
Stratification Criteria and Rewriting Techniques for
Checking Chase Termination

Sergio Greco
DEIS, Università della Calabria

87036 Rende (Cs), Italy

greco@deis.unical.it

Francesca Spezzano
DEIS, Università della Calabria

87036 Rende (Cs), Italy

fspezzano@deis.unical.it

Irina Trubitsyna
DEIS, Università della Calabria

87036 Rende (Cs), Italy

irina@deis.unical.it

ABSTRACT
The Chase is a fixpoint algorithm enforcing satisfaction of data de-
pendencies in databases. Its execution involves the insertion of
tuples with possible null values and the changing of null values
which can be made equal to constants or other null values. Since
the chase fixpoint evaluation could be non-terminating, in recent
years the problem know as chase termination has been investigated.
It consists in the detection of sufficient conditions, derived from the
structural analysis of dependencies, guaranteeing that the chase fix-
point terminates independently from the database instance. Several
criteria introducing sufficient conditions for chase termination have
been recently proposed [9, 8, 13, 12].
The aim of this paper is to present more general criteria and tech-
niques for chase termination. We first present extensions of the
well-known stratification conditions and introduce a new criterion,
called local stratification (LS), which generalizes both super-weak
acyclicity and stratification-based criteria (including the class of
constraints which are inductively restricted). Next the paper presents
a rewriting algorithm, whose structure is similar to the one pre-
sented in [10]; the algorithm takes as input a set of tuple generating
dependencies and produces as output an equivalent set of depen-
dencies and a boolean value stating whether a sort of cyclicity has
been detected. The output set, obtained by adorning the input set
of constraints, allows us to perform a more accurate analysis of the
structural properties of constraints and to further enlarge the class
of tuple generating dependencies for which chase termination is
guaranteed, whereas the checking of acyclicity allows us to intro-
duce the class of acyclic constraints (AC), which generalizes LS
and guarantees chase termination.
Keywords: Data Exchange, Data Integration, Chase.

1. INTRODUCTION
The Chase is a fixpoint algorithm enforcing satisfaction of data de-
pendencies in databases. It has been proposed more than thirty
years ago [1, 11] and has received an increasing attention in recent
years in both database theory and practical applications. Indeed, the
availability of data coming from different sources easily results in
inconsistent or incomplete data (i.e. data not satisfying data depen-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

dencies) and, therefore, techniques for fixing inconsistencies are
crucial [2, 6]. The chase algorithm is used, directly or indirectly,
on an everyday basis by people who design databases, and it is used
in commercial systems to reason about the consistency and correct-
ness of a data design. New applications of the chase in meta-data
management, ontological reasoning, data exchange and data clean-
ing have been proposed as well [3, 5, 7].
The execution of the chase algorithm involves the insertion of tu-
ples with possible null values and the changing of null values which
can be made equal to constants or other null values. However, the
insertion of tuples with new (null) values could result in a non-
terminating execution. The following example shows a case where
a given database does not satisfy a set of data dependencies (also
called constraints) and the application of the chase algorithm pro-
duces a new consistent database by adding tuples with nulls.

EXAMPLE 1. Consider the set of constraints Σ1:

∀x [N(x) → ∃y E(x, y)]
∀(x, y) [S(x) ∧ E(x, y) → N(y)]

where the relations N and S store normal nodes and special nodes,
respectively, whereas E stores edges. The second constraint states
that if there exists an edge from x to y and x is a special node,
then y must be a (normal) node. The first constraint states that
every normal node must have an outgoing edge. Assume that the
database contains the tuples S(a), N(a). Since the first constraint
is not satisfied, the tuple E(a, n1), where n1 is a new labeled null,
is inserted. This update operation fires the second constraint to
insert the tuple N(n1) which in turn fires the first constraint so
that the tuple E(n1, n2) is added to the database. At this point the
chase terminates since the database is consistent, i.e. the second
constraint cannot be fired because n1 is not in the relation S. The
output database is consistent as both dependencies are satisfied. 2

However, it is important to observe that if we delete from the se-
cond constraint the predicate S(x), the chase never terminates and
adds to the database an infinite number of tuples.
The problem recently investigated, known as chase termination,
consists in the identification of sufficient conditions, based on struc-
tural properties of the input set of constraints, guaranteeing that the
chase fixpoint terminates independently from the database instance.
Several criteria for chase termination have been defined. We re-
call here weak acyclicity [9], safety [13], (c-)stratification [8, 14],
super-weak acyclicity [12], safe restriction and inductive restriction
[14]. An orthogonal technique which enlarges the classes of depen-
dencies recognized by these criteria has been proposed in [10]. This
technique rewrites the input set of constraints Σ into an equivalent
set Σα and checks criteria satisfaction on Σα.
Nevertheless, despite the previously mentioned results, there are
still important classes of terminating data dependencies which are

1158

not identified by none of the previous mentioned criteria. Thus,
the aim of this work is the definition of more general criteria and
techniques for chase termination.
Contributions. The main contributions of this paper follow.

• We start by analyzing the stratification criterion and propose
a new stratification technique, called WA-stratification, which
builds a different chase graph Γ(Σ), called firing graph, and
overcomes some limitations of (c-)stratification; since WA-
stratification checks weak acyclicity over strong components
of Γ(Σ), two further, more powerful, conditions checking
safety and super-weak acyclicity over Γ(Σ) are defined. These
techniques are called SC-stratification and SwA-stratification.

• SwA-stratification, the most general of the above new crite-
ria, is not comparable with inductive restriction (IR). Thus,
we propose a further criterion, called Local stratification (LS)
which uses a more refined criterion of SwA during the con-
struction of the firing graph. LS generalizes SwA-stratification
and is more powerful than IR.

• We present a new rewriting technique which produces an
equivalent set of dependencies and a boolean whose value
is true if during the rewriting technique a form of cyclicity
has been detected. The rewriting technique allows us, by
checking criteria on the rewritten set of constraints, to fur-
ther enlarge the class of terminating dependencies.

• The rewriting technique permits us to introduce a new class
of terminating constraints consisting of sets of dependencies
which are detected as acyclic by our rewriting algorithm.
This class, called Acyclic (AC) generalizes LS and, consid-
ering static criteria for checking chase termination,AC is the
most general criterion so far proposed 1.

2. PRELIMINARIES
We introduce the following disjunct sets of symbols: (i) an infinite
set Consts of constants, (ii) an infinite set Nulls of labeled nulls
and (iii) an infinite set V ars of variables.
A relational schema R is a set of relational predicates R, each with
its associated arity ar(R). An instance of a relational predicate
R of arity n is a set of ground atoms in the form R(c1, . . . , cn),
where ci ∈ Consts ∪Nulls. Such (ground) atoms are also called
tuples or facts. We denote by D a database instance constructed on
Consts and by J,K the database instances constructed onConsts
∪Nulls. Given an instance K, Nulls(K) (resp. Consts(K))
denotes the set of labeled nulls (resp. constants) occurring in K.
An atomic formula (or atom) is of the form R(t1, . . . , tn) where
R is a relational predicate, t1, . . . , tn are terms belonging to the
domain Consts ∪ V ars and n = ar(R).
Let K be a database over a relational schema R and S ⊆ R,
then K[S] denotes the subset of K consisting of instances whose
predicates are in S (clearly K = K[R]). Analogously, if we
have a collection of databases KC = {K1, . . . ,Kn} where each
Ki is defined over a schema Ri and let S ⊆ ∩i∈[1...n]Ri, then
KC [S] = {K1[S], . . . ,Kn[S]}.
Given a relational schema R, a tuple generating dependency (TGD)
over R is a formula of the form

r : ∀x∀z φ(x, z)→ ∃y ψ(x, y) (1)

where φ(x, z) and ψ(x, y) are conjunctions of atomic formulas over
R; φ(x, z) is called the body of r, denoted as Body(r), while
1In this paper we will use calligraphic style C in order to denote the terminating class
of constraints recognized by criterion C.

ψ(x, y) is called the head of r, denoted as Head(r). An equal-
ity generating dependency (EGD) over R is a formula of the form

∀x φ(x)→ x1 = x2 (2)

where x1 and x2 are among the variables in x. In the following
we will often omit the universal quantification, since we assume
that variables appearing in the body are universally quantified and
variables appearing only in the head are existentially quantified. In
some cases we also assume that the head and body conjunctions are
sets of atoms.

DEFINITION 1 (HOMOMORPHISM). Let K1 and K2 be two
instances over R with values in Consts ∪ Nulls. A homomor-
phism h : K1 → K2 is a mapping fromConsts(K1)∪Nulls(K1)
to Consts(K2) ∪ Nulls(K2) such that: (1) h(c) = c, for every
c ∈ Consts(K1), and (2) for every fact Ri(t) of K1, we have
that Ri(h(t)) is a fact of K2 (where, if t = (a1, ..., as), then
h(t) = (h(a1), ..., h(as))). K1 is said to be homomorphically
equivalent to K2 if there is a homomorphism h : K1 → K2 and
a homomorphism h′: K2→ K1. 2

Similar to homomorphisms between instances, a homomorphism
h from a conjunctive formula φ(x) to an instance J is a mapping
from the variables x to Consts(J)∪Nulls(J) s.t. for every atom
R(x1, . . . , xn) of φ(x) the fact R(h(x1), . . . , h(xn)) is in J .
For any database instance D and set of constraints Σ over a data-
base schema R, a solution for (D,Σ) is an instance J such that
D ⊆ J and J |= Σ (i.e. J satisfies all constraints in Σ). A uni-
versal solution J is a solution such that for every solution J ′ there
exists a homomorphism h : J → J ′. The set of universal solutions
for (D,Σ) will be denoted by USol(D,Σ).

Chase step. Let K be a database instance.

1. Let r be a TGD φ(x, z) → ∃yψ(x, y). Let h be a homo-
morphism from φ(x, z) to K such that there is no extension
of h to a homomorphism h′ from φ(x, z) ∧ ψ(x, y) to K2.
We say that r can be applied to K with homomorphism h.
Let K′ be the union of K with the set of facts obtained by:
(a) extending h to h′ such that each variable in y is assigned
a fresh labeled null, followed by (b) taking the image of the
atoms of ψ under h′. We say that the result of applying r to
K with h is K′, and write K →

r,h

K′.

2. Let r be an EGD φ(x) → x1 = x2. Let h be a homomor-
phism from φ(x) to K such that h(x1) 6= h(x2). We say
that r can be applied to K with homomorphism h. More
specifically, we distinguish two cases.

(a) If both h(x1) and h(x2) are in Consts the result of
applying r to K with h is “failure”, and K →

r,h

⊥.
(b) Otherwise, let K′ be K where we identify h(x1) and

h(x2) as follows: if one is a constant, then the labeled
null is replaced everywhere by the constant; if both are
labeled nulls, then one is replaced everywhere by the
other. We say that the result of applying r to K with h
is K′, and write K →

r,h

K′.

DEFINITION 2 (CHASE [9]). Let Σ be a set of TGDs and EGDs,
and let K be an instance.
• A chase sequence of K with Σ is a sequence (finite or infi-

nite) of chase steps Ki →
r,hi

Ki+1, with i = 0, 1, ..., K0 =
K and r a dependency in Σ.

2A variant of this step is the oblivious one that applies to an instance K if there is a
homomorphism h from φ(x, z) toK.

1159

• A finite chase of K with Σ is a finite chase sequence Ki →
r,hi

Ki+1, 0 ≤ i < m, with the requirement that either (a)
Km =⊥ or (b) there is no dependency r of Σ and there is no
homomorphism hm such that r can be applied to Km with
hm. We say that Km is the result of the finite chase. We
refer to case (a) as the case of a failing finite chase and we
refer to case (b) as the case of a successful finite chase. 2

In [9] it has been shown that, for any instance D and set of con-
straints Σ: (i) if J is the result of some successful finite chase
of 〈D,Σ〉, then J is a universal solution; (ii) if some failing fi-
nite chase of 〈D,Σ〉 exists, then there is no solution. Observe that
whenever several alternative chase steps could be applied, the chase
picks one nondeterministically. Therefore, there are instances and
sets of constraints for which certain choices lead to terminating
chase sequences, while others to non-termination.

Constraints equivalence. The equivalence between two sets of con-
straints Σ1 and Σ2 defined, respectively, over two schemas R1 and
R2, is given with respect to two sets of relations R,S ⊆ R1 ∩ R2

called, respectively, input and output relations.
Given two sets of constraints Σ1 and Σ2 over the two database
schemas R1 and R2, respectively and two nonempty sets of rela-
tions R,S ⊆ R1 ∩R2, we say that 〈R1,Σ1〉 vR/S 〈R2,Σ2〉 if for
every database D over R, USol(D,Σ1)[S] ⊆ USol(D,Σ2)[S].
Moreover, we say that 〈R1,Σ1〉 and 〈R2,Σ2〉 are equivalent with
respect to R/S and write 〈R1,Σ1〉 ≡R/S 〈R2,Σ2〉 if both 〈R1,Σ1〉
vR/S 〈R2,Σ2〉 and 〈R2,Σ2〉 vR/S 〈R1,Σ1〉. When R = S =
R1 ∩ R2 we simply write 〈R1,Σ1〉 v 〈R2,Σ2〉 and 〈R1,Σ1〉
≡ 〈R2,Σ2〉.

2.1 Chase termination conditions
This section presents a brief overview on the well-known chase
termination conditions that guarantee for every database D the ter-
mination of all chase sequences in PTIME in the size of D.

Weak acyclicity. Let Σ be a set of TGDs over a database schema
R, then pos(Σ) denotes the set of positions Ri such that R denotes
a relational predicate of R and there is an R-atom appearing in
Σ. Weak acyclicity (WA) is based on the construction of a directed
graph dep(Σ) = (pos(Σ), E), called the dependency graph, where
E is defined as follows. For every TGD φ(x, z)→ ∃yψ(x, y) in Σ,
then: i) for every x in x occurring in positionRi in φ and in position
Sj in ψ, add an edge Ri → Sj (if it does not already exist); ii) for
every x in x, appearing in position Ri in φ and for every y in y
appearing in position Tk in ψ, add a special edge Ri →∗ Tk (if it
does not already exist). Σ is weakly acyclic if dep(Σ) has no cycle
going through a special edge.

Safety. The safety condition (SC) [14] is based on the notion of
affected positions. An affected position denotes a position in which
null values may appear, that is it can also take values from Nulls.
A position Ri is said to be affected if there is a constraint r :
φ(x, z) → ∃yψ(x, y) in Σ and either i) there is a variable y in
y appearing in position Ri in ψ, or ii) there is a variable x in x
appearing both in position Ri in ψ and only in affected positions
in the body of r. The set of affected positions of Σ is denoted by
aff(Σ).
Given a set of TGDs Σ, the propagation graph of Σ, denoted as
prop(Σ) = (aff(Σ), E′), is a subset of dep(Σ) = (pos(Σ), E)
such that E′ contains the edges in E whose positions are affected
(since aff(Σ) ⊆ pos(Σ)). Moreover, Σ is said to be safe if
prop(Σ) does not contain cycles with special edges.

Stratification. The idea behind stratification (Str) [8] is to decom-
pose the set of constraints into independent subsets, where each

subset consists of constraints that may fire each other, and check
each component separately for weak acyclicity. Given a set of con-
straints Σ and two constraints r1, r2 ∈ Σ, we say that r1 ≺ r2

iff there exists a relational database instance K1 and two homo-
morphisms h1 and h2 such that i) K1 6|= h1(r1) ii) K1 →r1,h1K2,
iii) K2 6|= h2(r2) and iv) K1 |= h2(r2). Intuitively, r1 ≺ r2

means that firing r1 can cause the firing of r2. We say that Σ
is stratified iff the constraints in every cycle of the chase graph
G(Σ) = (Σ, {(r1, r2)|r1 ≺ r2}) are weakly acyclic.
For every databaseD, stratification ensures the existence of a chase
sequence which terminates in polynomial time in the size ofD [14].
In order to guarantee the termination of all chase sequences, the c-
stratification criterion (CStr) has been proposed [14]. Basically, c-
stratification defines a different chase graph and applies a constraint
whenever its body is satisfied.
In particular, r1 ≺c r2 iff i) K1 →∗,r1,h1K2, ii) K2 6|= h2(r2) and iii)
K1 |= h2(r2), where the oblivious chase step K1 →∗,r1,h1K2 states
that there is a homomorphism h′1 extending h1 which associates
every existentially variable y in h1(r1) to a fresh labeled null.

Super-weak acyclicity. The super-weak acyclicity (SwA) [12] bu-
ilds a trigger graph Υ(Σ) = (Σ, E) where edges define relations
among constraints. An edge ri rj means that a null value intro-
duced by a constraint ri is propagated (directly or indirectly) into
the body of rj .
Let Σ be a set of TGDs and let sk(Σ) be the logic program obtained
by skolemizing Σ, i.e. by replacing each existentially quantified
variable y appearing in the head of a TGD r by the skolem function
fry (x), where x is the set of variables appearing both in the body and
in the head of r. A place is a pair (a, i) where a is an atom of sk(Σ)
and 0 ≤ i ≤ ar(a). Given a TGD r and an existential variable y
in the head of r, Out(r, y) denotes the set of places (called output
places) in the head of sk(r) where a term of the form fry (x) occurs.
Let r be a TGD r and let x be a universal variable of r, In(r, x)
denotes the set of places (called input places) in the body of r where
x occurs.
Given a set of variables V, a substitution θ of V is a function map-
ping each v ∈ V to a finite term θ(v) built upon constants and
function symbols. Two places (a, i) and (a′, i) are unifiable and
we write (a, i) ∼ (a′, i) iff there exist two substitutions θ and θ′ of
(respectively) the variables a and a′ such that a[θ] = a′[θ′]. Given
two sets of places Q and Q′ we write Q v Q′ iff for all q ∈ Q
there exists some q′ ∈ Q′ such that q ∼ q′.
For any set Q of places, Move(Σ, Q) denotes the smallest set
of places Q′ such that Q ⊆ Q′, and for every constraint r =
Br → Hr in sk(Σ) and every variable x, if Πx(Br) v Q′ then
Πx(Hr) ⊆ Q′, where Πx(Br) and Πx(Hr) denote the sets of
places in Br and Hr where x occurs.
Given a set Σ of TGDs and two TGDs r1, r2 ∈ Σ, we say that
r1 triggers r2 in Σ and write r1 r2 iff there exists an exi-
stential variable y in the head of r1, and a universal variable x2

occurring both in the body and head of r2 such that In(r2, x) v
Move(Σ, Out(r1, y)). A set of constraints Σ is super-weakly acy-
clic iff the trigger graph Υ(Σ) = (Σ, {(r1, r2)|r1 r2}) is acy-
clic. With respect to other criteria, SwA also takes into account
the fact that a variable may occur more than once in the same atom.
SwA extends SC [10] but is not comparable with CStr.

Safe restriction. A more refined extension of stratification and
safety has been proposed in [13, 14] under the name of safe re-
striction (SR). Basically, safe restriction refines stratification by
considering constraints firing and possible propagation of null val-
ues together.
For any set of positions P and a TGD r, aff(r, P) denotes the set

1160

Figure 1: Criteria Relationships.

of positions π from the head of r such that i) for every universally
quantified variable x in π, x occurs in the body of r only in posi-
tions from P or ii) π contains an existentially quantified variable.
For any r1, r2 ∈ Σ and P ⊆ pos(Σ), r1 ≺P r2 if 1) r1 ≺c r2

(i.e. there exists a database instance K1 and two homomorphisms
h1 and h2 such that i) K1 →

r1,h1
K2, ii) K2 6|= h2(r2) and iii) K1 |=

h2(r2)) and 2) there is null value propagated from the body to the
head of h2(r2) s.t. it occurs in K1 only in the positions from P .
A 2-restriction system is a pair (G′(Σ), P), whereG′(Σ) = (Σ, E)
is a directed graph and P ⊆ pos(Σ) such that: i) for all (r1, r2) ∈
E: if r1 is TGD, then aff(r1, P) ∩ pos(Σ) ⊆ P , whereas if r2

is TGD, then aff(r2, P) ∩ pos(Σ) ⊆ P , and ii) r1 ≺P r2 ⇒
(r1, r2) ∈ E.
Σ is called safely restricted if and only if there is a restriction sys-
tem (G′(Σ), P) for Σ such that every strongly connected compo-
nent in G′(Σ) is safe.

Inductive restriction. Inductive restriction (IR) refines SR by par-
titioning constraints in a more refined way. In particular, it first
computes the system (G′(Σ), P) and partition Σ into Σ1, ...,Σn,
where each Σi is a set of dependencies defining a strongly con-
nected components in G′(Σ), next, if n = 1 the safety criterion
is applied to Σ, otherwise the IR criterion is applied inductively to
each Σi.

Criteria relationships. A complete characterization of the rela-
tionships among termination condition criteria is shown in Figure 1.

2.2 Constraints Rewriting
A technique for checking chase termination by rewriting the source
set of constraints into an equivalent set has been presented in [10].
The technique consists in rewriting the original set of constraints Σ
into an ‘equivalent’ set Σα and verifying the structural properties
for chase termination on Σα. The rewriting of constraints, based on
the use of adornments to perform a deeper pattern analysis, allows
to recognize larger classes of constraints for which chase termina-
tion is guaranteed – if Σ satisfies chase termination conditions C,
then the rewritten set Σα satisfies C as well, but the vice versa is
not true, that is there are significant classes of constraints for which
Σα satisfies C and Σ does not.

Adornments. An adornment α of a predicate p with arity m is
a string of length m over the alphabet {b, f}. A predicate sym-
bol pα is said to be adorned, whereas an adorned atom is of the
form pα1...αm(x1, ..., xm); if αi = b we say that the variable xi
is bounded, otherwise (αi = f) we say that xi is free. Intuiti-
vely, bounded terms can take values from finite domains; conse-
quently, constant terms are always adorned with the symbol b. If
each body variable of a TGD is associated with a unique adorn-
ment we say that the adornment of the body is coherent. Given a
TGD r : φ(x, z) → ∃yψ(x, y) and let α be a coherent adornment
for the body atoms, then HeadAdn(r, φα(x, z)) denotes the ador-
ned head of r (with respect to the adorned body φα(x, z)) obtained

by adorning head atoms as follows: i) every universally quantified
variable has the same adornment of the body occurrences, ii) con-
stants are adorned as b; iii) existentially quantified variables are
adorned as f .

Rewriting algorithm. Given a set of TGDs Σ over a schema R the
corresponding rewriting set Adn(Σ) consists of the union of four
sets of TGDs: the base set Base(Σ), the derived set Derived(Σ),
the input set In(Σ) and the output set Out(Σ).
The rewriting is performed by means of the function Adn. It starts
by adorning, for each TGD, body predicates with strings of b sym-
bols and adorning heads according to the body adornments by using
the function HeadAdn (base set); then, each new adorned predi-
cate symbol is used to generate new adorned constraints until all
adorned predicate symbols are used (derived set); at the end, TGDs
mapping source relations into relations adorned with strings of b
symbols (input set) and TGDs mapping relations having the same
predicate and different adornments into a unique relation (output
set) are added.

EXAMPLE 2. Consider the constraints Σ1 of Example 1. Ini-
tially, Adn(Σ1) contains two constraints derived by adorning the
body variables as bound (Base(Σ1))

r1 : Nb(x) → ∃y Ebf (x, y)
r2 : Sb(x) ∧ Ebb(x, y) → Nb(y)

In the second step two new constraints are generated (Derived(Σ1)).
Due to the new predicate Ebf, the following constraint, derived
from constraint r2, is introduced:

r3 : Sb(x) ∧ Ebf (x, y) → Nf (y)

At this point the new predicate symbolNf has been generated and,
thus, a new constraint derived from r1 is added:

r4 : Nf (x) → ∃y Eff (x, y)

From the new predicate Eff no new constraint is generated since
the variable x in the body of the second constraint is bounded as it
also appears in the predicate Sb. Moreover, Adn(Σ) also contains
TGDs mapping input tuples into “bounded predicates” (In(Σ1)):

r5 : N(x) → Nb(x)
r6 : S(x) → Sb(x)
r7 : E(x, y) → Ebb(x, y)

and TGDs mapping tuples of adorned relations into “output” rela-
tions (Out(Σ1)):

r8 : Nb(x) → N̂(x)

r9 : Nf (x) → N̂(x)

r10 : Sb(x) → Ŝ(x)

r11 : Ebb(x, y) → Ê(x, y)

r12 : Ebf (x, y) → Ê(x, y)

r13 : Eff (x, y) → Ê(x, y) 2

It is important to observe that the set of constraints Σ1 is neither
inductively restricted nor super-weakly acyclic, while Adn(Σ1) is
weakly acyclic. In fact, dep(Adn(Σ1)), without considering edges
in In(Σ1) and Out(Σ1), which do not affect the analysis of ter-
mination conditions, contains only the following edges: Nb

1→Ebf1 ,
Nb

1→∗ Ebf2 , Ebb2→Nb
1 , Ebf2 →N

f
1 , Nf

1→E
ff
1 , Nf

1→∗ E
ff
2 .

To show the equivalence between Σ and Σα the following def-
inition has been introduced. For any input database schema R
and set of constraints Σ over R, we shall denote with: (i) R̂ =
{p̂(A1, ..., An) | p(A1, ..., An) ∈ R} the output schema derived
from R, (ii)Adn(R,Σ) = R∪{pα(A1, ..., An) | p(A1, ..., An) ∈

1161

R∧pα appears inAdn(Σ)}∪ R̂ the schema obtained by adding to
R the schemas of the relations introduced in the rewriting of con-
straints, (iii) Map(R) = R ∪ R̂ the union of the input and output
schemas, and (iv)Map(Σ) = Σ∪{p(x1, ..., xn)→ p̂(x1, ..., xn)|
p(A1, ..., An) ∈ R} the set of constraints containing, in addition
to Σ, a set of TGDs mapping tuples over the input schema to tuples
over the output schema.

THEOREM 1. [10] For every set of TGDs Σ over a database
schema R, 〈Map(R),Map(Σ)〉 ≡R/R̂ 〈Adn(R,Σ), Adn(Σ)〉. 2

The previous theorem states that for every databaseD over a schema
R and for each universal solution J derived by applying the source
TGDs Σ to D there is a universal solution K derived by applying
the rewritten constraints Adn(Σ) toD such that J [R̂] = K[R̂] and
vice versa.
Let C denote the class of TGDs satisfying criterion C, Adn-C de-
notes the class of TGDs Σ such that Adn(Σ) satisfies criterion C.
The below theorem states that the rewriting technique allows to re-
cognize (by using classical criteria) larger classes of constraints for
which chase termination is guaranteed.

THEOREM 2. [10] For anyC,C′ ∈ {WA,SC,CStr, SwA, SR,
IR}, i) C Adn-C and ii) C ⊆ C′ implies Adn-C ⊆ Adn-C′. 2

3. LOCAL STRATIFICATION
In this section we present some improvements for termination con-
ditions discussed in Section 2 and then introduce the class of lo-
cally stratified dependencies, that generalizes previously known
classes, for which termination of the chase algorithm is guaran-
teed. The idea underlying stratification, also used in its extensions
(e.g. CStr, SR) and in the super-weak acyclicity, is to consider in
the propagation of nulls how constraints may fire each other. How-
ever, there are simple cases where current criteria are not able to
understand that all chase sequences are finite (see, for instance, the
following examples 4 and 9). Thus, in this section we first introduce
a new version of stratification, called WA-stratification (WA-Str)
which generalizesCStr and guarantees, for all databases, termina-
tion of all chase sequences.
(C-)stratification does not specify what kind of cycles are checked
(i.e. simple or general).Checking simple cycles is not correct as it
may not consider all possible chase sequences, but checking gen-
eral cycles, means that for each strongly connected component there
is one cycle including all nodes in the component which subsumes
all other cycles on the same component (in terms of constraints to
be considered).

EXAMPLE 3. Consider the following set of TGDs Σ3:

r1 : P (x) → ∃y Q(x, y)
r2 : Q(x, y) → R(x, y)
r3 : R(x, y) → P (x)
r4 : R(x, y) → S(y, x)
r5 : S(x, y) → Q(x, y)

We have that r1≺cr2, r2≺cr3, r3≺cr1, r2≺cr4, r4≺cr5 and r5≺c
r2. The c-chase graph contains two simple cycles, i.e. {r1, r2, r3}
and {r2, r4, r5}, that are both weakly acyclic, and a general cycle
involving all the TGDs in Σ3 that is not weakly acyclic. 2

Although considering the constraints involved in every cycle is not
wrong, this is equivalent to just considering the subsets of con-
straints involved in every strongly connected component, since if
the weak acyclicity property is satisfied by a set of constraints it is
satisfied by all its subsets as well. Moreover, the number of cycles

in a graph could be exponential, whereas the number of strongly
connected components is polynomial. Thus, a first observation on
(c-)stratification (in terms of correctness, if simple cycles are con-
sidered, or in terms of efficiency, if all cycles are considered) is
that it refers to cycles instead of strongly connected components.
A further observation is that it uses oblivious chase for checking
termination of standard chase and, as previously said, its applica-
bility is limited.

DEFINITION 3 (WA-STRATIFICATION). Given a set of depen-
dencies Σ and r1, r2 ∈ Σ, we say that r1 < r2 iff there exist
a relational database instance K, homomorphisms h1, h2 and a
set S of atoms, such that (i) K 6|= h1(r1), (ii) K →

r1,h1
J , (iii)

K ∪ S |= h2(r2), (iv) J ∪ S 6|= h2(r2) and (v) Null(S) ∩
(Null(J) − Null(K)) = ∅ (i.e. S does not contain new null
values introduced in J).
We say that Σ is WA-stratified (WA-Str) iff the constraints in ev-
ery nontrivial strongly connected component of the firing graph
Γ(Σ) = (Σ, {(r1, r2)|r1 < r2}) are weakly acyclic. 2

With respect to stratification, WA-Str also considers in the sat-
isfaction of constraint r2, in addition to the database K, a set of
atoms S (cond. (iii)) and atoms in S cannot contain null values in-
troduced in the application of the constraint r1 (cond. (v)). More-
over, since we are considering strongly connected components (in-
stead of cycles) these components must not be trivial, that is they
must have at least one edge, otherwise the constraint cannot be fired
cyclically. As a further important observation, in the above defini-
tion we consider standard chase for both constructing the graph
Γ(Σ) and checking weak acyclicity.

EXAMPLE 4. The set of constraints Σ4 consisting of the TGD

E(x, y) ∧ E(y, x)→ ∃z E(y, z) ∧ E(z, x)

is not c-stratified, but is WA-stratified. 2

The following proposition states that WA-Str criterion is more
general than CStr and is not comparable with SC. Consequently
it is not comparable even with SwA as SC is strictly contained in
SwA and CStr is not comparable with SwA.

PROPOSITION 1. CStr WA-Str and SC ∦WA-Str. 2

It is important to observe that WA-Str criterion could be improved
by testing safety instead of weak acyclicity over the firing graph.
Further improvements could be obtained by considering super-weak
acyclicity instead of safety.

DEFINITION 4. Given a set of TDGs Σ, we say that Σ is SC-
stratified (SC-Str) if the constraints in every strongly connected
component of the firing graph Γ(Σ) are safe.
Moreover, we say that Σ is SwA-stratified (SwA-Str) if the con-
straints in every strongly connected component of the firing graph
Γ(Σ) are super-weak acyclic. 2

We now analyze the complexity of the above criteria starting by
defining a bound on the complexity of the firing problem, i.e. the
complexity of checking whether r1 < r2.

LEMMA 1. Let r1 : φ1 → A1 ∧ · · ·Ak and r2 : B1 ∧
· · ·Bn → ψ2 be two TGDs. The problem of checking whether
r1 < r2 is bounded by O((k + 1)n). 2

1162

Although the theoretical complexity of the ”firing” problem is ex-
ponential, in most cases it is very low (e.g. inclusion dependencies,
multivalued dependencies), as usually the number n of body atoms
in the fired constraint r2 is small and the number of atoms in the
head of constraint r1 which could be used to fire r2 through their
unification with Bi (i.e. ki > 1) is even smaller. Indeed, if the
number of atoms in the body of r2 is bounded by a constant, the
firing problem is in PTIME. Significative subclasses of constraints
for which the firing problem becomes polynomial could be identi-
fied, but this is outside the aim of this work. In the following, for a
given set of constraints Σ, we shall denote with Cij the complexity
of the problem of checking whether ri < rj , for ri, rj ∈ Σ, and
with Cm = max{Cij |ri, rj ∈ Σ}.

PROPOSITION 2. Let Σ be a set of TGDs, D be a database
Then:

• the problem of checking whether Σ is WA-stratified (resp.
SC-stratified, SwA-stratified) is bounded by O(Cm × |Σ|2);

• if Σ is WA-stratified (resp. SC-stratified, SwA-stratified), the
length of every chase sequence of Σ over D is polynomial in
the size of D. 2

The class of constraints satisfying criterion C-Str will be denoted
by C-Str. The next theorem states the relationships among the
above mentioned criteria and other previously defined conditions.

THEOREM 3.

1. WA-Str SC-Str SwA-Str,

2. for C ∈ {WA,SC, SwA}, C C-Str and

3. SR ∦ SwA-Str and IR ∦ SwA-Str. 2

It is trivial that more powerful criteria could be defined by compos-
ing criteria which are not comparable. We next present a different
generalization of super-weak acyclicity which also generalizes the
class IR.
We start by introducing a notion of fireable place. We say that a
place q appearing in the body of constraint r could be fired by a
place q′ appearing in the head of constraint r′, denoted by q′ < q,
if q ∼ q′ and r′ < r. Given two sets of places Q and Q′ we say
that Q could be fired by Q′, denoted by Q′ < Q iff for all q ∈ Q
there exists some q′ ∈ Q′ such that q′ < q.
Given a set Q of places, we define MOV E(Σ, Q) as the smallest
set of places Q′ such that Q ⊆ Q′, and for every constraint r =
Br → Hr in sk(Σ) and every variable x, if Q′ < Πx(Br) then
Πx(Hr) ⊆ Q′, where Πx(Br) and Πx(Hr) denote the sets of
places in Br and Hr where x occurs.
With respect to the function Move, the new function MOVE here
considered takes into account the firing of places and not only the
unification of places.

DEFINITION 5 (LOCAL STRATIFICATION). Given a set Σ of
TGDs and two TGDs r1, r2 ∈ Σ, we say that r1 triggers r2 in Σ
and write r1 ↪→ r2 iff there exists an existential variable y in the
head of r1, and a universal variable x occurring both in the body
and head of r2 such that MOVE(Σ, Out(r1, y)) < In(r2, x). A
set of constraints Σ is locally stratified (LS) iff the trigger graph
∆(Σ) = {(r1, r2)|r1 ↪→ r2} is acyclic. 2

PROPOSITION 3. For every set of TGDs Σ and for every data-
base D

• the problem of checking whether Σ is locally stratified is
bounded by O(Cm × |Σ|2);

Figure 2: Criteria Relationships.

• if Σ is locally stratified, the length of every chase sequence
of Σ over D is polynomial in the size of D. 2

The below theorem states that the class of locally stratified con-
straints (denoted by LS) is more general than SwA-Str and IR.

THEOREM 4. SwA-Str LS and IR LS. 2

The next example shows that the containment of SwA-Str and IR
in LS is strict, whereas Figure 2 resumes the relationships among
the above discussed criteria.

EXAMPLE 5. The following set of constraints is neither in IR
nor in SwA-Str, but it belongs to the class LS:

r1 : N(x) → ∃ y ∃z E(x, y) ∧ S(z, y)
r2 : E(x, y) ∧ S(x, y) → N(y)
r3 : E(x, y) → E(y, x) 2

The below corollary shows that we can further improve classes of
terminating constraints by using rewriting techniques [10].

COROLLARY 1. For C ∈ {WA-Str, SC-Str, SwA-Str, LS},
C Adn-C. 2

4. CHECKING CHASE TERMINATION BY
CONSTRAINTS REWRITING

Corollary 1 in the previous section evidenced that the rewriting
functionAdn can still be useful to improve termination criteria and
enlarge the class of constraints for which chase termination is gua-
ranteed. Moreover, there are still simple sets of constraints which
are not recognized by any technique so far considered, even if con-
straints are rewritten. The below example shows such a case.

EXAMPLE 6. Consider the set of constraints Σ6:

r1 : R(x
p1

) → S(x
p2
, x
p3

)

r2 : S(x
p4

1, x
p5

2) → ∃ z T (x
p6

2, z
p7

) ∧Q(x
p8

2)

r3 : T (x
p9

1, x
p10

2) ∧ T (x
p11

1 , x
p12

3) ∧ T (x
p13

3 , x
p14

1) → R(x
p15

2)

The set Σ6 is not LS since r2 ↪→ r2. Indeed, r2 < r3 < r1 <
r2 and MOV E(Σ6, Out(r2, z)) = {p7, p15,p2, p3, p6, p8} <
In(r2, x1) = {p4}. Σ6 is not in Adn-LS as well since Adn(Σ6)
is not in LS (see Appendix B for more details). However it is easy
to check that the chase terminates for all database instances. 2

Thus, in this section we present a new rewriting technique which
allow us to detect larger classes of constraints for which chase ter-
mination is guaranteed. Our rewriting algorithm is inspired by the
one presented in [10] and similar to the algorithm Adn+ there pre-
sented, but uses different adornments for free variables. Before

1163

presenting our rewriting algorithm let us recall some further nota-
tions. Let Adn(·) be the function rewriting a set of constraints Σ,
defined over a database schema R, into an adorned set Σα (as pro-
posed in [10]) we shall denote withAdn-1(·) the function taking in
input an adorned first order formula consisting of a conjunction of
atoms or a constraint or a set of constraints and gives in output the
same formula without adornments. Since the new rewriting func-
tion here introduced adorns constraints using different free adorn-
ments of the form fi, we shall denote with src(rα) (or simply r)
the constraint in the source set Σ from which an adorned one rα

has been derived.3

Head adornment. Given a TGD r : φ(x, z)→ ∃yψ(x, y) and let
φα(x, z) be a coherent adornment for the body atoms, then
SkHeadAdn(r, φα(x, z)) denotes the adorned head of r obtained
as follows: i) every universally quantified variable has the same
adornment of the body occurrences, ii) existentially quantified vari-
ables appearing in constraints with empty body and constants are
adorned as b; iii) every existentially quantified variable y is ador-
ned with an adornment fi where the subscript is an integer value
associated to the skolem function fry(α[x]), (here α[x] denotes the
substring ofα corresponding to x). For instance, for r : R(x, z)→
∃y R(x, y) we have that SkHeadAdn(r,Rbb(x, z))=∃y Rbf1(x, y),
where f1 =fry (b), and SkHeadAdn(r,Rbf1(x, z)) = ∃y Rbf1(x, y).

Adornment substitution. In order to have terminating sequences we
will also use substitutions for adornments sequences. In particular,
a substitution θ is a set of pairs fi/fj such that i 6= j; obviously,
the same symbol cannot be used in both left and right sides of sub-
stitutions, i.e. a symbol fj used to replace a symbol fi cannot be
substituted in θ by a symbol fk.
The algorithm builds a graph E storing dependencies among ador-
ned predicates. In particular, an edge (pαr , q

β
s) states that the pre-

dicate pα, appearing in the head of an adorned constraint derived
from r, has caused the creation of an adorned predicate qβ appear-
ing in the head of a constraint derived from s. The graph is built for
checking cyclic dependencies among adorned predicates denoting
possible non-terminating chase sequences.

Adornment algorithm. The rewriting of constraints is performed
by the function Adn++ reported in Figure 3 which differs from the
Adn function defined in [10] in several aspects: (i) in the gener-
ation of adorned predicates it also considers how constraints may
fire each other; (ii) the adornment of the head is done by applying
the function SkHeadAdn which introduces adornments with sub-
scripts and these different free adornments appear in the output set;
(iii) when a new adorned constraint rα is generated, if there is an
adorned constraint rβ and a substitution θ such that rαθ = rβ , rα

is replaced byBody(rα)→ Head(rβ), to avoid the creation of an
infinite set of adorned constraints; (iv) in addition to the adorned set
of TGDs, the algorithm also returns a boolean taking into account
the fact that a form of cyclicity has been detected and a substitution
has been used to unify two adorned constraints (to avoid an infinite
set of adorned TGDs).
It is worth noting that if there are constraints with constants it is
possible to generate adorned constraints with (adorned) body pre-
dicates not depending on the source predicates; these constraints
are useless and, therefore, could be dropped.
Analogously to the function Adn, the function Adn++ receives in
input a set of TGDs Σ, but differently from Adn, it returns a pair
consisting of an adorned set of TGDs (with different free symbols)
and a boolean value giving information about the detection of a
3We shall use src(rα), instead of Adn−1(rα), when we are interested in the con-
straint identifier rather than in the constraint definition.

FunctionAdn++(Σ);
Input Set of TGDs Σ over schema R;
Output Set of (adorned) TGDsBase∪Derived∪In∪Out

Boolean value Cyc;
begin
Base = Derived = In = Out = New Pred = E = ∅;
Cyc = false;
// LetBodyb(r) be the conjunction obtained by adorning atoms
// inBody(r) with strings of b symbols
Used Pred = {pbr | ∃r ∈ Σ and ∃pb inBodyb(r)};
for each applicable r ∈ Σ do begin
Base=Base ∪ {Bodyb(r)→SkHeadAdn(r, Bodyb(r))};
NewPred=NewPred ∪{pαr|p

α(t)∈SkHeadAdn(r, Bodyb(r))}
−Used Pred;

end for;
while (New Pred 6= ∅) do begin

Select nondeterministically pα1..αns ∈ NewPred;
New Pred = New Pred− {pα1..αns };
Used Pred = Used Pred ∪ {pα1..αns };
for each r ∈ (Base ∪Derived) s.t. s < src(r) do

for each pβ(x1, ..., xn) ∈ Body(r) do begin
B′ = Body(r)−{pβ(x1, ..., xn)} ∪ {pγ1..γn(x1, ..., xn)};
//γi= b if xi∈Consts;
//γi=αi if xi∈V ars; (i ∈ [1..n])
ifB′ is coherent then begin
Let H′ = SkHeadAdn(Adn-1(r), B′);
if (∃rβ ∈Derived and ∃subst. θ s.t. (B′→H′)θ=rβ)
then begin
Derived = Derived ∪ {B′ → Head(rβ)};
E = E ∪ {(pα1..αns , pωsrc(r))|p

ω(t) ∈ Head(rβ)};
if (r is exist. quantified andE is cyclic) then

Cyc = true;
end;
else begin
Derived = Derived ∪ {B′ → H′};
E = E ∪ {(pα1..αns , pωsrc(r))|p

ω(t) ∈ H′};
New Pred = New Pred ∪

{pωsrc(r)|p
ω(t) ∈ H′ ∧ pωsrc(r) 6∈Used Pred};

end;
end;
else Derived=Derived ∪ {B′→Head(Adn-1(r))};

end for;
end while;
Delete fromDerived constraints with unadorned heads;
for each p(A1, ..., An) ∈ R do
In = In ∪ {p(x1, ..., xn)→ pb...b(x1, ..., xn)};

for each p(A1, ..., An) ∈ R do
for each pα(z1, .., zn) appearing inBase ∪Derived do
Out = Out ∪ {pα(x1, ..., xn)→ p̂(x1, ..., xn)};

return〈Base ∪Derived ∪ In ∪Out, Cyc〉;
end.

Figure 3: Constraint Rewriting Function Adn++.

form of cyclicity. The two elements returned by the algorithm (set
of constraints and boolean value) are denoted by Adn++(Σ)[1]
and Adn++(Σ)[2], respectively. Adn++(Σ)[1] consists of four
different subsets: Base(Σ), Derived(Σ), In(Σ) and Out(Σ),
denoting, respectively, base, derived, input and output constraints.

EXAMPLE 7. Consider the set of constraints Σ7

r1 : N(x) → ∃y E(x, y)
r2 : E(x, y) → N(y)

The following set of base adorned constraints are first introduced:

s1 : Nb(x) → ∃y Ebf1 (x, y)
s2 : Ebb(x, y) → Nb(y)

Next, the below adorned constraints are introduced in the setDerived:

s3 : Ebf1 (x, y) → Nf1 (y)
s4 : Nf1 (x) → ∃y Ef1f2 (x, y)
s5 : Ef1f2 (x, y) → Nf2 (y)
s6 : Nf2 (x) → ∃y Ef2f3 (x, y)
s7 : Ef2f3 (x, y) → Nf3 (y)

At this point the constraint

s′ : Nf3 (x) → ∃y Ef3f4 (x, y)

should be added, but since there is a substitution θ = {f3/f1,
f4/f2}, the TGD

s8 : Nf3 (x) → ∃y Ef1f2 (x, y)

1164

is added and the generation of derived constraints terminates. More-
over, the graph E contains a cycle Ef1f2 → Nf2 → Ef2f3 →
Nf3 → Ef1f2 and the adornment function returns the boolean
value Adn++(Σ7)[2] = true. 2

The next results state that the rewriting functionAdn++ terminates
and gives in output a set of TGDs equivalent to the input set.

LEMMA 2. For every set of TGDs Σ the function Adn++ al-
ways terminates. 2

THEOREM 5. For every set of TGDs Σ over a database schema
R, 〈Map(R),Map(Σ)〉 ≡R/R̂ 〈Adn++(R,Σ), Adn++(Σ)[1]〉,
where Adn++(R,Σ) = R ∪ {pα(A1, ..., An) | p(A1, ..., An) ∈
R ∧ pα appears in Adn++(Σ)[1]} ∪ R̂. 2

Let C denote a class of TGDs for which chase termination is gua-
ranteed by checking a given criterion (e.g. C∈{WA,SC, Str, CStr,
SwA,SR, IR,WA-Str,SC-Str,SwA-Str,LS}), we shall de-
note with Adn++C the class of TGDs Σ such that Adn++(Σ)[1]
is in C. The following theorem shows that the rewriting technique
here introduced is useful to enlarge the class of constraints which
are recognized as terminating by a given criterion C.

THEOREM 6. C Adn-C Adn++C, forC∈{WA,SC, Str,
CStr, SwA, SR, IR,WA-Str, SC-Str, SwA-Str, LS}. 2

It is important to recall that a rewriting technique using adornments
with subscripts has been first defined in [10]. Moreover, differ-
ently from the previous rewriting technique, where new subscripts
are introduced any time a new adorned constraint with existentially
quantified variables is generated, the current technique controls the
introduction of subscript (i.e. different free symbols) using skolem
functions applied to adornments of head universally quantified vari-
ables. In addition, different free symbols appear in the output set of
the rewriting function here presented, whereas previous techniques
returned in output a set of constraints with just two adornment sym-
bols (b and f). To better understand the advantages provided by the
current rewriting technique we refer to Example 11 in Appendix B.

We conclude by introducing our final class of constraints for which
chase termination is guaranteed.

DEFINITION 6 (ACYCLICITY). A set of TGDs Σ is said to
be Acyclic (AC) if Adn++(Σ)[2] is false. 2

The class of acyclic constraint is denoted by AC. The next theo-
rem shows that the hierarchy criteria here introduced collapse and
coincide with the classAC when constraints are rewritten using the
adornment function Adn++.

THEOREM 7. AC = Adn++WA = Adn++LS. 2

The below corollaries derive straightforwardly from the previous
theorem and state that AC is the most general chase termination
criterion and, for acyclic constraints, the length of all chase se-
quences is polynomial in the size of the input database.

COROLLARY 2. Let Σ be a set of acyclic TGDs. Then for every
database D all chase sequences of Σ over D terminate in polyno-
mial time in the size of D. 2

COROLLARY 3. LS AC. 2

The complete relationships among the previously discussed criteria
is reported in Figure 4.

Figure 4: Criteria Relationships.

5. CONCLUSIONS
The paper has presented new criteria and a rewriting technique
which allow to recognize larger classes of constraints for which the
chase fixpoint algorithm always terminates, independently of the
database instance. In this work we have not considered equality
generating dependencies. Future work will address this important
aspect. A possible solution to this problem could be based on sim-
ple transformations replacing EGDs with TGDs, such as the ones
made in [12]. Moreover, as discussed in [15, 4, 10], there are simple
cases of EGDs that could be easily treated such as those defining,
in the framework of ontology languages, functional restriction on
roles [15] and keys which are not conflicting with TGDs [4].

6. REFERENCES
[1] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in

relational databases. ACM TODS, 4(3):297–314, 1979.
[2] L. E. Bertossi. Consistent query answering in databases.

SIGMOD Record, 35(2):68–76, 2006.
[3] L. E. Bertossi, S. Kolahi, and L. V. S. Lakshmanan. Data

cleaning and query answering with matching dependencies
and matching functions. In ICDT, pages 268–279, 2011.

[4] A. Cali, G. Gottlob, and T. Lukasiewicz. A general
datalog-based framework for tractable query answering over
ontologies. In PODS, pages 77–86, 2009.

[5] A. Cali, G. Gottlob, and A. Pieris. Advanced processing for
ontological queries. PVLDB, 3(1):554–565, 2010.

[6] J. Chomicki. Consistent query answering: Five easy pieces.
In ICDT, pages 1–17, 2007.

[7] G. DeGiacomo, D. Lembo, M. Lenzerini, and R. Rosati. On
reconciling data exchange, data integration, and peer data
management. In PODS, pages 133–142, 2007.

[8] A. Deutsch, A. Nash, and J. B. Remmel. The chase revisited.
In PODS, pages 149–158, 2008.

[9] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data ex-
change: semantics and query answering. TCS, 336(1), 2005.

[10] S. Greco and F. Spezzano. Chase termination: A constraints
rewriting approach. PVLDB, 3(1):93–104, 2010.

[11] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing
implications of data dependencies. ACM TODS, 4(4), 1979.

[12] B. Marnette. Generalized schema-mappings: from
termination to tractability. In PODS, pages 13–22, 2009.

[13] M. Meier, M. Schmidt, and G. Lausen. On chase termination
beyond stratification. PVLDB, 2(1):970–981, 2009.

[14] M. Meier, M. Schmidt, and G. Lausen. On chase termination
beyond stratification. CoRR, abs/0906.4228, 2009.

[15] A. Poggi, D. Lembo, D. Calvanese, G. D. Giacomo,
M. Lenzerini, and R. Rosati. Linking data to ontologies. J.
Data Semantics, 10:133–173, 2008.

1165

Appendix A - Proofs

Proposition 1. CStr WA-Str and SC ∦WA-Str.
PROOF. (sketch) CStr ⊆ WA-Str derives from the fact that

the firing graph Γ(Σ) is contained in the chase graph Gc(Σ) used
by c-stratification. The containment is strict as it is possible to
define constraints which are WA-stratified and do not satisfy the
c-stratification criterion (see, for instance, the set of constraints Σ4

of Example 4).
The relationship SC ∦WA-Str derives from the fact that there are
examples belonging to one of these classes, but not to the other. For
instance, the following set Σ is safe, but not WA-stratified:

α : S(x2, x3) ∧R(x1, x2, x3) → ∃y R(x2, y, x1)
β : R(x1, x2, x3) → S(x1, x3)

On the other hand, Σ4 is WA-stratified but not safe. 2

Lemma 1. Let r1 : φ1 → A1 ∧ · · ·Ak and r2 : B1 ∧ · · ·Bn →
ψ2 be two TGDs. The problem of checking whether r1 < r2 is
bounded by O((k + 1)n).

PROOF. (sketch) We can define a database instance D consist-
ing of body atoms B1 · · ·Bn (assuming that variables denote con-
stants), and define a set of atoms satisfying firing conditions S
and homomorphisms h1, h2 so that atoms in B1, ..., Bn unify with
some of head atomsA1 · · ·Ak. Let us denote with ki = |ψ1(Bi)|+
1 the number of atoms in the head of r1 unifying with the atom Bi
appearing in the body of r2 plus one (representing that Bi may
not unify with any head atom). Then, we have k1 choices for uni-
fication of B1, k1 × k2 choices for the sequence B1, B2 and so
on. Finally, for the sequence B1, ..., Bn we have

∏n
i=1 ki choices.

Thus, the number of choice arcs in the exploration tree is bounded
by O(

∑n
j=1(

∏j−1
i=0 ki) × kj), where k0 = 1. The complexity of

defining the sets ψ1(Bi), for i ∈ [1..n], is bounded by n × k.
Since each ki is bounded by O(k + 1), the global complexity is
O(k × n+ (k + 1)n) = O((k + 1)n). 2

Proposition 2. Let Σ be a set of TGDs, D be a database. Then:
• the problem of checking whether Σ is WA-stratified (resp.

SC-stratified, SwA-stratified) is bounded by O(Cm × |Σ|2);
• if Σ is WA-stratified (resp. SC-stratified, SwA-stratified), the

length of every chase sequence of Σ over D is polynomial in
the size of D.

PROOF. (sketch)

1. (i) The cost of checking whether ri < rj is denoted by Cij .
(ii) The cost of constructing the firing graph is bounded by
O(

∑
ri,rj∈Σ Cij) = O(|Σ|2 × Cm) where

Cm = max{Cij |ri < rj}.
(iii) The detection of strongly connected components in the
firing graph is bounded by O(|Σ|2). Consequently, check-
ing whether Σ is WA-stratified (resp. SC-stratified, SwA-
stratified) is bounded by O(Cm × |Σ|2).

2. Σ can be partitioned into Σ1,,Σk with k ≤ |Σ|, where
each Σi consists of the constraints belonging to a strongly
connected component of Γ(Σ). For any database D, the uni-
versal solutions of (D,Σ) can be computed by taking one Σi
at time, following the topological order of the firing graph
Γ(Σ). Since each Σi is weakly acyclic (resp. safe, super-
weakly acyclic), the length of all chase sequences of Σi over
D is polynomial in the size of D and, therefore, the length of
every chase sequence of Σ over D is polynomial in the size
of D. 2

Theorem 3.
1. WA-Str SC-Str SwA-Str,
2. for C ∈ {WA,SC, SwA}, C C-Str and
3. SR ∦ SwA-Str and IR ∦ SwA-Str.

PROOF.
1. It follows from the fact thatWA SC SwA.
2. It follows from the fact that the C-Str criterion first divides

the set of constraints Σ into subsets (strongly connected com-
ponents of the firing graph) and then checks the specific cri-
terion C on each subset.

3. It is possible to find examples of sets of constraints that are in
SR (and IR) but not in SwA-Str and viceversa (see Exam-
ples 8 and 9 in Appendix B). 2

Proposition 3. For every set of TGDs Σ and for every database D

• the problem of checking whether Σ is locally stratified is
bounded by O(|Σ|2 × Cm);

• if Σ is locally stratified, the length of every chase sequence of
Σ over D is polynomial in the size of D.

PROOF. (sketch)

1. From the polynomial complexity of the function Move [12]
and the complexity of building the firing graph, bounded by
O(|Σ|2 ×Cm), it follows that the complexity of building the
trigger graph ∆(Σ) is bounded by O(|Σ|2 × Cm). Since the
complexity of checking whether the trigger graph ∆(Σ) is
acyclic has a cost bounded byO(|Σ|2), the global complexity
is bounded by O(|Σ|2 × Cm).

2. The proof follows the one of Proposition 2. 2

Theorem 4. SwA-Str LS and IR LS.

PROOF. (sketch) From the definitions of SwA andLS criteria it
follows that i)MOVE(Σ, Out(r, y)) ⊆Move(Σ, Out(r, y)) and
ii) if Q′ < Q then Q v Q′. As a consequence, SwA-Str ⊆ LS.
Assume that Σ is SR and that 〈G′(Σ), P 〉 is the associated 2-
restricted system. If ri ↪→ rj (i.e. (ri, rj) ∈ ∆(Σ)), then there
exists a path from ri to rj in G′(Σ) because, when we con-
struct the set MOVE(Σ, Out(ri, y)), we take into account both i)
the firing relation < between places, and ii) the propagation of null
values introduced in the position associated with the existentially
quantified variable y.
If the relation ↪→ is cyclic, then there exists a cycle in G′(Σ) con-
taining the constraints involved in the cycle in ∆(Σ) and, conse-
quently, if the constraints are not locally stratified, then they are
neither SwA and nor safe. Moreover, the constraints appearing in
the cycle also belong to the same partition defined by IR. As a
consequence, IR ⊆ LS. To show that the containments are strict
it is sufficient to consider the set of constraints Σ5 which is in LS,
but neither in IR nor in SwA-Str. 2

Corollary 1. For C ∈ {WA-Str, SC-Str, SwA-Str, LS}, C
Adn-C.

PROOF. Obviously, C ⊆ Adn-C for C ∈ {WA-Str, SC-Str,
SwA-Str, LS}. Moreover, Σ1 is in Adn-C, but not in C, for all
C ∈ {WA-Str, SC-Str, SwA-Str, LS}. 2

Lemma 2. For every set of TGDs Σ the function Adn++ always
terminates.

1166

PROOF. (Sketch). Termination of the rewriting algorithm is
guaranteed by the use of substitutions which collapse adorned de-
pendencies deriving from the same source constraint. 2

Next the definition of core chase step is recalled, as it is used in the
proof of Theorem 5.

DEFINITION 7. (Core chase step)[8] Let Σ be a set of TGDs
and let I, J,K be three database instances defined over a database
schema R. We say that I is derived from J through a parallel chase
step and write J →Σ I if i) J 6|= Σ and ii) I =

⋃
r∈Σ,J→r,hJ′ J

′.
Moreover, we say that K is derived from J through a core chase
step and write J →Σ↓ K if J →Σ I and K = core(I). 2

The definition of core chase sequence derives from the chase se-
quence by using a core chase step instead of a chase step. Core
chase sequences are determined up to isomorphism. In [8] it has
been shown that if I is an instance and Σ is a set of TGDs and
EGDs, then there exists a universal model for Σ and I iff the core
chase of I with Σ terminates and yields such a model.

Theorem 5. For every set of TGDs Σ over a database schema
R, 〈Map(R),Map(Σ)〉 ≡R/R̂ 〈Adn++(R,Σ), Adn++(Σ)[1]〉,
where Adn++(R,Σ) = R ∪ {pα(A1, ..., An) | p(A1, ..., An) ∈
R ∧ pα appears in Adn++(Σ)[1]} ∪ R̂.

PROOF. (Sketch). We have to prove that for every database
D over R, USol(D,Map(Σ))[R̂] = USol(D,Adn++(Σ)[1])[R̂],
that is for every database J ∈ USol(D,Map(Σ)) there is a data-
base K ∈ USol(D,Adn++(Σ)[1]) such that J [R̂] = K[R̂] and
vice versa. To simplify the notation we shall use Σα denoting
Adn++(Σ)[1] and Σ̄ to denote Map(Σ).

• (Base case - Step 0) LetD −→Σα↓ K0, we have thatAdn−1(K0)

= J0 = D and J0[R̂] = K0[R̂] = ∅.
• (Inductive case - Step i) Assume that Ji−1 and Ki−1 are s.t.
Ji−1 ⊆ Adn-1(Ki−1), Ji−1[R̂] = Ki−1[R̂] (up to nulls re-
naming).

Let Ji−1 −→Σ̄ J ′i , Ki−1 −→Σ
α

K′i and Ji = core(J ′i), Ki =

core(K′i).We have that Ji ⊆ Adn-1(Ki) and Ji[R̂] = Ki[R̂]
since the set of retracted tuples derived by means of Σα is
contained (up to variable renaming) in the set of retracted tu-
ples derived by means of Σ̄. Indeed, two tuples p(t1) and
p(t2) in J ′i may ’correspond’ to tuples pα1(t1) and pα2(t2) in
K′i and therefore, p(t1) and p(t2) may be isomorphic, while
pα1(t1) and pα2(t2) are not isomorphic because of the dif-
ferent adornments. On the other side if there are two isomor-
phic tuples in K′i, the ’corresponding’ tuples in J ′i are iso-
morphic as well. However, since the relations in J ′i [R̂] and
K′i[R̂] ’eliminate’ adornments for any two isomorphic tuples
in J ′i [R̂] the ’corresponding’ tuples in K′i[R̂] are isomorphic
too, and vice versa. 2

In the following proof we shall use the function Adn-s(·) which
receives in input an adorned first order formula F , where free sym-
bols are of the form fi, and gives in output the first order formula
derived from F by replacing every symbol fi with f . The function
can be trivially extended to sets of first order formulae.

Theorem 6. C Adn-C Adn++C, for C ∈ {WA,SC, Str,
CStr, SwA, SR, IR,WA-Str, SC-Str, SwA-Str, LS}.

PROOF. (sketch) C Adn-C has been stated in Theorem 2
([10]) and Corollary 1. To show that Adn-C Adn++C, we first
show Adn-C ⊆ Adn++C by contradiction. Suppose that there is a
Σ and a criterion C such that Adn(Σ) ∈ C and Adn++(Σ)[1] 6∈
C. Moreover, since Adn−s(Adn++(Σ)[1]) ⊆ Adn(Σ), every
criterion for chase termination C verified by Adn++(Σ)[1] is ver-
ified by Adn(Σ) as well. The strict containment, for all criteria
considered, is proved by the fact that the set of constraints Σ6 is in
Adn++WA, but not in Adn-LS. 2

Theorem 7. AC = Adn++WA = Adn++LS.

PROOF. (sketch) To show Adn++WA = Adn++LS it
is sufficient to demonstrate that Adn++WA ⊇ Adn++LS, as
Adn++WA ⊆ Adn++LS is trivial, that is if there is a Σ such
that Adn++(Σ)[1] 6∈ WA, then Adn++(Σ)[1] 6∈ LS also holds.
Indeed, for any Σα = Adn++(Σ)[1], Σα 6∈ WA means that there
is a cycle in dep(Σα) with a special edge. It can be easily shown
that in such a case there is a cycle in the firing graph Γ(Σα) and a
cycle in the trigger graph ∆(Σ) as well.
We show now that Adn++WA = AC. We first consider the case
ofAC ⊆ Adn++WA showing that for any Σ inAC the set of con-
straints Adn++(Σ)[1] is weakly acyclic. In fact, as said above, a
cycle in dep(Σα) means that there is a cycle C in Γ(Σα) where
nulls are created and propagated. This means that in the rewriting
there is a constraint belonging to C which is used more than once
and, therefore, a substitution is employed to avoid an infinite num-
ber of adorned constraints. Moreover, each predicate symbol in
the (head of a TGD contained in the) path C depends on the other
predicate symbols. Consequently, in such a case Adn++(Σ)[2] =
true. Viceversa, Adn++WA ⊆ AC holds as for any Σ 6∈ AC we
have that Σ 6∈ Adn++WA. Adn++(Σ)[2] = true means that a
cycle where nulls may be propagated has been detected; this im-
plies that Γ(Σα) is cyclic and that dep(Σα) contains a cycle with
a special arc. 2

Appendix B - Additional examples

The following two examples show that both SR and IR criteria are
not comparable with SwA-Str.

EXAMPLE 8. Consider the below set of constraints Σ8:

r1 : N(x) → ∃ y ∃z E(x, y) ∧ S(z, y)
r2 : E(x, y) ∧ S(x, y) → N(y)
r3 : E(x, y) → E(x, x)

The set Σ8 is SR (and, obviously IR), but not SwA-Str. Indeed,
r1 < r3 < r2 < r1 and Σ8 is not SwA. 2

EXAMPLE 9. Consider the following set of constraints Σ′9:

r1 : N(x) → ∃y ∃z E(x, y, z)
r2 : E(x, y, z) → T (x, y, z)
r3 : T (x, y, y) → N(y)

The set Σ′9 is not IR (and, obviously, SR) since r1 <P r2 <P
r3 <P r1, whereP = {E2, E3, T2, T3, N1, E1, T1} and the unique
component is not safe (i.e. N1 →∗ E2, E2 → T2, T2 → N1). On
the other hand, the below set of constraints Σ”9

r4 : R(x, y) ∧R(y, x) → ∃u ∃v R(x, u), R(u, v), R(v, x)

is not SwA, but it is stratified and, therefore, safely restricted. The
set of constraints Σ9 = Σ′9 ∪ Σ”9, is neither IR, nor SwA, but it
belongs to the class of SwA-Str constraints. 2

1167

EXAMPLE 10. Recall the set of constraints Σ6 of Example 6:

r1 : R(x) → S(x, x)
r2 : S(x1, x2) → ∃ z T (x2, z) ∧Q(x2)
r3 : T (x1, x2) ∧ T (x1, x3) ∧ T (x3, x1) → R(x2)

The set Adn(Σ6) is as follows:

s1 : Rb(x) → Sbb(x, x)
s2 : Sbb(x1, x2) → ∃ z T bf (x2, z) ∧Qb(x2)
s3 : T bb(x1, x2) ∧ T bb(x1, x3) ∧ T bb(x3, x1) → Rb(x2)
s4 : T bf (x1, x2) ∧ T bb(x1, x3) ∧ T bb(x3, x1) → Rf (x2)
s5 : Rf (x) → Sff (x, x)
s6 : Sff (x1, x2) → ∃ z T ff (x2, z) ∧Qf (x2)
s7 : T bf (x1, x2) ∧ T ff (x1, x3) ∧ T ff (x3, x1) → Rf (x2)
s8 : T ff (x1, x2) ∧ T ff (x1, x3) ∧ T ff (x3, x1) → Rf (x2)

Adn(Σ6) is not in LS as constraints s5, s6, s8 reproduce the same
structure of the source constraints which, as discussed in Example
6, are not in LS. 2

EXAMPLE 11. Considering the below set of constraints:

c1 : R(x, z) → ∃y T (x, y)
c2 : T (x, y) → R(x, y)

the current rewriting techniqueAdn++ generates the dependencies:

r1 : Rbb(x, z) → ∃y T bf1 (x, y)
r2 : T bb(x, y) → Rbb(x, y)
r3 : T bf1 (x, y) → Rbf1 (x, y)
r4 : Rbf1 (x, z) → ∃y T bf1 (x, y)

which are acyclic and, therefore, terminating, whereas the tech-
nique Adn+ proposed in [10] generates the below constraints:

s1 : Rbb(x, z) → ∃y T bf1 (x, y)
s2 : T bb(x, y) → Rbb(x, y)
s3 : T bf1 (x, y) → Rbf1 (x, y)
s4 : Rbf1 (x, z) → ∃y T f1f2 (x, y)
s5 : T f1f2 (x, y) → Rf1f2 (x, y)
s6 : Rf1f2 (x, z) → ∃y T f2f3 (x, y)
s7 : T f2f3 (x, y) → Rf2f3 (x, y)
s8 : Rf2f3 (x, z) → ∃y T f3f4 (x, y)
s9 : T f3f4 (x, y) → Rf3f4 (x, y)
s10 : Rf3f4 (x, z) → ∃y T f4f5 (x, y)

At this point the rewriting procedure stops because was not able
to detect the termination and returns a set of adorned constraints
without subscripts. The output set does not give any advantage in
terms of analysis of its structural properties. Therefore, the rewrit-
ing performed by the function Adn++ is more effective of the one
presented in [10].

1168

