
Optimizing Query Answering under Ontological
Constraints

Giorgio Orsi

Institute for the Future of Computing
University of Oxford

Wolfson Building, Parks Road
Oxford OX1 3JP
United Kingdom

Andreas Pieris

Department of Computer Science
University of Oxford

Wolfson Building, Parks Road
Oxford OX1 3JP
United Kingdom

{giorgio.orsi, andreas.pieris}@cs.ox.ac.uk

ABSTRACT

Ontological queries are evaluated against a database com-
bined with ontological constraints. Answering such queries
is a challenging new problem for database research. For
many ontological modelling languages, query answering can
be solved via query rewriting: given a conjunctive query and
an ontology, the query can be transformed into a first-order
query, called the perfect rewriting, that takes into account
the semantic consequences of the ontology. Then, for every
extensional database D, the answer to the query is obtained
by evaluating the rewritten query against D. In this pa-
per we present a new algorithm that computes the perfect
rewriting of a conjunctive query w.r.t. a linear Datalog± on-
tology. Also, we provide an experimental comparison of our
algorithm with existing rewriting techniques.

1. INTRODUCTION
Ontology-Based Data Access. In the recent years, ini-

tiatives such as the Linked Open Data1, and the adoption of
semantic data representation formats such as RDF(S) and
OWL, pushed the academy and the industry to study Se-
mantic Web data management techniques (see, e.g., [11]) to
support efficient storage and querying of large-scale repos-
itories of semantic data. In order to meet the efficiency
requirements, current solutions often resort to a relational
DBMS. Interestingly, such a trend inspired a related line of
research in the database community, dealing with the en-
hancement of traditional database systems with advanced
reasoning and query processing mechanisms.

In ontological database management systems, an exten-
sional relational database D (also called ABox in the de-
scription logic community) is combined with an ontological

1http://linkeddata.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th ­ September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 2150­8097/11/08... $ 10.00.

theory Σ (also called TBox) describing rules and constraints
which derive new intensional data from the extensional data.
A query is answered against the logical theory D ∪ Σ, and
not just against D. Formally, if Q : q(X) ← φ(X,Y) is a
conjunctive query (CQ) with output variables X, then its
answer in the ontological database consists of all the tuples
t of constants such that D∪Σ |= ∃uφ(t,u), or, equivalently,
t belongs to the answer of Q over I , for each instance I that
contains D and satisfies Σ.

Answering a CQ against D∪Σ is equivalent to answering
the same query against the chase-expansion of D w.r.t. Σ
(see, e.g., [12]). This expansion can be constructed by ap-
plying the well-known chase procedure [18, 16], which is pre-
sented in Section 2. Roughly speaking, the chase adds new
tuples to D (possibly with labelled nulls that represent un-
known values) until the final instance, written chase(D,Σ),
satisfies Σ. However, the chase-expansion may be infinite,
and hence not explicitly computable. As shown by the fol-
lowing example, taken from [6], this holds even for databases
with just a single fact, and very simple ontologies.

Example 1. Consider the database D = {person(john)}
which contains a single fact stating that John is a person,
and the ontological theory Σ:

person(X) → ∃Y father(Y,X), person(Y)

stating that every person has a father, who is himself a per-
son. chase(D,Σ) is the infinite set of atoms {person(john),
father(z1, john), person(z1), father(z2, z1), person(z2), . . .},
where each zi is a labelled null value.

Procedures for effectively answering queries in case of
non-terminating chase-expansions were first proposed in the
database context by Johnson and Klug [16] for the special
case where the ontological theory contains inclusion depen-
dencies only. However, inclusions dependencies are not pow-
erful enough to represent ontological constraints. Thus, a re-
cent research direction is to find more expressive formalisms,
under which query answering is still decidable. Moreover, it
is desirable that query answering is tractable in data com-
plexity (i.e., when the query and the ontology are fixed),
and possibly executable by relational query engines; this is
needed in order to be able to deal with very large databases.

A significant contribution in this direction has been the
introduction of the DL-Lite family of description logics

1004

(DLs) by Calvanese et al. [9, 20]. The DL-Lite family
was recently embedded into an expressive framework called
Datalog± (see, e.g., [5, 6]), whose languages extend the well-
known Datalog language [1] by allowing existential quanti-
fiers in rule-heads, thus using tuple-generating dependencies
(TGDs) instead of plain Datalog rules; this feature is also
known as value invention (see, e.g., [3]). Highly tractable
languages in this framework are linear Datalog± [5], which
is a sub-formalism of a more expressive (but still tractable)
language called guarded Datalog± [5], sticky Datalog± [6],
and sticky-join Datalog± [7], which captures both linear
and sticky Datalog±. In a nutshell, guarded Datalog± re-
stricts rule-bodies to be guarded, which means that each
rule-body has a guard atom, which has among its arguments
all the body variables. Linear Datalog± further restricts
rule-bodies to contain a single atom only (which is then au-
tomatically a guard). Sticky(-join) Datalog± impose a re-
striction on multiple occurrences of variable in rule-bodies.

First-Order Rewritability. CQ answering under the
above Datalog± languages (apart from guarded Datalog±),
as well as under DL-Lite, has the advantage of being first-
order rewritable. This property implies that query answering
can be performed as follows: compute the so-called perfect
rewriting of the given query w.r.t. to the ontological theory,
and then evaluate it over the given database; note that the
perfect rewriting is a first-order query. More precisely, a pair
〈Q,Σ〉, where Q is a CQ of the form q(X) ← φ(X,Y), and
Σ is an ontology, can be rewritten as a first-order query QΣ,
defined as q(X) ← φΣ(X,Y), such that for every possible
answer tuple t (of constants) it holds thatD∪Σ |= ∃uφ(t,u)
iff D |= ∃uφΣ(t,u), for every database D.

Example 2. Consider the ontological theory Σ given in the
Example 1, and let Q be the CQ q(B)← father(A,B) asking
for persons who have a father. Intuitively, due to the rule in
Σ, not only do we have to query father , but we also need to
query person , since all the persons necessarily have a father.
The perfect rewriting QΣ will thus be the logical union of
the given query and of the query q(B)← person(B).

It is well-known that each first-order query can be equiv-
alently written in SQL. Thus, a CQ based on an ontology
can be rewritten as an SQL query over the original database
(the translation of the perfect rewriting of Example 2 into
SQL is given in Appendix A), which implies that it can be
passed to a relational DBMS, and executed efficiently by
exploiting all the DBMS’s optimizations.

Existing Rewriting Techniques. Several techniques
for computing the perfect rewriting of a query w.r.t. an on-
tology that falls in one of the first-order rewritable languages
mentioned above have been proposed. Let us first discuss
existing systems and algorithms for the DL-Lite family.

An early algorithm, introduced in [9] and implemented
in the QuOnto system2, reformulates the given query into
a union of CQs (UCQs) by means of a backward-chaining
resolution procedure. The size of the computed rewriting
increases exponentially w.r.t. the number of atoms in the
given query. This is mainly due to the fact that unifications
are derived in a “blind” way from every unifiable pair of
atoms, even if the generated rule is superfluous.

An alternative resolution-based rewriting technique was
proposed by Peréz-Urbina et al. [19], implemented in the Re-

2http://www.dis.uniroma1.it/ quonto/

quiem system3, that produces a UCQs as a rewriting which
is, in general, smaller (but still exponential in the number
of atoms of the query) than the one computed by QuOnto.
This is achieved by avoiding the useless unifications, and
thus the redundant rules obtained due to them. Note that
this algorithm works also for more expressive non-first-order
rewritable DLs. In this case, the computed rewriting is a
(recursive) Datalog query.

Rosati et al. [21] recently proposed a very sophisticated
rewriting technique, implemented in the Presto system.
This algorithm produces a non-recursive Datalog program
as a rewriting, instead of a UCQs. This allows the “hid-
ing” of the exponential blow-up inside the rules instead of
explicitly generating the disjunctive normal form. The size
of the final rewriting is exponential only in the number of
non-eliminable existential join variables of the given query;
such variables are a subset of the join variables of the query,
and are typically less than the number of atoms in the query.

Following a more general approach, Cal̀ı et al. [8] proposed
a backward-chaining rewriting algorithm for the first-order
rewritable Datalog± languages mentioned above. However,
this algorithm is inspired by the original QuOnto algorithm,
and inherits all its drawbacks.

Gottlob et al. [15] recently proposed a rewriting technique
for linear Datalog±. In fact, this algorithm is an improved
version of the one presented in [8], where the useless unifica-
tions are avoided, and also the atoms in the body of a rule
that are logically implied (w.r.t. the ontological theory) by
other atoms in the same rule are eliminated. This elimina-
tion implies the avoidance of the construction of redundant
rules during the rewriting process. However, the size of the
rewriting is still exponential in the number of atoms of the
query.

Summary of Contributions. The goal of this paper
is to improve the current rewriting techniques for linear
Datalog± and DL-Lite. In particular, we present a new algo-
rithm that computes the perfect rewriting of a conjunctive
query w.r.t. a linear Datalog± ontology. The key ideas un-
derlying our algorithm are as follows.

Differently from the existing techniques, our algorithm
computes a bounded Datalog query. In particular, we ex-
ploit the notion of predicate boundedness in Datalog pro-
grams [10]. Intuitively speaking, given a (possibly recursive)
Datalog program Π, if a predicate q is bounded in Π, then
it is possible to construct a non-recursive Datalog program
Πq such that, for each atom a with predicate q, D ∪Π |= a
iff D ∪ Πq |= a. So, given a CQ Q : q(X) ← φ(X,Y) and
a linear Datalog± ontology Σ, the algorithm constructs a
Datalog query QΣ in which the predicate q, i.e., the head-
predicate of the given query, is bounded.

Our algorithm uses the fact that linear Datalog± enjoys
the bounded-derivation depth property (BDDP) [5]. This im-
plies that, for every databaseD, instead of evaluating Q over
chase(D,Σ), it suffices to evaluate it over a finite part of the
chase whose size does not depend on D.

We also show that there exists a strong connection be-
tween predicate boundedness and BDDP exemplified by a
semantic class of Datalog programs, called output predicate
bounded, where all the predicates that do not occur in the
body of a rule are bounded. Roughly, all the tuples of these
predicates are constructed after a finite number of steps.

3http://www.comlab.ox.ac.uk/projects/requiem/home.html

1005

The expansion of the query (based on resolution) is pro-
foundly optimized by eliminating body-atoms that are log-
ically implied (w.r.t. the given ontology) by other atoms in
the same rule. This elimination implies the avoidance of the
construction of redundant rules. The elimination technique
that we apply here extends the one proposed in [15].

Due to the above advancements, the rewriting produced
by our algorithm is not exponential in the number of atoms
of the given query, but is only exponential in the number of
non-eliminable atoms, i.e., the atoms that cannot be elimi-
nated by our query elimination technique. Our experiments
show that this number is, in general, less than the number
of non-eliminable existential join variables defined in [21].

Roadmap. After some technical definitions in Section 2,
our rewriting algorithm (without query elimination) is pre-
sented in Section 3. In Section 4 the query elimination tech-
nique is defined. An implementation and experimental eval-
uation of the proposed technique is discussed in Section 5.
We conclude with a brief outlook on further research.

2. PRELIMINARIES
In this section we recall some basics on databases, tuple-

generating dependencies, queries, and the chase procedure.
General. We define the following pairwise disjoint (pos-

sibly infinite) sets of symbols: (i) a set Γ of constants (con-
stitute the “normal” domain of a database), (ii) a set ΓN of
labelled nulls (used as place-holders for unknown values, and
thus can be also seen as variables), and (iii) a set ΓV of vari-
ables (used in queries and constraints). Different constants
represent different values (unique name assumption), while
different nulls may represent the same value. We denote by
X sequences of variables X1, . . . , Xk, where k > 0. Let [n]
be the set {1, . . . , n}, for any integer n > 1.

A relational schema R (or simply schema) is a set of rela-
tional symbols (or predicates), each with its associated arity.
A position r[i] (in a schema R) is identified by a predicate
r ∈ R and its i-th argument (or attribute). A term t is a
constant, null, or variable. An atomic formula (or simply
atom) has the form r(t1, . . . , tn), where r is an n-ary pred-
icate, and t1, . . . , tn are terms. Conjunctions of atoms are
often identified with the sets of their atoms. A relational in-
stance (or simply instance) I for a schema R is a (possibly
infinite) set of atoms of the form r(t), where r is an n-ary
predicate of R, and t ∈ (Γ ∪ ΓN)n. We denote as r(I) the
set {t | r(t) ∈ I}. A database is a finite relational instance.

A substitution from one set of symbols S1 to another set
of symbols S2 is a function h : S1 → S2 defined as follows:
(i) ∅ is a substitution (empty substitution), (ii) if h is a
substitution, then h ∪ {X → Y } is a substitution, where
X ∈ S1 and Y ∈ S2, and h does not already contain some
X → Z with Y 6= Z. If X → Y ∈ h, then we write
h(X) = Y . A homomorphism from a set of atoms A1 to a set
of atoms A2, both over the same schema R, is a substitution
h : Γ ∪ ΓN ∪ ΓV → Γ ∪ ΓN ∪ ΓV such that: (i) if t ∈
Γ, then h(t) = t, and (ii) if r(t1, . . . , tn) is in A1, then
h(r(t1, . . . , tn)) = r(h(t1), . . . , h(tn)) is in A2. The notion of
homomorphism naturally extends to conjunctions of atoms.

Tuple-Generating Dependencies. Given a schema
R, a tuple-generating dependency (TGD) σ over R is a
first-order formula ∀X∀Yϕ(X,Y) → ∃Zψ(X,Z), where
ϕ(X,Y) and ψ(X,Z) are conjunctions of atoms over R,
called the body and the head of σ, denoted as body(σ) and
head(σ), respectively. Henceforth, to avoid notational clut-

ter, we will omit the universal quantifiers in TGDs. Such σ
is satisfied by an instance I for R iff, whenever there exists
a homomorphism h such that h(ϕ(X,Y)) ⊆ I , there exists
an extension h′ of h (i.e., h′ ⊇ h) such that h′(ψ(X,Z)) ⊆ I .

Datalog. A Datalog rule ρ is an expression of the form
a0 ← a1, . . . , an, for n > 0, where ai is an atom, and ev-
ery variable occurring in a0 must appear in at least one of
the atoms a1, . . . , an. The atom a0 is called the head of ρ,
denoted as head(ρ), while the set of atoms {a1, . . . , an} is
called the body of ρ, denoted as body(ρ). A Datalog program
Π over a schema R is a set of Datalog rules such that, for
each ρ ∈ Π, the predicate of head(ρ) does not occur in R.
The extensional database (EDB) predicates are those that
do not occur in the head of any rule of Π; all the other
predicates are called intensional database (IDB) predicates.

A model of Π is an instance over R that satisfies the
set of TGDs obtained by considering Π as a set of univer-
sally quantified implications. The semantics of Π w.r.t. a
database D for R, denoted as Π(D), is the minimum model
of Π containingD (which is unique and always exists). Π(D)
can be computed by a least fixpoint iteration. Let TΠ be the
union of D with the set of all atoms a such that there exists a
rule ρ ∈ Π and a homomorphism h such that h(body(ρ)) ⊆ D
and h(head(ρ)) = a. We write T i

Π(D) for the result of it-
erating this operation i times. Formally, T 0

Π(D) = D and
T i+1
Π (D) = TΠ(T

i
Π(D)); let Tω

Π (D) =
⋃

i>0 T
i
Π(D). For ev-

ery database D for R, there exists an integer k such that
T k
Π(D) = Tω

Π (D), i.e., T k
Π(D) is a fixpoint of TΠ; in general,

k depends on D. It is well-known that Π(D) = Tω
Π (D).

A Datalog program Π over a schema R is bounded if there
exists a constant k such that, for every database D for R,
T k
Π(D) = Tω

Π (D). A refined notion of boundedness, which is
more appropriate for our work, is predicate boundedness [10].
If q is an IDB predicate of Π, then T i

Π,q(D) (resp., Tω
Π,q(D))

is the set of atoms in T i
Π(D) (resp., Tω

Π (D)) with predicate q.
The predicate q is bounded in Π if there exists a constant k
such that, for every database D for R, T k

Π,q(D) = Tω
Π,q(D).

Intuitively, if an IDB predicate q is bounded in a (recursive)
Datalog program Π, then it is possible to obtain all the
atoms of Π(D) with predicate q, for every database D, using
a non-recursive program Πq (see Appendix B). Note that
the problem of predicate boundedness is undecidable [14].

Queries. An n-ary Datalog query Q over a schema R is
a pair 〈q,Π〉, where Π is a Datalog program over R, and q is
an n-ary predicate which occurs in the head of at least one
rule of Π. Q is a bounded Datalog query if the predicate q is
bounded in Π. Q is a union of conjunctive queries (UCQs)
if q is the only IDB predicate in Π, and for each rule ρ ∈ Π,
q does not occur in body(ρ). Finally, Q is a conjunctive
query (CQ) if it is a UCQs, and Π contains exactly one rule.
A Boolean Datalog query is a Datalog query of arity zero.
The answer to an n-ary Datalog query Q = 〈q,Π〉 over a
database D is the set {t | q(t) ∈ Π(D)}, denoted as Q(D).
A Boolean Datalog query Q has only the empty tuple as
possible answer; Q has positive answer over D, denoted as
D |= Q, iff 〈〉 ∈ Q(D), or, equivalently, Q(D) 6= ∅.

CQ Answering under TGDs. Given a database D for
R, and a set Σ of TGDs over R, the models of D w.r.t. Σ,
denoted as mods(D,Σ), is the set of all instances I such that
I |= D ∪Σ, which means that I ⊇ D and I satisfies Σ. The
answer to a CQ Q w.r.t. D and Σ, denoted as ans(Q,D,Σ),
is the set {t | t ∈ Q(I), for each I ∈ mods(D,Σ)}. The
answer to a Boolean CQ (BCQ) Q w.r.t. D and Σ is positive,

1006

written D ∪ Σ |= Q, iff ans(Q,D,Σ) 6= ∅. Note that CQ
answering under general TGDs is undecidable [2], even when
the schema and the set of TGDs are fixed [4].

We recall that the two problems of CQ and BCQ answer-
ing under TGDs are logspace-equivalent. Moreover, it is
easy to see that the query output tuple problem (as a de-
cision version of CQ answering) and BCQ answering are
ac0-reducible to each other. Henceforth, we thus focus only
on the BCQ answering problem.

TGD Chase Procedure. The chase procedure (or sim-
ply chase) is a fundamental algorithmic tool introduced
for checking implication of dependencies [18], and later for
checking query containment [16]. Informally, the chase is a
process of repairing a database w.r.t. a set of dependencies
so that the resulted instance satisfies the dependencies. We
shall use the term chase interchangeably for both the proce-
dure and its result. The chase works on an instance through
the so-called TGD chase rule.

TGD Chase Rule: Consider a database D for a schema
R, and a TGD σ = ϕ(X,Y) → ∃Zψ(X,Z) over R. If
σ is applicable to D, i.e., there exists a homomorphism h
such that h(ϕ(X,Y)) ⊆ D then: (i) define h′ ⊇ h such
that h′(Zi) = zi, for each Zi ∈ Z, where zi ∈ ΓN is a
“fresh” labelled null not introduced before, and following
lexicographically all those introduced so far, and (ii) add to
D the set of atoms in h′(ψ(X,Z)), if not already in D.

Given a database D and set of TGDs Σ, the chase algo-
rithm for D w.r.t. Σ consists of an exhaustive application of
the TGD chase rule in a breadth-first fashion, which leads as
result to a (possibly infinite) chase for D w.r.t. Σ, denoted as
chase(D,Σ); see Appendix B for the formal definition. The
(possibly infinite) chase of D w.r.t. Σ is a universal model
of D w.r.t. Σ, i.e., for each instance I ∈ mods(D,Σ), there
exists a homomorphism from chase(D,Σ) to I [13, 12]. This
implies that for a BCQ Q, D ∪Σ |= Q iff chase(D,Σ) |= Q.

Linear TGDs. A TGD is linear iff its body contains
a single atom [5]; linear TGDs generalizes the well-known
inclusion dependencies. The key property of this class,
that we are going to exploit in our rewriting algorithm, is
the so-called bounded-derivation depth property (BDDP) [5].
Roughly speaking, chase(D,Σ) can be decomposed in lev-
els, where D has level 0, and an atom has level k + 1 if it
is obtained, during the chase, due to atoms with maximum
level k. We refer to the part of the chase up to level k as
chasek(D,Σ); for the formal definitions see Appendix B. A
class C of TGDs enjoys the BDDP iff for every BCQ Q over
a schema R, for every database D for R, and for every set
Σ ∈ C over R, if D∪Σ |= Q, then chasek(D,Σ) |= Q, where
k depends only on Q and R, but not on the database D.

As established in [5], the class of linear TGDs enjoys the
BDDP. In particular, given a BCQ Q = 〈q, ρ〉 over a schema
R, a database D for R, and a set Σ of linear TGDs over R,
if D ∪ Σ |= Q, then chasek(D,Σ) |= Q, for k = n · (2w)w ·

2|R|·(2w)w , where n is the number of atoms in the body of ρ,
and w is the maximum arity over all predicates of R; clearly,
k is constant w.r.t. D. In the rest of the paper, we will refer
to the value k by b(Q,R).

3. QUERY REWRITING
In this section we present the algorithm that computes

the perfect rewriting of a query w.r.t. a set of linear TGDs.
More precisely, given a BCQ Q over a schema R, and a set
Σ of linear TGDs over R, our goal is to compute a bounded

Datalog query QΣ over R such that, for every database D
for R, D ∪ Σ |= Q iff D |= QΣ. Before delving into the
details, let us give an informal description of the algorithm.

3.1 Informal Description
Our algorithm accepts a BCQ Q over a schema R, and a

set Σ of linear TGDs over R, and proceeds in four steps.
Skolemization. First, the existential quantifiers in the

TGDs of Σ are eliminated by reducing each TGD into
Skolem normal form. Then, each rule b→ h1, . . . , hn can be
replaced with the set of rules {b → hi}i∈[n], since the joins
among existentially quantified variables are preserved by the
introduced Skolem terms. Finally, by exploiting the notion
of predicate graph, we identify rules that are not needed for
answering Q, and thus are eliminated. During this step, we
reduce Σ into an equisatisfiable set Σf of rules with single-
ton heads. This step is necessary since the subsequent steps
assume singleton rule-heads. As already noticed in [19], by
transforming Σ into Σf via Skolemization, we avoid the in-
troduction of an auxiliary predicate for each TGD of Σ (as in
[9] and [15]), and thus we avoid the generation of additional
rules due to these auxiliary predicates.

Rule Saturation. This step computes the so-called sat-
urated set of Σf , written [Σf], by applying the well-known
resolution inference rule. A rule of [Σf], obtained by apply-
ing k times the resolution rule, “mimics” a derivation of the
chase under Σf (rules with functional terms in their head
can be seen as TGDs), which involves k + 1 applications of
the TGD chase rule. Notice that [Σf] is, in general, infinite.
However, since linear TGDs enjoy the BDDP (see Section 2),
it suffices to “mimic” the chase of level up to b(Q,R). Thus,
we just need to compute only a finite part of [Σf].

Query Saturation. During this step the so-called satu-
rated query of Q, denoted as [Q,Σf], is computed. This is
done by applying again the resolution inference rule by con-
sidering only the non-function-free rules of [Σf]. Roughly,
given a database D, if one of the atoms due to which
chase(D,Σf) entails Q was obtained by a chase derivation
that involves TGDs with functional terms, then we “bypass”
this derivation. In order to guarantee the entailment of Q
by chase(D,Σf), we exploit the atom of D due to which the
first TGD in the “bypassed” derivation was triggered. No-
tice again that [Q,Σf] is, in general, infinite. Nevertheless,
since linear TGDs have the BDDP, as in the case of [Σf],
we just need to compute only a finite part of [Q,Σf].

Finalization. In this step the rewritten query QΣ is ob-
tained by discarding the non-function-free rules of [Σf] ∪
[Q,Σf]. In addition, some auxiliary predicates and rules are
added in order to ensure that QΣ is a Datalog query over
R, i.e., the predicates of R are EDB predicates.

3.2 The Rewriting Algorithm
Let us now formalize the above four steps. Recall that the

algorithm accepts as input a BCQ Q = 〈q, ρ〉 over a schema
R, and a set Σ of linear TGDs over R.

Skolemization. Let Σf be the set of rules obtained from
Σ by replacing each TGD σ of the form

r0(X,Y) → ∃Z1 . . .∃Zm r1(X, Z1, . . . , Zm), . . . ,
rn(X, Z1, . . . , Zm),

1007

with the set of rules

r0(X,Y) → r1(X, f
σ
Z1

(X), . . . , fσ
Zm

(X)),
...

r0(X,Y) → rn(X, f
σ
Z1

(X), . . . , fσ
Zm

(X)),

where each fσ
Zi

is a fresh Skolem function of arity |X|.

Example 3. By Skolemizing the linear TGD r(X,Y) →
∃Z∃W p(X,W), s(W,Z,X) we get the two rules r(X,Y)→
p(X, fσ

W (X)) and r(X,Y)→ s(fσ
W (X), fσ

Z(X), X).

The Skolem terms that can appear in Σf are defined in-
ductively as follows: each variable and constant is a Skolem
term, and if f is an n-ary Skolem function, and t1, . . . , tn
are Skolem terms, then f(t1, . . . , tn) is a Skolem term.

Now, by exploiting the predicate graph G of Σf ∪ {ρ} we
can identify rules of Σf that can be eliminated. G is the
graph where the vertices are the predicates occurring in Σf∪
{ρ}, and there exists an edge from p1 to p2 iff there exists
a rule τ ∈ Σf ∪ {ρ} such that p2 occurs in head(ρ) and p1
occurs in body(ρ). All the rules of Σf containing at least
one predicate p such that there is no path in G from p to q
are discarded; recall that q is the head-predicate of the given
query Q. Note that Σf is actually a set of linear TGDs since,
for each σ ∈ Σf , body(σ) is a single function-free atom.

Rule Saturation. The saturated set of Σf is computed
by applying the resolution inference rule. Formally, by ap-
plying b1 → h1 on b2 → h2, the rule γ(b1) → γ(h2) is
obtained, where γ = MGU(h1, b2) is the most general unifier
for h1 and b2; we assume that the reader is familiar with
the notion of unification (see, e.g., [17]). W.l.o.g. we assume
that the above rules do not have variables in common.

In what follows, let Σf be the set {σ1, . . . , σn}. Consider a
sequence S = σi1 . . . σik , for k > 1, of TGDs of Σf ; note that
it is possible to have repeated TGDs. The rule obtained due
to S, written σ[i1 . . . ik], is defined as follows: σ[i1] = σi1 ,
and σ[i1 . . . ik] is obtained by applying σ[i1 . . . ik−1] on σik .

Example 4. Consider the linear TGDs

σ1 : r(X1, Y1) → s(Y1, f1(Y1)),
σ2 : s(X2, Y2) → p(Y2, Y2, f2(Y2)),
σ3 : p(X3, Y3, Z3) → t(Z3).

The rule obtained due to σ1σ2, i.e., by applying σ1 on σ2,
is σ[12] : r(X1, Y1) → p(f1(Y1), f1(Y1), f2(f1(Y1))), while

r(a,b)

s(b,f1(b))

σ1

σ2

t(f2(f1(b)))

p(f1(b),f1(b),f2(f1(b)))

σ3

σ[12]

σ[123]

 q ← r(X1,Y1),p(f1(Y1),f1(Y1),C)

r(a,b)

s(b,f1(b))

σ1

σ2

t(f2(f1(b)))

p(f1(b),f1(b),f2(f1(b)))

σ3

(a) (b)

Figure 1: Rule and Query Saturation.

the rule obtained due to σ1σ2σ3, i.e., by applying σ[12] on
σ3, is σ[123] : r(X1, Y1) → t(f2(f1(Y1))). As shown in Fig-
ure 1(a), σ[12] mimics the derivation of the chase of {r(a, b)}
that involves the TGDs σ1 and σ2, while σ[123] mimics the
derivation that involves the TGDs σ1, σ2 and σ3.

The set [Σf]k, for k > 1, is the set of all the rules (mod-
ulo bijective variable renaming) obtained due to a sequence
σi1 . . . σik of TGDs of Σf , where 〈i1, . . . , ik〉 ∈ [n]k. It is
not difficult to see that [Σf]k contains all the rules obtained
starting from some TGD of Σf , and applying k−1 times the
resolution rule. The saturated set of Σf , denoted as [Σf], is
the set [Σf]1 ∪ [Σf]2 ∪ . . .∪ [Σf]k, where k = b(Q,R); recall
that b(Q,R) is the depth up to which it suffices to construct
the chase, under linear TGDs, for CQ answering purposes.

Query Saturation. The saturated query of Q is con-
structed by applying the resolution inference rule. A useful
notion is the depth of rules defined as follows. Let t be a
Skolem term. If t is a variable or constant, then the depth of
t is zero. If t = f(t1, . . . , tn), where f is a Skolem function,
then the depth of t is one plus the depth of ti, where i ∈ [n],
with maximal depth. The depth of a rule τ is the depth of
the Skolem term with maximal depth that occurs in τ .

In the sequel, let f([Σf]) be the set {σ1, . . . , σn} obtained
from [Σf] be keeping only the rules containing Skolem terms.
Consider a sequence S = σi1 . . . σik , for k > 1, of rules of
f([Σf]); note that repetition of rules in S is allowed. The rule
obtained due to S starting from ρ, denoted as ρ[i1 . . . ik], is
defined as follows: ρ[i1] is obtained by applying σi1 on ρ,
and ρ[i1 . . . ik] by applying σik on ρ[i1 . . . ik−1].

Example 5. Consider the TGDs σ1 and σ2 given in the
Example 4, and also the BCQ Q = 〈q, τ 〉, where τ is the
rule q ← s(A,B), p(B,B,C). By applying σ1 on τ we get
the rule τ [1] : q ← r(X1, Y1), p(f1(Y1), f1(Y1), C). The rule
obtained due to σ1σ2, i.e., by applying σ2 in τ [1], is τ [12] :
q ← r(X1, Y1), s(X2, f1(Y2)). Finally, the rule obtained by
applying σ1 on τ [12], is τ [121] : q ← r(X1, Y1). As depicted
in Figure 1(b), with τ [1] we bypass the derivation of the
chase of D = {r(a, b)} that involves only σ1. More precisely,
chase(D,Σ), where Σ = {σ1, σ2}, entails Q since there ex-
ists homomorphism h such that h(body(τ)) ⊆ chase(D,Σ).
However, the atom h(s(A,B)) is mapped to an atom ob-
tained due to a chase derivation that involves TGDs (in this
case σ1) with Skolem functions. By constructing τ [1] we by-
pass this derivation, but the query is still entailed since the
new atom r(X1, Y1) is mapped to D.

The saturated query of Q (w.r.t. f([Σf])), written [Q,Σf],
is the set of all the rules (modulo bijective variable renam-
ing), with depth at most b(Q,R), obtained due to a se-
quence σi1 . . . σik of TGDs of f([Σf]), where k > 1 and
〈i1, . . . , ik〉 ∈ [n]k, starting from ρ; note that ρ ∈ [Q,Σf].

Finalization. We are now ready, by exploiting the set of
rules [Σf]∪[Q,Σf], to construct the rewritten queryQΣ. Let
ff([Σf] ∪ [Q,Σf]) be the set obtained from [Σf] ∪ [Q,Σf] by
keeping only the function-free rules, i.e., the rules without
Skolem terms neither in their body nor in their head. ΠQΣ

is obtained by adding to ff([Σf]∪ [Q,Σf]) a rule of the form
r(X1, . . . , Xn) → r̂(X1, . . . , Xn), for each n-ary predicate
r ∈ R, where r̂ is an auxiliary predicate, and by replacing
each occurrence of a predicate r in ff([Σf]∪ [Q,Σf]) with r̂.
QΣ is the pair 〈q,ΠQΣ

〉.

1008

3.3 Termination and Correctness
It is immediate to see that the Skolemization step always

terminates (since the given set of TGDs is finite). Obviously,
the finalization step terminates, as long as the set [Σf] ∪
[Q,Σf] is finite. Hence, in order to establish the termination
of our algorithm, it remains to show that the rule saturation
and the query saturation steps terminate. In the rest of this
section, let Q = 〈q, ρ〉 be a BCQ over a schema R, and Σ be
a set of linear TGDs over R.

Proposition 1. The sets [Σf] and [Q,Σf] are finite.

The rest of this subsection is devoted to establish sound-
ness and completeness. Notice that, due to the occurs check
in unification, for each τ ∈ [Σf], body(τ) is function-free.
Therefore, [Σf] is actually a set of linear TGDs. Let us now
give some technical results. The first such result implies that
the chase under Σf can be used for CQ answering purposes.

Lemma 2. For every database D for R, D ∪ Σ |= Q iff
chasek(D,Σf) |= Q, where k = b(Q,R).

The next result formalizes the intuitive explanation given
for the query saturation step, namely, each rule of [Σf], ob-
tained by applying k times the resolution rule, “mimics” a
derivation of the chase under Σf , which involves k + 1 ap-
plications of the TGD chase rule.

Lemma 3. For every database D for R, chasek(D,Σf) =
chase(D, [Σf]), where k = b(Q,R).

The following lemma formalizes the idea of “bypassing”
chase derivations which involve TGDs with Skolem terms.
In fact, justifies the elimination of the non-function-free rules
of [Σf] ∪ [Q,Σf] during the finalization step.

Lemma 4. For every database D for R, chase(D, [Σf]) |=
Q iff there exists a BCQ Q′ = 〈q, τ 〉, where τ ∈ ΠQΣ

, such
that chase(D,ΠQΣ

) |= Q′.

By exploiting the above three lemmas, and the fact that
ΠQΣ

(D) and chase(D,ΠQΣ
) coincide, it is easy to establish

soundness and completeness of our rewriting algorithm, i.e.,
for every database D for R, D ∪ Σ |= Q iff D |= QΣ.

3.4 Structure of the Rewriting
We now consider the structure of the rewriting. By ex-

ploiting the notion of BDDP, we identify a semantic class of
Datalog programs in which all the output IDB predicates,
i.e., the predicates that cannot occur in the body of a rule,
are bounded. Then, we show that ΠQΣ

falls in this class,
and since q is an output IDB predicate, we get that QΣ is a
bounded Datalog query. In the sequel, if the body of a rule
τ contains only EDB predicates, then is called input rule,
and if the predicate of head(τ) is an output IDB predicate,
then is called output rule.

Definition 1. A Datalog program Π is called output pred-
icate bounded, abbreviated as opb-Datalog, if it can be par-
titioned into three sets ΠI , ΠB and ΠO such that: (i) ΠI

is a set of input rules, (ii) ΠB falls in a class of TGDs that
enjoys the BDDP, and (iii) ΠO is a set of output rules.

The following result establishes the boundedness of output
IDB predicates in opb-Datalog programs (hence the name
“output predicate bounded”). In fact, the strong connection
among predicate boundedness and BDDP is shown.

Proposition 5. Consider an opb-Datalog program Π.
Each output IDB predicate is bounded in Π.

It is not difficult to verify that ΠQΣ
can be partitioned

into the sets ΠI , ΠB and ΠO, as in the Definition 1, where
ΠI are the auxiliary rules introduced during the finalization
step, ΠB are the (function-free) rules generated during the
rule saturation step, and ΠO are the (function-free) rules
generated during the query saturation step. Since ΠQΣ

is an
opb-Datalog program, and q is an output IDB predicate, by
Proposition 5 we get that q is bounded in ΠQΣ

. Therefore,
QΣ is a bounded Datalog query. Note that if the given set of
TGDs is acyclic, then the obtained query is a non-recursive
Datalog query.

4. OPTIMIZING THE REWRITING
In this section we define the so-called query elimination

technique, aiming at optimizing the rewritten query. In par-
ticular, we can exploit the saturated set (constructed during
the rule saturation step) in order to identify body-atoms in
a certain rule (during the query saturation step) that are
logically implied, w.r.t. the given set of TGDs, by other
atoms in the same rule. These implied atoms can be safely
eliminated, and therefore we avoid the construction of su-
perfluous rules during the saturation of the query.

4.1 Atom Coverage
The key idea underlying query elimination is formalized

by the notion of atom coverage. Consider a rule ρ. The
partial freezing of an atom a w.r.t. ρ, denoted as frρ(a), is
the atom obtained from a as follows: replace each variable
V that occurs in body(ρ) \ {ρ} with the constant cV ∈ Γ.
Let us now give the formal definition of atom coverage.

Definition 2. Consider a rule ρ, a set Σ of linear TGDs,
and let a and b be atoms of body(ρ). a covers b w.r.t. Σ,
written a ≺ρ

Σ b, iff the following condition holds: there exists
a TGD σ ∈ [Σf] and homomorphisms h and µ such that,
h(body(σ)) = frρ(a) and h(head(σ)) = µ(frρ(b)).

Roughly speaking, the existence of h implies that an atom
with the same equality type as a triggers some TGD during
the chase under Σ, while the existence of µ ensures that an
atom with the same equality type as b is mapped to the
generated atom. Thus, if a is entailed by the chase, then
also b is entailed, and we can safely eliminate it.

Lemma 6. Consider a rule ρ, and a set Σ of linear TGDs.
Suppose that a ≺ρ

Σ b, where a, b ∈ body(ρ), and let ρ′ be such
that body(ρ′) = body(ρ)\{b}. Then, for each instance I that
satisfies [Σf], there exists hρ such that hρ(body(ρ)) ⊆ I iff
there exists hρ′ such that hρ′(body(ρ

′)) ⊆ I.

4.2 Unique Elimination Strategy
An atom elimination strategy for a rule ρ is a permutation

of its body-atoms. For each a ∈ body(ρ), the cover set of a,
written cover (a, ρ,Σ), is the set {b | b ∈ body(ρ) ∧ b ≺ρ

Σ a};
when ρ and Σ are obvious from the context, we shall denote
the above set as cover (a). By exploiting the cover set of the
body-atoms, we associate to each atom elimination strategy
S for ρ a subset of body(ρ), denoted as Eliminate(ρ,Σ, S),
which is actually the set of body-atoms of ρ that can be elim-
inated (according to S). Formally, the set Eliminate(ρ,Σ, S)
is computed by applying the following procedure; in the se-
quel, let S = [a1, . . . , an], where n = |body(ρ)|:

1009

A := ∅

for each i := 1 to n do
a := S[i]
if cover (a) 6= ∅ then
A := A ∪ {a}
for each b ∈ body(ρ) \A

cover(b) := cover (b) \ {a}
return A.

We are now ready to establish the uniqueness (w.r.t. the
number of eliminated atoms) of the atom elimination strat-
egy for a rule. The proof of this result uses heavily the fact
that the relation ≺ρ

Σ is transitive.

Lemma 7. Consider a rule ρ, and a set Σ of linear TGDs.
Let S1 and S2 be arbitrary atom elimination strategies for ρ.
It holds that, |Eliminate(ρ,Σ, S1)| = |Eliminate(ρ,Σ, S2)|.

Henceforth, we refer to the atom elimination strategy for
a rule ρ by Sρ.

4.3 Query Elimination
Let us now describe how query elimination can be incor-

porated into our rewriting algorithm. Recall that the algo-
rithm accepts as input a BCQ Q = 〈q, ρ〉 over a schema R,
and a set Σ of linear TGDs over R.

First, note that the Skolemization step is not affected.
Suppose now that ρ⋆ is obtained by eliminating from body(ρ)
the atoms Eliminate(ρ,Σ, Sρ), and let Q⋆ = 〈q, ρ⋆〉. The
optimized saturated set of Σf , denoted as [Σf]

⋆, is the set
[Σf]1 ∪ [Σf]2 ∪ . . .∪ [Σf]k, where k = b(Q⋆,R), i.e., the only
difference during the rule saturation step is the value of k.

Now, let f([Σf]) = {σ1, . . . , σn}. Consider a sequence S =
σi1 . . . σik , for k > 1, of TGDs of f([Σf]). The optimized rule
obtained due to S starting from ρ⋆, denoted as ρ⋆[i1 . . . ik],
is defined as follows: ρ⋆[i1] is the rule obtained by elimi-
nating from body(ρ′) the atoms Eliminate(ρ′,Σ, Sρ′), where
ρ′ is obtained by applying σi1 on ρ⋆, and ρ⋆[i1 . . . ik] is
obtained by eliminating from body(ρ′′) the set of atoms
Eliminate(ρ′′,Σ, Sρ′′), where ρ′′ is obtained by applying
σik on ρ⋆[i1 . . . ik−1]. The optimized saturated query of
Q (w.r.t. f([Σf])), written [Q,Σf]

⋆, is the set of the opti-
mized rules (modulo variable renaming), with depth at most
b(Q⋆,R), obtained due to a sequence σi1 . . . σik of TGDs of
f([Σf]), where k > 1 and 〈i1, . . . , ik〉 ∈ [n]k, starting from ρ⋆;
note that ρ⋆ ∈ [Q,Σf]

⋆. The finalization step is as defined
in Subsection 3.2, except that the optimized saturated set
[Q,Σf]

⋆ is considered. The final optimized rewriting Q⋆
Σ is

the pair 〈q,ΠQ⋆
Σ
〉.

Notice that the finiteness of the saturated query and the
structure of the rewriting are not affected. By exploiting
Lemma 6, and by adapting analogously Lemma 4, it can be
shown that Q⋆

Σ is indeed a perfect rewriting. For an example
of the execution of the algorithm see Appendix D.

Let us now consider the size of the rewriting. Note that
the schema R is considered fixed.

Lemma 8. The maximal size of the set [Σf]
⋆∪ [Q,Σf]

⋆ is
O((nm)m), and the maximal size of ΠQ⋆

Σ
is O((n +m)m),

where n = |Σ| and m = |body(ρ⋆)|.

Therefore, our algorithm runs in polynomial time in the
size of the set of TGDs, and in exponential time in the num-
ber of non-eliminable atoms in the body of the query. The
same upper bounds hold for the size of the rewritten query.

5. EXPERIMENTAL RESULTS
The rewriting algorithm presented in this paper is imple-

mented in the Nyaya semantic data management system4.
The rewriting engine is based on the IRIS Datalog Engine5

extended to support the FO-rewritable Datalog± languages.
Both IRIS and our extensions are implemented in Java.

The ideal experimental setting for our rewriting algorithm
is an ODBA scenario where the ontological constraints are
defined using linear Datalog±. Since accepted benchmark
for Datalog± ontologies are not yet available, we stick to
the same experimental setting of [15], [19] and [21], where
the testbed consists of DL-Lite ontologies whose expressive
power falls into that of linear Datalog±.

STOCKEXCHANGE (S) is an ontology representing the
domain of financial institutions. UNIVERSITY (U) is a
DL-LiteR version of the LUBM Benchmark6. ADOLENA
(A) describes disabilities and accessibility devices. The last
ontology (P5X) is a synthetic ontology representing graph
structures and paths of variable length on the graph. The
queries used in the experiments and the ontologies can also
be found at Nyaya’s website.

We named our implementation NyayaDTG, and we com-
pared it with four other rewriting-based ODBA systems
for DL-Lite ontologies. QuOnto and Presto (based on [9]
and [21], respectively) developed by the University of Rome
La Sapienza, Requiem (based on [19]) developed by the
KR group of the University of Oxford and TGD-rewrite
(based on [15]) also implemented in the Nyaya System.

We compared the various approaches in terms of the
size of the rewriting, i.e., the number of rules, represented
in standard Datalog notation, that occur in the rewritten
query. Each rule corresponds to a query to be executed by
the underlying DBMS, and thus is a key measure of the com-
plexity of the rewriting. Regarding the size of the rewriting
generated by NyayaDTG, we do not consider the auxiliary
rules introduced during the finalization step. These rules
are introduced for technical reasons, namely, to ensure that
the rewriting is syntactically consistent with the definition of
Datalog queries. They just copy the database in temporary
tables, and are not considered during the query evaluation.

Table 1 shows the outcome of the experimental cam-
paign. By QO, RQ, NY and PR we refer to QuOnto, Re-
quiem, Nyaya and Presto, respectively, while NYDTG refers
to NyayaDTG. QO, RQ and NY produce a rewriting in the
form of a UCQs, PR produces a non-recursive Datalog query,
while NYDTG produces a bounded Datalog query. Note that
all these representations can be translated into equivalent
first-order queries, and therefore into SQL queries.

From the analysis of the results it is possible to draw some
interesting conclusions. In the first place, (i) a Datalog rep-
resentation sensibly compresses the size of the rewriting.
This is evident in the results of Presto and NyayaDTG for
the ontology P5X, whose constraints have been voluntarily
engineered to generate an exponential blowup during the
computation of a UCQ-rewriting. As expected, (ii) by com-
puting the rewriting as a bounded Datalog query, instead
of a non-recursive Datalog query, it is possible to further
compress the rewriting whenever the predicate graph of the
set of constraints is cyclic. More precisely, the auxiliary IDB

4http://mais.dia.uniroma3.it/Nyaya/Home.html
5http://www.iris-reasoner.org/
6http://swat.cse.lehigh.edu/projects/lubm/

1010

Table 1: Comparison evaluation
Size

QO RQ NY PR NYDTG

Ontology Query

A

Q1 783 402 249 69 58

Q2 1812 103 94 52 41
Q3 4763 104 104 55 43

Q4 7251 492 456 93 81
Q5 66068 624 624 71 65

U

Q1 5 2 2 6 5
Q2 287 148 1 1 1

Q3 1260 224 4 8 7
Q4 5364 1628 2 6 5

Q5 9245 2960 2 11 10

S

Q1 6 6 6 7 7

Q2 204 160 1 3 3
Q3 1194 480 2 5 4

Q4 1632 960 2 5 4
Q5 11487 2880 4 7 6

P5X

Q1 14 14 10 11 11
Q2 86 77 57 16 16

Q3 530 390 324 16 16
Q4 3,476 1,953 1,642 16 16
Q5 23,744 9,766 8,219 16 16

predicates introduced by Presto to “collect” the database tu-
ples needed to entail the input query, have also the effect to
unfold the cyclic structures of the rewriting. NyayaDTG, by
targeting a bounded Datalog program, preserves these cyclic
structures, resulting in a more compact representation. Note
that Presto and NyayaDTG obtain exactly the same result
on the set P5X of constraints because this set is acyclic.
Finally, (iii) a Datalog query is not always more compact
than a UCQs; see the ontologies S and U. For simple queries
and ontologies, the approaches constructing a Datalog query
inevitably generate rules that encode certain structural re-
lationships of the set of constraints, e.g., the most general
subsumee in Presto, and the chase derivations in NyayaDTG.
This leads to corner cases where a UCQs is better than a
Datalog query; for an example see Appendix E.

6. CONCLUSIONS
This paper presented a new query rewriting technique for

linear Datalog± and DL-Lite. The main idea underlying our
algorithm is the construction of a bounded Datalog query.
The obtained rewriting, even if is syntactically recursive, can
be always translated into an SQL query.

We plan to investigate rewriting techniques for the other
first-order rewritable Datalog± languages, i.e., sticky and
sticky-join Datalog±. We are convinced that the technique
proposed in this paper can be extended in order to treat
also these more general languages.

Acknowledgements. This research has received funding
from the European Research Council under the European
Community’s Seventh Framework Programme (FP7/2007–
2013) / ERC grant agreement DIADEM no. 246858 and
from the Oxford Martin School’s grant no. LC0910-019.

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] C. Beeri and M. Y. Vardi. The implication problem
for data dependencies. In Proc. of ICALP, pages
73–85, 1981.

[3] L. Cabibbo. The expressive power of stratified logic
programs with value invention. Inf. Comput.,
147(1):22–56, 1998.

[4] A. Cal̀ı, G. Gottlob, and M. Kifer. Taming the infinite
chase: Query answering under expressive relational
constraints. In Proc. of KR, pages 70–80, 2008.

[5] A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. A general
datalog-based framework for tractable query
answering over ontologies. In Proc. of PODS, pages
77–86, 2009.

[6] A. Cal̀ı, G. Gottlob, and A. Pieris. Advanced
processing for ontological queries. PVLDB,
3(1):554–565, 2010.

[7] A. Cal̀ı, G. Gottlob, and A. Pieris. Query answering
under non-guarded rules in datalog+/-. In Proc. of
RR, pages 175–190, 2010.

[8] A. Cal̀ı, G. Gottlob, and A. Pieris. Query rewriting
under non-guarded rules. In Proc. AMW, 2010.

[9] D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, and R. Rosati. Tractable reasoning and
efficient query answering in description logics: The
DL-lite family. J. Autom. Reasoning, 39(3):385–429,
2007.

[10] S. S. Cosmadakis, H. Gaifman, P. C. Kanellakis, and
M. Y. Vardi. Decidable optimization problems for
database logic programs (preliminary report). In
Proc. of STOC, pages 477–490, 1988.

[11] R. de Virgilio, F. Giunchiglia, and L. Tanca, editors.
Semantic Web Information Management: A
Model-Based Perspective. Springer Verlag, 2010.

[12] A. Deutsch, A. Nash, and J. B. Remmel. The chase
revisisted. In Proc. of PODS, pages 149–158, 2008.

[13] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: Semantics and query answering.
Theor. Comput. Sci., 336(1):89–124, 2005.

[14] H. Gaifman, H. G. Mairson, Y. Sagiv, and M. Y.
Vardi. Undecidable optimization problems for
database logic programs. In Proc. of LICS, pages
106–115, 1987.

[15] G. Gottlob, G. Orsi, and A. Pieris. Ontological
queries: Rewriting and optimization. In Proc. of
ICDE, pages 2–13, 2011.

[16] D. S. Johnson and A. C. Klug. Testing containment of
conjunctive queries under functional and inclusion
dependencies. J. Comput. Syst. Sci., 28(1):167–189,
1984.

[17] J. W. Lloyd. Foundations of Logic Programming.
Springer, 1984.

[18] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing
implications of data dependencies. ACM Trans.
Database Syst., 4(4):455–469, 1979.

[19] H. Pérez-Urbina, B. Motik, and I. Horrocks. Tractable
query answering and rewriting under description logic
constraints. Journal of Applied Logic, 8(2):151–232,
2009.

[20] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,
M. Lenzerini, and R. Rosati. Linking data to
ontologies. J. Data Semantics, 10:133–173, 2008.

[21] R. Rosati and A. Almatelli. Improving query
answering over DL-Lite ontologies. In Proc. KR, pages
290–300, 2010.

1011

APPENDIX

A. TRANSLATION INTO SQL
Recall that the perfect rewriting QΣ of Example 2 is the

logical union of the CQs

Q : q(B)← father (A,B) and Q
′ : q(B)← person(B).

Assuming that Q and Q′ are queries over the relational
schema {father(f, p), person(p)}, QΣ can be written in SQL
as follows:

SELECT father.p FROM father

UNION

SELECT person.p FROM person.

B. PRELIMINARIES

B.1 Predicate Boundedness
Consider the (recursive) Datalog program Π consisting of

the rules

r(X,Y), t(Y) → t(X)
r(X,Y) → r(Y,X)

r(X,Y), t(Z) → q(X).

Observe that, for every database D, T 2
Π,q(D) = Tω

Π,q(D).
For example, if D = {r(a, b), r(c, d), t(e)}, then

T
1
Π,q(D) = {q(a), q(c)}

while

T
2
Π,q(D) = T

1
Π,q(D) ∪ {q(b), q(d)} = T

ω
Π,q(D).

Consequently, the predicate q is bounded in Π.
Let us now show that the predicate t is unbounded in

Π. Towards a contradiction, suppose that t is bounded, or,
equivalently, there exists k > 0 such that, for every database
D, T k

Π,q(D) = Tω
Π,q(D). Consider now the database

D = {r(c1, c2), . . . , r(ck, ck+1), r(ck+1, ck+2), t(ck+2)}.

It is not difficult to verify that

T
k+1
Π,q (D) = T

k
Π,q(D) ∪ {t(c1)}

which is a contradiction. Thus, t is unbounded in Π.
Since q is bounded in Π it follows that, for every database

D, we can obtain all the atoms of Π(D) with predicate q
using a non-recursive Datalog program. In particular, the
non-recursive Datalog program Πq comprised by the rules

r(X,Y) → aux (X,Y)
r(X,Y) → aux (Y,X)

aux(X,Y), t(Z) → q(X),

is such that q(Π(D)) = q(Πq(D)), for every database D; let
us recall that given an instance I , by r(I) we denote the set
of tuples {t | r(t) ∈ I}.

B.2 TGD Chase Procedure
In what follows we assume a lexicographic order on Γ∪ΓN ,

such that every value in ΓN follows all those in Γ. The
chase of a database D w.r.t. a set Σ of TGDs, denoted by
chase(D,Σ), is the (possibly infinite) instance constructed
by an iterative application of the TGD chase rule in a
breadth-first (level-saturating) fashion —the lower the level
of an atom, the earlier the atom has been obtained during
the construction of the chase— as follows:

1. Let chase(D,Σ) = D, and for each a ∈ D let the
(derivation) level of a, denoted as level(a), to be zero.

2. Let σ1, . . . , σn, for n > 0, be the TGDs which are
applicable to chase(D,Σ); assume that each σ ∈
{σ1, . . . , σn} is applicable due to the homomorphisms
h1
σ, . . . , h

mσ
σ , for mσ > 1, and let Iiσ = hi

σ(body(σ)), for
each i ∈ [mσ].

3. Let k = minI∈{I1σ,...,I
mσ
σ } {maxa∈I{level(a)}}.

4. For each σ ∈ {σ1, . . . , σn}, let Sσ be the set of images
{I | I ∈ {I1σ, . . . , I

mσ
σ } and maxa∈I{level (a)} = k},

and if Sσ 6= ∅, then let Îσ be the image of Sσ that
precedes in lexicographic order.

5. Apply the TGD σ of {σ | Sσ 6= ∅} that precedes in
lexicographic order by utilizing the homomorphism h

that maps body(σ) to Îσ, and assign to every new atom
the (derivation) level k + 1.

6. Goto step 2.

The chase of level up to k, for some integer k > 0, of D
w.r.t. Σ, denoted as chasek(D,Σ), is the set of all the atoms
of chase(D,Σ) of level at most k.

Example B.1. Consider the set Σ consisting of the TGDs
σ1 : r(X,Y), s(Y) → ∃Z r(Z,X) and σ2 : r(X,Y) → s(X),
and let D be the database {r(a, b), s(b)}. During the con-
struction of chase(D,Σ) we first apply σ1, and we add the
atom r(z1, a), where z1 is a “fresh” null. Moreover, σ2 is
applicable and we add the atom s(a). Now, σ1 is applica-
ble and the atom r(z2, z1) is obtained, where z2 is a “fresh”
null. Also, σ2 is applicable and the atom s(z1) is gener-
ated. It is clear that there is no finite chase. Satisfying
both σ1, σ2 would require to construct the infinite instance
D ∪ {r(z1, a), s(a), r(z2, z1), s(z1), r(z3, z2), s(z2), . . .}.

C. QUERY REWRITING
In the sequel, let Q = 〈q, ρ〉 be a BCQ over a schema R,

and Σ be a set of linear TGDs over R.

C.1 Termination and Correctness

Proposition C.1. The sets [Σf] and [Q,Σf] are finite.

Proof (sketch). Recall that [Σf] = Σf ∪ [Σf]2 ∪ . . . ∪
[Σf]b(Q,R). It is not difficult to see that each [Σf]i is finite.
In particular, in a set [Σf]k, for k > 2, we can have at most
|Σf |

k rules since the maximum number of TGD sequences
of length k that we can build is |Σf |

k, and the rule obtained
from a certain sequence is unique (modulo bijective variable
renaming). The finiteness of the set [Q,Σf] follows from
the following two observations: (i) since the TGDs of
Σf are linear, during the construction of [Q,Σf] it is not
possible to a get rule τ such that |body(τ)| > |body(ρ)|, and
(ii) by construction, it is not possible to have in [Q,Σf]
a Skolem term with depth more than b(Q,R). These two
observations imply that we can have only finitely many
rules in [Q,Σf] (modulo bijective variable renaming). 2

Lemma C.2. For every database D for R, D ∪Σ |= Q iff
chasek(D,Σf) |= Q, where k = b(Q,R).

Proof (sketch). It is possible to establish that there
exists an isomorphism h from Γ ∪ ΓN to the set of Skolem
terms that can appear in chase(D,Σf) with the following

1012

properties: (i) h(chase(D,Σ)) = chase(D,Σf), and (ii) if
z ∈ ΓN , then h(z) is a Skolem term with depth greater
than zero. More precisely, a null z ∈ ΓN that occurs in an
atom of chase(D,Σ) at level ℓ > 0, is mapped by h to a
Skolem term with dept ℓ. Therefore, chasek(D,Σ) |= Q iff
chasek(D,Σf) |= Q. The claim follows since, due to the
BDDP of linear TGDs, D ∪ Σ |= Q iff chasek(D,Σ). 2

Lemma C.3. For every D for R, chasek(D,Σf) =
chase(D, [Σf]), where k = b(Q,R).

Proof (sketch). By construction Σf ⊆ [Σf]. This
implies that chase(D,Σf) ⊆ chase(D, [Σf]), and therefore
chasek(D,Σf) ⊆ chase(D, [Σf]). It remains to establish
the other direction. It is not difficult to show that all
the atoms of chase(D, [Σf]) are obtained during the con-
struction of its first level, or, equivalently, chase(D, [Σf])
coincides with chase1(D, [Σf]). Therefore, it remains to
show that chase1(D, [Σf]) ⊆ chase(D,Σf). Suppose that
Σf = {σ1, . . . , σn}. It can be shown that, for each atom
a ∈ chase1(D, [Σf]) obtained by applying a TGD σ ∈ [Σf],
which in turn was obtained due to a sequence σi1 . . . σiℓ ,
for ℓ > 1, of TGDs of Σf , a ∈ chaseℓ(D,Σf); the proof is
by induction on ℓ. The claim follows since ℓ 6 k. 2

Lemma C.4. For every D for R, chase(D, [Σf]) |= Q iff
there exists a BCQ Q′ = 〈q, τ 〉, where τ ∈ ΠQΣ

, such that
chase(D,ΠQΣ

) |= Q′.

Proof (sketch). (⇒) It suffices to show the following:
if there exists ρ′ ∈ [Q,Σf] such that there exists a homo-
morphism h that maps body(ρ′) to chase(D, [Σf]), then the
BCQ Q′ exists. Since chase(D, [Σf]) and chase1(D, [Σf])
coincide, h(body(ρ′)) ⊆ chase1(D, [Σf]). The proof is by
induction on the number of atoms in hτ (body(ρ

′)) obtained
during the chase due to a TGD containing Skolem functions.

(⇐) By hypothesis, there exists a homomorphism h such
that h(body(τ)) ⊆ chase(D, [Σf]). Suppose that τ was ob-
tained due to the sequence σ1 . . . σm of TGDs of f([Σf]),
where m > 1, starting from ρ. Let τi be the (intermedi-
ate) rule obtained due to the sequence σ1 . . . σi, for i ∈ [m],
starting from ρ. It is possible to show the following auxiliary
claim:

Claim C.5. Consider an arbitrary rule τi, for i ∈ [m].
If there exists a homomorphism hi such that hi(body(τi)) ⊆
chase(D, [Σf]), then there exists a homomorphism hi−1 such
that hi−1(body(τi−1)) ⊆ chase(D, [Σf]).

Clearly, by starting from τm = τ , and applying m times
the above claim, we immediately get that there exists a
homomorphism that maps body(ρ) to chase(D, [Σf]), and
the claim follows. 2

Theorem C.6. For every database D for R, D ∪Σ |= Q
iff D |= QΣ.

Proof (sketch). By Lemmas C.2–C.4, D ∪ Σ |= Q iff
there exists a BCQ Q′ = 〈q, τ 〉, where τ ∈ ΠQΣ

, such that
chase(D,ΠQΣ

) |= Q′, for every database D for R. Note
that Tω

ΠQΣ

(D) and chase(D,ΠQΣ
) coincide. Since Tω

ΠQΣ

(D)

and ΠQΣ
(D) are equal, then q ∈ ΠQΣ

(D); thus, D |= QΣ. 2

C.2 Structure of the Rewriting

Proposition C.7. Consider an opb-Datalog program Π.
Each output IDB predicate is bounded in Π.

Proof (sketch). The claim is equivalent to the follow-
ing statement: for every output IDB predicate p, there ex-

ists a constant kp > 0 such that Tω
Π,p(D) = T

kp

Π,p(D), for
every database D for R. Fix an arbitrary output IDB
predicate p. Since Tω

Π (D) = chase(D,Π), we immediately
get that Tω

Π,p(D) is the set {p(t) | p(t) ∈ chase(D,Π)}.
By hypothesis, Π can be partitioned into ΠI , ΠB and
ΠO as in the Definition 1. It is not difficult to see that
chase(D,Π) = chase(chase(DI ,ΠB),ΠO), where DI is the
(finite) instance chase(D,ΠI). Let Π

p
O be the set of rules of

ΠO with head-predicate p, and for each τ ∈ Πp
O, let Q

p
τ be

the CQ 〈p, τ 〉. Clearly, Tω
Π,p(D) is the set of atoms

{
p(t) | t ∈

⋃

τ∈Π
p
O

Q
p
τ (chase(DI ,ΠB))

}
.

Since ΠB falls in a class of TGDs which enjoys the BDDP,
we get that Tω

Π,p(D) is the set
{
p(t) | t ∈

⋃

τ∈Π
p
O

Q
p
τ (chase

kp(DI ,ΠB))

}
,

where kp = maxτ∈Π
p
O
{b(Qp

τ ,R)}, which is exactly the set

T
kp

Π,p(D), and the claim follows. 2

D. OPTIMIZING THE REWRITING

D.1 Atom Coverage

Lemma D.1. Consider a rule ρ, and a set Σ of linear
TGDs. Suppose that a ≺ρ

Σ b, where a, b ∈ body(ρ), and let
ρ′ be such that body(ρ′) = body(ρ) \ {b}. Then, for each I
that satisfies [Σf], there exists hρ such that hρ(body(ρ)) ⊆ I
iff there exists hρ′ such that hρ′(body(ρ

′)) ⊆ I.

Proof. (⇒) By hypothesis, there exists a homomor-
phism h that maps body(ρ) to I . Since body(ρ′) ⊂ body(ρ),
we immediately get that h maps body(ρ′) to I .

(⇐) By hypothesis, there exists a homomorphism h such
that h(body(ρ′)) ⊆ I . Clearly, h(body(ρ) \ {b}) ⊆ I . Since
a ≺ρ

Σ b it follows that there exists σ ∈ [Σf], and homo-
morphisms λ and µ such that λ(body(σ)) = frρ(a) and

µ(head(σ)) = µ(frρ(b)). Let λ̂ (resp., µ̂) be the substitu-
tions obtained from λ (resp., µ) by replacing each occur-
rence of a constant cX with the variable X. It is easy to
verify that λ̂(body(σ)) = a and λ̂(head(σ)) = µ̂(b). Since

h ◦ λ̂ maps body(σ) to I , and I satisfies [Σf], we get that

h◦λ̂(head(σ)) ∈ I . Thus, h(λ̂(body(σ))) = h(µ̂(b)) ∈ I . The
substitution µ̂ is the identity on the variables that occur in
atoms of body(σ)\{b}, and thus h and h◦ µ̂ are compatible.
Therefore, the desired homomorphism is h ∪ (h ◦ µ̂).

D.2 Unique Elimination Strategy

Lemma D.2. Consider a rule ρ, and a set Σ of lin-
ear TGDs. Let S1 and S2 be arbitrary atom elimina-
tion strategies for ρ. It holds that, |Eliminate(ρ,Σ, S1)| =
|Eliminate(ρ,Σ, S2)|.

1013

Proof (sketch). We assume that S1 and S2 are ex-
actly the same except two consecutive elements. In other
words, for each i ∈ {1, . . . , k − 1, k + 2, . . . , n}, S1[i] =
S2[i], S1[k] = S2[k + 1] and S1[k + 1] = S2[k]. Note
that the above assumption does not harm the general-
ity of the proof since, any given two strategies S and S′,
S can be obtained from S′ (and vice versa) by apply-
ing a sequence of transformations, where two consecutive
(intermediate) strategies are exactly the same except two
consecutive elements. For example, consider the strate-
gies S = [a, b, c, d] and S′ = [c, a, d, b]. S′ can be ob-
tained from S as follows: S = [a, b, c, d] → [a, c, b, d] →
[a, c, d, b]→ [c, a, d, b] = S′. Let us now establish the claim.
For brevity, given a strategy S, let Eliminateℓ(ρ,Σ, S)
be the subset of Eliminate(ρ,Σ, S) computed after ℓ ap-
plications of the for-loop. Clearly, Eliminatek−1(ρ,Σ, S1)
and Eliminatek−1(ρ,Σ, S2) are equal. In what follows, let
ak = S1[k] = S2[k + 1] and ak+1 = S1[k + 1] = S2[k].
The proof proceeds by case analysis whether cover(ak) and
cover (ak+1) are empty or not after k− 1 applications of the
for-loop. By exploiting the fact that the binary relation ≺ρ

Σ

is transitive, it is possible to show that the cases

– cover(ak) ⊃ {ak+1} and cover(ak+1) = {ak},

– cover(ak) = {ak+1} and cover(ak+1) ⊃ {ak},

– cover(ak) = {ak+1} and ak 6∈ cover (ak+1),

– cover(ak+1) = {ak} and ak+1 6∈ cover (ak),

are excluded since always we get a contradiction. 2

D.3 Query Elimination

Example D.1. Let R = {r, s, p} be a relational schema.
Consider the set

Σ =

{
r(X,Y) → ∃Z s(X,Z, Y), p(Z)
s(X,Z, Y) → r(Y,X),

of linear TGDs over R, and the BCQ Q = 〈q, τ 〉, where τ is
the rule q ← r(A,B), s(A,C,B), p(B). By Skolemizing Σ
we get the set

Σf =






σ1 : r(X,Y) → s(X,f(X, Y), Y)
σ2 : r(X,Y) → p(f(X,Y))
σ3 : s(X,Z, Y) → r(Y,X).

The saturated set [Σf] of Σf , constructed during the rule
saturation step, is the union ff([Σf]) ∪ f([Σf]), where

ff([Σf]) =






σ3 : s(X,Z, Y) → r(Y,X)
σ[13] : r(X,Y) → r(Y,X)
σ[313] : s(X,Z, Y) → r(X,Y),

is the set of function-free rules of [Σf], while

f([Σf]) =






σ1 : r(X,Y) → s(X, f(X,Y), Y)
σ2 : r(X,Y) → p(f(X,Y))

σ[31] : s(X,Z, Y) → s(Y, f(Y,X), X)
σ[32] : s(X,Z, Y) → p(f(Y,X))
σ[131] : r(X,Y) → s(Y, f(Y,X), X)
σ[132] : r(X,Y) → p(f(Y,X))
σ[312] : s(X,Z, Y) → p(f(X,Y))
σ[3131] : s(X,Z, Y) → s(X, f(X, Y), Y).

are the rules of [Σf] containing Skolem functions.

Now, consider the rule τ . It is easy to verify that the atom
r(A,B) covers s(A,C,B) due to the existence σ1. In par-
ticular, the homomorphism h = {X → cA, Y → cb}, where
cA, cB ∈ Γ, maps body(σ1) to frτ (r(A,B)) = r(cA, cB), and
µ = {C → f(cA, cB)} maps frτ (s(A,C,B)) = s(cA, C, cB)
to h(head(σ1)); in fact, Eliminate(τ,Σ, Sτ) = {s(A,C,B)}.
Thus, the rule τ⋆ obtained by eliminating from body(τ⋆) the
set Eliminate(τ,Σ, Sτ) is q ← r(A,B), p(B).

We now proceed by applying the query saturation step.
As it can be verified, the atom r(A,B) does not unify with
any of the head-atoms of f([Σf]), while the atom p(B) uni-
fies with the head-atoms of σ2, σ[32], σ[132] and σ[312].
For instance, by applying σ2 on τ⋆ the rule τ⋆[2] : q ←
r(A, f(X, Y)), r(X,Y) is obtained. It is not difficult to ver-
ify that all the rules that we obtain during the saturation of
the query contain Skolem functions, and thus they do not
contribute to the final rewriting.

During the finalization step, the Datalog program

ΠQΣ
=






r̂(X,Y) ← ŝ(X,Z, Y)
r̂(Y,X) ← r̂(X,Y)
r̂(Y,X) ← ŝ(X,Z, Y)
q ← r̂(A,B), p̂(B)
r̂(X,Y) ← r(X,Y)
ŝ(X,Y, Z) ← s(X,Y, Z)
p̂(X) ← p(X)

is constructed, which is actually the rules of ff([Σf])∪{τ} (af-
ter renaming the predicates) plus the auxiliary rules. The fi-
nal rewritten query QΣ is the pair 〈q,ΠQΣ

〉. Notice that the
above query, although is syntactically recursive, is bounded,
and therefore it is possible to obtain all the atoms of ΠQΣ

(D)
with predicate q, for every databaseD, using a non-recursive
Datalog query (and thus, a first-order query).

Lemma D.3. The maximal size of the set [Σf]
⋆∪ [Q,Σf]

⋆

is O((nm)m), and the maximal size of ΠQ⋆
Σ
is O((n+m)m),

where n = |Σ| and m = |body(ρ⋆)|.

Proof (sketch). Let s be the size of the Skolemized
set Σf . Recall that [Σf]

⋆ = [Σf]1 ∪ [Σf]2 ∪ . . . ∪ [Σf]k,
where k = b(Q⋆,R). It is clear that in a set [Σf]i, for
i > 1, we can have at most si rules since the maximum
number of TGD sequences of length i that we can build
is si, and the rule obtained due to a certain sequence is
unique (modulo bijective variable renaming). Consequently,
|[Σf]

⋆| 6 s + s2 + . . . + sk = O(sm). Now, observe that,
since the TGDs of Σf are linear, in [Q,Σf]

⋆ it is not
possible to have a rule τ such that |body(τ)| > |body(ρ⋆)|,
and by construction, it is not possible to have in [Q,Σf]

⋆ a
Skolem term with depth more than b(Q⋆,R). Therefore,
|[Q,Σf]

⋆| 6 (|R|·(fk ·(w+cρ⋆) ·m)w)m = O((sm)m), where
k = b(Q⋆,R), f is the number of Skolem functions occurring
in Σf , w is the maximum arity over all predicates of R, and
cρ⋆ is the number of constants occurring in ρ⋆. Therefore,
|[Σf]

⋆ ∪ [Q,Σf]
⋆| = O(sm) + O((sm)m) = O((sm)m).

Clearly, to establish an upper bound on the size of ΠQ⋆
Σ
, it

suffices to count the maximum number of function-free rules
in [Σf]

⋆∪[Q,Σf]
⋆. Due to the linearity of TGDs, in [Σf]

⋆ we
can have at most (|R| · (w+ cΣ)

w)2 = O(s), where cΣ is the
number of constants occurring in Σ. In [Q,Σf]

⋆ we can have
(|R|·(cΣ+cρ⋆+w·m)w)m = O((s+m)m). Consequently, the
maximal size of ΠQ⋆

Σ
is O(s)+O((s+m)m) = O((s+m)m).

Since s is polynomial w.r.t. n the claim follows. 2

1014

E. EXPERIMENTAL RESULTS
As already discussed in Section 5, a Datalog query is not

always more compact than a UCQs. The following simple
example illustrates this fact.

Example 2. Consider the set

Σ =

{
brother (X,Y) → brother (Y,X)
brother (X,Y) → ∃Z relatives(X,Z),

of linear TGDs, and the BCQ Q = 〈q, τ 〉, where τ is the
rule q ← relatives(X,Y). It is not difficult to verify that
the rewritten query constructed by applying our algorithm
is the pair QΣ = 〈q,ΠQΣ

〉, where

ΠQΣ
=






brother (X,Y) → brother (Y,X)
q ← brother (X, Y)
q ← relative(X,Y).

On the other hand, the rewritten query constructed by ap-
plying, for example, the algorithm proposed in [15], is the
UCQs Q′

Σ = 〈q,ΠQ′

Σ
〉, where

ΠQ′

Σ
=

{
q ← brother (X,Y)
q ← relative(X,Y).

Clearly, |ΠQΣ
| = 3 > |ΠQ′

Σ
| = 2.

By applying the rule saturation step of our algorithm, in
fact we “mimic” all the possible chase derivations. How-
ever, there are simple cases, like the one exhibited in the
above example, where this is not really necessary, and thus
redundant rules are generated.

An interesting problem is to identify structural properties
of the given set of constraints, that can be used to determine
whether a UCQs is more suitable than a Datalog query for
the representation of the rewriting.

1015

