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ABSTRACT
Top-k retrieval over main-memory inverted indexes is at the
core of many modern applications: from large scale web
search and advertising platforms, to text extenders and con-
tent management systems. In these systems, queries are
evaluated using two major families of algorithms: document-
at-a-time (DAAT) and term-at-a-time (TAAT). DAAT and
TAAT algorithms have been studied extensively in the re-
search literature, but mostly in disk-based settings. In this
paper, we present an analysis and comparison of several
DAAT and TAAT algorithms used in Yahoo!’s production
platform for online advertising. The low-latency require-
ments of online advertising systems mandate memory-resident
indexes. We compare the performance of several query eval-
uation algorithms using two real-world ad selection datasets
and query workloads. We show how some adaptations of the
original algorithms for main memory setting have yielded
significant performance improvement, reducing running time
and cost of serving by 60% in some cases. In these results
both the original and the adapted algorithms have been eval-
uated over memory-resident indexes, so the improvements
are algorithmic and not due to the fact that the experiments
used main memory indexes.

1. INTRODUCTION
Top-k retrieval is at the core of many applications today.

The most familiar application is web search, where the web is
crawled and searched by massive search engines that execute
top-k queries over large distributed inverted indexes [10].
Lately, a few results have been reported on the use of top-k
retrieval in ad selection for online advertising [5, 6, 12, 24]
where the query is evaluated over a corpus of available ads.
Top-k retrieval is also present in enterprise domains where
top-k queries are evaluated over emails, patents, memos and
documents retrieved from content management systems.

In top-k retrieval, given a query Q and a document cor-
pus D, the system returns the k documents that have the
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Figure 1: Document corpus as a matrix.

highest score according to some scoring function score(d,Q),
d ∈ D. Scoring is usually performed based on overlapping
query and document terms, which are the atomic units of the
scoring process and represent individual words, phrases and
any document and query meta-data. The document corpus
can be viewed as a matrix where the rows represent individ-
ual documents and the columns represent terms. Each cell
in this matrix is called a payload and encodes information
about the term occurrence within the document that is used
during scoring (e.g., the term frequency).

The document matrix is sparse, as most of the documents
contain only a small subset of all the unique terms. Figure 1
shows the matrix representation of a document corpus with
M unique terms and N documents. Given a query with a
set of terms, finding the k documents with the highest score
requires a search among the documents that contain at least
one of the query terms. In Figure 1 this is illustrated by the
shaded portion of the matrix.

There are two natural ways to search the documents that
have non zero weights in the shaded portion of the matrix.
The first way is to evaluate row by row, i.e., to process one
document-at-a-time (DAAT). In this approach the score for
each document is completely computed before advancing to
a new row. The second way is to evaluate column by col-
umn, i.e., to process one term-at-a-time (TAAT). In this
approach we must accumulate the score of multiple docu-
ments simultaneously and the contributions of each term to
the score of each document are completely processed before
moving to the next term. DAAT and TAAT strategies have
been the cornerstone of the top-k evaluation in the last two
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decades. Many versions of these algorithms have been pro-
posed in the research literature [7, 8, 14, 19, 22, 23]. Several
known systems in production today, from large scale search
engines as Google and Yahoo!, to open source text indexing
packages as Lucene [2] and Lemur [20], use some variation
of these strategies.

While DAAT and TAAT algorithms have been prevalent
in the research literature and the practice for a while, the
parameters of their use have been changing. Today’s com-
modity server machines have main memory that can exceed
the disk capacities of a decade ago: machines with 32GB of
memory are now commonplace in the service centers of the
larger Internet search and online advertising engines. This,
combined with the requirements for very high-throughput
and low-latency, makes disk-based indexes obsolete even for
large scale applications such as web search and online ad-
vertising [10]. However, most of the published work on top-
k document retrieval still report performance numbers for
disk-resident indexes [9, 14, 16].

We present performance results for several state-of-the-art
DAAT [7, 23] and TAAT [8, 23] algorithms used in Yahoo!’s
production platform for online advertising. The stringent la-
tency requirements of online advertising applications make
disk-based indexes unusable – a single disk seek could cause
the query to time out. Therefore, our platform is completely
based on memory-resident indexes. To the best of our knowl-
edge, this is the first study that compares the performance of
DAAT and TAAT algorithms in a production setting using
main memory indexes. As these algorithms were originally
presented for disk-based indexes, they implement optimiza-
tions to minimize index access (I/O) as much as possible.
We find that some of these optimizations are not suitable
for memory-resident indexes. Based on these observations,
we explore variations of the original algorithms that greatly
improve performance (by over 60% in some cases).

One of the key observation we make about the DAAT algo-
rithms is that, as the index access cost is lower in main mem-
ory indexes, the relative cost of score evaluation is higher
than in the case of disk-based indexes. To address this is-
sue, we examine a technique that greatly reduces the number
of score evaluations for DAAT algorithms without sacrific-
ing result quality. This technique is similar in spirit to the
term bounded max score algorithm [22], however, it requires
no modification to the underlying index structures. The key
idea is to split the query into two parts, a “short query” that
can be quickly evaluated and a “long query.” We then use
the results obtained by processing the short query to speed
up the evaluation of the long query. By applying this tech-
nique we are able to improve the performance of all DAAT
algorithms by an additional 20% in many instances.

The main contributions of this paper are:

• We present the first evaluation of DAAT and TAAT
algorithms over main memory indexes in a production
setting. We implemented several of the existing state-
of-the-art algorithms in the same production frame-
work. In this study, we evaluate the effectiveness of
the different algorithms over different query workloads
and ad corpora and present conclusions on which types
of algorithms are the most effective depending on the
workload characteristics.

• We describe adaptations of the TAAT and DAAT algo-
rithms for main memory indexes. These adaptations

try to minimize CPU usage at the expense of index
access, which is the right tradeoff for memory-resident
indexes. These adapted algorithms achieved around
60% improvement in performance over their original
versions. In these results both the original and the
adapted algorithms were evaluated over memory resi-
dent indexes. We describe two main adaptations: one
for TAAT (Section 5.3) and one for the DAAT (Sec-
tion 4.2) family of algorithms.

• We propose a new technique to speed up DAAT al-
gorithms by splitting the query into a short query
and a long query. This technique produced additional
20% performance gains without sacrificing result qual-
ity (Section 7).

The rest of this paper is organized as follows. In Section 2
we provide the necessary technical background. In Section 3
we describe the ad data sets we used for evaluation and
our implementation framework. We then overview DAAT
algorithms in Section 4 and TAAT algorithms in Section 5.
In Section 6 we show experimental results comparing the
DAAT and TAAT algorithms for different index and query
configurations. We then discuss the modifications reducing
the number of score evaluations for DAAT algorithms and
report the results of this technique in Section 7. We discuss
related work in Section 8 and conclude in Section 9. More
detailed information about the data sets we used is provided
in the Appendix.

2. PRELIMINARIES
In this section we provide some background on inverted

indexes and top-k retrieval.

Inverted indexes. Most IR systems use inverted indexes as
their main data structure for both DAAT and TAAT algo-
rithms [26]. In inverted indexes the occurrence of a term t
within a document d is called a posting. The set of post-
ings associated to a term t is stored in a postings list. A
posting has the form <docid, payload>, where docid is the
document ID of d and where the payload is used to store
arbitrary information about each occurrence of t within d.
Each postings list is sorted in increasing order of docid. Of-
ten, B-trees or skip lists are used to index the postings lists
[26]. This facilitates searching for a particular docid within
a postings list. Large postings lits are normally split into
blocks (e.g. each block corresponding to a disk page). This
allows entire blocks to be skipped in the search for a given
docid. Each postings list in the inverted index corresponds
to column in our matrix representation (Figure 1).

During query evaluation, a cursor Ct is created for each
term t in the query, and is used to access t’s postings list.
Ct.docid and Ct.payload access the docid and payload of the
posting on which Ct is currently positioned. DAAT and
TAAT algorithms work by moving cursors in a coordinated
way to find the documents that satisfy the query. Two basic
methods on a cursor Ct are required to do this efficiently:

• Ct.next() advances Ct to the next posting in its posting
list.

• Ct.fwdBeyond(docid d) advances Ct to the first posting
in its posting list whose docid is greater than or equal
to d. Since posting lists are ordered by docid, this
operation can be done efficiently.
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In disk-based indexes, both of these methods can incur in
I/O if the desired docid is not in the same disk page as the
current position of the cursor. DAAT and TAAT algorithms
try to minimize this I/O cost by skipping parts of the index
that are guaranteed not to contribute to the final response.

Scoring. In the vector space model, each document d is
represented as a vector of weights:

d = {d1 . . . dM}

where M is the number of unique terms in the document
corpus (i.e., the number of postings lists in the index). Each
dimension of the vector corresponds to a separate term. If a
term does not occur in the document its value in the vector
is zero.

Similarly, each query Q is also represented as a vector of
weights:

Q = {q1 . . . qM}

These document and query weights are used for scoring
and can be derived using standard IR techniques, such as
term frequency and inverse document frequency (tf-idf) or
language modeling (LM) [18]. The document weights are
computed prior to index construction and are stored in the
inverted index as the document payloads. For simplicity,
scoring function used in this paper is the dot product be-
tween the document and query vectors:

score(d,Q) =
−→
d •
−→
Q =

∑
1≤i≤M

diqi

We use this scoring function without loss of generality
and the algorithms presented in this paper can be used with
more elaborate scoring functions as well.

During TAAT and DAAT evaluation, for every candidate
document d, the scoring function must be evaluated to de-
termine if d belongs to the set of top-k documents. In this
paper, we focus on algorithms for exact top-k computation.
In these algorithms the retrieved documents are guaranteed
to be the k documents with the highest score. There are sev-
eral approximate algorithms for top-k retrieval, where result
quality is sacrificed in order to achieve better performance
[15, 16, 19]. Evaluations of these approaches are out of scope
for this paper and left for future work.

3. DATA SETS AND IMPLEMENTATION
FRAMEWORK

In this section we describe the data sets used throughout
the paper in detail and present our implementation frame-
work.

Data sets. Our work is focused on the application of in-
formation retrieval algorithms to contextual and sponsored
search advertising [5, 6]. In these applications the document
collection is a set of textual ads. Textual ads typically in-
clude a title, short description, and URL. So, unlike web
documents, advertising documents are typically very small
(on the order of tens of terms).

In contextual advertising, a query is derived from a target
web page that is visited by a user. Therefore, unlike web
queries that are quite small, contextual advertising queries
can be quite large (over a hundred terms). In sponsored
search advertising, ads are triggered based on user search

Parameter
Index

SI LI

Number of documents 283,438 3,485,597
Number of terms 7,760,649 69,593,249

Size (MB) 269 3,277
Avg. document size 84.59 130.33

Std. deviation 149.15 103.86
Avg. postings list size 3.09 6.53

Std. deviation 272.80 1,212.95
Avg. document weight 118.05 855.00

Std. deviation 5.44 1.73

Table 1: Index parameters.

Parameter
Query set

SQ LQ

Number of queries 16,181 11,203
Avg. number of terms 4.26 57.76

Std. deviation 0.77 3.32
Avg. query weight 622.91 147.74

Std. deviation 30.68 17.92

Table 2: Query parameters.

queries on a search engine. These queries are typically quite
small (around ten terms or less even after query expansion).

We used two test indexes (SI and LI) and two query sets
(SQ and LQ). Index SI is a small index of textual ads, while
LI is a much larger index of textual ads. In the query side,
SQ is a query set with short queries (the sponsored search
use case) based on real search queries while LQ has long
queries (the contextual advertising use case) based on real
web pages.

Table 1 shows the main parameters for our test indexes
while Table 2 does the same for the query sets. In our per-
formance experiments we tested several combinations of in-
dex/query set pairs. Table 3 shows the average number of
postings for these index/query set combinations, i.e., the av-
erage number of entries in the intersection of the document
and query terms. Extra information about these data sets
is provided in the Appendix.

Implementation framework. All the algorithms described
in the paper were implemented in the context of the RISE
indexing framework. RISE is an inverted index platform
that has been widely used within Yahoo! both for research
[4, 5, 6, 12, 24] and production over the last three years.
RISE is a C++ indexer and its performance has been heavily
tuned. Our indexes are compressed using delta encoding [3,
25] for the docids and our implementation of postings list
access operations is optimized. In RISE, posting lists are
stored in several (contiguous) blocks and skip lists are used
to index these blocks. This allows us to skip entire blocks
during query evaluation, when we conclude that these blocks
cannot contribute to the final top-k results.

The algorithms described in this paper were developed in
C++ and compiled with g++-4.1.2 with option -O3. All
experiments were executed in a Xeon L5420 2.50GHz, with
8GB of RAM and L2 cache of 12MB running RHEL4. In ev-
ery experiment where we report running time, the index was
preloaded into memory and the numbers are averaged over
three independent runs. The latency numbers are always in
microseconds. The number of desired results (k) was set to
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Parameter
Query set

SQ LQ

Avg. number of postings for SI 3,540.95 52,560.38
Std. deviation for SI 7,429.81 44,190.83

Avg. number of postings for LI 79,615.76 378,026.59
Std. deviation for LI 168,724.48 398,347.04

Table 3: Number of postings for different in-
dex/query set combinations.

30 in all experiments we run. When reporting results for a
query set (SQ or LQ) we average the results over all of its
queries.

4. DAAT ALGORITHMS
The DAAT algorithms simultaneously traverse the post-

ings lists for all terms in the query. The naive implemen-
tation of DAAT simply merges the involved postings lists
(which are already sorted by docid in the index) and exam-
ines all the documents in the union. A min-heap is nor-
mally used to store the top-k documents during evaluation.
Whenever a new candidate document is identified it must be
scored. The computed score is then compared to the min-
imum score in the heap, and if it is higher, the candidate
document is added to the heap. At the end of processing
the top-k documents are guaranteed to be in the heap.

There are two main factors in evaluating the performance
of the DAAT algorithms: the index access cost and the scor-
ing cost1. In the case of the naive DAAT algorithm, every
posting for every query term must be accessed. The in-
dex access cost is then proportional to the sum of the sizes
of the postings list for all query terms. The scoring cost
includes computing the scoring function and updating the
result heap. As most of the DAAT (and TAAT) algorithms
have been designed for disk-based indexes, they try to min-
imize the index access cost, e.g., skipping parts of the post-
ings list.

In the next subsections we present two DAAT algorithms:
WAND [7] and max score [23]. We analyze the performance
of these algorithms and propose optimizations to WAND to
make it more suitable for memory-resident indexes.

4.1 WAND
The main intuition behind WAND [7] is to use upper

bounds on score contributions to improve query performance.
For each postings list in the index, we can pre-compute and
store the maximum payload value, i.e., the maximum doc-
ument weight for that term. Given a query Q, during ini-
tialization we compute the maximum upper-bound UBt for
each term t ∈ Q as:

UBt = Dtqt

where Dt is the maximum payload value, i.e., the maxi-
mum value of dt for every d ∈ D. WAND works by keeping
a cursor for each of the query terms and sorting these cur-
sors by docid. After the cursors are sorted a pivot term is
identified. The pivot term p is the minimum index on the

1In this paper we are counting the postings list decompres-
sion cost as part of the scoring cost, as we use the index
access cost to model the operations that could result in I/O
for disk-resident indexes.
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Figure 2: Postings list and upper bounds for query
terms A, B and C.

array of sorted cursors for which:∑
1≤t≤p

UBt > θ

where θ is the minimum document score in the top-k re-
sult heap. The document pointed by the pivot term is the
minimum document (i.e., the document with the smallest
docid) that can possibly be a valid candidate. This is called
the pivot document. Once the pivot is identified, WAND
checks if the docids pointed by cursors 1 and p are the same
– if this is true the document is scored, otherwise WAND
selects a term between 1 and p and tries to move the cur-
sor for that term to the pivot document. This operation
is normally done using the index skipping mechanism (B-
trees or skip lists) and can reduce the index access time if
large portions of postings list are skipped. After each cursor
move, the cursor array is resorted and a new pivot term is
identified. The full WAND algorithm is described in [7].

Let us consider queryQ = {A,B,C} with all query weights
qA = qB = qC = 1 (so the document scores are the sum of
the document weights). Figure 2 shows the postings list and
their upper bounds for terms A, B and C. Each posting is
represented as a <docid, payload> pair. In this example let
us consider k = 2, i.e., we want to retrieve the two docu-
ments with the highest scores. After docids 1 and 2 have
been processed we have a heap with two documents:

Heap
docid score(d,Q)

1 13 (θ)
2 14

At this point the cursors for terms A, B and C point to
documents 10, 7 and 5, respectively. WAND then sorts the
cursors by docid in order to identify the pivot. After the
sort, we have:

C B A
p 1 2 3

docid 5 7 10

where p is the index of the cursor array. At this point
WAND starts scanning the array of sorted cursors to select
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the pivot. For p = 1, we have:

UBC = 8 < θ = 13

For p = 2 we have:

UBC + UBB = 8 + 5 = θ = 13

For p = 3 we have:

UBC + UBB + UBA = 8 + 5 + 4 > θ = 13

The pivot is then set to term A (p = 3) and the pivot doc-
ument is docid = 10. This means that the minimum docid
that can potentially be in the top-k results is document 10.
Therefore WAND will move either B’s or C’s cursor to doc-
ument 10 in order to continue processing. When compared
to the naive DAAT algorithm, it is clear that WAND may
reduce both the index access and the scoring costs. In this
simple example docids 6, 8 and 9 are completely skipped in
postings list for terms B and C and are not scored.

At the implementation level we try to optimize the cursor
sort for the pivot selection by noticing that part of the array
(all entries beyond the pivot term) are not affected by the
cursor moves. Therefore, that part of the array is already
sorted and we can only sort the initial part of array with
index i ≤ p.

4.2 Memory-resident WAND
WAND was originally designed for disk-resident indexes,

therefore it tries to reduce index access cost as much as
possible. Let us consider again the example from Figure 2.
At the point we identify docid = 10 as the pivot document,
WAND will select either cursor B or C to move to document
10 (or beyond). The reason for moving only one of these
cursors per time is that in disk-resident indexes each cursor
movement is a potential new I/O (if the desired position for
the cursor lies in a different page than its current position).

In this example, WAND may choose to move cursor B to
docid 10 and reevaluate the pivot. In that case, we would
have:

C A B
p 1 2 3

docid 5 10 11

The pivot term for this new configuration would be B
and the pivot document would be 11. In that case, WAND
would be able to skip over the posting for document 10 in
C’s postings list.

In order to minimize index access WAND performs extra
pivot finding operations. This is a good tradeoff for disk-
based indexes, but not for main memory indexes where the
cost of index access is normally smaller than the cost of
pivot find operations (remember that for finding the pivots
the array of cursors must be sorted by docid).

Based on this observation we propose a variation of WAND
that we call Memory-Resident WAND (mWAND). The main
difference between mWAND and the original algorithm is
that after a pivot term p is selected, we move all terms be-
tween 1 and p beyond the pivot document. By doing that
we are increasing the cost of index access in order to reduce

SI SQ LQ
Pivot selections (WAND) 2,843.44 17,636.18

Pivot selections (mWAND) 2,840.13 12,798.87
Skipped postings (WAND) 532.56 28,581.22

Skipped postings (mWAND) 531.20 27,214.16
Latency (WAND) 206.0 5,519.0

Latency (mWAND) 200.0 2,104.6

LI SQ LQ
Pivot selections (WAND) 28,007.55 282,356.02

Pivot selections (mWAND) 27,814.06 275,164.82
Skipped postings (WAND) 48,089.58 82,511.85

Skipped postings (mWAND) 47,985.65 66,997.41
Latency (WAND) 1896.6 14,082.6

Latency (mWAND) 1867.0 7,556.3

Table 4: Comparison between WAND and
mWAND.

the number of pivot selections (and the associated cost of
sorting the cursor array). In our running example, if both
cursors B and C had been simultaneously moved to docu-
ment 10, the posting entry for document 10 in C’s list would
not have been skipped.

In Table 4 we compare the performance of WAND and
mWAND. We show the number of pivot selections, num-
ber of skips and query latency (running time) for different
index/query set combinations. As expected, mWAND per-
forms less pivot selection operations at the expense of less
skipping. As shown in the table, this tradeoff is always bene-
ficial and mWAND performs better than WAND for all cases
we tested. The improvement is more noticeable in the case
of long queries, where the number of pivot selection opera-
tions is dramatically reduced. In the (SI, LQ) combination
mWAND performs 60% better than WAND.

4.3 DAAT max score

Both DAAT and TAAT implementations of max score
have been proposed by Turtle and Flood [23]. We present
the DAAT version here and the TAAT version in Section 5.2.
Like WAND, the idea of max score is to use upper bounds
to reduce index access and scoring costs.

DAAT max score starts by sorting the query cursors by
the size of their postings list. This cursor order is fixed
throughout evaluation. Before the first k documents have
been evaluated, max score works as the naive DAAT algo-
rithm. After that point, when the heap is full, max score
uses the minimum score of the heap (θ) as the lower bound
for the next documents. This lower bound allows max score
to skip over postings (and therefore reduce both index access
and scoring costs).

The intuition for skipping in max score is to identify which
set of cursors must be present in the document in order to
have a potential candidate2. This operation is done by con-
sidering the upper bounds of the query terms and comparing
them to the current value of the lower bound θ. As in the
case of WAND, θ increases and as the evaluation proceeds
and it becomes harder to identify new candidates as the
algorithm progresses.

Let us again consider the example of Figure 2. After docu-

2The skipping strategy is not clearly specified in the original
paper [23]. This approach is based on our interpretation of
how skipping may be achieved in DAAT max score.
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ments 1 and 2 have been added to the heap, we have θ = 13.
In max score cursors are only sorted in the beginning of pro-
cessing (by their postings list sizes), and we have the follow-
ing order for this example:

A B C
Postings list size 3 6 6

We then split the sorted array of terms into two groups:
required and optional terms. The split property is that in
order for a new document to be a valid candidate it must
have at least one term from the required set. We identify
the optional terms by processing the array of cursors from
the end to the beginning.

In this example we start from cursor C and check if it can
(by itself) be pointing to the next valid document:

UBC = 8 < θ = 13

This means that C by itself is not enough. We then try
to add the next term:

UBC + UBB = 8 + 5 = θ = 13

This is still not enough to qualify a document. Then we
have:

UBC + UBB + UBA = 8 + 5 + 4 > θ = 13

We then split the array to mark A as a required term and
B and C as optional terms. Intuitively, this means that,
to be considered a valid candidate, documents must contain
term A. Once we identify the split into required and optional
terms, DAAT max score behaves like naive DAAT for the
terms in the required set. Once a candidate document d is
identified from the required terms, we must move the cursors
from the optional set to d’s docid for scoring. Whenever
new candidates are identified, the split between optional and
required terms must be recomputed.

In our example, since only A belongs to the required set it
will produce document 10 as a potential candidate. At that
point we try to move cursors B and C to document 10 for
scoring. In this example, postings 6, 8 and 9 from cursors B
and C would be skipped. It is clear that max score improves
over the naive DAAT by reducing the index access and scor-
ing costs. When compared to WAND, DAAT max score has
the advantage of avoiding the sort operations to compute
the pivot, at the expense of less optimized skipping.

4.4 Comparing the DAAT algorithms
Table 5 reports the query latency for naive DAAT, mWAND

and DAAT max score for all index/query set combinations.
For both indexes, max score performs better than mWAND
for short queries while the opposite happens for long queries.
The reason is that for long queries the pivot selection pro-
cedure in mWAND can greatly improve skipping. However,
for short queries, the gains in skipping are not that much
when compared to max score to justify the overhead of pivot
selection. Table 6 compares the skipping between mWAND
and DAAT max score.

SI SQ LQ
Naive DAAT 193.0 4,554.6

mWAND 200.0 2,104.6
DAAT max score 169.0 2,685.6

LI SQ LQ
Naive DAAT 3,581.3 26,778.3

mWAND 1,867.0 7,556.3
DAAT max score 1,572.6 9,321.3

Table 5: Latency results for naive DAAT, mWAND
and DAAT max score.

SI SQ LQ
mWAND 531.20 27,214.16

DAAT max score 505.12 22,013.45

LI SQ LQ
mWAND 47,985.65 275,164.82

DAAT max score 45,709.97 235,740.23

Table 6: Number of skipped postings for mWAND
and DAAT max score.

5. TAAT ALGORITHMS
TAAT algorithms traverse one postings list at-a-time. The

contributions from each query term to the final score of each
document must be stored in an array of accumulators A.
The size of the accumulator array3 is the number of docu-
ments in the index (N). For dot product scoring, the score
contributions for each term can be independently computed
and added to the appropriate documents in the accumulator
array. In the naive implementation of TAAT we must access
every posting for every term. For each posting, we compute
its score contribution and add it to the accumulator array.
When processing term t, we compute:

A[d]← A[d] + dtqt

for every posting in t’s postings list, where dt is the doc-
ument weight in the posting for document d and qt is the
query weight for term t. The accumulator array must be
initialized to zero in the beginning of the query execution.
After processing all terms in the query, the k entries in A
with the highest value are top-k documents that should be
returned as the query results.

As in the case of the naive DAAT, this naive implementa-
tion of TAAT must access every posting for every query term
and compute the full score for every document. In the next
subsections we present two TAAT algorithms: Buckley and
Lewit [8] and max score [23]. We also evaluate the perfor-
mance of these algorithms and propose optimizations that
make TAAT max score more suitable for memory-resident
indexes.

5.1 Buckley and Lewit
The algorithm proposed by Buckely and Lewit [8] is one of

the first optimizations for top-k ranked retrieval. The main
intuition is to evaluate one term-at-a-time, in the decreasing
order of their upper bounds, and stop when we realize that
further processing will not be able to add new documents to
set of top-k documents. We maintain a heap of size k + 1,

3Different implementations for accumulators have been pro-
posed, such as hash tables or sorted arrays [21].
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Figure 3: Another example of postings list and up-
per bounds.

which contains the k+1 documents with the highest partial
scores we have seen so far, i.e., the k+ 1 highest scores from
the accumulator array.

After processing each postings list, we compare the scores
of the kth and (k+1)th documents to decide if we can early
terminate. If the sum of the upper bound contributions of
the remaining lists cannot bring the (k+1)th document score
over the kth score we can safely stop processing. Formally,
we must check if:

A[k] ≥ A[k + 1] +
∑
t>i

UBt

where i is the current term being processed. If this check
passes, we know that the k documents with the highest par-
tial scores so far are the top-k documents we must retrieve
(however, their actual rank from 1 to k may not correspond
to the final rank had we added the contributions of the re-
maining terms).

Figure 3 shows another example of postings list and their
upper bounds. Let us again consider that the weights for all
query terms A, B and C are 1 and that we want to retrieve
the two documents with the highest scores.

Table 7 shows the state of the accumulators after each
iteration of the algorithm. Column i indicates which term is
being processed (i = 1 is A, the term with the highest upper
bound). When we finish processing term B (the last row in
the table), the second (kth) document with the highest score
is 1 and the third is document 7. At this point the check:

A[1] = 8 ≥ A[7] +
∑
t>2

UBt = 3 + 4

succeeds and and we can early terminate. It is clear from
this example that the Buckley and Lewit pruning procedure
helps in reducing index access and scoring costs when com-
pared to the naive TAAT algorithm.

5.2 TAAT max score

We now describe the TAAT variation of max score [23].
This algorithm has two main phases. In the first phase, we
maintain a heap of size k that contains the k documents with
the highest partial scores so far. Like in the DAAT version of
max score, we process terms in the decreasing order of their
postings list sizes. After processing each term, we check if
the partial score for the kth document is greater than the
sum of the upper bounds for the remaining postings list:

i docid A[1] A[2] A[4] A[5] A[6] A[7] A[10]
1 1 3 0 0 0 0 0 0
1 4 3 0 9 0 0 0 0
1 7 3 0 9 0 0 3 0
1 10 3 0 9 0 0 3 2
2 1 8 0 9 0 0 3 2
2 2 8 1 9 0 0 3 2
2 4 8 1 16 0 0 3 2

Table 7: The term (i), docid, and accumulator values
after each iteration of Buckley and Lewit.

i A[1] A[2] A[4] A[5] A[6] A[7] A[10]
1 5 1 7 0 0 0 0
2 8 1 16 0 0 3 2

Table 8: The term (i) and accumulator values after
processing each term in phase I of TAAT max score.

A[k] >
∑
t>i

UBt

If this condition holds, we know that no documents that
are not already present in the accumulator array (i.e, that
have 0 partial score so far) can be in the top-k documents.
We can then break phase I of the algorithm and start phase
II. In the second phase, we only need to score the documents
that we have seen in phase I. Therefore, we can use list of
documents processed in phase I to skip parts of the remain-
ing postings list. To do this we must maintain an ordered
list of the documents processed in phase I – we call this list
the candidate list.

Table 8 shows the accumulator values for our running ex-
ample after processing each term in phase I. As the cur-
sors are processed by postings list size (instead of upper
bound contributions), the processing order for max score dif-
fers from Buckley and Lewit. When we are done processing
term A (i = 2), we have:

A[1] = 8 >
∑
t>2

UBt = 4

At this point we can stop phase I and our candidate list
is 〈1, 2, 4, 7, 10〉. We can then use this list to skip when
processing term C. This means that we would not need to
look in the postings for documents 5 and 6 while processing
term C.

Another optimization proposed in TAAT max score is to
prune the candidate list during phase I. This can be done
by checking if:

A[k] > A[d] +
∑
t>i

UBt

If this holds, document d can never be part of the top-k
candidates and it can be safely removed from the candidate
list. By applying this optimization in our example, we can
remove documents 2, 7 and 10 from the candidate list before
starting phase II.

5.3 Memory-resident TAAT max score

TAAT max score was originally designed for disk-resident
indexes, where each cursor movement may correspond to an
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SI SQ LQ
Number of terms left for phase II 0.13 3.44

Latency (TAAT max score) 193.3 3,109.0
Latency (mTAAT max score) 129.3 1,385.3

LI SQ LQ
Number of terms left for phase II 0.48 3.66

Latency (TAAT max score) 3,139.3 17,260.6
Latency (mTAAT max score) 2,520.6 11,839.6

Table 9: Comparison between TAAT max score and
mTAAT max score.

extra I/O depending if the requested docid is in the same
disk page or not. Therefore, its second phase tries to mini-
mize cursor movements by using the candidate list to drive
skips in the remaining postings list. In order to use skipping
in phase II, TAAT max score has to maintain an ordered
list of candidate documents. Please note that the accumu-
lator array is a sparse array of size N (N is the number of
documents in the index) and therefore it is usually much
larger than the candidate list. Given this, it is usually more
efficient to keep an extra candidate list than to use the ac-
cumulator array to drive skipping in phase II.

However, this means that this candidate list must be up-
dated during phase I and sorted before phase II starts. We
observed that since index access is not as expensive in memory-
resident indexes, in many cases it is more efficient to not skip
during phase II, but to scan the postings list sequentially
only scoring the documents that have a positive value in the
accumulator array. We also do not try to prune the candi-
date list during phase I. We call this variation of max score
memory-resident TAAT max score (mTAAT max score).

In Table 9 we compare TAAT max score with its memory-
resident variant. We show the number of query terms left
to be evaluated during phase II and query latency (running
time) for different index/query set combinations. In all cases
the performance of mTAAT max score is superior. The main
reason is the fact that the number of query terms left for
phase II is always very small – therefore it is not worthwhile
to compute and maintain the candidate list to drive skips
over a small number of postings list. In the case of small
indexes, where the size of the postings list are smaller, the
benefit of mTAAT max score is higher. For the case of (SI,
LQ), the improvement is around 58%.

5.4 Comparing the TAAT algorithms
Table 10 reports the query latency for naive TAAT, Buck-

ley and Lewit and mTAAT max score. In all cases mTAAT
max score performs better than the other approaches. The
main reason is that it does much less scoring computations.
Table 11 shows the number of postings that are not scored
for the two algorithms (for the naive algorithm this number
is always 0 since it does not skip any postings). Although
Buckley and Lewit is able to skip a few scoring computa-
tions, it is not enough to justify the overhead of the algo-
rithm for small indexes (when comparing it to naive TAAT).

6. COMPARING DAAT WITH TAAT
In this section we compare the best DAAT algorithms

(mWAND and DAAT max score) with the best TAAT algo-
rithm (mTAAT max score). Table 12 summarizes their la-
tencies for the several index/query combinations. As shown

SI SQ LQ
Naive TAAT 141.0 1,694.6

Buckley and Lewit 143.6 1,744.6
mTAAT max score 129.3 1,385.3

LI SQ LQ
Naive TAAT 3,777.6 18,913.0

Buckley and Lewit 3,643.6 17,690.3
mTAAT max score 2,520.6 11,839.6

Table 10: Latency results for naive TAAT, Buckley
and Lewit and mTAAT max score.

SI SQ LQ
Buckley and Lewit 0.06 624.39
mTAAT max score 1,118.79 24,538.98

LI SQ LQ
Buckley and Lewit 0.88 7,394.00
mTAAT max score 60,757.20 26,0882.20

Table 11: Number of postings that are not scored
for Buckley and Lewit and mTAAT max score.

in the table, for the small index TAAT performs better than
DAAT while the opposite is true for the large index.

The main reasons are the fact that for small indexes the se-
quential behavior of TAAT is very beneficial. Moreover, al-
though mTAAT max score does not really skip postings, this
does not have a major impact for small, memory-resident in-
dexes. When we go to large indexes, on the other hand, the
lack of skipping is also a bigger disadvantage. In addition to
that, the number of cache misses for TAAT drastically in-
creases, probably due to random access over the large array
of accumulators. Please note that other implementations of
accumulators are possible, e.g. based on dense sorted ar-
rays [21] – these variations, however, make the TAAT algo-
rithms much more inefficient in our settings. Figure 4 shows
the relative number of cache misses for the different algo-
rithms, highlighting its impact in the TAAT performance
when we go from small to large indexes.

7. OPTIMIZING DAAT
We now propose a new technique that can be used to

improve the performance of all DAAT algorithms. We first
split the query terms into two groups: terms with short
postings list and terms with long postings list. The split is
based on a configurable threshold (T ) as follows:

Q = Qt≤T ∪Qt>T

where t ≤ T means that the size of the postings list for

SI SQ LQ
mWAND 200.0 2,104.6

DAAT max score 169.0 2,685.6
mTAAT max score 129.3 1,385.3

LI SQ LQ
mWAND 1,867.0 7,556.3

DAAT max score 1,572.6 9,321.3
mTAAT max score 2,520.6 11,839.6

Table 12: Latency results for mWAND, DAAT
max score and mTAAT max score.
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different algorithms over different index and query
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term t is smaller than the threshold T . The threshold T
must be defined during query initialization (or prior to that).
Once we split the query, we start evaluation by processing
the sub query with small postings list, Qt≤T . That can be
done using any of the TAAT or DAAT algorithms described
in this paper. When that processing completes, we have
partial scores for all documents that were evaluated. We can
then use the partial score for the kth element in the heap
as the lower bound (θ), which will be used for processing
the long sub query, Qt>T . Another result obtained from
processing Qt≤T is a candidate list (cl), which is the list of
all documents that were evaluated and have partial score
greater than zero.

We now use a DAAT algorithm to evaluate a new query:

QDAAT = Qt>T ∪ {cl}

where the candidate list cl is viewed as another postings
list, i.e., as an extra term. During this DAAT evaluation
we use θ as the initial lower bound. This algorithm can
be viewed as a hybrid TAAT-DAAT, since we are imposing
some restriction on the order the terms are processed by
doing the initial splitting of the query terms (which has a
TAAT flavor).

The main intuition behind this algorithm is the belief that
Qt≤T can be quickly evaluated (since the postings list are
small) and we can then set a good lower bound θ for process-
ing the large postings list. With good lower bounds DAAT
can do better skipping. The idea of doing some preprocess-
ing work to set a better lower bound for DAAT was also
successfully used in the term bounded max score [22].

We have implemented several variations of this idea:

1. DAAT-mWAND: uses naive DAAT forQt≤T and mWAND
for QDAAT

2. TAAT-mWAND: uses naive TAAT forQt≤T and mWAND
for QDAAT

3. DAAT-DAAT max score: uses naive DAAT for Qt≤T

and DAAT max score for QDAAT

4. TAAT-DAAT max score: uses naive TAAT for Qt≤T

and DAAT max score for QDAAT

For each of these algorithms we did an offline search for
the best threshold value T for each of our index and query

SI SQ LQ
DAAT-mWAND 186.3 2,044.6
TAAT-mWAND 189.0 2,060.3

mWAND 200.0 2,104.6
DAAT-DAAT max score 159.0 2,350.3
TAAT-DAAT max score 160.3 2,354.0

DAAT max score 169.3 2,685.6

LI SQ LQ
DAAT-mWAND 1,619.6 6,862.6
TAAT-mWAND 1,669.3 6,927.3

mWAND 1,867.0 7,556.3
DAAT-DAAT max score 1,390.3 7,513.0
TAAT-DAAT max score 1,433.3 7,604.3

DAAT max score 1,572.6 9,321.3

Table 13: Latency results for the hybrid algorithms,
mWAND and DAAT max score.

SI SQ LQ
DAAT-mWAND 663.9 28,862.3
TAAT-mWAND 544.9 28,510.2

mWAND 531.2 27,214.2
DAAT-DAAT max score 639.25 23,887.03
TAAT-DAAT max score 639.25 23,887.03

DAAT max score 505.12 22,013.45

LI SQ LQ
DAAT-mWAND 52,155.23 283,952.02
TAAT-mWAND 50,623.64 283,533.80

mWAND 47,985.65 275,164.82
DAAT-DAAT max score 49,757.74 251,963.15
TAAT-DAAT max score 48,833.30 250,527.67

DAAT max score 45,709.97 235,740.23

Table 14: Number of skipped postings for the hybrid
algorithms, mWAND and DAAT max score.

set combinations. Procedures to automatically select the
best threshold value T for each workload are outside the
scope of this paper and left for future work.

Table 13 compares the performance of each of these al-
gorithms, using the best threshold value T for each case,
with mWAND and DAAT max score. In all cases the hy-
brid algorithms perform better than mWAND and DAAT
max score, which means that these hybrid algorithms are
the overall best for large indexes. Table 14 confirms our
intuition that by setting a good initial lower bound θ the
DAAT algorithms can skip more.

8. RELATED WORK
DAAT and TAAT algorithms have been compared in the

past. In [9], the authors of the Juru search system performed
experiments comparing DAAT and TAAT algorithms for
the large TREC GOV2 document collection. They found
that DAAT was clearly superior for short queries, showing
over 55% performance improvement. In addition, the per-
formance for DAAT for long queries was even better, often
a factor of 3.9 times faster when compared to TAAT. Unlike
our work, which focuses on memory-resident indexes, this
work used the Juru disk-based index for the performance
evaluations.

A large study of known DAAT and TAAT algorithms
was conducted by [14] on the Terrier IR platform (with
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disk-based postings list) using TREC WT2G, WT10G, and
GOV2 document collections using both short and long queries
(except that long queries were not used for GOV2). They
found that in terms of the number of scoring computations,
the Moffat TAAT algorithm [19] was the best, though it
came at a tradeoff of loss of precision compared to naive
TAAT and the TAAT and DAAT max score algorithms [23].
In this paper we did not evaluate approximate algorithms
such as Moffat TAAT [19]. We leave this study as future
work.

A memory-efficient TAAT query evaluation algorithm was
proposed in [15]. This algorithm addresses the fact that in
TAAT strategies, a score accumulator is needed for every
document. However, for top-k document retrieval, it is pos-
sible to dramatically reduce the size of the accumulator ar-
ray without noticeable loss in precision. Using the TREC
GOV2 document collection with short queries, they found
that with even as few as accumulators for 0.4% of the doc-
uments, result precision was very effective.

A new DAAT algorithm, the term bounded max score,
was proposed in [22]. This algorithm improves upon the
DAAT max score [23] by using extra index structures to
set a better initial threshold for DAAT max score. These
extra index structures are small lists that contain the top
scoring documents for each term. These lists are processed
before DAAT max score starts, to set a tighter initial thresh-
old (and therefore increase index skips). Term bounded
max score is an exact algorithm, as it produces the exact
same results DAAT max score would produce. Using the
GOV2 document collection with short queries, they saw a
23% performance improvement gain over DAAT max score.
This algorithm is very similar in spirit to our DAAT opti-
mization described in Section 7, except for the fact that we
do not need extra index structures.

The problem of improving performance of queries by prun-
ing documents was investigated in [16]. Instead of pruning
documents based only on their term scores, they consid-
ered scoring functions that also contain a query independent
component (such as the PageRank). They explored the per-
formance impact of providing a global document order to
the index based on the query independent components of
the score. They used the pingo search engine (which uses
disk-based postings list) and run experiments over large 120
million corpus of web documents. They proposed several
pruning techniques based on the global document scores and
showed that latency can be greatly reduced with little loss
in precision. This work is complementary to term-based
pruning techniques.

In [13], the authors indicate that two main ways of im-
proving performance in information retrieval systems are:
(1) early termination while evaluating postings list for top-
k queries and (2) combining postings list together into one
shorter lists using intersection (as proposed in [17], where
intersection postings list were cached to speed up query eval-
uation). The contribution of this work is to combine these
two techniques using a rigorous theoretical analysis. In ad-
dition, they performed empirical tests on the TREC GOV2
data set and on real web queries showing the performance
gains of their early termination method.

In this paper we focus on inverted indexes that are sorted
by docid, as these are pervasive in large search engines [10]
and online advertising [5, 6, 12, 24]. Inverted indexes where
posting lists are sorted by scores, however, have also been

studied by the information retrieval and database commu-
nities [1, 11, 21]. Anh and Moffat [1] have proposed the idea
of impact-sorted indexes, where posting lists are split into
e.g. eight segments (of increasing sizes), with the documents
with higher scores being stored in the initial segments of the
index. The idea of the query evaluation algorithms is to ac-
cess the minimum required number of segments, which is
possible since the highest scoring documents for each term
are stored in the beginning of the index. Please note that
in this index organization it is hard to efficiently evaluate
some operations that are very common in web search, such
as phrase queries and scoring functions that are based on
term proximity.

In [21] the authors propose improvements the query eval-
uation algorithms proposed by Anh and Moffat [1]. These
improvements reduce the size of the accumulator array, in
turn reducing the number of score computations. They also
study the effect of different skipping strategies and verify
that changing the skip lengths has little effect in perfor-
mance in their setting. The proposed algorithms are evalu-
ated in main memory, using the Galago search engine and
the TREC GOV2 test collection.

Fagin et. al. [11] have proposed family of algorithms
known as the Threshold Algorithms (TA). These algorithms
are also based on the idea that the several lists are indepen-
dently sorted in decreasing order of scores. The TA algo-
rithms provide formal bounds on the minimum number of
postings that need to be accessed to guarantee that the top-
k document are correctly retrieved. The authors also prove
that the TA algorithms are instance-optimal, i.e., they are
optimal for every instance of index and query workloads.
The fact that each of the postings list have a different order
makes TA algorithms not directly applicable to web search
and online adverting for the same reasons presented in the
discussion of impact-based indexes: phrase and proximity
queries, for instance, cannot be evaluated efficiently.

9. CONCLUSIONS
We presented a study of top-k retrieval algorithms using

Yahoo!’s production platform for online advertising where
the inverted indexes are memory-resident. Such setup is
common in many applications that require low latency query
evaluation as web search, email search, content management
systems, etc. While many variants of the two main families
of top-k algorithms have been proposed and studied in the
literature, to the best of our knowledge, this is the first study
that evaluates their performance for main memory indexes
in a production setting.

We have also shown that the performance of the algo-
rithms can be substantially improved with some modifica-
tion to take in account the in-memory setting. mWAND,
a new variation of the WAND algorithm [7], can improve
the original algorithm by over 60%. An enhanced mTAAT
max score improves the performance of the original TAAT
max score [23] by 58% for the (SI, LQ) case. In these results
both the original and the adapted algorithms were imple-
mented over memory-resident indexes, so the improvements
are algorithmic.

We have also experimented with improving the perfor-
mance of DAAT algorithms by using multi-phase algorithms
that split the query into two parts based on the size of the
postings list. By doing so, we can first evaluate a “short
query” and use the results of this computation to speed
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up the processing of the remaining (long) terms. Our re-
sults showed that this technique improves the performance
of the original DAAT algorithms for all index and query set
combinations we tested. From these experiments we found,
for instance, that performance over the already fast DAAT
max score algorithm can be further improved by an addi-
tional 20%.

Our conclusion is that variants of the traditional DAAT
and TAAT algorithms that have been originally proposed
and evaluated in disk-based settings can be more efficient
for modern, main-memory settings.
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APPENDIX
A. DATA SETS CHARACTERISTICS

In this appendix we present more detailed statistics of our
ad datasets as well as query workloads.
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Figure 6: LQ term distribution.
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Figure 7: SQ term weight distribution.
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Figure 8: LQ term weight distribution.
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Figure 9: SI document size distribution.
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Figure 10: LI document size distribution.
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Figure 11: SI postings list size distribution.
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Figure 12: LI postings list size distribution.
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Figure 13: SI document weight distribution.
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Figure 14: LI document weight distribution.
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