating the issue is to no-
tice that, assuming we manage to construct co-trees for subtrees
rooted at ./1, ./2, ./3 and ./4, merging any three of these leads to
a P4 (e.g., merging graphs of ./1, ./2 and ./3 would give us P4

y2− x1− y1− x2) but the result tuple r in Figure 10 is read-once.
We now describe a technique to handle bushy joins. LetL denote

the lineage-tree of result tuple φ. Let n./ denote an internal node
in lineage-tree L that represents a bushy join (e.g., ./1). Moreover,
let n./← and n./→ represent n./’s left and right child respectively.
Let us consider computing T (n./,1, . . . n./,m) where each of n./,i

represents a node in L representing a tuple produced by a bushy
join. Essentially, in L produced by plans with bushy joins interfer-
ence can occur but we will try to come up with an ordering over
the co-tree merging operations that circumvents this, i.e., does not
detect a P4 unless the result tuple has one. First consider type 1
interference. Suppose n./,i← contains variable a ∈ R. Repeat-
ing arguments presented in Lemma 1 we can show that if n./,i→
is such that it contains variables x, y such that x − y ∈ Gφ but
x�−y in n./,i→ then there must exist another node n./,j such that
a is a leaf in n./,j← and x, y form an edge in n./,j→. Thus, if we
do not separate the tuples represented by n./,i and n./,j then the
type 1 interference can never cause a problem because the potential
P4 and the chord are always present together. Again, by repeating
arguments presented in Lemma 1, if we avoid type 1 interference
then we avoid type 2 interference also. The complete ordering pro-
cedure is as follows. Given set of tuples N = {n./,1, . . . n./,m} to
be merged and formed a co-tree for, first pick two relations R← and
R→ such that base tuples from R← and R→ form leaves in N ’s left
children and right children, respectively. Now, let Na,b ⊆ N rep-
resent the set of nodes such that ∀n./,i ∈ Na,b a ∈ R← is a leaf in
n./,i← and b ∈ R→ forms a leaf in n./,i→. The idea is to take all
such pairs a, b and form co-trees for Na,b separately. Subsequently,
we merge the various co-trees obtained by merging co-trees for all

X: A1 B1

x1 3 4
x2 1 2

Y: A2

y1 1
y2 3

Z: B2

z1 2
z2 4

q() :−X(A1, B1), Y (A2), Z(B2), A1 = A2 ∨ B1 = B2

r = x1y1z2 + x1y2z1 + x1y2z2 + x2y1z1 + x2y1z2

+ x2y2z1

z1

z2y2

y1

x2x1

Figure 11: A disjunctive query producing a result tuple that is
not normal.

Na,b with the same a first. To form the co-tree for some Na,b we
recurse, i.e., we pick another pair of relations R′← and R′→ different
from R← and R→ and repeat the whole procedure. This merge op-
eration ordering approach is a simple way to extend the approach
for plans with left/right deep joins presented in the main body of
the paper to the case of plans involving bushy joins. In the case of
bushy joins, we no longer have join paths easily determined from
the lineage-tree but need to construct them ourselves which we do
through recursion.

Going back to the example presented Figure 10, one viable or-
dering is determined by setting R← = R1 and R→ = R3. Now
we have, Na1,x1 = {./1, ./2} whose co-tree is easily formed, let’s
call this Ta1,x1 , and Na2,x2 = {./3, ./4} whose co-tree we will
denote by Ta2,x2 . Finally, we merge Ta1,x1 and Ta2,x2 . Another
ordering that would also work (besides others) is to set R← = R1

and R→ = R4, in which case, Na1,y1 = {./1}, Na1,y2 = {./2},
Na2,y1 = {./3}, Na2,y2 = {./4}. Let Ta,y denote the co-tree
obtained from Na,y . We then perform the remaining merges in the
following order: (Ta1,y1 ⊕Ta1,y2)⊕ (Ta2,y1 ⊕Ta2,y2). Note that,
had we chosen to perform (Ta1,y1 ⊕ Ta2,y1)⊕ (Ta1,y2 ⊕ Ta2,y2)
instead, then that would have also worked.

D. OPEN QUESTIONS
Having considered the case of conjunctive queries in depth, the

next obvious question is whether our techniques extend to larger
classes of queries. Consider the case of queries with disjunctions,
some disjunctions can be allowed without breaking any of our re-
sults. But if the query contains a disjunctive join predicate that
involves attributes from more than two relations and cannot be bro-
ken down into smaller conjunctive predicates then our techniques
do not apply. Figure 11 shows one such case with a disjunctive join
predicate that leads to a result tuple which is P4-free but not normal
(e.g., x1, y1, z1 is a clique in Gφr but no single clause contains all
three variables). Of course, the case for queries with self-joins also
remains open.
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