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ABSTRACT

Lawler-Murty’s procedure is a general tool for designing al-
gorithms for enumeration problems (i.e., problems that in-
volve the production of a large set of answers in ranked or-
der), which naturally arise in database management. Lawler-
Murty’s procedure is used in a variety of modern database
applications; particularly in those related to keyword search
over structured data. Essentially, this procedure enumer-
ates by invoking a series of instances of an optimization
problem (i.e., finding the best solution); solving the opti-
mization problem is the only part that depends on the spe-
cific task at hand. The topic of optimizing and parallelizing
Lawler-Murty’s procedure is investigated. Naive parallelism
can be carried out by concurrently solving independent in-
stances of the optimization problem. This can be improved
by printing the next answer, in the enumeration order, as
soon as none of the concurrent instances can produce a bet-
ter answer. However, this approach alone suffers from poor
utilization of available threads. That leads to the idea of
freezing an instance of the optimization problem. Interest-
ingly, not only is freezing beneficial to the parallel execution
of Lawler-Murty’s, it also substantially reduces the running
time of the serial execution. Additional improvements of the
freezing technique are then developed to further enhance the
utilization of threads, and they result in a significant over-
all speedup. The effectiveness of the proposed approach is
demonstrated on keyword search over data graphs, wherein
an extensive experimental study is described.

1. INTRODUCTION
Answer enumeration arises in a computational problem

where the output is too large (e.g., of size super-polynomial
in that of the input) and, hence, a user cannot be expected
to wait for the whole of it to be computed. Instead, an
efficient algorithm is expected to incrementally enumerate
output items (answers or solutions) throughout the compu-
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tation, rather than after the completion of the computation.
This is a common case in query evaluation over databases.
Not surprisingly, ranked enumeration is the focus of exten-
sive research in the database area. A theoretical guaran-
tee that captures the notion of incremental evaluation is
that of polynomial delay between consecutive answers [6].
Very often, answers are ranked by their estimated desirabil-
ity (e.g., by a scoring function that estimates relevancy or
by a user-specified ORDER BY), and then we desire ranked
enumeration, which means that answers are produced in the
order of their ranks (e.g., by decreasing score or increasing
weight). Furthermore, when ranking is involved, the user is
likely to be satisfied (and halt the computation) immediately
after getting the top-k answers.

An example of the need for ranked enumeration is in key-
word search over structured data. The typical approach to
this problem [1,4,5,7,11,16,19] considers a data graph with
keywords attached to some of the nodes. An answer is a con-
nected subgraph (usually a tree) that contains the keywords.
A central component in the score of an answer is the size of
its subgraph. Small subgraphs indicate closer relationships
among the keywords and, hence, they are likely to be ranked
higher. Unfortunately, the number of such subgraphs can be
huge; theoretically, this number can be exponentially larger
than the size of the data, even if only two keywords are in-
volved [11]. Hence, in that setting, there is no alternative
to enumerating the answers (or producing just the top-k),
in ranked order (e.g., by increasing size or weight).

In ranked enumeration, finding the first answer is noth-
ing else than an optimization problem, for which we have
an abundance of tools (e.g., shortest-path algorithms, linear
programming, Viterbi algorithms, and so on). For i > 1,
finding the ith answer amounts to computing the best an-
swer, under the restriction that it is not among the first
i − 1 answers. Handling that restriction is the core diffi-
culty in designing enumeration and top-k algorithms. We
are aware of only very few general techniques for handling
this difficulty. A central technique (with applications dis-
cussed below) is Lawler-Murty’s procedure [15, 17],1 which
reduces an enumeration problem to an optimization prob-
lem with very simple constraints. We explain the details of
this procedure in Section 2. Roughly speaking, to apply the
procedure to a specific setting, one needs just to design an
efficient solution to the constrained optimization problem.

1Among the enumeration techniques discussed in a tutorial
by Cohen et al. [2], Lawler-Murty’s is the only one that
is applicable to ranked enumeration (except for extremely
restricted cases of ranking functions).
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Lawler-Murty’s procedure is a generalization of Yen’s algo-
rithm [23] for finding the k shortest simple paths of a graph.
As we discuss next, this procedure has been used for solving
a large number of enumeration and top-k problems, in both
systems and theory.

Lawler-Murty’s procedure is implemented in various ap-
plications, such as the bioinformatic system of Takigawa and
Mamitsuka [20] that finds connections (through chemical re-
actions, genes, etc.) between metabolites. This procedure
has also been used for solving problems related to shortest
paths, such as finding k minimum spanning trees [3, 8] and
finding k minimum Steiner trees [11]. Another early ap-
plication of the procedure is to finding k-best solutions in
resource allocation [9].

More recently, Kimelfeld and Ré [10] used Lawler-Murty’s
procedure in order to enumerate the output of a string trans-
ducer, when applied to a Markov sequence; there, each an-
swer is a string that is scored with a probability. The sys-
tem built by Talukdar et al. [21] automatically suggests
queries for designing search forms in the context of inte-
grating biomedical information. Their query-generation al-
gorithm is an adaptation of Kimelfeld and Sagiv’s algorithm
for top-k Steiner trees [11], which in turn is an applica-
tion of Lawler-Murty’s procedure (as mentioned earlier).
Parameswaran and Garcia-Molina [18] show how Lawler-
Murty’s procedure can be used within the task of gener-
ating (multiple) course recommendations in the context of
CourseRank, which is a system used by Stanford students
for planning academic programs. Kimelfeld and Sagiv used
the procedure to enumerate answers of structured queries
with ranking, such as SQL with ORDER-BY [12] or flexi-
ble twig queries over XML [13]. They also showed that the
procedure can be extended to simultaneously support both
ranking and incompleteness when queries are trees [14].

In all of the above applications, Lawler-Murty’s proce-
dure facilitates the design of ranked-enumeration algorithms
(with provable guarantees of correctness and polynomial de-
lay). But in practice, the main drawback of this procedure is
a high execution cost. In particular, our initial implementa-
tion suffered from very poor performance in terms of running
time. Optimizing Lawler-Murty’s procedure is, of course,
beneficial to each of its existing applications; furthermore,
due to the generality of this procedure (which is essentially
a reduction from ranked enumeration to optimization), we
believe that optimizing it to a practical level would give rise
to effective ranked enumeration in many new applications.
Initially, we attempted to improve performance by a simple
multi-core parallelization, which unfortunately resulted in
a negligent utilization of the core multiplicity. We eventu-
ally realized that a proper parallelization of Lawler-Murty’s
procedure requires a nontrivial understanding of and inter-
vention in the execution flow of the procedure.

The goal of the research presented in this paper is to
develop practical techniques for optimizing and paralleliz-
ing Lawler-Murty’s procedure. Our case study is an im-
plementation of keyword search on data graphs, where the
techniques we present are shown to be highly beneficial.
Nevertheless, we focus on techniques that are relevant to
essentially every application of Lawler-Murty’s procedure.
Hence, we believe that all systems implementing this proce-
dure can significantly benefit from our techniques.

Particularly, we introduce the idea of freezing that sub-
stantially reduces the amount of computations done in solv-

ing constrained optimization problems. We show how to
combine freezing with parallelism. This combination cuts
even further the needed computations. In the parallel case,
freezing has a greater effect when it is applied early. Doing
so entails a significant change in the logic of Lawler-Murty’s
procedure. The experiments show an improvement by up
to a factor of 26 compared to the original Lalwer-Murty’s
procedure.

2. LAWLERMURTY’S PROCEDURE
In this section, we describe Lawler-Murty’s procedure [15,

17]. The importance of this procedure lies in its generality
and efficiency guarantees. Lawler-Murty’s procedure can
enumerate (in ranking order) all the solutions to an opti-
mization problem, provided that we have an efficient algo-
rithm for finding the best solution (to that problem) under
a certain type of constraints. In Appendix A, we give an
intuitive explanation of Lawler-Murty’s procedure. Figure 1
gives the pseudocode. The input is a dataset D and an
instance P of the enumeration problem at hand. Each solu-
tion S to P is represented as set of objects (or elements) of
D, where the exact definition of an object depends on the
dataset D and the enumeration problem. As an example, if
we want to find all the simple paths between a given pair
of nodes s and t, then D is a graph, P is the given pair of
nodes, an object is an edge, and a solution is a set of edges
that form a simple path between s and t. We assume that
some function defines the weight (also called value) of each
solution to P . The output is an enumeration of all the solu-
tions to P by increasing weight. In practice, we often stop
Lawler-Murty’s procedure after getting the top-k solutions.

Lawler-Murty’s procedure uses two types of constraints in
order to define subsets of the solution space. I denotes a set
of inclusion constraints, and E denotes a set of exclusion
constraints. Each constraint is represented by an object of
the input dataset D, so we view both I and E as sets of
objects. A solution S satisfies I and E if it includes all
the objects of I and none of the objects of E. By a slight
abuse of terminology, we may refer to I and E simply as
constraints, rather than sets thereof.

In the algorithm of Figure 1, a triplet [I, E, S] comprises
a set I of inclusion constraints, a set E of exclusion con-
straints, and the top-ranked solution S among all those sat-
isfying I and E. In particular, [∅, ∅, S] (where ∅ is the empty
set of constraints) is the triplet that contains the top-ranked
solution, which should be printed first.

The procedure SolveOpt(D, P, I, E) has the following ar-
guments: a dataset D, an instance P of the given problem,
a set I of inclusion constraints, and a set E of exclusion
constraints. It computes the top-ranked solution among all
those satisfying I and E; if no solution exists, ⊥ is returned.
This procedure depends on and should be designed for the
specific enumeration problem at hand.

We now describe in detail the algorithm of Figure 1. Line 1
initializes an empty priority queue. This queue stores triplets
[I, E, S] according to the value (i.e., weight) of S. In partic-
ular, the top of the queue has the smallest value. In line 2,
SolveOpt is called with the empty sets of inclusion and exclu-
sion constraints, and it returns the top-ranked solution S for
the dataset D and the instance P . If S exists (i.e., S 6= ⊥),
then line 4 inserts the triplet [∅, ∅, S] into the priority queue.

While the queue is not empty, the loop of line 5 repeats
the following operations. Line 6 pops the top of the queue
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Algorithm: Lawler-Murty(D, P )

1: Queue ← an empty priority queue
2: S ← SolveOpt(D, P, ∅, ∅)
3: if S 6=⊥ then
4: Queue.insert([∅, ∅, S])
5: while Queue 6= ∅ do
6: [I, E,S]← Queue .removeTop()
7: print(S)
8: create the pairs of constraints [I1, E1], . . . , [In, En] for

the optimization problems spawned by [I, E, S]
9: for i← 1, . . . , n do

10: Si ← SolveOpt(D, P, Ii, Ei)
11: if Si 6=⊥ then
12: Queue .insert([Ii, Ei, Si])

Figure 1: Lawler-Murty’s procedure.

to get the triplet [I, E, S]. The solution S is printed in
line 7. Line 8 depends on the given enumeration problem
and, hence, is written just as a high-level operation. This
line partitions (into subsets) all the solutions (except S) that
satisfy I and E. Each subset is defined by a pair [Ii, Ei]
of (sets of) inclusion and exclusion constraints. The pairs
[I1, E1], . . . , [In, En] are derived from the triplet [I, E, S] that
was popped from the queue in line 6. The way of deriving
these pairs is particular to the enumeration problem at hand.
The number n of pairs depends on the size of S. The loop
of line 9 iterates over all these pairs, and for each [Ii, Ei] it
finds in line 10 the top-ranked solution Si (for the dataset
D and the instance P ) that satisfies Ii and Ei. If Si exists,
then line 12 inserts the triplet [Ii, Ei, Si] into the queue.

In summary, line 8 uses [I, E, S] to create n instances of
the optimization problem (i.e., finding the top-ranked solu-
tion under constraints). We refer to these instances (allow-
ing for a slight abuse of terminology) as the optimization
problems spawned by [I, E, S].

An important property of Lawler-Murty’s procedure is the
following. If SolveOpt(D, P, I,E) finds only an approxima-
tion of the top-ranked solution under constraints, but with
a guaranteed approximation ratio, then the enumeration is
in a guaranteed approximate order [11]. This is useful when
it is too hard (from either a theoretical or practical point of
view) to find the exact top-ranked solution.

2.1 Research Goal and Methodology
Our goal is to enhance the practical efficiency of Lawler-

Murty’s procedure by developing optimization and paral-
lelization techniques that do not depend on a particular enu-
meration problem. However, testing these techniques can be
done only in the context of specific problems. In particular,
the experiments that we describe in Section 8 test the ef-
fectiveness of our techniques with respect to the problem of
keyword search over data graphs, which is described next.

When applying keyword search to data graphs, the goal
is to enumerate reduced subtrees that contain all the terms
of a given query. (A subtree is reduced if it contains all the
query terms, but none of its proper subtrees also includes all
of them.) In comparison to paths, it is considerably more
difficult to develop a practically efficient algorithm for find-
ing the top-ranked reduced subtree under constraints. In
earlier work [4], we developed an algorithm that finds a 2-
approximation of the minimal-height reduced subtree under

inclusion and exclusion constraints; that algorithm was used
within Lawler-Murty’s procedure in an implementation of an
engine for keyword search over data graphs.

2.2 Progressive Lower Bound
Although our techniques are general, we require the im-

plementation of SolveOpt(D, P, I,E) to have the following
property. It should be an iterative process, where each
iteration gets closer to the solution, and provides a lower
bound on the solution. Moreover, we assume that the lower
bound improves with each additional iteration. This prop-
erty, called progressive lower bound, usually holds for the
problems solved by means of Lawler-Murty’s procedure. For
example, for the problem of path enumeration, Dijkstra’s al-
gorithm is used for finding the shortest path. Each iteration
of this algorithm gives (when popping the priority queue)
a better lower bound on the length of the shortest path
between the given pair of nodes. Other examples are algo-
rithms in the spirit the Viterbi algorithm [22] (which have
been used within Lawler-Murty’s procedure [10]).

3. FREEZING SPAWNED PROBLEMS
After popping the top of the queue (in line 6 of Figure 1),

new optimization problems are spawned and they need to
be solved (in line 10) before the top of the queue can be
removed again. Thus, even if only one of the spawned prob-
lems requires a long computation, the whole algorithm is
slowed down considerably. In principle, there is no need
to completely solve the spawned problems before popping
the next element from the top of the queue. Instead, it is
sufficient to know that every spawned problem either has
already been solved or cannot produce a solution that is
better (i.e., has a smaller value) than the current top of the
queue. By employing the progressive lower bound, we may
conclude that the latter part of the condition holds.

We can suspend the computation of a spawned problem
when it reaches a lower bound that is greater than the value
at the top of the queue. Ideally, we would like to freeze a
snapshot of the (state of the) computation. However, this
requires a lot of memory. So, we simply freeze the problem
itself and record the lower bound that has been reached.
Formally, a frozen problem is a triplet [I,E, l], where I and
E are the sets of inclusion and exclusion constraints, respec-
tively, and l is the lower bound that has been reached when
the computation is suspended. Thus, when the computation
of a frozen problem is resumed, it should start from scratch.

When a problem is frozen, its triplet [I, E, l] is inserted
into the queue (and the lower bound l is used as the value
that determines the position in the queue). Thus, the queue
stores triplets of the form [I, E, X], where X is either a
solution or a lower bound (and it is possible to distinguish
between the two).

An important issue is how to decide when to freeze the
computation of an optimization problem. We could do it as
soon as the lower bound becomes equal to or greater than
the value at the top of the queue. However, in order to
avoid freezing and restarting of the same problem too often,
we use a freezing threshold. We freeze an optimization prob-
lem when its lower bound exceeds the freezing threshold.
We set the freezing threshold by applying the function F to
the value v at the top of the queue. Based on some experi-
ments described in Section 8.2, we have chosen F (v) = 1.1v,
namely, the freezing threshold is 10% more than the value at
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Algorithm: Serial-with-Freezing(D, P )

1: Queue ← an empty priority queue
2: S ← SolveOpt(D, P, ∅, ∅)
3: if S 6=⊥ then
4: Queue.insert([∅, ∅, S])
5: while Queue 6= ∅ do
6: [I, E,X]← Queue.removeTop()
7: if Queue 6= ∅ then
8: f ← F (Queue.topValue())
9: else

10: f ←∞
11: /* note that in lines 16 and 22, SolveOpt returns a solu-

tion or a lower bound l such that l > f */

12: if X is a solution then
13: print(X)
14: create the constraint pairs [I1, E1], . . . , [In, En] for

the optimization problems spawned by [I, E, X]
15: for i← 1, . . . , n do
16: Xi ← SolveOpt(D, P, Ii, Ei)
17: if Xi 6=⊥ then
18: Queue.insert([Ii, Ei, Xi])
19: if [Ii, Ei, Xi] becomes the top of Queue then
20: f ← F (value(Xi))
21: else /* X is a lower bound l */

22: X ′ ← SolveOpt(D, P, I, E)
23: if X ′ 6=⊥ then
24: Queue .insert([I, E, X ′])

Figure 2: Serial algorithm with freezing.

the top of the queue. For the sake of efficiency, the algorithm
stores F (v) in a dedicated variable f , which is updated when
either the queue is popped or a new element is inserted and
becomes the new top of the queue. If the queue becomes
empty after popping its top, then the freezing threshold is
set to infinity.

Figure 2 describes the incorporation of freezing in Lawler-
Murty’s procedure. The first six lines are the same as those
of Figure 1. In particular, line 6 pops the queue, but now
X could be either a solution or a lower bound on a frozen
problem. Lines 7–10 update the freezing threshold f as fol-
lows. If the queue is not empty, then line 8 assigns to f the
result of applying F to the value at the top of the queue.
Otherwise (i.e., the queue is empty), infinity is assigned to f .
Line 11 is a comment that says the following. Inside the loop
of line 5, an execution of SolveOpt(D, P, I, E) tests whether
the progressive lower bound l exceeds f . This test is done
whenever l changes. If l > f becomes true before a solution
is found, then SolveOpt(D, P, I, E) returns l. Line 12 tests
whether X is a solution. If so, lines 13–20 are executed. The
first six of them (i.e., lines 13–18) are the same as lines 7–
12 of Figure 1, except for the fact that the Xi returned in
line 16 could be a lower bound rather than a solution. Note
that (as earlier) if Xi is ⊥, it means that there is no solu-
tion. Line 19 checks whether the newly inserted triplet has
become the top of the queue. If so, the freezing threshold is
updated immediately in line 20. Lines 22–24 are executed if
X is a lower bound. In this case, there are no spawned opti-
mization problems. The computation of the frozen problem
starts from scratch in line 22, and its returned value X ′ is
either a solution or a new lower bound. The triplet [I, E, X ′]
is inserted into the queue (unless X ′ = ⊥, i.e., no solution).

Note that there is no need to update the freezing threshold
after the insertion, because this will be done in lines 7–10
during the next iteration of the main loop of line 5.

4. RELEVANCE MONITORING
Our goal is to parallelize Lawler-Murty’s procedure. The

basic idea is to handle the spawned optimization problems
in parallel. (Freezing is not used in the parallel algorithm
of this section.) Thus, a single, dedicated thread executes
the main task, which is the algorithm of Figure 1 except
for lines 10–12. Instead of solving the spawned problems,
the main task creates a new optimization task for each one
of these problems. A thread pool is employed to run the
optimization tasks. Each optimization task executes lines
10–12 of the original Lawler-Murty’s procedure of Figure 1.

The problem with the above approach is that the main
task has to wait until all the spawned problems are solved
before popping the next element from the queue. Conse-
quently, when some but not all of the optimization tasks
require a long time, the CPU cores are underutilized. To
overcome this problem, we use relevance monitoring, which
has some similarity to freezing, but the two are not the same.
Relevance monitoring sometimes makes it possible to pop
the next element from the top of the queue before all the
spawned problems are solved. Thus, the next solution can
be printed more quickly. Unlike freezing, however, relevance
monitoring cannot suspend the execution of an optimization
task, even if that task runs for a very long time.

The main idea is to employ the progressive lower bound
(of Section 2.2) as follows. An optimization task monitors
whether the lower bound exceeds the value at the top of the
queue. If so, the main task does not have to wait for that
optimization task. That is, the main task continues with the
next iteration when the following holds. Every optimization

Algorithm: Relevance-Monitoring(D, P ) (main task)

1: Semaphore ← a counting semaphore initialized to 0
2: Queue ← an empty priority queue
3: S ← SolveOpt(D, P, ∅, ∅)
4: if S 6=⊥ then
5: Queue .insert([∅, ∅, S])
6: while Queue 6= ∅ do
7: [I, E, S]← Queue .removeTop()
8: print(S)
9: if Queue 6= ∅ then

10: v ← Queue.topValue()
11: else
12: v ←∞
13: lock the task list T

14: for each task t on T do
15: t.toRelease ← true
16: m← T.size()
17: unlock T

18: create the constraint pairs [I1, E1], . . . , [In, En] for the
optimization problems spawned by [I, E, S]

19: for i← 1, . . . , n do
20: create an optimization task for (D, P, Ii, Ei), and

set its toRelease to true
21: Semaphore .acquire(n + m)

Figure 3: Main task with monitoring.
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Task for optimization problem (D, P, I,E)

1: the task (i.e., this) adds itself to the task list T

2: S ← SolveOpt(D, P, I, E) /* also runs the relevance mon-

itoring of Figure 5 whenever the lower bound changes */

3: if S 6=⊥ then
4: Queue.insert([I, E, S])
5: if [I, E, S] becomes the top of Queue then
6: v ← Queue.topValue()
7: lock the task list T

8: the task (i.e., this) removes itself from T

9: unlock T

10: if toRelease = true then
11: Semaphore .release(1)

Figure 4: Optimization task with monitoring.

Relevance Monitoring

1: if toRelease = true then
2: if lower-bound > relevance-threshold then
3: toRelease ← false
4: Semaphore .release(1)

Figure 5: Code of relevance monitoring.

task either has finished or has a lower bound (on its solution)
that is greater than the value at the top of the queue.

The relevance threshold is the value v at the top of the
queue. If the lower bound of an optimization task t exceeds
v, then t is no longer relevant to the current iteration of
the main task. However, when the next iteration starts, the
queue is popped and, as a result, the relevance threshold
changes. Hence, task t becomes relevant again (if it has not
already finished).

An optimization task is created with a Boolean variable
called toRelease , which is initialized to true. This variable
indicates whether the optimization task is relevant to the
current iteration of the main task. When the optimization
task is no longer relevant, it releases a permit and changes
its toRelease to false. The main task waits until it acquires
permits from all the optimization tasks. The task list, de-
noted by T , stores pointers to the optimization tasks.

The parallel algorithm that uses relevance monitoring con-
sists of the main task of Figure 3 and the optimization task
of Figure 4. We first describe the main task. This task
uses a counting semaphore, which is initialized to zero in
line 1. Lines 2–8 of Figure 3 are the same as lines 1–7 of
Figure 1. In particular, the queue is popped in line 7 and
the obtained solution is printed in line 8. In lines 9–12, the
new relevance threshold is assigned to v. Specifically, if the
queue is not empty, then v gets the value at the top of the
queue; otherwise, v becomes infinity. The loop of line 14 is
needed so that all the tasks will become relevant again. In
this loop, the task list is traversed; for every task, line 15
sets its toRelease to true. An exclusive lock on the task
list is obtained before the traversal (in line 13). After the
traversal ends, line 16 sets the variable m to the number
of tasks on the list, and then the lock is released in line 17.
Line 18 creates the constraints for the spawned optimization
problems. The loop of line 19 creates optimization tasks for
the spawned problems. Each created task (in line 20) has
true for its toRelease . In line 21, the main task needs to

acquire n + m permits before continuing with the next iter-
ation. Note that n is the number of spawned optimization
problems and m is the number of tasks that were traversed
on the task list.

Next, we describe the optimization task of Figure 4. In
line 1, the task adds itself to the task list. Line 2 calls the
procedure for solving the optimization problem. This line
uses a modified algorithm (for the optimization problem) so
that whenever the lower bound changes, the relevance mon-
itoring of Figure 5 is executed. Namely, if toRelease is true
and the lower bound exceeds the relevance threshold, then
toRelease is changed to false and one permit is released.

Now, we continue with the description of Figure 4. Note
that line 2 does not do any freezing; that is, it returns either
a solution or ⊥ (if there is no solution). Line 3 tests whether
a solution was found and if so, line 4 adds the corresponding
triplet to the queue. Line 5 tests whether that triplet is the
new top of the queue, and if so, line 6 updates the relevance
threshold. In line 8, the task removes itself from the task
list. Before this operation, the list is locked exclusively (in
line 7). The lock is released (in line 9) after the removal.
Finally, in line 10, the task tests whether its toRelease is
true and if so, it releases one permit in line 11.

We now discuss the issue of locks. For clarity’s sake, the
pseudo code explicitly shows locking and unlocking only in
some places. Additional locking is done as follows. First,
the queue is implemented as a thread-safe collection. Sec-
ond, line 1 of Figure 4 actually includes the steps of obtain-
ing an exclusive lock on T before the task adds itself to T ,
and releasing the lock when this operation ends. Third, the
following segments of code actually begin with obtaining a
lock on the relevant toRelease , and they end with unlocking
that toRelease : (1) Line 15 of Figure 3, (2) Lines 10–11 of
Figure 4, and (3) Lines 3–4 of Figure 5. Appendix B proves
the correctness of the parallel algorithm of this section.

5. PARALLELISM WITH FREEZING
Recall that the serial algorithm with freezing (Figure 2)

enhances the efficiency of Lawler-Murty’s procedure (Fig-
ure 1) by suspending long computations of optimization
problems. The parallel algorithm with relevance monitoring
gains efficiency by utilizing multiple cores. In this section,
we combine freezing and relevance monitoring. Due to space
limitations, our discussion is short and high level; the full
details are in Appendix C.

We found that a straightforward combination of freezing
and relevance monitoring suffers from low utilization of the
cores, for the following reason. Recall that the algorithm
with freezing stores two types of triplets in the queue: solu-
tions and lower bounds of frozen problems. Popping a solu-
tion creates work for multiple threads (to solve the spawned
problems). However, popping a lower bound launches only
one thread that runs the optimization task t for solving the
frozen problem. One could suggest, in that case, to further
pop additional triplets from the queue to utilize available
threads. However, that could lead to the following violation
of the algorithm’s correctness. Recall that if one of these
additional triplets is for a solution S, then the main task
needs to print S; but it cannot print S, since the ongoing
execution of t may produce a solution that is better than S!

So, instead of loading available threads by popping triplets
from the queue, we let these threads handle only frozen prob-
lems. For that, we use two priority queues (instead of just
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Table 1: Dataset statistics.
dataset file size #nodes #edges

M 1.44M 22.5K 139K
PD 74.2M 356K 6.3M
FD 692M 4.16M 70.5M

one). One is the ordinary queue of Lawler-Murty’s proce-
dure, and it stores solutions; we will continue to refer to it
as “the queue.” The second is a priority queue, called the
freezer, that stores frozen problems (the top of this queue
has the frozen problem with the smallest lower bound).

Finally, when assigning frozen problems to threads, we
will select those with a small lower bound, because they are
likely to produce better solutions. Specifically, in addition
to the relevance threshold v and the freezing threshold f ,
we use an unfreezing threshold u, which is between v and f .
A frozen problem is assigned to a thread if its lower bound
is below u. (Based on experiments, we found that u = 1.05v

and f = 1.1v are good choices.)

6. EARLY FREEZING
When the main task pops a triplet [I, E, S], it may cre-

ate too few spawned optimization problems to fully utilize
all available threads. To overcome this problem, we intro-
duce the technique of early freezing. Again, our discussion
is short and high level; the full details are in Appendix D.
The main idea is to create spawned problems when a so-
lution S is found and inserted into the queue (by an opti-
mization task), rather than when it is popped and printed
(by the main task). The spawned problems are immediately
inserted into the freezer upon their creation. However, do-
ing so raises the following problem with the current design
of the algorithm. The main task is the one that creates
spawned problems, but it is not aware of when the compu-
tation of an optimization problem is done. So, we delegate
the task of spawning problems to the optimization tasks.
In addition, before an optimization task terminates, it may
pop the freezer and create a new task, in order to keep the
available threads fully utilized.

In principle, now the main task needs only to remove so-
lutions from the queue and print them. However, the main
task can do it so quickly that some frozen problems will have
a lower bound that is smaller than the current solution at
the top of the queue. Therefore, the main task should start
a new iteration by first checking whether there are frozen
problems with a lower bound that is smaller than the solu-
tion at the top of the queue. If so, the main task should
create new optimization tasks for these frozen problems be-
fore printing the next solution.

7. MULTIPLE POPPING
A simple optimization, which can be easily incorporated

in all the parallel algorithms we developed, is based on the
following (straightforward) observation. If we pop a solution
from the queue and the next solution has the same value,
then we can immediately pop the next one as well. We can
easily modify each of our algorithms so that all the solutions
with the same weight are popped at the beginning of each
iteration, instead of one at a time. This optimization is
called multiple popping, and as shown in Section 8, it is
often surprisingly beneficial.

8. EXPERIMENTS
As a case study for our algorithms, we used the problem of

enumerating reduced subtrees, which is central to keyword
search over data graphs [1, 4, 7, 11]. The input consists of a
data graph and a query (i.e., a set of keywords). The latter
is the instance of the enumeration problem. The algorithm
of [4] was used to implement the procedure that solves the
optimization problem under constraints.

8.1 The Experimental Setup
The experiments are based on two datasets. One is Mon-

dial2 and the other is DBLP.3 From DBLP, we created a
third, smaller dataset that includes only proceedings and
journals that are related to database research. It should be
emphasized that we did not remove any fields from the orig-
inal datasets. We use the following names for the datasets.
M is Mondial, PD is the partial DBLP, and FD is the full
DBLP. Some statistics about the datasets are given in Ta-
ble 1. In particular, the file size refers to the source data in
XML, whereas the numbers of nodes and edges are for the
data graph generated from the XML.

For each dataset, we use two different schemes for as-
signing weights to the nodes and edges of the graph. These
weighting schemes, which are described in Appendix E, have
been proven in practice as effective in generating relevant an-
swers to a large number of queries. Thus, each dataset has
two versions, which are called M1, M2, PD1, etc.

For each dataset, the queries range from 2 to 10 terms.
For each size (i.e., number of terms), we created four queries.
Statistics about the keyword selectivity of the queries are
given in Appendix F. To accommodate space limitations,
we do not show results for every query size separately, but
rather divide the queries into three groups: short (2–4 query
terms), medium (5–7 query terms), and long (8–10 query
terms). The running time for each group is the average over
all queries in the group, and it does not include overheads,
such as looking up a keyword index and so on.

The experiments were run on a Linux server with two In-
tel Xeon X5550 (2.67GHz) processors and 48GB memory
(1333MHz RDIMMs). Each processor has four cores (with
two hyper threads per core). The algorithms were imple-
mented in Java 1.6 and executed by a Java 64-bit server.

8.2 Serial Algorithms
We considered two serial algorithms: the original Lawler-

Murty’s procedure of Figure 1, and the serial algorithm with
freezing (abbr. SF) of Figure 2. The detailed experimental
results are in Appendix G, and they show the following.
Freezing cuts the running time by at least one third, and
in many cases, by one half or more. For 100 solutions, the
reduction is at least one half in most cases, and two thirds in
half of the cases. Almost always, freezing saves a larger per-
centage of the running time when more solutions are gener-
ated. It is not surprising: as the number of solutions grows,
the difference in weights becomes smaller and, hence, frozen
problems have to be recomputed less frequently.

Figure 6 shows how the running time changes when the
freezing threshold varies. This experiment was done on the

2http://www.dbis.informatik.uni-goettingen.de/
Mondial/#XML
3http://dblp.uni-trier.de/xml/
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Figure 6: Varying the freezing threshold.
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Figure 10: M1 medium.
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Figure 11: M1 long.
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Figure 12: M2 short.
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Figure 13: M2 medium.
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Figure 14: M2 long.

datasets M1 and PD1 when generating 100 answers. The
figure shows the running time of SF as a percentage of the
original Lawler-Murty’s procedure. As can be seen, reason-
able choices for F (v) are between 1.04v and 1.12v.

8.3 Parallel Algorithms
We show results for the parallel algorithms using SF as the

baseline. That is, the running time is given as a percentage
of (the running time of) SF. The results are for 100 solu-
tions. The graphs depict the running time vs. the number
of threads in the pool for executing optimization tasks. Note

that in addition to those threads, there is also one thread
for the main task.

First, we discuss the relevance-monitoring (RM) algorithm
of Section 4. Figures 7 and 8 present the running time of RM
vs. the number of threads for short and long queries, respec-
tively. Each figure is for two datasets, namely, M1 and PD1.
For each dataset, there are two graphs, one is for single pop-
ping (S) and the other is for multiple popping (M). For one
thread, the running times are much worse than those of SF,
because the RM algorithm does not use freezing. Only when
there are 4 or more threads, does the running time start to
be better than SF. This shows that the effect of freezing
cannot be realized by merely using more threads. We do
not give more results for the RM algorithm due to a lack of
space and, anyhow, they are about the same. The bottom
line is clear: parallelizing without incorporating freezing is
not an effective approach.

We now consider the parallel algorithms with freezing
(Section 5) and early freezing (Section 6). We give results
only for 100 solutions, because those for 10 are similar. That
similarity is due to the fact that both the algorithm that is
tested and the baseline use freezing, so the ratio of the run-
ning times does not depend on the number of solutions.

The results are organized in twelve figures as follows. Each
figure is for one dataset (M1, M2, FD1, or FD2) and one
group of query sizes (short, medium, or long). (The re-
sults for PD1 and PD2 do not provide any additional insight
and, hence, are not shown.) Each figure has four graphs for
the following algorithms: freezing with single popping (FS),
freezing with multiple popping (FM), early freezing with sin-
gle popping (ES), and early freezing with multiple popping
(EM). For example, Figures 9, 10, and 11 are for running
short, medium and long queries, respectively, on M1.

The main conclusions from Figures 9–20 are as follows.
Freezing with multiple popping is usually better than freez-
ing with single popping. However, when early freezing is
used, there is no significant difference between the two types
of popping. The bottom line is that early freezing is the
best algorithm (except for some cases where only one or two
threads are used). The difference between freezing and early
freezing is most noticeable in short queries, for the following
reason. When queries are short, solutions are small. Hence,
a solution spawns only a few optimization problems and, as
a result, freezing underutilizes the thread pool.

The speedup of the early-freezing algorithm is excellent.
For eight threads, the percentages measuring the running
time have averages (over all datasets) of 13, 16 and 24 for
long, medium and short queries, respectively. In the case
of six threads, the averages are almost the same: 15, 20
and 26. (These averages are for multiple popping; for single
popping they are almost identical: 12, 17, 25 for 8 threads,
and 15, 21, 25 for 6 threads.) Note that 12% amounts to a
speed up by a factor of 8, which is almost too good to be
true for 8 threads. The reason for such a performance is the
following. When several optimization problems are solved in
parallel, chances are higher that the freezing threshold will
occasionally decrease. (Lines 9–11 of Figure 26 decrease the
freezing threshold when the inserted solution becomes the
top of the queue.) Thus, not only does the early-freezing
algorithm operate in parallel, its total amount of work is
actually less than that of the serial algorithm.

We now explain why there is hardly any improvement
(and even a degradation in Figure 13) in the speedup from
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Figure 16: FD1 medium.
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Figure 17: FD1 long.
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Figure 18: FD2 short.
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Figure 19: FD2 medium.
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Figure 20: FD2 long.

six to eight threads. Recall that we have eight cores in total.
(The hyper threads of each core do not add true parallelism.)
In addition to the thread pool (for executing optimization
tasks), there is also one thread for the main task, as well as
some other threads for garbage collection, operating-system
tasks, and so on. This means that when six threads are
allocated to the thread pool, all the cores are employed.

Next, we explain why FS (i.e., freezing with serial pop-
ping) is sometimes better than FM. When multiple popping
is used, the freezing threshold f increases more quickly, be-
cause the top of the queue becomes larger faster. Indeed, f

may go down again as spawned problems are solved, but that
tends to happen more slowly when there are fewer threads.
Thus, multiple popping is not effective when there is only a
small number of threads. As the number of threads grows,
FM catches up FS and even surpasses it, because FM is more
adept at keeping many threads busy. In contrast, early freez-
ing does not suffer from this phenomenon, because it avoids
creating new optimization tasks when the thread pool is
fully utilized (see lines 19–26 of Figure 26).

Sometimes, FS on a single thread is faster than the se-
rial baseline SF. For example, in Figure 17, its running time
is just 38% of the baseline. The reason for that is the fol-
lowing. FS and SF are quite different in how they oper-
ate, even when FS has just a single thread for optimization

tasks (and another one for the main task). For example,
FS has both a queue and a freezer, whereas SF has only a
queue. As a result of those differences, there is no guarantee
that FS and SF produce equal-weight solutions in the same
order. Sometimes there are many equal-weight solutions.
Moreover, some of those solutions spawn a few optimization
problems whereas others spawn many. An algorithm that
first prints solutions that spawn only a few problems will
run faster than an algorithm that starts with solutions that
spawn many problems.
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APPENDIX

A. ABOUT LAWLERMURTY’S
We now intuitively explain how Lawler-Murty’s procedure

works. The circle of Figure 21(a) contains the solutions that
we want to enumerate. Pictorially, solutions that are closer
to the center have a higher rank. So, S1 is the top-ranked
solution. An optimization algorithm that computes the best
solution can be used for finding S1. After printing S1, the
remainder of the circle is divided into disjoint subsets. Gen-
erally, the number of these subsets depends on S1. In Fig-
ure 21(a), it is assumed that there are four subsets and they
are shown as the slices separated by thick lines. Now, we
should find the top-ranked solution in each slice, thereby ob-
taining S2, S3, S5 and S7. These four solutions are inserted
into a priority queue. Clearly, the second solution in the
ranking order is the one at the top of the queue, namely, S2.
After printing S2, the remainder of the slice (from which S2

was taken) is divided into sub-slices, namely, the ones sep-
arated by dotted lines. In each sub-slice, we find the top-
ranked solution and add it to the queue. Now, the queue
has six solutions, namely, S3, S5, S7 and the three new solu-
tions S6, S10 and S11. The algorithm likewise continues until
the queue is empty (or sufficiency many solutions have been
printed): the solution at the top of the queue is popped and
printed, its slice is divided into sub-slices, the top-ranked so-
lution in each sub-slice is added to the queue, and so on. So,
two problems should be solved when using Lawler-Murty’s
procedure: how to divide each slice into sub-slices, and how
to find the top-ranked solution in each slice. Lawler and
Murty addressed the first problem by means of inclusion
and exclusion constraints, as explained in Section 2.

As a concrete example of using Lawler-Murty’s procedure,
we consider Yen’s algorithm [23] for enumerating (by in-
creasing length) all simple paths between two given nodes.
In Figure 21(c), the shortest path between nodes a and d has
three edges and it goes through nodes b and c (Dijkstra’s al-
gorithm can be used for finding this path). So, three subsets
are created, as illustrated in Figure 21(b): (1) the subset of
all paths between a and d that do not contain the edge (a, b),
(2) the subset of all paths between a and d that contain the
edge (a, b), but not (b, c), and (3) the subset of all paths
between a and d that contain the edges (a, b) and (b, c), but
not (c, d). In other words, each subset comprises all paths
that contain some (possibly empty) prefix of the shortest
path from a to d and do not contain the next edge that fol-
lows that prefix. Observe that, as required, the subsets are
indeed disjoint, and their union contains all paths between
a and d except for the (already printed) shortest one.

Now we have to find the shortest path in each subset. This
can be done easily by a reduction to the regular shortest-
path problem. For example, suppose that we want to find
the shortest path in the third subset. Nodes a and b (as well
as their incident edges) are removed from the graph. The
edge (c, d) is also removed and, in the resulting graph that
is shown in Figure 21(d), we find the shortest path between
c and d. We add to that path the edges (a, b) and (b, c) in
order to obtain the shortest path of the third subset.

B. PROOF OF CORRECTNESS
In this section, we prove the correctness of the parallel al-

gorithm with relevance monitoring (described in Section 4).
Let RM denote the parallel algorithm with relevant moni-

toring (Figure 3), and let LM denote the original Lawler-
Murty’s procedure (Figure 1). It suffices to show that RM
prints solutions in the same order as LM (possibly, up to
reordering among solutions with the same value). At the
conceptual level, the main difference between LM and RM
is in the content of the queue when a solution is popped
by the main task. In LM, the queue contains the solutions
of all the optimization problems spawned thus far. In RM,
the queue contains just some of those solutions, while the
rest are hidden since they are still computed by optimization
tasks of the task list. However, lines 9–21 of Figure 3 (and
the code of an optimization task of Figure 4) ensure that
when the main task pops a solution in line 7, every hidden
solution has a lower bound that is larger than the value at
the top of the queue and, hence, would not have been chosen
even if it had been on the queue. Specifically, this is done
as follows.

Lines 9–12 of Figure 3 update the relevance threshold v to
the value at the top of the queue. For all the optimization
tasks traversed on the task list (in lines 13–17) or created
in line 20, the toRelease is set to true. Line 21 waits for
permits from all of these tasks, while each one of them re-
leases a permit in two cases: line 2 of Figure 4, and line 11
of that figure. In the former case, the lower bound exceeds
v (hence, as said above, the solution would not have been
chosen). In the latter case, the solution has been computed
and inserted into the queue (hence, is no longer hidden).

Additional important observations are as follows. Opera-
tions on the task list require a lock. An optimization task
releases a permit (if needed) in lines 10–11 of Figure 4 only
after removing itself from the task list in line 8. Finally,
when the relevance threshold is updated by an optimization
task in line 6 of Figure 4, it can only decrease.

C. PARALLELFREEZING ALGORITHM
In this section, we give the details of the algorithm dis-

cussed in Section 5, which combines freezing and relevance
monitoring. Figure 22 describes the main task. Lines 1–22
are the same as lines 1-20 of Figure 3, except for the fol-
lowing additions: line 3 initializes the freezer, and lines 14
updates f immediately after the relevance threshold v gets
a new value.
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Figure 21: Illustration of (a) Lawler-Murty’s proce-
dure and (b–d) Yen’s algorithm.
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Algorithm: Parallel-Freezing(D, P ) (main task)

1: Semaphore ← a counting semaphore initialized to 0
2: Queue ← an empty priority queue
3: Freezer ← an empty priority queue
4: S ← SolveOpt(D, P, ∅, ∅)
5: if S 6=⊥ then
6: Queue.insert([∅, ∅, S])
7: while Queue 6= ∅ do
8: [I, E,S]← Queue .removeTop()
9: print(S)

10: if Queue 6= ∅ then
11: v ← Queue.topValue()
12: else
13: v ←∞
14: f ← F (v) /* update the freezing threshold */

15: lock the task list T

16: for each task t on T do
17: t.toRelease ← true
18: m← T.size()
19: unlock T

20: create the pairs of constraints [I1, E1], . . . , [In, En] for
the optimization problems spawned by [I, E, S]

21: for i← 1, . . . , n do
22: create an optimization task for (D, P, Ii, Ei, 0), and

set its toRelease to true
23: k← 0
24: u← U(v) /* update the unfreezing threshold */

25: while Freezer 6= ∅ and Freezer .topValue() < u do
26: [I, E, l]← Freezer .removeTop()
27: create an optimization task to solve (D, P, I,E, l),

and set its toRelease to true
28: k ← k + 1
29: Semaphore .acquire(n + m + k)

Figure 22: Main task with parallel freezing.

The main difference between Figures 3 and 22 is the ad-
dition of lines 23–28 to the main loop of line 6 (which is
line 7 in Figure 22). These lines remove from the freezer all
the optimization problems that have a lower bound that is
smaller than the unfreezing threshold u (which is updated
in line 24). Line 27 creates an optimization task for each of
these problems. As usual, the new tasks have their toRelease
set to true. The variable k counts the number of tasks cre-
ated in the loop of line 25. Line 29 is similar to the last line
of Figure 3, except that now the main task has to wait for
n + m + k permits.

A minor, yet important difference between Figure 22 and
the algorithms of previous sections is the following. An op-
timization task has five (rather than four) parameters. The
fifth is the lower bound l that is returned when an optimiza-
tion problem is frozen (as explained below). When tasks for
spawned optimization problems are created in line 22, the
fifth parameter is zero.

Figure 23 describes the optimization task, which differs
from Figure 4 in two places. The first is the implementation
of SolveOpt(D, P, I, E, l) in line 2. In addition to solving
the optimization problem, this procedure also executes the
code of Figure 24 whenever the lower bound changes. This
code is obtained from that of Figure 5 by two modifications.
First, lines 1–2 are new. Line 1 tests whether the lower
bound is greater than the freezing threshold and if so, line 2

returns that bound and SolveOpt(D, P, I,E, l) terminates.
Second, lines 3–6 of Figure 24 are the same as the four lines
of Figure 5, except that in the test of line 2 (of Figure 5) we
added the disjunct that checks whether l is greater than the
relevance threshold. Note that the optimization task can
release a permit as soon as it starts executing line 2 of Fig-
ure 23, provided that the following holds: the lower bound l

from the previous computation of the optimization problem
exceeds the current relevance threshold. This may happen
if the relevance threshold has not increased sufficiently (or
even decreased) since the problem was unfrozen.

SolveOpt(D, P, I,E, l) is also modified as follows. When it
starts to recompute a frozen optimization problem (i.e., l >

0), it first of all checks whether l is greater than the cur-
rent freezing threshold f . (Recall that l is the lower bound
that was obtained when that optimization problem was pre-
viously computed.) If l > f , then SolveOpt(D, P, I, E, l) im-
mediately returns l and terminates. Our experiments have
shown that, in some cases, this test cuts down a lot of un-
necessary work.

The second difference between Figures 4 and 23 is the re-
placement of lines 3–6 of the former with lines 3–10 of the
latter. Line 3 of Figure 23 tests that line 2 did not return
⊥ (otherwise, there is no solution and the execution con-
tinues to line 11). If the test is true, then line 4 checks
whether a solution was found in line 2. If so, line 5 in-
serts the corresponding triplet into the queue. Line 6 tests
whether that triplet has become the top of the queue and if
so, lines 7 and 8 update the relevance threshold v and the
freezing threshold f , respectively. If the test of line 4 is false

Task for optimization problem (D, P, I,E, l)

1: the task (i.e., this) adds itself to the task list T

2: X ← SolveOpt(D, P, I,E, l) /* this line also executes the

code of Figure 24 whenever the lower bound changes */

3: if X 6=⊥ then
4: if X is a solution then
5: Queue .insert([I, E, X])
6: if [I, E, X] becomes the top of Queue then
7: v ← Queue .topValue()
8: f ← F (X)
9: else

10: Freezer .insert([I, E,X])
11: lock the task list T

12: the task (i.e., this) removes itself from T

13: unlock T

14: if toRelease = true then
15: Semaphore .release(1)

Figure 23: Optimization task with parallel freezing.

Monitoring with Freezing

1: if lower-bound > f then
2: return lower-bound
3: if toRelease = true then
4: if lower-bound > relevance-threshold or

l > relevance-threshold then
5: toRelease ← false
6: Semaphore .release(1)

Figure 24: Monitoring with parallel freezing.
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Algorithm: Early-Freezing(D, P ) (main task)

1: Semaphore ← a counting semaphore initialized to 0
2: Queue ← an empty priority queue
3: Freezer ← an empty priority queue
4: S ← SolveOpt(D, P, ∅, ∅)
5: if S 6=⊥ then
6: Queue.insert([∅, ∅, S])
7: create the pairs [I1, E1], . . . , [In, En] of constraints for

the optimization problems spawned by [∅, ∅, S]
8: for i← 1, . . . , n do
9: Freezer .insert([Ii, Ei, value(S)])

10: while Queue 6= ∅ or Freezer 6= ∅ do
11: if Queue 6= ∅ then
12: v ← Queue.topValue()
13: else
14: v ←∞
15: lock Freezer
16: k← 0
17: lock T

18: for each task t on T do
19: if t.revealed = false then
20: t.revealed ← true
21: if t.l < v then
22: t.toRelease ← true
23: k ← k + 1
24: unlock T

25: while Freezer 6= ∅ and Freezer .topValue() < v do
26: [I, E, l]← Freezer .removeTop()
27: create an optimization task t to solve (D, P, I,E, l),

and set both its toRelease and revealed to true
28: add t to the task list T

29: k ← k + 1
30: unlock Freezer
31: Semaphore .acquire(k)
32: if Queue 6= ∅ then
33: [I, E, S]← Queue .removeTop()
34: print(S)
35: if Queue 6= ∅ then
36: v ← Queue.topValue()
37: else
38: v ←∞
39: f ← F (v) /* update the freezing threshold */

40: lock the task list T

41: for each task t on T do
42: t.toRelease ← true
43: if t.revealed = false then
44: t.revealed ← true
45: m← T.size()
46: unlock T

47: Semaphore .acquire(m)

Figure 25: Main task with early freezing.

(i.e., line 2 returned a lower bound), then line 10 inserts the
corresponding triplet into the freezer.

D. EARLYFREEZING ALGORITHM
In this section, we give the details of the early-freezing

algorithm, which was discussed in Section 6. Figure 25 de-
scribes the main task. Lines 1–6 are the same as in Fig-
ure 22. In particular, line 6 inserts the first solution into the

queue. Lines 7–9 create the optimization problems spawned
by the first solution and insert their triplets into the freezer.
Note that a triplet is inserted into the freezer with a lower
bound that is equal to the value of the solution from which
it was created. The main loop of line 10 is executed while
either the queue or the freezer is nonempty. Lines 11–14
update the relevance threshold v. Lines 17–24 are needed to
make sure that the main task is aware of optimization tasks
that were created by other optimization tasks, as explained
later. The loop of line 25 pops from the freezer (in line 26)
all the triplets with a lower bound that is smaller than v.
Line 27 creates optimization tasks for these triplets. Line 28
adds each new task to the task list T . Note that the freezer
is locked between lines 15 and 30. The variable k counts the
number of optimization tasks that have to release a permit
before the main task can continue beyond line 31.

Line 32 checks that the queue is not empty. If so, the
main task executes lines 33–47, where lines 33–46 are the
same as lines 8–19 of Figure 22, except for the addition of
lines 43–44 that will be explained later. In line 47, the main
task waits for m permits before continuing with the next
iteration of line 10.

Figure 26 describes the optimization task. Note that the
task need not add itself to the task list, because that is
done when it is removed from the freezer. Line 1 solves the
optimization problem (and it operates exactly as line 2 of
Figure 23). Lines 2–13 differ in two ways from lines 3–10 of

Task for optimization problem (D, P, I,E, l)

1: X ← SolveOpt(D, P, I,E, l) /* this line also executes the

code of Figure 24 whenever the lower bound changes */

2: if X 6=⊥ then
3: if X is a solution then
4: if shutdown-bit = false then
5: create the pairs of constraints

[I1, E1], . . . , [In, En] for the optimization
problems spawned by [I,E, X]

6: for i← 1, . . . , n do
7: Freezer .insert([Ii, Ei, value(X)])
8: Queue .insert([I, E, X])
9: if [I, E, X] becomes the top of Queue then

10: v ← Queue .topValue()
11: f ← F (X)
12: else
13: Freezer .insert([I, E,X])
14: lock the task list T

15: the task (i.e., this) removes itself from T

16: unlock T

17: if toRelease = true then
18: Semaphore .release(1)
19: lock Freezer
20: p← size of the thread pool
21: if T.size() < p and shutdown-bit = false then
22: if Freezer 6= ∅ and Freezer .topValue() < f then
23: [I, E, l]← Freezer .removeTop()
24: create an optimization task t to solve (D, P, I, E, l),

and set both its toRelease and revealed to false
25: add t to the task list T

26: unlock Freezer

Figure 26: Optimization task with early freezing.
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Table 2: Keyword selectivity (min, max, avg).
kw. M PD FD
2 1 3 1.3 55 13690 2763 1672 67550 21865
3 1 94 13 23 14154 3800 1049 183947 41566
4 1 227 17 20 31164 3375 583 220529 31541
5 1 441 27 2 1090 400 10 16890 5571
6 1 227 17 5 10223 1870 38 113313 22591
7 1 227 23 1 5706 783 6 43621 10098
8 1 401 19 26 8357 857 562 75923 9781
9 1 849 44 23 13690 1153 342 67550 10222
10 1 1438 51 18 14154 1823 234 183947 19376
All 1 1438 29 1 31164 1567 6 220529 16531

Figure 23. First, if X is a solution, then before inserting it
into the queue, lines 5–7 create the triplets for the spawned
problems and insert them into the freezer. Second, the test
of line 4 is new, and is needed for dealing with the following
practical issue.

When applying ranked enumeration, one usually desires
just the first several (top-K) solutions in ranked order, rather
than all of them; then, the main task is required to print
only K solutions. Up to now, adjusting our algorithms
to this requirement has not been a problem (and indeed,
has been ignored in the paper), since the main task could
force termination as soon as K solutions have been printed.
But in early freezing, optimization tasks create new frozen
problems and (as explained later) may also create new op-
timization tasks; therefore, terminating the whole parallel
algorithm cannot be done solely by the main task. To ac-
commodate that, we introduce a global shutdown bit that is
initially set to false. To terminate, the main task needs just
to set this bit to true (for clarity’s sake, we did not write
the code for doing that in Figure 25). In turn, the test of
line 4 of Figure 26 ensures that new frozen problems are not
created if the shutdown bit is true. Another reference to
this bit (in line 21) is discussed later.

We continue with the description of the code in Figure 26.
In lines 14–18 (which are the same as lines 11–15 of Fig-
ure 23), the task removes itself from the task list T and
releases a permit if its toRelease is true.

Lines 19–26 ensure proper utilization of the thread pool,
and they are executed while holding an exclusive lock on
the freezer. If the current number of tasks on T is smaller
than the size of the thread pool and the shutdown bit is
false, then one triplet is popped from the freezer in line 23
provided that the freezer is not empty and its top is smaller
than the freezing threshold. Lines 24–25 create an optimiza-
tion task t for the popped triplet and add t to T . The main
task is not aware of this new optimization task. Therefore,
revealed is a new variable that is assigned false in line 24.
The main task sets revealed to true when it reveals the ex-
istence of the new task while traversing the task list in the
loop of either line 18 or 41. The main task has to wait for a
permit from each revealed task (unless the test of line 21 is
false, i.e., the lower bound from the previous computation
is equal to or greater than the relevance threshold).

E. ASSIGNING WEIGHTS TO A GRAPH
Our data graphs are generated from XML. Every node

has weight 1. The weight of an edge created for an IDREF
is 0. All edges e created from elements to subelements or
due to IDREFS have weight f(e), where f is a numerical
function on edges. For IDREF and IDREFS, opposite edges
are added automatically if they do not already exist. For an

opposite edge ê that is automatically added, the weight is
o ·f(ê), where o is a constant parameter. Hence, the weights
on a data graph are fully defined by f and o. The pair 〈f, o〉
is what we call a weighting scheme.

Two of the functions f we use are based on the following
definition. Consider an edge e = (v, v̂). Let idge(v̂) be
the number of edges that enter v̂ from nodes having the
same label as v. Similarly, odge(v) is the number of edges
leaving v to nodes with the same label as v̂. We define
wα(e) = ln(1+α·idge(v̂)+(1−α)·odge(v)), where 0 ≤ α ≤ 1
is a parameter.

The weighting schemes of the datasets are as follows. For
M1: 〈w0.1, 1.1〉. For M2: 〈(w0.9)

−1, 3〉. For both PD1 and
FD1: 〈1, 1.1〉. For both PD2 and FD2: 〈w0.1, 3〉. (When we
write 1 for f , we mean that f is the constant function 1.)

When given a query Q, we attach to the data graph a node
for each keyword q of Q. For each node v that contains
a keyword q of Q (but is not the node for q), we add an
edge from v to q. The weight of (v, q) in all the datasets
is w = ln(e + tf (q, v)−1) · ct(Q,v)−1, where e is Euler’s
constant, tf (q, v) is the term frequency of q in v, and ct(Q, v)
is the number of keywords of Q that appear in v.

F. KEYWORD SELECTIVITY
In Table 2, the selectivity of a keyword q is defined as

the number of nodes that contain q. The numbers shown in
the table are the minimum, maximum and average for each
group of four queries with the same number of keywords,
except for the last line that refers to all the queries.

G. SERIALFREEZING EXPERIMENT
Table 3 gives the experimental results comparing the orig-

inal Lawler-Murty’s procedure of Figure 1 with the serial
algorithm that uses freezing (abbr. SF), which is shown in
Figure 2. The results are for 10 and 100 solutions. For each
combination of a dataset, query size and number of solu-
tions, the running time is given as two numbers. The first
is the absolute time in seconds. The second number (shown
inside parentheses) is the running time of SF as a percentage
of Lawler-Murty’s procedure.

Table 3: Execution times for serial with freezing (in
seconds and percentage of LM).

Data Size
No. of Solutions

10 100

M1
short 0.03 (42%) 0.26 (30%)

medium 0.13 (60%) 0.44 (43%)
long 0.4 (51%) 1.36 (29%)

M2
short 0.02 (37%) 0.18 (18%)

medium 0.11 (56%) 0.39 (30%)
long 0.38 (59%) 1.61 (48%)

PD1
short 0.8 (61%) 3.63 (45%)

medium 10.51 (65%) 35.54 (60%)
long 15.61 (61%) 44.09 (46%)

PD2
short 1.33 (58%) 6.93 (26%)

medium 16.51 (53%) 70.46 (58%)
long 29.63 (46%) 82.45 (36%)

FD1
short 9.08 (47%) 43.69 (43%)

medium 63.01 (50%) 225.67 (46%)
long 178.99 (46%) 543.94 (32%)

FD2
short 11.04 (25%) 98.5 (27%)

medium 129.37 (43%) 567.34 (36%)
long 480.07 (42%) 1736.08 (32%)
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