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ABSTRACT

Collaborative rating sites have become essential resources
that many users consult to make purchasing decisions on
various items. Ideally, a user wants to quickly decide whether
an item is desirable, especially when many choices are avail-
able. In practice, however, a user either spends a lot of time
examining reviews before making an informed decision, or
simply trusts overall rating aggregations associated with an
item. In this paper, we argue that neither option is sat-
isfactory and propose a novel and powerful third option,
Meaningful Ratings Interpretation (MRI), that automati-
cally provides a meaningful interpretation of ratings asso-
ciated with the input items. As a simple example, given the
movie “Usual Suspects,” instead of simply showing the av-
erage rating of 8.7 from all reviewers, MRI produces a set of
meaningful factoids such as “male reviewers under 30 from
NYC love this movie”. We define the notion of meaningful
interpretation based on the idea of data cube, and formalize
two important sub-problems, meaningful description min-
ing and meaningful difference mining. We show that these
problems are NP-hard and design randomized hill explo-
ration algorithms to solve them efficiently. We conduct user
studies to show that MRI provides more helpful information
to users than simple average ratings. Performance evalua-
tion over real data shows that our algorithms perform much
faster and generate equally good interpretations as brute-
force algorithms.

1. INTRODUCTION

Collaborative rating sites drive a large number of deci-
sions today. For example, online shoppers rely on ratings
on Amazon to purchase a variety of goods such as books
and electronics, and movie-goers use IMDb to find out about
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a movie before renting it. Typically, the number of rat-
ings associated with an item (or a set of items) can easily
reach hundreds or thousands, thus making reaching a deci-
sion cumbersome. For example, on the review site Yelp, a
not-so-popular restaurant Joe’s Shanghai received nearly a
thousand ratings, and more popular restaurants routinely
exceed that number by many multipliers. Similarly, the
movie The Social Network has received 42,000+ ratings on
IMDb after being released for just two months!

To cope with the overwhelming amount of information, a
user can either spend a lot of time examining ratings and
reviews before making an informed decision (mazimalist op-
tion), or simply go with overall rating aggregations, such as
average, associated with an item (minimalist option). Not
surprisingly, most users choose the latter due to lack of time
and forgo the rich information embedded in ratings and in
reviewers’ profiles. Typically, average ratings are generated
for a few pre-defined populations of reviewers (e.g., average
among movie critics). In addition, aggregated ratings are
only available for one item at a time, and therefore a user
cannot obtain an understanding of a set of items of interest,
such as all movies by a given director.

In this paper, we aim to help users make better decisions
by providing meaningful interpretations of ratings of items of
interest, by leveraging metadata associated with items and
reviewers in online collaborative rating sites. We call this
problem meaningful rating interpretation (MRI), and define
two sub-problems: meaningful description mining (DEM)
and meaningful difference mining (DIM).

Given a set of items, the first problem, meaningful descrip-
tion mining, aims to identify groups of reviewers who share
similar ratings on the items, with the added constraint that
each group consists of reviewers who are describable with
a subset of their attributes (i.e., gender, age, etc.). The
description thus returned to the user contains a small list
of meaningfully labelled groups of reviewers and their rat-
ings about the item, instead of a single monolithic average
rating. This added information can help users judge items
better by surfacing inherent reviewers’ biases for the items.
For example, the movie Titanic may have a very high overall
average rating, but it is really the group of female reviewers
under the age of 20 who give it very high ratings and raise
the average. A user can then make informed decisions about
items based on whether she tends to agree with that group.

The second problem, meaningful difference mining, aims
to help users better understand controversial items by identi-
fying groups of reviewers who consistently disagree on those
items, again with the added constraint that each group is



described with a meaningful label. For the movie Titanic,
we can see that two groups of reviewers, females under 20
and males between 30 and 45, are in consistent disagreement
about it: the former group loves it while the latter does not.

We emphasize that while the examples above all involve
a single item, both description mining and difference min-
ing can be applied to a set of items with a common feature.
For example, we can apply them to all movies directed by
Woody Allen and help users learn some meaningful trends
about Woody Allen as a director. The algorithms we de-
scribe in this paper apply equally whether we are analyzing
the ratings of a single item or a set of items.

2. PRELIMINARIES

We model a collaborative rating site D as a triple
(Z,U, R), representing the sets of items, reviewers and rat-
ings respectively. FEach rating r € R is itself a triple
(i,u,s), where i € Z, u € U, and s € [1,5] is the inte-
ger rating that reviewer u has assigned to item i'. Fur-
thermore, 7 is associated with a set of attributes, denoted

Za = {iai,ia2,...}, and each item ¢ € Z is a tuple with
Za as its schema. In another word, ¢ = (ivi,ive,...),
where each iv; is a value for attribute ia;. Similarly, we

have the schema Ua = {uai,uasz,...} for reviewers, i.e.,
u = (uvy,uvs,...) € U, where each uv; is a value for at-
tribute ua;. As a result, each rating, r = (i, u, s), is a tuple,
(iv1,ive, ..., uv1, uv2,. .., s), that concatenates the tuple for
i, the tuple for u, and the numerical rating score s. The set of
all attributes (including both item and reviewer attributes)
is denoted as A = {a1, a2, ...}.

Item attributes are typically provided by the rating site.
For example, restaurants on Yelp are described with at-
tributes such as Cuisine (e.g., Thai, Sushi), Attire (e.g.,
Formal, Casual). Movies on IMDb are described with Title,
Genre (e.g., Drama, Animation), Actors, Directors. An item
attribute can be multi-valued (e.g., a movie can have many
actors). Reviewer attributes include mostly demographics
such as Age, Gender, ZipCode and Occupation. Such at-
tributes can either be provided to the site by the reviewer
directly as in MovieLens, or obtained from social network-
ing sites such as Facebook as their integration into content
sites becomes increasingly common. In this paper, we fo-
cus on item ratings describable by reviewer attributes. Our
ideas can be easily extended to explain reviewer ratings by
item attributes.

We model the notion of group based on data cube [6]. In-
tuitively, a group is a set of ratings described by a set of
attribute value pairs shared among the reviewers and the
items of those ratings. A group can also be interpreted
as a selection query condition. More formally, a group
description is defined as ¢ = {{a1,v1), (az,v2),...}, where
each a; € A (where A is the set of all attributes as in-
troduced earlier) and each v; is a value for a;. For exam-
ple, {(genre,war), (location,nyc)} describes a group rep-
resenting all ratings of “war” movies by reviewers in “nyc.”
The total number of groups that can exist is given by n =
112! (|(@i, v;)| + 1), where |A] is the cardinality of the set of
attributes and |{a;,v;)| is the number of distinct v; values
each attribute a; can take. When the ratings are viewed as
tuples in a data warehouse, this notion of group coincides

!For simplicity, we convert ratings at different scales into
the range [1,5].
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with the definition of cuboids in the data cube literature.
Here, we take the view that, unlike unsupervised clustering
of ratings, ratings grouped this way are much more meaning-
ful to users, and form the foundation for meaningful rating
interpretations. We now define three essential characteris-
tics of the group.

First, coverage: Given a rating tuple r (v1, v2,
...,k s), where each v; is a value for its correspond-
ing attribute in the schema A, and a group c
{{a1,v), (az2,v2),...,{(an,vn)},n < k, we say c covers r,
denoted as r < ¢, iff Vi € [1,n], 3r.v; such that v; is a value
for attribute c.a; and r.v; = c.v;. For example, the rating
(female,nyc, cameron, winslet, 4.0) is covered by the group
{(gender, female), (location,nyc), (actor,winslet)}.

Second, relationship between groups: A group c¢; is
considered an ancestor of another group c2, denoted ¢1 D ca,
iff Vj where (aj,v;) € c2, Hay,vj) € c1, such that v;
v;-, or v;- semantically contains v; according to the domain
hierarchy. For example, the group of ratings g1 by reviewers
who live in Michigan is a parent of the group of ratings g
by reviewers who live in Detroit, since Detroit is located in

Michigan according to the location hierarchy?.

Third, recursive coverage: Given a rating tu-
ple r and a group ¢, we say c recursively covers
r iff 3¢/, such that, ¢ D ,r < ¢. For example,
(female, nyc, cameron, winslet,4.0) is recursively covered
by {(gender,female), (location,USA), (actor,winslet)}.
For the rest of the paper, we use the term coverage to mean
recursive coverage for simplicity, unless otherwise noted.

2.1 Meaningful Rating Interpretation

When the user is exploring an item (or a set of items) I,
our goal is to meaningfully interpret the set of ratings for I,
denoted R;. Given a group c, the set of ratings in R; that
are covered by c are denoted as cr, = {r | r € Rr Ar <c}.
Similar to data cubes, the set of all possible groups form a
lattice of n nodes, where the nodes correspond to groups and
the edges correspond to parent/child relationships. Note
that, for a given I, there are many groups not covering
any rating from R;. Let n’ denote the total number of
groups covering at least one rating. Solving the MRI prob-
lem is therefore to quickly identify “good” groups that can
help users understand ratings more effectively.

Before introducing the problem formally, we first present
a running example, shown in Figure 1, which will be used
throughout the rest of the paper.

ExAMPLE 1. Consider the use case where we would like
to explain all ratings of the movie (item) Toy Story, by iden-
tifying describable groups of reviewers sharing common rat-
ing behaviors. As in data cube analysis, we adopt a lattice
structure to group all ratings, where each node in the lat-
tice corresponds to a group containing rating tuples shar-
ing the set of common attribute value pairs, and each edge
between two nodes corresponds to the parent/ child rela-
tionship. Figure 1 illustrates a partial lattice for Toy Story,
where we have four reviewer attributes to analyze>: gender
(G), age (A), location (L) and occupation (O). For simplic-
ity, exactly one distinct value per attribute is shown in the

2Those domain hierarchies are essentially dimension tables
and we assume they are given in our study.

3Since there is only one movie in this example, item at-
tributes do not apply here.



example: (gender,male), (age,young), (location,CA) and
(occupation, student). As a result, the total number of
groups in the lattice is 16. Each group (i.e., node in the
lattice) maps to a set of rating tuples that are satisfied by
the selection condition corresponding to the group label, and
the numeric values within each group denotes the total num-
ber of ratings and the average rating within the group. For
example, the base (bottom) group corresponds to all 452 rat-
ings of Toy Story, with an average rating of 3.88, while the
double circled group in the center of the lattice corresponds
to the 75 ratings provided by ‘male & student’ reviewers,
who collectively gave it an average rating of 3.76. O

<G, male> <A, young>
<L, CA> <O, student>
{3, 5.0}

<G, male>
<A, young>
<L, CA>

<G, male>
<A, young>
<0, student>

<G, male>
<L, CA>
<0, student>

<A, young>
<L, CA>
<0, student>

{52,3.88 ‘ 4, 5.0}

<G, m young> <L, CA>

P ma|e> N <t, CA> » <0, student>

& 4 <0, student> {32, 4.06} <A, young> {10, 4.40}
(75' 3'76)4‘ <(()é;t

<A, young> <L, CA>
{260, 3.93} {58,4.07}
{452, 3.88}

Figure 1: Partial rating lattice for movie Toy Story
with one distinct value for each attribute; the full
lattice contains more nodes with multiple distinct
values for each attribute.

<0, student>
{260, 3.79}

{333,3.91}

Even when there is only a single item, the number of
groups associated with its ratings can be too large for a user
to browse. The challenge is therefore to identify “good”
groups to be highlighted to the user. We define desiderata
that such “good” groups should follow:

Desiderata 1: Each group should be easily understand-
able by the user. While this desiderata is often hard to
satisfy through unsupervised clustering of ratings, it is eas-
ily enforced in our approach since each group is structurally
meaningful and has an associated description that the user
can understand.

Desiderata 2: Together, the groups should cover enough
ratings in R;. While ideally we would like all ratings in R;
to be covered, it is often infeasible given the constraint on
the number of groups that a user can reasonably go through.

Desiderata 3: Ratings within each group should be as
consistent as possible, i.e., should reflect users with similar
opinions toward the input item(s). Note that we are re-
ferring to opinions within a group instead of opinions across
groups. In fact, difference in opinion across groups is the key
differentiator between the two sub-problems of MRI, which
we will formally define in the next section.

3. PROBLEM DEFINITIONS

We now formally define the two sub-problems of mean-
ingful rating interpretation: meaningful description mining
(DEM) and meaningful difference mining (DIM).

3.1 Meaningful Description Mining

Our first goal is to give a meaningful description of all the
ratings over an item set I. We propose to present to the
users a small set of meaningfully labelled rating groups (i.e.,
cuboids), each with their own average ratings. Specifically,
we consider three main factors. First, the number of cuboids,
k, to be presented to the user must be limited, so that users
are not overwhelmed with too many cuboids. Second, all
cuboids presented to the user must collectively cover a large
enough portion of ratings for items in I. Third, the returned
cuboids must collectively have the minimum aggregate error,
which we will define next.

Consider a set of ratings Ry over input items in I. For each
cuboid ¢, let avg(c) = avgr,«c(r;.s) (where r;.s is the score
of the " tuple) be the average numerical score of ratings
covered by c. Given a set of cuboids, C, to be returned to
the user. We define two formal notions:

Description coverage: Let Cr, = {r | r € Ry, 3c €

C,s.t. r < c}, coverage(C, R;) = lflgf“ .

Description error: Let B, = avg(|r.s —avg con,«.(0)]),
error(C, R;) = Yrer, (Er).

Intuitively, description coverage measures the percentage of
ratings covered by at least one of the returned cuboids,
while description error measures how well the group av-
erage approximates the numerical score of each individual
rating. (When a rating is covered by more than one re-
turned cuboids, we average the errors over all the cuboids
that cover the rating.)

PRrROBLEM 1. The problem of meaningful description min-
ing (DEM) for a given set of items I and their ratings Ry,
identify a set of cuboids C, such that:

e error(C, Ry) is minimized, subject to:

o |C <k;
o coverage(C,Rr) > a.

THEOREM 1. The decision version of the problem of
meaningful description mining (DEM) is NP-Complete even
for boolean databases, where each attribute ia; in Za and
each attribute ua; in Ua takes either 0 or 1.

Proof: Please refer to Appendix A.1.1.

3.2 Meaningful Difference Mining

Another important goal of rating interpretation is to iden-
tify meaningful groups of ratings where reviewers’ opinions
on the item(s) are divergent. To accomplish this goal, we
start by dividing R; into two sets R} = {r | r € Ry Ar.s >
0"}and Ry = {r|r € RiAr.s <0}, where 8" and 6~ are
thresholds that define whether a rating should be considered
positive or negative respectively. Intuitively, #T and 6~ can
either be decided statically or dynamically according to the
mean and variances of R;. While setting the thresholds stat-
ically is easier computationally, it is not always clear what
the thresholds should be. As a result, we follow the dynamic
approach and set #7 and 6~ to be one standard deviation
above and below the mean of R; respectively.

Given R;r, R; and a set of cuboid groups, C', we can now
formalize the notion of balance as follows:

Balance: Let indicator I(, ,,y = 1 if and only if
Je € C st. 11 <cAry <c (ie., there is at least one
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cuboid in C' that covers both 71 and r2.). We then have

balance(C,R},R;) = m x ET16R+7T26RI_I(T17T2), where

m = m is the normalization factor that normalizes
I I

all balance values into [0, 1].

Intuitively, the notion of balance captures whether the
positive and negative ratings are “mingled together” (high
balance) or “separated apart” (low balance).

PROBLEM 2. The problem of meaningful difference min-
ing (DIM) for a given set of items I and their ratings Rr
(split into R}, Ry ), identify a set of cuboids C, such that:

e balance(C, R}, Ry) is minimized, subject to:

o [Cl<k;
o coverage(C, R]) > a A coverage(C, R;) > a.

THEOREM 2. The decision version of the problem of
meaningful difference mining (DIM) is NP-Complete even
for boolean databases.

Proof: Please refer to Appendix A.1.2.

4. ALGORITHMS

In this section, we propose efficient algorithms for both
description mining and difference mining tasks.

4.1 Description Mining Algorithms

Given a set I of items and the set R; of all ratings over
I, the description mining task (Section 3.1) aims to identify
a set C of cuboids over Ry, such that the aggregate error,
error(C, Rr), is minimized, and the size and coverage con-
straints are satisfied. The baseline approach is to enumerate
all possible combinations of cuboids over R;. We introduce
this Ezact Algorithm first, and later propose a more efficient
heuristic algorithm based on randomized hill exploration.

Exact Algorithm (E-DEM): This algorithm uses
brute-force to enumerate all possible combinations of
cuboids to return the ezact (i.e., optimal) set of cuboids as
the rating descriptions. Algorithm 1 illustrates its high level
pseudo code. The algorithm consists of two stages. During
the first stage, it maps the rating lattice to the ratings of
the given item set I. In particular, lattice nodes that do not
cover any rating in Ry are not materialized and the average
ratings of the remaining lattice nodes are computed. In the
second stage, the algorithm looks up all (2) possible sets of
cuboids C, where n is the number of lattice nodes remaining
after the first stage. The set that minimizes error(C, Rr)
such that |C| < k and coverage(C, R;) > a. Clearly, Algo-
rithm E-DEM is exponential in the number of cuboids and
can be prohibitively expensive.

Randomized Hill Exploration Algorithm (RHE-
DEM): A common heuristic technique for solving optimiza-
tion problems similar to our description mining problem is
random restart hill climbing [12]. A straightforward adop-
tion of this technique involves the following. We first ran-
domly select a set of k£ cuboids as the starting point. The
process then continues by replacing one cuboid in the current
set with one of its lattice neighbors? not in the set as long as
the substitution reduces the aggregate error. The algorithm

4Two cuboids are neighbors if they are directly connected
in the lattice.
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Algorithm 1 — E-DEM Algorithm (Ry, k, o) : C

- Build the rating lattice of n’ cuboids (out of n), each of
which covers at least one tuple from Rj.

while true do
build set C' < combinatorics-getnext(n’, k)
if coverage(C, R;) > a then
build list L - ( C, error(C, Rr) )
end if
end while
: C' < min error(C,R;) in L
return C

stops when no improvements can be made indicating a lo-
cal minima has been reached. The process is repeated with
multiple diverse sets of cuboids to increase the probability
of finding the global minima that satisfies the constraints.

However, this simple application of hill climbing fails for
our description mining task because of the critically impor-
tant coverage constraint, coverage(C,R;) > «. For any
given set of cuboids randomly chosen as the starting point,
the probability of it satisfying the coverage constraint is
fairly small since most cuboids in the lattice cover a small
number of ratings. Since the simple hill climbing algorithm
cannot optimize for both coverage and aggregate error at the
same time, the results produced by the simple hill climbing
algorithm often fail the coverage constraint. Hence, a large
number of restarts is required before a solution can be found,
negating the performance benefits.

To address this challenge, we propose the Randomized Hill
Ezploration Algorithm (RHE-DEM) which first initializes a
randomly selected set of k cuboids as the starting point.
However, instead of immediately starting to improve the ag-
gregate error, it explores the hill to identify nearby cuboid
sets that satisfy the coverage constraint. Specifically, RHE-
DEM performs iterative improvements on the coverage that
lead to a different set of cuboids where the coverage con-
straint is satisfied. This new cuboid set is then adopted as
the starting point for the error optimization with the added
condition that an improvement is valid only when the cover-
age constraint is satisfied. Furthermore, this exploration can
advance in multiple directions, producing multiple cuboid
sets as new start points based on the single initial cuboid
set. Since we found single direction exploration works well
in practice, we have not pursued this technique.

The details of the algorithm are shown in Algorithm 2.
Intuitively, we begin with the rating lattice constructed on
R;. The algorithm starts by picking k random cuboids to
form the initial set C. For each cuboid ¢; in C, we swap
¢; with each of its neighbors c¢; in the lattice, while the
other cuboids in C' remain fixed, to generate a new com-
bination (i.e., cuboid set). The exploration phase com-
putes coverage(C, R;) for each obtainable combination of k
cuboids, until it finds one that satisfies coverage(C, Rr) >
a. The resulting set then acts as the initial condition for
the second phase of the optimization to minimize the ag-
gregate error error(C,R;). The configuration that sat-
isfies coverage(C,R;) > « and incurs minimum error
error(C, Ry) is the best rating explanation for item set I.

ExXAMPLE 2. Consider the example rating lattice in-
troduced in Example 1 and suppose k=2, a=80%. The
complete rating lattice will have many more cuboids than



Algorithm 2 — RHE-DEM Algorithm (R, k, ) : C

- Build the rating lattice of n’ cuboids (out of n), each of
which covers at least one tuple from Rj.

C «+ randomly select k of n’ cuboids
if coverage(C, R;) > a then
C «+ satisfy-coverage(C, Ryr))
end if
C' <+ minimize-error(C, Ry))
C’ + best C so far
return C’

// method satisfy-coverage (C, Rr): C

1: while true do

2:  val + coverage(C, Ry)
3 for each cuboid ¢; in C, each neighbor ¢; of ¢; do
4 C'+—C—c;+ Cj
5 val' + coverage(C’, Ry)
6: if val’ > o then

7: return C’

8 end if
9 end for
0: end while

// method minimize-error (C, Rr): C
1: while true do

2:  val < error(C, Ry)
3 C=0

4:  for each cuboid ¢; in C, each neighbor ¢; of ¢; do
5: '+ C—ci+c

6: if coverage(C’, Rr) > « then

7 add (C’,error(C’, Ry)) to C

8: end if

9:  end for

10:  let (Cy,,valy,) € C be the pair with minimum error
11:  if wval,, > val then

12: return C // we have found the local minima
13:  end if
14: C <« C/,

15: end while

what is shown in Figure 1, since there are several other
attribute-value pairs such as (gender, female), (age,old),
(location, NY), etc. Precisely, the total number of cuboids
in the rating lattice for Toy Story is n = 17490, of which n’
= 1846 have cr, # 0. However, we focus on the example
rating lattice having 16 groups to illustrate our description
mining algorithms. The exact algorithm will investigate all
(126) (or, (18246) for complete rating lattice) possible combi-
nations to retrieve the best rating descriptions. On the other
hand, the randomized hill exploration algorithm begins by
randomly selecting a set of k=2 cuboids, say ¢1 = {(G,male),
(0, student)} and co = {(L,CA), (0,student)} (marked in
double circle in Figure 1). Here Cr, = 79, which does
not satisfy the constraint coverage(C, R;) > 80%. Keep-
ing c2 fixed, the obtainable combinations by swapping ci
with its parent/child are: {ci, c2}, {cf, c2}, {c!’, ca} and
{c!", c2}, where c; = {(G,male)}, ¢/ = {(0, student)}, c}’
= {(G,male), (0, student), (A, young)} and ¢’ = {(G,male),
(0, student), (L,CA)}. We see ¢] = {(G,male)}, co ={(L,CA),
(0, student)} satisfy the coverage constraint. The set {cf,
c2} is then used as the initial condition to explore the con-

nected lattice and minimize the description error. RHE-
DEM on this partial rating lattice eventually returns the
cuboids {(G,male)} and {(0,student)} as the rating inter-
pretations who share similar ratings on Toy Story. O

4.2 Difference Mining Algorithms

Similar to the description mining task, the task of dif-
ference mining (Section 3.2) poses an optimization prob-
lem with the goal of, given an item set I, identifying a set
C of cuboids with the most divergent opinions regarding
the ratings R; over I (i.e., minimizing the aggregate bal-
ance, balance(C, R}, R;)) and satisfying the size and cov-
erage constraints. The difference mining task is even more
challenging because computing the optimization objective,
balance, is very expensive. We describe this challenge and
propose a similar heuristic hill exploration algorithm that
leverages the concept of fundamental region.

Exact Algorithm (E-DIM): Similar to Algorithm E-
DEM, this algorithm uses brute-force to enumerate all pos-
sible combinations of cuboids.

Randomized Hill Exploration Algorithm (RHE-
DIM): The difference mining problem shares many simi-
lar characteristics with the description mining problem. In
particular, the measure, aggregate balance, needs to be min-
imized, while at the same time, a non-trivial constraint, cov-
erage above a threshold, must be satisfied. This makes the
direct application of prior heuristic techniques such as hill
climbing difficult. As a result, we leverage the same random-
ized hill exploration technique as introduced in Section 4.1
and propose Algorithm RHE-DIM.

Similar to RHE-DEM, RHE-DIM first initializes a ran-
domly selected set of k cuboids. It explores the search
space, in the first phase, to find a new set of cuboids such
that the coverage constraint is satisfied. During the sec-
ond phase, the algorithm iteratively improves the aggregate
balance while ensuring that the coverage constraint remains
satisfied, until a local minima is identified.

Unlike the description mining problem, however, comput-
ing the optimization measure balance(C, R}, R;) for the
difference mining problem can be very expensive. When done
naively, it involves a quadratic computation that scans all
possible pairings of positive and negative ratings, for each
set of k cuboids we encounter during the second phase. To
address this computational challenge, we introduce the con-
cept of fundamental region (FR), which defines core rating
sets induced by a set of k cuboids, to aid the computation of
balance(C, R}, Ry ). The idea is inspired by the notion of
finest partitioning [1], with the key difference here being the
need for keeping track of both positive and negative ratings.

DEFINITION 1. Given Rr and the set C of k cuboids in
the rating lattice, we can construct a k-bit vector signature
for each tuple in Rr, where a bit is set to true if the tuple is
covered by the corresponding cuboid. A fundamental region
(denoted by F) is thus defined as the set of ratings that share
the same signature. The number of fundamental regions is
bounded by 28 — 1, but is often substantially smaller.

Given the set of fundamental regions, we can compute
balance(C, R}, Ry) by iterating over all pairs of fundamen-
tal regions instead of all pairs of tuples, thus having a sig-
nificant performance advantage. Specifically, for a self-pair
involving a single region F;, we have balance(C, R}, R; ;)
= F;(R}) x Fi(R;); for a pair of distinct regions F;
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and F); sharing at least a common cuboid, we have
balance(07 R}L137R;”) = FZ(R;F) X FJ(R;) + FJ(R}F) X
Fi(Ry ). Finally, we have:

balance(C, R}, R;)

m X (Z.balance(C'7 R, R; )+

Zijbalance(c, R;riy R;ij)) (1)

where m is the normalization factor described in Section 3.2.

ExXAMPLE 3. Consider a set C = {ci1,c2} of k = 2
cuboids, where c; {(G,male), (0,student)} and co
{(L,CA), (0, student)} (marked in double circle in Figure 1).
The two cuboids partition the set of 79 ratings (covered by
C) into 3 fundamental regions Fi, F> and F3 each having a
distinct signature, as shown in Figure 2. The positive and
negative rating tuple counts, F'(R}) and F(R; ) respectively
in each region are also presented in Figure 2. By Equation 1,
balance(C, R}, Ry ), can be computed as: jzizzx (40x29
+ 4x2 4 2x2 + (40x2 + 4x29) + (4x2 + 2x2)), based on
counts in Fi, Fa, F3, (F1, F>) and (F», F3) respectively. O

C, C, Count
F | @G| rrFRY
Fi 10 40, 29
F, 11 4,2
C,={<G, Male>,<O, student>}| F, 01 2,2
C,={<L, CA>,<O, student>}

Figure 2: Computing balance(C, R}, R;) using Fun-
damental Regions.

THEOREM 3. Given R; and C, balance(C,R;,, R;,)
computed using Equation 1 is equivalent to the one computed
using the formula in Section 3.2.

Proof: Please refer to Appendix A.1.3.

This fundamental region based balance computation in-
volves populating a min(ng., |[Rf|) x min(ngs., |R;|)) ma-
trix, where ny, is the number of fundamental regions in-
duced by the set C of k cuboids (ns < 2F — 1), each cell
stores the balance between a pair of FRs (or a self pair), and
summing over all cells to compute the overall balance. The
details are presented in Algorithm 3. Finally, Algorithm
RHE-DIM works the same way as RHE-DEM presented in
Algorithm 2, with all error(C, R;) computation being re-
placed with compute-balance(C, R}, Ry ) of Algorithm 3.

4.3 Algorithm Discussion

The computational complexity of the description mining
and difference mining problems can be viewed as depend-
ing on the parameters: R; ( Rf,R; ), the set of ratings
over item set I; n’, the number of cuboids in rating lattice
covering at least one rating from Rj; and k, the number
of cuboids to be presented to user. The exact algorithms
E-DEM and E-DIM are exponential in n’. The heuristic al-
gorithms RHE-DEM and RHE-DIM work well in practice
(as shown in Section 5); but of course they do not guarantee
any sort of worst case behavior, either in running time or in
result quality. We note that the performance of RHE-DIM
for difference mining is dependent on the computation of the
optimization measure, balance(C, R}, R} ).
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Algorithm 3 — compute-balance(C, R}, R;): v

1: for i'=1 to ny, do
2:  Fu(Rf,Ry) + {count(Fy, R}), count(Fy, Ry )}
3: end for
4: for i=1 to ny,, j=1 to ny,. do
5:  pairing-matrix-fr(i, j) < 0
6: end for
7: for i=1to 2F — 1, j=11t0 2" — 1 do
8: if i = j and pairing-matrix-fr(i, j) = 0 then
9: pairing-matrix-fr(i, j) «+ F;(R}) x F;(R;)
10:  elseif i # j and
pairing-matrix-fr(i, j) = 0 and
F;, F; belongs to same cuboid in C then
11: pairing-matrix-fr(i, j) « F;(R}) x Fj(R;)
12: pairing-matrix-fr(j, i) « F;(R]) x Fi(R;)
13:  end if
14: end for
15: v < sum of all non-zero products in pairing-matrix-fr
16: return v

The naive way of computing the aggregate balance in-
volves a quadratic computation that scans all possible pair-
ings of positive and negative ratings, for each set C of k
cuboids, during the second phase. The runtime complexity
for balance computation this way is O(k x |Rj|x|R;|). The
alternate way of using the fundamental regions reduces the
complexity since it concerns pairings of positive and negative
rating regions, instead of pairings of positive and negative
rating tuples. The number of fundamental regions for a set
of k cuboids is 2°-1. Therefore, the reduced running time is
given by O(k x min(2" — 1,|Rf|) x min(2*¥ — 1,|R[ ).

Finally, the notion of partitioning ratings into fundamen-
tal regions also motivates us to design incremental tech-
niques to speed up the execution time of our difference min-
ing algorithms. Please refer to Appendix A.2 for our incre-
mental algorithms. The implementation of the incremental
algorithms are left as part of our future work.

S. EXPERIMENTS

We conduct a set of comprehensive experiments to demon-
strate the quality and efficiency of our proposed MRI algo-
rithms. First, we show that our randomized hill exploration
algorithms are scalable and achieve much better response
time than the exact algorithms while maintaining similar re-
sult quality (Section 5.1). Second, through a set of Amazon
Mechanical Turk studies, we demonstrate that interpreta-
tions generated by our approaches are superior to the simple
aggregate ratings returned by current systems (Section 5.2).

Data Set: We use the MovieLens [4] 100K ratings dataset
for our evaluation purposes because the two alternative
MovieLens datasets with more ratings (1M and 10M ratings
datasets) do not contain user details that are required for
our study. The dataset has 100,000 ratings for 1682 movies
by 943 users. Four user attributes (gender, age, occupation,
location) are used for cuboid description, with the number
of distinct values ranging from 2 (gender) to 52 (location).

The number of ratings for each movie can vary signifi-
cantly, which can have a significant impact on the perfor-
mance of the algorithms. As a result, we organize the movies
into 6 bins of equal sizes, in the order of increasing number
of ratings. In particular, Bin I contains movies with the
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H E-DEM
RHE-DEM

Execution Time (in s)

T I
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Figure 3: Execution time: E-DEM vs RHE-DEM.

fewest number of ratings (on average 2) and Bin 6 contains
movies with the highest number of ratings (on average 212).
Additional details about the dataset are in Appendix A.3.1.

System configuration: Our prototype system is imple-
mented in Java with JDK 5.0. All experiments were con-
ducted on an Windows XP machine with 3.0Ghz Intel Xeon
processor and 2GB RAM. The JVM size is set to 512MB.
All numbers are obtained as the average over three runs.

5.1 Performance Evaluation

We compare the execution time for computing interpre-
tations using the exact and the randomized hill exploration
algorithms. For all our experiments, we fix the number of
groups to be returned at k = 2, since the brute-force algo-
rithms are not scalable for larger k.

Figure 3 and 4 compares the average execution time and
average description error respectively of E-DEM and RHE-
DEM. As expected, while the execution time difference is
small for movies with small number of ratings, RHE-DEM
computes the descriptions much faster than E-DEM for
movies with a large number of ratings (i.e., Bins 5, 6). More-
over, it reduces the execution time from over 7 seconds to
about 2 seconds on average for movies in Bin 6, which is
significant because we can effectively adopt description min-
ing in an interactive real-time setting with our RHE algo-
rithm. Despite signicant reduction in the execution time,
our heuristic algorithm does not compromise too much in
terms of quality. In fact, as Figure 4 illustrates, the average
description error is only slightly larger for RHE.

Similar results are found with the comparison of E-
DIM and RHE-DIM algorithms, described in details in Ap-
pendix A.3.2. Furthermore, both RHE-DEM and RHE-DIM
algorithms scale well with the number of cuboids (i.e., k),
the details of which is shown in Appendix A.3.3.

5.2 User Study

We now evaluate the benefits of rating interpretations in
an extensive user study conducted through Amazon Me-
chanical Turk (AMT)®. In particular, we aim to analyze
whether users prefer our sophisticated rating interpretations
against the simple rating aggregation currently adopted by
all online rating sites. We conduct two sets of user studies,
one for description mining and one for difference mining.

®https://www.mturk.com
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Description Mining

I

Bin1

Error

H E-DEM
RHE-DEM

Bin2 Bin3 Bin4 Bin5 Bin6

Movies

Figure 4: error(C, R;): E-DEM vs RHE-DEM.

Each set involves 4 randomly chosen movies and 30 indepen-
dent single-user tasks. For each movie in the task, we ask
the user to select the most preferred rating interpretations
among the three alternatives: simple aggregate ratings, rat-
ing interpretation by E-DEM (or E-DIM) algorithms, and
those by RHE-DEM (or RHE-DIM) algorithms. The details
of the user study setup can be found in Appendix A.3.4.

User Study
90

80

70

60

50

M Simple Average
40

Rating Interpretation

User Percentage

30
20

N

Description Mining

0

Difference Mining

Figure 5: Users Prefer Rating Interpretations.

Figure 5 compares the simple overall average rating ap-
proach against our approach returning movie rating inter-
pretations to the user. The simple average represents the
percentage of users choosing average ratings, whereas the
latter is computed as an addition of percentage of users pre-
ferring rating interpretations produced by either exact or
RHE algorithms. From the results, it is clear that users
overwhelmingly prefer the more informative explanations to
the overall average rating, thus confirming our motivation.
We also observe that when an user is unfamiliar with a movie
in the study, she is particularly inclined to meaningful rating
explanations over average rating.

To verify that the quality of results produced by our RHE
algorithms are on par with the exact algorithms, we leverage
the same user study facility to compare the interpretations
produced by both. As shown in Figure 6, from the user’s
perspective and for both description mining and difference
mining, results produced by exact and RHE algorithms are
statistically similar. In fact, the users even slightly prefer
results from the heuristic algorithm for the difference min-
ing. This validates that our heuristic algorithms are viable,
cheaper, alternatives to the brute-force algorithms.
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M Exact
RHE

User Percentage

Description Mining

Figure 6: Exact and RHE Algorithms Produce Sim-
ilar Results.

Difference Mining

6. RELATED WORK

Data Cubes: Our idea of using structurally meaningful
cuboids as the basis for rating interpretation is inspired by
studies in data cube mining, first proposed in Gray et. al [6]
and Ramakrishnan et. al [10]. Among those studies, Quo-
tient Cube [9], KDAP [13], Intelligent Roll-ups [11] and
Promotion Analysis [14] investigate the problem of rank-
ing and summarizing cuboids, which is similar to our goal
here. However, none of these adopts formal objective mea-
sures based on user ratings like in our work. To the best of
our knowledge, our work is the first to leverage structurally
meaningful descriptions for collaborative rating analysis.

Dimensionality Reduction: Several dimensionality re-
duction techniques, such as Subspace Clustering and PCA,
were developed in order to describe a large structured
dataset as labeled clusters. While Subspace Clustering [2]
may be extended to handle our description mining task, it
needs to be modified for scalability. Adapting subspace clus-
tering to difference mining is a non-obvious algorithmic task
though. On the other hand, PCA relies on pre-determining
the set of attributes to use to describe clusters instead of
discovering them on the fly, as in our work.

Recommendation Explanation: Due to the popular
adoption of recommendation systems by online sites such
as Amazon and Netflix, explaining recommendations has
also received significant attention. Herlocker et. al [7] pro-
vides a systematic study of explanations for recommenda-
tion systems. Yu et. al [15] describes how explanations can
be leveraged for recommendation diversification. Bilgic and
Mooney [3] convincingly argues that the goal of a good ex-
planation is not necessarily promotion, but to enable users
to make well-informed decisions. Our study of rating inter-
pretation is one step toward this ultimate goal of providing
users with useful explanations to make informed decisions.

7. CONCLUSION

In this paper, we have introduced the novel problem of
meaningful rating interpretation (MRI) in the context of
collaborative rating sites that exploits the rich structure
in metadata describing users to discover meaningful re-
viewer sub-populations to be presented to the user. Un-
like unsupervised clustering approaches, groups returned by
MRI are meaningful due to the common structural attribute
value pairs shared by all reviewers in each group. Our ex-
periments validate the need for rating interpretation, and
demonstrate that our proposed heuristic algorithms gener-
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ate equally good groups as exact brute-force algorithms with
much less execution time. We intend to investigate alternate
heuristic search techniques with smarter starting points, be-
sides conducting experiments on larger datasets.

Finally, our work is a preliminary look at a very novel
area of research and there appear to be many exciting di-
rections of future research. For example, the problem can
be extended to provide meaningful interpretations of ratings
by reviewers of interest. Furthermore, additional constraints
can be introduced such as diversity of rating explanations.
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APPENDIX
A. APPENDIX

A.1 Proofs

In this section, we provide detailed proofs of various the-
orems in the main paper.

A.1.1 Proof of Theorem 1

THEOREM 1. The decision version of the problem of
meaningful description mining is NP-Complete even for
boolean databases, where each attribute ia; in Za and each
attribute ua; in Ua takes a boolean value of either 0 or 1.

Proof: The decision version of the problem of meaning-
ful description mining (DEM) is as follows: For a given
set of items and their ratings Ry, is there a set of cuboids
C, such that error(C,R;) < 8, subject to |C] < k and
coverage(C, R;) > a. The membership of the decision ver-
sion of the description mining problem in NP is obvious.

To verify NP-completeness, we reduce the Exact 3-Set
Cover problem (EC3) to the decision version of our prob-
lem. EC3 is the problem of finding an exact cover for a
finite set U, where each of the subsets available for use con-
tain exactly 3 elements. The EC3 problem is proved to be
NP-Complete by a reduction from the Three Dimensional
Matching problem in computational complexity theory [8].

Let an instance of EC3 (U, S) consist of a finite set U =
{1, z2, ... »} and a family S = {S1, Sa, ... Sim} of subsets
of U, such that |S;| = 3, Vi 1 < i < n. We are required
to construct an instance of DEM (Ry, k, «, ) having k =
(§+1), a =100 (so that, coverage(C, Rr) = 100%) and § =
0 (so that, error(C, Rr) = 0); such that there exists a cover
C C S of 3 pairwise disjoint sets, covering all elements in
U, if and only if, a solution to our instance of DEM exists.

We define (m + 1) Boolean attributes A = {4, Aa, ...
A1} and (n+ 1) tuples T' = {t1, ta, ... tny1}, where each
entry t; has a corresponding Boolean rating. For each S; =
{zi, z;, zr}, A; has Boolean 1 for tuples {¢;, t;, tx}; while
the remaining tuples are set to Boolean 0. For attribute
A1, tuples {t1, t2, ... tny1} are all set to 0. The ratings
corresponding to tuples {t1, t2, ... t,} are all 0, while tu-
ple {tn+1} has a rating of 1. Figure 7 illustrates example
instances of the EC3 problem and our DEM problem.

As defined in Section 2, cuboids (or, groups) are selection
query conditions retrieving structurally meaningful group-
ings of the ratings. For Boolean attributes {A:, Aa, ...
Apmi1}, a query condition @ € {0,1,*}™T!, where attribute
A;in Qisset to 0, 1 or * Vi 1 <4 < (m+1). The space of
all possible cuboids (or, query conditions) is 3™,

Now, the DEM instance has a solution if error(C, Ry)
0 and coverage(C, R;) = 100%. Note that, each cuboid in
the set C' of k cuboids in the solution for DEM should choose
tuples either from T1 = {t1, t2, ... tn} or from 7o = {t,n4+1}
to achieve error(C, Rr) = 0. We need one cuboid 0™ to
cover the single tuple in T5. Now, let us focus on how to
cover tuples in T with % more cuboids.

Lemma 1: A selection query Q € {0,%}™{0,1,x} cannot
retrieve non-empty set of tuples only from Ti.

For a query Q € {0,*}™{0,1,x}: if @ € {0,*}™{1}, no
tuple is selected; if Q € {0,*}"{0, *}, non-empty set of tu-
ples from both 77 and T» are selected. Thus queries of the
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U = {Xy, X, X3, Xy Xs,

<S5
‘ Xgr X7y Xg, Xo}

EC3: S
= {S4, S5 S5 Sy S}
-S; ={xy, Xy, X5}
4 S, -8, = {X5, Xy Xg}
-S; = {Xs, Xg, Xo}
-S4 = {Xy Xg, Xo}
DEM: | R [ A | A, | Ay | Ay | A; | A | Rating | -S5={X,, X5, X}
t,(]1|{0|0|0]|O0]|0O 0
t,|1/o0flo|ofofo]| o
t; (0|1 0(0]|0]|0O 0
t,|/0|1]0j0|1]|0 0
t,|0|0|1]0|1]|0 0
ts|0|0 |1 ]0|1]|0 0
t,|1]oflo|1][ofo] o
t,|o|1]lo|1][ofo] o
t,|olo|l1|1][ofo] o
to]0|o0foflofo]o] 1

Figure 7: Example instances of EC3 and DEM.

form {0,*}™{0,1,*} cannot yield a solution for the DEM
instance.

Lemma 2: A query Q ¢ {0} {1}{0,*}™7%0,1,%, Vi 1 <
i < m cannot have a solution for the DEM instance.

If a cuboid (or selection query) has 2 or more attributes A;
set to 1, the set of covered tuples is strictly smaller than
3. Thus cuboids that select exactly 3 elements have to have
exactly one attribute A; is set to 1, Vi 1 < i < m,

From Lemmas 1 and 2 we conclude that a set C of (%
pairwise disjoint cuboids in which one cuboid covers exactly
one tuple (defined by query {0}™%!), and the remaining
% cuboids each cover exactly 3 tuples (each defined by a
query of the form {0,*}*~'{1}{0,*}™~{0,1,*}, and satis-
fying error(C, Rr) = 0 and coverage(C, Rr) = 100% corre-
sponds to the solution to EC3. The meaningful description
mining problem is NP-Complete for Boolean databases. O

A.1.2  Proof of Theorem 2

THEOREM 2. The decision version of the problem of
meaningful difference mining is NP-Complete even for
boolean databases.

Proof : The decision version of the problem of meaning-
ful difference mining (DIM) is as follows: For a given set
of items and their ratings Ry, is there a set of cuboids C,
such that balance(C, R}, R;) < B, subject to |C] < k and
coverage(C, R}) > a A coverage(C, R;) > a. The mem-
bership of the decision version of the difference mining prob-
lem in NP is obvious. To verify its NP-completeness, we
again reduce the Exact 3-Set Cover problem (EC3) to the
decision version of DIM.

Similar to the proof in Theorem 1, we consider an instance
of EC3 (U, S); we are required to construct an instance of
DIM (R;, k, o, B) having k = (5+1), a = 100 (so that,
coverage(C, Rf) = 100 A coverage(C,R;) = 100%) and
B = 0 (so that, balance(C, Rj, Ry) = 0); such that there

exists a cover C C S of size 7, covering all elements in



U, if and only if, a solution to our instance of DIM exists.
The reduction follows the same steps as that in Theorem 1,
except that the ratings corresponding to tuples {¢1, to, ...
t,} are all 0 (indicating negative rating), while tuple {t,+1}
has a rating of 1 (indicating positive rating). O

A.1.3  Proof of Theorem 3

THEOREM 3. Given R; and C, balance(C,R;,, R;,)
computed using Equation 1 is equivalent to the one computed
using the formula in Section 3.2.

Proof : The standard computation of aggregate balance
balance(C, R}, R;) looks up all possible pairings of posi-
tive and negative ratings, for each set of k£ cuboids. The
pseudo code of the standard technique is presented in Al-
gorithm 3. It scans each of the k cuboids in C to identify
possible positive and negative rating pairings. The method
maintains a | R} | x|R; | matrix for book-keeping, all of whose
elements are first initialized to zero and then set to one,
whenever a particular element position (corresponding to
postive-negative rating pairing) is encountered. The total
number of one-s in the |R}| x |R} | matrix determines the
measure balance(C, R, R;). O

A.2 Incremental Balance Computation

The efficiency of our proposed algorithms can be improved
by employing indexing on the data tables [5]. We can build
index structure on our tables, so that selection queries are
capable of retrieving rating tuples (and thereby compute
description error or difference balance) without having to
scan the entire database. The idea of partitioning ratings
into fundamental regions, introduced in Section 3.2 can be
further made use of in designing incremental techniques to
speed up the execution time of our difference mining algo-
rithm.

In our exact and RHE algorithms, investigation of a set C'
of k cuboids is followed by investigation of another set C' =
C —{ci} +{c;}, where ¢; is a neighbor of ¢;. Since cuboids
¢; and c; are neighbors, they share a set of attribute value
pairs. If c¢; is a child of ¢; in the connected lattice, C to
C’ brings about a reduction in the rating space; if ¢; is a
parent of ¢;, C to C' results in an expansion in the set of
ratings. In other words, the tuples that needs to be updated
in the positive and negative rating tuple counts for the fun-
damental regions are those satisfied by the query {c;}-{c;}
(or, {c;j}-{ci}). Therefore, one seemingly straightforward
incremental technique will identify the tuples in {c¢;}-{c;}
(or, {cj}-{ci}) and update the positive and negative rating
tuple aggregates of the fundamental regions getting affected
due to ¢;. However in such a framework, it will not be pos-
sible to identify the fundamental regions whose aggregates
need to be updated and the method may eventually end up
looking up all regions and rating tuples. Hence, we inter-
pret the move from set C to C’ as deletion of ¢; followed by
insertion of c;.

Deletion of ¢;: Figure 8 explains our deletion operation
through an example, where C = {c1, c2, ¢3, ca} of k = 4
cuboids partitions 200 ratings in Ry into 10 fundamental re-
gions Fi, Fy, F3, Fu, Fs, Fg, F7, Fs, Fy and Fo, each having
a distinct 4-bit signature and a pair of positive and nega-
tive rating tuple aggregates (Fi(R}), Fi(R;)). Assume, we
want to delete cuboid ¢4 from set C' of 4 cuboids (marked

Deletion
ofC,

F C,C,C;C, | Count F(R*), F(R") F C,C,C; | Count F(R*), F(R)
F, | 1000 (20, 16) F, 100 (20, 16)
F, | 1100 (12,5) F, 110 (12,5)
Fy 0100 (10, 9) Fy 010 (19, 10)
F,| 1010 (0,3) F, 101 (0,3)
Fs | 1110 (2,1) Fs 111 (2,1)
Fs | 0101 (9,1)

Fg 001 (14,7)
F, | 0001 (5,8)

Fy 011 (14,7)
Fs | 0010 (14,7) ™| ;

Fio 000 (42, 28)
Fy 0110 (14,7)
Fo| 0000 (37, 20)

Figure 8: Deletion of cuboid Cj.

F C,C,C; | Count F(R*), F(R") F | GGG | Count F(RY), F(R7)
% 100 (20, 16) F, | 1000 (20, 16)
F 110 (12,5) F, | 1100 (12, 5)
(X 010 (19, 10) F; | 0100 (12,3)
Fa 101 ©.3) F,| 1010 (0, 3)
. 111 TR Fs | 1110 (2,1)
F, | 0010 (14,7)
Fq 001 (14,7)
F, | 0110 (14,7)
Fy 011 (14,7) -
; F,'| 0000 (26, 8)
Fio 000 (42, 28) i
L F,, | 0101 (7,7)
F,| 0001 (16, 20)

Figure 9: Insertion of cuboid Cs.

in dotted circle in Figure 8). First, we identify the funda-
mental regions, whose aggregates will be affected (F;(R])
and F;(R;) will increase or decrease) due to the deletion
of cs. We compare the query cs with the 3 other queries
c1, c2 and cs. If an attribute-value pair in ¢4 is identical to
an attribute-value pair in at least one of c¢1, c2 and c3, say
c2 in our example Figure 8, we determine the correspond-
ing fundamental regions whose signature has 2"? bit set to
1 namely F», F3, F5, Fs, Fo, and the fundamental region
whose all 4 bits are set to 0 namely Fio respectively. In this
way, we reduce the set of fundamental regions that may be
affected from 10 to 6. We further reduce this set of 6 funda-
mental regions to identify exactly those that will be affected
due to deletion of c4. The fundamental regions from F», F3,
Fs, Fs, Fy, Fio whose signature has 4" bit set to 1, namely
Fs and F7 are marked - they will be deleted from the set
of fundamental regions; the fundamental regions whose sig-
natures are identical with that of Fs and F7 except the 4th
bit, namely F3 and Fio are also marked - the aggregates
(F3(RY), F5(Ry)) and (Fio(R}), Fio(R})) will be updated.
Therefore out of 10 fundamental regions, only 4 needs to
be updated while the remaining 6 regions continue to be
same. Let us denote the updated regions as Fj and Fj.
F3(RY) = F3(RY) + Fo(R}); F5(Ry) = F3(R;) + Fs(R;)
(marked in Figure 8) and F{o(R}) = Fio(R}) + F7(R});
Flo(R}) = Fio(R; )+ Fr(R;) (marked in Figure 8). Finally,
we update the signatures of all the fundamental regions to
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a (4 — 1) = 3 bit vector by removing the 4'" bit. Note that
deletion operation does not require us to visit the database
at any point of time. We get C” = C - {ca} = {c1, c2, c3}
of k = 3 cuboids that partitions 200 ratings in R; into 8
fundamental regions, F1, F», F5, Fy, F5, Fs, Fy and Fj,.

Insertion of c;: Figure 9 explains our insertion opera-
tion that follows the deletion operation in Figure 8 to build
C'=C" 4 {cs} = C - {ca} + {c5}. Considering the same
example, C"” = {c1, c2, cs} of k = 3 cuboids partitions 200
ratings in R; into 8 fundamental regions Fy, Fh, Fj, Fy,
Fs, Fs, Fy and Fjy, each having a distinct 3-bit signature
and a pair of positive and negative rating tuple aggregates
(Fy(Rf), Fi(R;)). Assume, we want to insert cuboid ¢ into
set C” of 3 cuboids (marked in dotted circle in Figure 9).
First, we identify the fundamental regions, whose aggregates
will be affected (F;(R;) and F;(R;) will increase or de-
crease) due to the insertion of cs. We compare the new
query c¢s with the 3 existing queries c1, c2 and c3. If an
attribute-value pair in c¢s is identical to an attribute-value
pair in at least one of ci1, c2 and c3, say c2 in Figure 9,
we determine the corresponding fundamental regions whose
signature has 2™? bit set to 1 namely F», F4, Fs, Fy, and the
fundamental region whose all 3 bits are set to 0 namely FY,
respectively. In this way, we reduce the set of fundamen-
tal regions that may be affected from 10 to 5. We further
reduce this set of 5 fundamental regions to identify exactly
those that will be affected due to insertion of ¢5. The fun-
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damental regions from F», Fj, Fs, Fy, F{, whose signature
has no other bit (other than the 2"¢ bit) set to 1, namely F}
and FY, are marked - they will be partitioned into F3', F11
and F}(, Fi2 respectively. Therefore out of 8 fundamental
regions, only 2 needs to be partitioned, while the remaining
6 regions continue to be same. We update the signatures of
all fundamental regions by setting the new bit (4”” bit now
corresponds to ¢s) to 0 in all except the two new regions Fi1
and Fi2. Note, the first 3 bits in F4', Fy; and FYf, Fi2 are
identical to that in Fj and FY, respectively. Next, we select
the set of 50 tuples 17" for the query condition in cs and
assign a 4-bit vector signature to each tuple in 7" based on
its coverage by cuboids c1, c2, c3 and ¢5. The index struc-
tures on the data tables support a fast retrieval of 7”. Once
the signatures are built and the fundamental regions cor-
responding to 7" are determined, we match the signatures
from 7" with that of fundamental regions Fj and FY,, ex-
cept the 4" bit. If there exists a match with Fj or Fjy, we
increment the counts of new regions (Fi1(R}), Fi1(R;)) or
(Fiz (Rf{)7 F12(Ry)) as well as update the counts of regions
(F{(RT), Fy(R;)) or (Fip(R}), Fiy(R;)) respectively.
Fy/(R}) = F5(Ry)—Fu(Ry); F5'(Ry) = F3(R; )~ Fu(R;)
(marked in Figure 9) and F{(,(Rf) = Fio(R}) — Fi2(R});
Fio(Ry) = Fio(R;) — F12(R;) (marked in Figure 9). We
get C' = C" + ¢5 = {c1, c2, c3, c5} of k = 4 cuboids parti-
tions 200 ratings in R; into 10 fundamental regions, Fy, Fb,
Fé,7 F‘47 F5, F’g7 Fg, Fﬂ), F11 and F12.



A.3 Additional Experimental Evaluation

In this section, we provide additional details on our ex-
perimental evaluation that we are not able to describe in the
main paper due to space limitation.

A.3.1 Additional Data Set Details

User attributes: There are four user attributes that we
consider in the MovieLens dataset that we adopt, including
gender, age, occupation and zipcode. The attribute gender
takes two distinct values: male or female. We convert the
numeric age into four categorical attribute values, namely
teen-aged (under 18), young (18 to 35), middle-aged (35 to
55) and old (over 55). There are 21 different occupations
listed by MovieLens, such as student, artist, doctor, lawyer,
etc. Finally, we convert zipcodes to states in the USA (or
foreign, if not in USA) by using the USPS zip code lookup
(http://zip4.usps.com). This produces the user attribute,
location, which takes 52 distinct values.

Binning the movies: As described in Section 5, one im-
portant factor when conducting the performance evaluation
is the number of ratings that we are generating interpreta-
tions from. Intuitively, the more ratings we have to consider,
the more costly the interpretation process is expected to be.
Therefore, we order our set of 1682 movies according to the
number of ratings each movie has, and then partition them
into 6 bins of equal sizes, where Bin 1 contains movies with
the fewest and Bin 6 contains movies with highest number
of ratings. Table 1 shows the statistics of those bins. We
randomly pick 100 movies from each bin and compare the
execution time and the objective score (error for descrip-
tion mining and balance for difference mining) of both the
exact algorithms and our heuristic algorithms.

lowest #rtg | highest #rtg | avg #rtgs
Bin 1 1 4 2
Bin 2 4 11 7
Bin 3 11 27 18
Bin 4 27 59 41
Bin 5 59 121 84
Bin 6 121 583 212

Table 1: Bin Statistics.

A.3.2 Additional Performance Evaluation: Differ-
ence Mining Experiments

In Section 5.1, we compare the average execution time and
the average error for description mining using the exact and
randomized hill exploration algorithms. Here, Figures 10
and 11 report similar results comparing the average execu-
tion time and the average balance score respectively for the
difference mining task. Again, we see that our heuristic al-
gorithm performs much faster (reducing the execution time
from over 20 second to less than 2 seconds) without com-
promising much on the overall balance score.

A.3.3 Additional Performance Evaluation: Scalabil-
ity Experiments

Figures 12 and 13 illustrate the execution time of our RHE
algorithms for description mining and difference mining re-
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spectively, over increasing number of cuboids in the results.
A randomly chosen movie, Gone With The Wind, is used
in this analysis. The results show that RHE algorithms are

very scalable where the execution time remains reasonably
small through the range of k values up to 10, which we be-

lieve to be the upper limit of how many explanations a user
can consume for a single item. Note that the execution time
of brute-force algorithms could not be reported beyond k& =
2 because they failed to finish within a reasonable amount
of time. High coverage of item ratings by few general groups
such as {(age, young), (occupation, student)}, etc. who fre-
quenty particpate in collaborative rating sites and very low
coverage by majority of the groups in the rating lattice such
as {(gender, female), (age, 01d), (occupation,librarian)},
etc. supports the exploration phase to reach a local minima
quickly, thus making our RHE algorithms scalable.

A.3.4  User Study Details

Section 5.2 provides a high level overview of our Amazon
Mechanical Turk user study. In this section, we dive into
the details of how the user studies are conducted. There are
two sets of user studies, one for description mining and one
for difference mining. Each set involves 4 randomly chosen
popular (with over 50 ratings) movies® and 30 independent
single-user tasks. For description mining, the four movies
chosen are Toy Story, Titanic, Mission Impossible and For-
rest Gump. For difference mining, we bias toward more con-
troversial movies and chose Crash, 101 Dalmatians, Space
Jam and Ben Hur.

Each task is conducted in two phases: User Knowledge
Phase and User Judgment Phase. During the first phase, we
estimate the users’ seriousness about the task and familiarity
about the movies in the task by asking them to complete a
survey. The survey contains a few very simple questions
about the movies that we use to prune out malicious users
who simply try to complete the task by answering questions
randomly. We also draw some interesting observations from
the user study. In the second phase, for each movie in the
task, we present to the user three alternative interpretations
of the ratings about the movie for description mining and
difference mining:

e Option (a) overall average rating (simple)

e Option (b) the interpretation produced by the exact
algorithms (E-DEM, E-DIM)

e Option (c) the interpretation produced by our random-
ized hill exploration algorithms (RHE-DEM, RHE-
DIM), where the number of explanations (i.e., the
number of cuboid groups presented) for both exact and
heuristic is limited at 3.

The user is then asked to judge which approach she
prefers. The responses from all the users are then aggre-
gated to provide an overall comparison between the three
approaches.

SFor movies that are less popular, uses can simply go over
all the ratings one by one, therefore rating interpretation
does not bring much benefit.



