
Consistent Synchronization Schemes for Workload Replay

Konstantinos Morfonios, Romain Colle
∗
, Leonidas Galanis, Supiti Buranawatanachoke

∗
,

Benoı̂t Dageville, Karl Dias, Yujun Wang
Oracle USA

400 Oracle Parkway
Redwood City, CA 94065

{firstname.lastname}@oracle.com

ABSTRACT

Oracle Database Replay has been recently introduced in
Oracle 11g as a novel tool to test relational database sys-
tems [9]. It involves recording the workload running on the
database server in a production system, and subsequently
replaying it on the database server in a test system. A key
feature of workload replay that enables realistic reproduc-
tion of a real workload is synchronization. It is a mecha-
nism that enforces specific ordering on the replayed requests
that comprise the workload. It affects the level of request
concurrency and the consistency of the replay results when
compared to the captured workload. In this paper, we de-
fine the class of consistent replay synchronization schemes
and study, for the first time, the spectrum they cover and
the tradeoffs they present. We place the only scheme pro-
posed so far [9], the one implemented in Oracle 11g Release
1, within the aforementioned spectrum and show that it
is coarse-grained and more restrictive than necessary, often
enforcing dependencies between calls that are independent.
By enforcing needless waits, it decreases the level of possible
concurrency and degrades performance. To overcome these
drawbacks, we identify the best scheme within the spectrum;
it is finer-grained than its counterparts and strikes the right
balance across different tradeoffs: it enforces a partial or-
dering on the replayed calls that minimizes the number of
required waits and maximizes the level of concurrency, with-
out compromising consistency of the replay results. We have
implemented the new scheme in Oracle 11g Release 2. Our
experiments indicate that it produces better quality replays
than the pre-existing one for major classes of workload.

1. INTRODUCTION
An old Chinese proverb says that “a good customer should

not change her shop, nor a good shop change its customers”,
indicating that even a small modification in something that
works well is typically risky. The common sense expressed

∗Work done while at Oracle USA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th ­ September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150­8097/11/08... $ 10.00.

by this saying is reflected in the steadfast reluctance, when
it comes to changes in large-scale information systems.

Although safe, such a conservative and cautious approach
prevents progress. Changes are required to keep information
systems up-to-date and competitive; hence, extensive test-
ing is needed to reduce the related risks. Typically, changes
are first implemented on a test system and verified by regres-
sion and stress tests. Finally, upon successful termination
of all the tests, the changes are implemented on the produc-
tion system as well. The quality of testing determines the
severity and the number of problems that appear after the
changes are applied to the production system. Tests that
exercise a large portion of the production code and produce
realistic loads on the test systems have a higher success rate
in uncovering problems before it is too late.

Unfortunately, generating proper synthetic workloads for
testing large-scale applications is a very hard problem [10].
Trying to mimic production system scenarios with manually
written or tool generated scripts, or with simulated models
has been shown inadequate, time consuming, and essentially
ineffective [9]. The ideal would be to subject a test system to
the actual production workload. Replaying a real workload
on a database system enables such type of testing for large-
scale database applications. We will use the terms database
replay or workload replay to describe this type of testing.

Database replay has been originally introduced in Oracle
11g [9]. Figure 1 sketches how it works. A real workload
running on the database server in a production system, ap-
pearing on the left side of the figure, is recorded with mini-
mal overhead, preferably during peak period. The recorded
workload (also called captured workload, hereafter) is sub-
sequently replayed on the database server in a test system,
appearing on the right side of the figure. Replaying such
a real, typically heavy and highly concurrent workload has
great potential for testing purposes, including regression and
stress testing, debugging, and capacity planning. A cap-
tured workload is stored in a number of capture files. One
capture file corresponds to a single database connection that
was active during capturing on the production system. It
stores the list of calls that were issued on the database server
through the corresponding connection. Replaying the work-
load involves starting an adequate number of client processes
that read the appropriate capture files and issue the recorded
calls on the test database server through the corresponding
connections. The goal is to recreate the same number of
users during replay as there were during capture.

Due to the existence of multiple users issuing calls con-
currently on the database server, a key feature of database

1225

 Application

Client

 Application

Client

 Application

Client

 Middle Tier

RDBMS

Database

Test RDBMS

Test Database

Capture

 Replay

Client

 Replay

Client

 Replay

Client

Production System Test System

Figure 1: Capture and replay for database testing.

replay that enables realistic reproduction of a real workload
is synchronization, i.e., a mechanism that enforces specific
ordering on the replayed calls that comprise the workload.
The employed synchronization scheme strongly affects the
following important properties of replay.
Request concurrency: Enforcing ordering on specific

calls coming from different replay clients inevitably intro-
duces waits. Therefore, it affects concurrency.
Result consistency: The order in which data is com-

mitted and queried during replay determines the data re-
turned or updated in the replay database. Therefore, the
replayed requests may diverge in terms of work done from
their capture-time counterparts.
All widely used database management systems (DBMSs)

implement some concurrency control mechanism to guaran-
tee database integrity [6, 13, 17]. Most of these mechanisms,
including two-phase locking (2PL) and its variations, have
been built based on the theory of serializability [6]. Such
mechanisms ensure that the schedule they produce is serial-
izable, i.e., equivalent with a serial schedule1 that consists
of the same transactions. Two schedules are equivalent if
their individual calls read and write the same values. Note
that the equivalent schedule can be any serial schedule.
Employing no replay synchronization scheme and simply

relying on the concurrency control mechanism for synchro-
nizing calls during replay only based on their timing at the
client side allows for high concurrency, similar to the one
during capture, but leads to inconsistent results, i.e., un-
determined outcome when calls compete for resources. In
other words, calls diverge and the replayed workload does
not look like the captured one anymore, since the replay
schedule is equivalent with an arbitrary serial schedule, and
not necessarily with the schedule that was generated by the
concurrency control mechanism during capture.
At the other end of the spectrum, if the scheme employed

for replay synchronization imposes a total ordering on the
captured calls, say one that strictly follows the execution
order of these calls during capture, the data returned or
affected during replay will be consistent, i.e., the same as
during capture, but the concurrency of the workload will be
very low compared to that of the real captured workload,
since the replayed workload will be essentially serialized.
An ideal synchronization scheme must lie somewhere in

the spectrum between these two extremes. It should enforce
some partial ordering on the calls to guarantee consistency,
while also allowing good potential for concurrency. Note
that a replay synchronization scheme does not perform tra-
ditional concurrency control, in the sense that its goal is
replay consistency, not database integrity. So, in the rest of
this paper we will take for granted that the DBMS imple-

1In a serial schedule, transactions do not overlap in time.

ments some additional mechanism for concurrency control
[6, 13, 17]. Moreover, we will make the assumption that
this mechanism provides snapshot isolation [6], a property
supported in almost all widely used DBMSs.

In previous work [9], a practical synchronization scheme
has been presented that enforces partial ordering on the re-
played requests, thus allowing for reasonable levels of con-
currency with no data divergence. In this paper, our goal
is to formalize the characteristics of the existing replay syn-
chronization scheme, discover new schemes, and nominate
the best. Below, we summarize our main contribution.

Spectrum of consistent schemes: We study, for the
first time, the spectrum of consistent replay synchronization
schemes. Result consistency between capture and replay is
very important, since it allows us to verify that the replayed
workload did the same work as the captured workload.

Position of existing scheme within the spectrum:
We find the position of the only scheme proposed so far for
replay synchronization [9] within the aforementioned spec-
trum and show that it is coarse-grained and more restric-
tive than necessary, enforcing dependencies between calls
that are independent. Unnecessary dependencies may cause
degradation of replay concurrency due to increased waits.

Definition of an advanced scheme: The current re-
play synchronization scheme, while adequate in several prac-
tical applications, leaves room for improvement. In this
paper, we present a finer-grained scheme that strikes the
right balance across different tradeoffs; it generates a sched-
ule that enforces a partial ordering, which minimizes the
required number of waits among the calls coming from dif-
ferent clients and maximizes the level of concurrency, with-
out compromising replay consistency. Our advanced scheme
produces the least restrictive schedule that is still equiva-
lent with the schedule produced by the concurrency control
mechanism during capture. As we explain below, it achieves
this goal by using some similar notions (e.g., the notion of
collision dependency) and constructs (e.g., the dependency
graph) also defined in the theory of conflict serializability
[6]. However, it uses them for a different purpose: to ensure
replay consistency rather than transaction serializability.

Efficient implementation: We discuss some ideas for
efficiently implementing consistent synchronization schemes
in database replay. Our methods apply to all schemes of the
identified spectrum, not only to the advanced one.

Experimental evaluation: We have implemented the
new scheme in Oracle 11g Release 2. We evaluate it experi-
mentally against the previous one and present the results.

The remainder of this paper is organized as follows: In
Section 2, we study the spectrum of consistent synchroniza-
tion schemes. In Section 3, we describe our efficient imple-
mentation of an advanced scheme. In Section 4, we present
the results of our experimental evaluation. In Section 5, we
review related work. Finally, we conclude in Section 6.

2. CONSISTENT SYNCHRONIZATION
Testing any change routinely involves running some form

of application workload on a test system and verifying cor-
rectness and performance. In database replay, a real work-
load is used; so, verification can be achieved by comparing
two sets of results: the results of running the captured work-
load on the test system and the original results recorded
while running the same workload on the production system.
To make such a comparison meaningful, database replay

1226

must guarantee some well-defined behavior of the replayed
workload; otherwise verification based on the fact that a real
workload was used is impossible. We use the term replay
consistency to describe this well-defined behavior. Qualita-
tively, replay consistency means that each replayed request
to the database must perform the same work and operate
on the same data as it did during capture. Only then is it
possible to compare performance of capture and replay.
Inspired by the significance of consistency in the replay

results, in this section, we study the types of inconsistency
that can happen during replay and define the class of con-
sistent replay synchronization schemes. Then, we identify
the spectrum that these schemes cover. Finally, based on
the properties of the points of this spectrum, we introduce
an advanced synchronization scheme for workload replay.

2.1 Types of Inconsistency
Let us first focus on the sources of replay inconsistency.

They have been also discussed elsewhere [9]; here, we cat-
egorize them in a way that will help us develop our new
methodology. To begin with, we have to assume that the
initial database state at the beginning of capture is iden-
tical to the initial state at the beginning of replay, since
starting from an arbitrary state can practically never end
up with consistent results. The state only includes user data
and there are no assumptions on the layout, index, schema,
or any other physical database characteristic. Fulfilling this
requirement is rather straightforward by using standard fea-
tures of DBMSs, e.g., export/import or backup/restore.
Having made the above assumption, we can identify two

types of replay inconsistency, based on the source of diver-
gence in the associated results: systematic and random. We
define them below and present some examples after that.
Systematic inconsistency: This type of inconsistency

appears in a reproducible fashion, when the relative ordering
between two collision-dependent calls changes. Assuming
that the DBMS guarantees snapshot isolation [6], two calls
are collision-dependent if (a) at least one of them modifies
the state of the database by committing some changes, and
(b) both calls access at least one database object in common.
For the sake of simplicity, unless otherwise stated, we can
consider that a database object is merely a database table,
since our focus is on relational databases. In the case of more
complex objects, e.g. views, we assume that they can always
be analyzed to the base tables upon which they are defined.
Finally, in the case of finer-grained types of database objects
(e.g., blocks, and rows) some more attention is required. We
will elaborate on them in Section 2.3.5.
Random inconsistency: This type of inconsistency ap-

pears in an arbitrary, coincidental fashion, when a call de-
pends on some value or condition related to the runtime
state. Typically, calls that cause random inconsistency are
calls that use the system date and time, or calls that gener-
ate and use random numbers.
Example 1 (systematic inconsistency): Here, we describe

an extreme, imaginary situation, only for the sake of illus-
tration. Assume a very large company employing 1,000,000
US employees that has been hit by major financial crisis.
Imagine that the treasurer of the company executes query
Q1 shown below to find out how many US employees work
for the company and what their average salary is. Assume
that the DBMS responds after some considerable amount of
time, say 1 sec, since it evaluates two aggregate functions

(count and avg) over one million rows, and returns the fol-
lowing result: 〈1,000,000, $60,000〉. Based on this result, the
CEO of the company decides to outsource all the employees,
but herself, to India. To do so, she executes query Q2.

Q1: select count(*), avg(salary) from emp where country=‘USA’;

Q2: update emp set country=‘India’

where country=‘USA’ and job title<>‘CEO’;

For the sake of illustration, let us assume that Q2 commits
its changes automatically. In this case, we can easily see that
Q1 and Q2 are collision-dependent, since (a) Q2 modifies the
state of the database by changing table emp, and (b) both
of them access the same database object (table emp).

Furthermore, imagine that the database administrator is
planning a change on the company’s system, say an upgrade
of the DBMS version, but first, he wants to test its effects on
the workload consisting of Q1 and Q2. To do so, he replays
the workload on a testing database. There are two possible
orderings for executing Q1 and Q2 during replay: Q1→Q2

and Q2→Q1 (symbol “→” denotes “precedes”). Recall that
the first ordering (Q1→Q2) was used on the production sys-
tem during capture. Let us assume that the synchronization
scheme chooses the second one (Q2→Q1) during replay.

After the execution of Q2, table emp stores only one row
that corresponds to a US employee, the CEO. Executing Q1

after Q2 returns 〈1, $600,000〉, assuming that $600,000 is the
CEO’s salary. This result differs from Q1’s previous result,
the one during capture. Furthermore, computation of Q1’s
result has become trivial during replay, since the aggregate
functions operate on a single row, not on one million rows
as during capture. So during replay, taking into account
some proper indexing on emp, the response time of Q1 must
be orders of magnitude faster, say 0.01 sec. Clearly, the
speed-up cannot be attributed to the DBMS upgrade.

To conclude, the use of different ordering for two collision-
dependent calls has generated systematic inconsistency be-
tween capture and replay. As expected, the results are dif-
ferent. The work is also different and therefore the replay
performance cannot be used as an indicator of what effect
the tested change will have on the production system. �

Example 2 (random inconsistency): Imagine that in 2010
the financial state of the company of example 1 recovered;
so, 100,000 new employees were hired in October, but no
more hires were made in 2010. That October, the CEO
executed Q3 shown below to see the number of new hires
during that month. In Q3, function to char converts a date
into a string with some given format, h date is a column of
table emp that stores an employee’s hiring date, and sysdate
is a function that returns the system date. Assume that the
result of Q3 was 100,000 and its response time 0.5 sec.

Q3: select count(*) from emp

where to char(h date,‘mmyyyy’)=to char(sysdate,‘mmyyyy’);

The next month, replaying a workload containing Q3 gen-
erated a different result for Q3 (0, since no new hires were
made after October). Moreover, during this replay, Q3’s
response time was much faster (say 0.01 sec), since the ag-
gregate function count operated on an empty group of rows.
In this case, divergence has happened due to random incon-
sistency, since the result of Q3 depends on the state of the
runtime (in this example, the date returned by sysdate). �

1227

2.2 Consistent Synchronization Schemes
Having studied the sources of replay inconsistency in the

previous subsection, in this subsection, we define the class
of consistent synchronization schemes for workload replay.
Let us first focus on systematic inconsistency. Clearly,

its occurrence during replay depends heavily on the syn-
chronization scheme employed, since the source of system-
atic inconsistency is the existence of changes in the order-
ing of collision-dependent calls. Hence, a minimum require-
ment for a consistent replay synchronization scheme is ensur-
ing that collision-dependent calls are always replayed in the
same order as during capture, in order to prevent systematic
inconsistency. Note that this order is the one dictated by
the schedule of the concurrency control mechanism that was
running on the production system during capture.
Let us now focus on random inconsistency. It is easy to

observe that this kind of inconsistency is inherent in the type
of some captured calls, the ones that depend on the state of
the runtime, as explained above. Since it is attributed to the
nature of these calls and not to their ordering, synchroniza-
tion cannot address the corresponding problem. Some addi-
tional machinery, which is orthogonal to the synchronization
scheme employed, is required for this purpose. In summary,
tackling random inconsistency is a matter of correlating and
reproducing random results. Existing techniques [9] avoid
it by capturing the real values that depend on the runtime
state of the production system (e.g., the result of sysdate
for call Q3) and subsequently using these recorded values
to substitute the values that would be generated based on
the runtime state of the test system during replay. In this
paper, we will take for granted that random inconsistency
does not exist, since our focus is on synchronization schemes
and techniques orthogonal to them can take good care of it.
Based on the observations above, we can easily deduce

that by avoiding systematic and random inconsistency work-
load replay adheres to a schedule that is equivalent with the
schedule that was executed during capture, since such a re-
play preserves the same ordering of collision-dependent calls
and eliminates all possible sources of divergence.
Having realized how consistent synchronization schemes

should behave, we provide below their formal definition. We
begin with some notation that we will use throughout the
paper. Let S denote the set of all calls in a given work-
load, and let a, b ∈ S be two of these calls. Moreover,
assume that the following predicates exist: precedes(a, b)
returns true if a was executed before b during capture, or
false otherwise; commit(a) returns true if a modifies the
database state by committing some changes, or false oth-
erwise; access common object(a, b) returns true if a and
b access a database object in common, or false otherwise;
must wait(a, b) returns true if a must wait for b to finish
before a can be replayed, or false otherwise. Finally, let us
define the following sets:

• Set of precedence-dependent pairs:
Spre = {(a, b) ∈ S2 : precedes(a, b)}

• Set of commit-dependent pairs:
Scom = {(a, b) ∈ Spre : commit(a) ∨ commit(b)}

• Set of object-dependent pairs:
Sobj = {(a, b) ∈ Spre : access common object(a, b)}

• Set of collision-dependent pairs:
Scol = Scom ∩ Sobj

S2 C3 U3 C2 U2

Y1 Y2 Y3 Y4 Y5

Figure 2: Example of a captured session.

Total

ordering

Ordering based on

commit dependency

Ordering based on

object dependency

Strict scheme ⇒ concurrency↓ Loose scheme ⇒ concurrency↑

Ordering based on

collision dependency

Figure 3: Spectrum of consistent schemes.

Clearly, the following relationships hold for these sets:
Spre⊇ Scom⊇Scol, and Spre⊇Sobj⊇Scol.

To explain our notation, let us give some examples. As-
sume some captured session Y consisting of five calls: Y1-Y5

(Figure 2). The horizontal axis represents time; so, Y1 has
been executed before Y2 during capture, Y2 before Y3, and
so on. Furthermore, assume three types of calls: selects, up-
dates, and commits, denoted by letter S, U, and C, respec-
tively. To better distinguish commit calls from non-commit
calls, we use grey color for the former (e.g., Y3) and white
color for the latter (e.g., Y1). Each call operates on a set of
objects, denoted by the subscript that follows letter S, U, or
C. For instance, Y1 selects some results from object 2, Y2

updates object 3, whereas Y3 commits changes on object 3.
In our example, precedes(Y2, Y5), commit(Y3), and ac-

cess common object(Y2, Y3) return true, but precedes(Y4,
Y1), commit(Y1), and access common object(Y1, Y3) false.
Finally, the elements of various sets follow: S={Y1, Y2,
Y3, Y4, Y5}, Spre={(Y1, Y2), (Y1, Y3), (Y1, Y4), (Y1, Y5),
(Y2, Y3), (Y2, Y4), (Y2, Y5), (Y3, Y4), (Y3, Y5), (Y4, Y5)},
Scom={(Y1, Y3), (Y1, Y5), (Y2, Y3), (Y2, Y5), (Y3, Y4),
(Y3, Y5), (Y4, Y5)}, Sobj={(Y1, Y4), (Y1, Y5), (Y2, Y3),
(Y4, Y5)}, and Scol={(Y1, Y5), (Y2, Y3), (Y4, Y5)}.

Using our notation, we can formally define a consistent
replay synchronization scheme as follows.

Definition (consistency rule): A replay synchroniza-
tion scheme is consistent, if it satisfies the consistency rule:
∀(a, b) ∈ S2((a, b) ∈ Scol ⇒ must wait(b, a)).

2.3 Spectrum of Consistent Schemes
Conceptually, the main job of a consistent synchronization

scheme for workload replay is the following one: given a pair
of calls (a, b) ∈ S2, it has to decide if one of them must wait
for the other one to finish in order to guarantee consistency.
There are three possible mutually excluding decisions. De-
cision 1: must wait(a, b), Decision 2: must wait(b, a), and
Decision 3: (¬must wait(a, b)) ∧ (¬must wait(b, a)).

As we show below, depending on how strict or loose its
strategy is for making the aforementioned decision, we can
place a synchronization scheme in the corresponding posi-
tion within the spectrum of consistent schemes. Figure 3 vi-
sualizes this spectrum. As we move from left to right within
it, we move from stricter schemes to looser ones; hence, the
level of replay concurrency increases in this direction. The
strictest possible scheme (on the left) enforces a total order-
ing on all calls that comprise the workload. Looser schemes
enforce some partial ordering based on commit, object, or
collision dependency. In practice, partial ordering means

1228

that two or more calls can be issued at the same time with-
out any concerns that they will affect each other in terms of
the type of work they will do. They will probably contend
for DBMS resources, which is one of the aspects we need to
test. Below, we discuss the different points of the spectrum.
In order to better explain the differences among the differ-

ent points of the spectrum, let us extend our running exam-
ple of Figure 2 and assume that we have captured three con-
current sessions running on our production system, namely
X, Y, and Z (Figure 4(a)). Then, Figures 4(b)-4(e) show
examples of replaying these sessions using different synchro-
nization schemes. We give further details below.

2.3.1 Total Ordering

Enforcing specific total ordering, the exact same ordering
that happened during capture, among all calls that com-
prise a captured workload is the most straightforward way
to avoid systematic inconsistency. By preserving the original
ordering of all calls during replay, a synchronization scheme
based on total ordering guarantees that it also preserves the
ordering of collision-dependent calls; hence, it is consistent.
Formally, a scheme of this category enforces the total or-

dering rule: ∀(a, b) ∈ S2((a, b) ∈ Spre ⇒ must wait(b, a)).
Since Spre ⊇ Scol, if (a, b) ∈ Scol, then (a, b) ∈ Spre, as

well. Hence, by enforcing the total ordering rule, a synchro-
nization scheme of this class indirectly enforces the consis-
tency rule, too. Therefore, it is consistent.
In our running example, if the captured workload is the

one in Figure 4(a), a synchronization scheme based on total
ordering could have generated a replay workload like the
one in Figure 4(b). If we compare the two workloads, we
can observe that although some calls have been shifted in
time during replay, their ordering still remains the same.
Although consistent, a synchronization scheme based on

total ordering is too restrictive for replay concurrency. Ac-
tually, due to enforcing a specific ordering between every
single pair of calls, it is the strictest scheme possible. This
property explains why it appears in the first position (to the
left) within the spectrum of Figure 3. For instance, in the
example of Figure 4(b), call X2 has delayed to execute dur-
ing replay for some reason. Unfortunately, a synchroniza-
tion scheme based on total ordering has to propagate this
delay to all subsequent calls in order to preserve the speci-
fied ordering. So, even calls Z1, Y2, and all their subsequent
calls, most of which are collision-independent with X2, have
to wait until X2 finishes. This synchronization scheme does
not allow for realistic concurrency even though it guarantees
consistency. It is presented only for illustration purposes.

2.3.2 Ordering Based on Commit Dependency

Having described the strictest extreme of the spectrum, a
scheme based on total ordering, let us proceed towards looser
schemes. A promising candidate scheme that enforces some
partial ordering could be based on commit dependency. This
scheme is available in Oracle 11g and has been presented
elsewhere [9]. Exploiting the property that any pair of non-
commit calls is never collision-dependent, a scheme based on
commit dependency enforces no specific ordering between
non-commit calls. On the other hand, it enforces specific
ordering between two calls, if at least one of them modifies
the state of the database by committing some changes.
Formally, schemes of this class enforce the commit depen-

dency rule: ∀(a, b) ∈ S2((a, b) ∈ Scom ⇒ must wait(b, a)).

U1 C1,2 U2

S2 C3 U3 C2 U2

S2 C3 U3 S3

X1 X2 X3

Y1 Y2 Y3 Y4 Y5

Z1 Z2 Z3 Z4

(a) Three captured sessions.

 X1 X2 X3

Y1 Y2 Y3 Y4 Y5

Z1 Z2 Z3 Z4

U1 C1,2 U2

S2 C3 U3 C2
U2

S2 C3 U3 S3

(b) Replay based on total ordering.

U1 C1,2 U2

S2 C3 U3 C2 U2

S2 C3 U3 S3

X1 X2 X3

Y1 Y2 Y3 Y4 Y5

Z1 Z2 Z3 Z4

(c) Replay based on commit dependency.

U1 C1,2 U2

S2 C3 U3 C2 U2

S2 C3 U3 S3

X1 X2 X3

Y1 Y2 Y3 Y4 Y5

Z1 Z2 Z3 Z4

(d) Replay based on object dependency.

U1 C1,2 U2

S2 C3 U3 C2 U2

S2 C3 U3 S3

X1 X2 X3

Y1 Y2 Y3 Y4 Y5

Z1 Z2 Z3 Z4

(e) Replay based on collision dependency.

Figure 4: Examples of replaying three captured ses-
sions using different synchronization schemes.

Since Scom ⊇ Scol, if (a, b) ∈ Scol, then (a, b) ∈ Scom, as
well. Hence, by enforcing the commit dependency rule, a
synchronization scheme of this category indirectly enforces
the consistency rule, too. Therefore, it belongs to the spec-
trum of consistent schemes (Figure 3).

In our running example, if the captured workload is the
one in Figure 4(a), a synchronization scheme that enforces
ordering based on commit dependency could have generated
a replay workload like the one in Figure 4(c). In this exam-
ple, we can observe that there is no specific ordering among
non-commit calls (white circles) between two consecutive
commit calls (grey circles). This property allows more free-
dom and therefore achieves a better level of concurrency dur-
ing the period between commit calls. For instance, in Figure
4(c), call X2 has once more delayed to execute during replay.
The same had happened in Figure 4(b). The difference is
that this time, Z1 does not have to wait for it, since both
of them are non-commit calls. So, Z1 and X2 have been re-
ordered during replay. Since they are collision-independent,
such a reordering does not harm consistency. Note that sim-
ilar reordering appears among several non-commit calls that
lie between two commit calls. In our example of Figure 4(c),
this includes calls Y2 and Z3, as well as Y4 and Z4.

1229

To the best of our knowledge, a synchronization scheme
that enforces ordering based on commit dependency is the
only replay synchronization scheme that has been proposed
so far in the existing literature [9]. It may be looser than
one using total ordering, which explains why we have placed
it at the second position within the spectrum of Figure 3,
but it is still stricter than necessary, since it does not take
into consideration the data a pair of calls accesses when it
decides for their ordering. So, it enforces waits between
calls that access completely disjoint sets of data, if at least
one of these calls modifies the database state, although such
calls are collision-independent. For instance, in the example
of Figure 4(c), the synchronization scheme would enforce
waits between the following pairs of calls, simply because
at least one of them commits some changes: must wait(Z2,
X2), must wait(Z2, Y1), must wait(Z4, X3). In this exam-
ple, the aforementioned calls are collision-independent. By
enforcing unnecessary waits, a scheme of this category still
may degrade concurrency and replay performance.

2.3.3 Ordering Based on Object Dependency

Following some logic similar to the one of schemes that are
based on commit dependency, the schemes that are based on
object dependency form another category of schemes that
enforce some partial ordering among the calls that comprise
a captured workload. The property they exploit is that any
pair of calls whose members access disjoint sets of objects is
collision-independent. Therefore, schemes based on object
dependency never enforce a specific ordering between such
pairs of calls. On the other hand, they enforce specific or-
dering between two calls, if these calls access at least one
database object in common.
Formally, schemes of this class enforce the object depen-

dency rule: ∀(a, b) ∈ S2((a, b) ∈ Sobj ⇒ must wait(b, a)).
Since Sobj ⊇ Scol, if (a, b) ∈ Scol, then (a, b) ∈ Sobj , as

well. Hence, by enforcing the object dependency rule, a
synchronization scheme of this class indirectly enforces the
consistency rule, too. Therefore, it is consistent.
In our running example, if the captured workload is the

one in Figure 4(a), then a synchronization scheme that en-
forces ordering based on object dependency could have gen-
erated the replay workload in Figure 4(d). In this example,
we can observe that there is no specific ordering between
calls that access disjoint sets of database objects. This prop-
erty allows some more freedom and therefore achieves a bet-
ter level of concurrency compared to the one of total order-
ing, since it avoids some unnecessary delays. For instance,
during replay (Figure 4(d)), although calls Y1 and X1 have
delayed to start for some reason, this delay has not affected
calls Z1 and Z2, which have now become the first calls to
execute. The reordering of Z1 and Z2 with X1 and Y1 is
possible during replay, since the former set of calls accesses
object 3, whereas the latter set accesses objects 1 and 2, re-
spectively. So, a scheme based on object dependency would
never enforce waits between them. In our example, similar
reordering has also been possible for other pairs of collision-
independent calls, e.g., Z4 and X3, as well as Z3 and Y3.
A synchronization scheme that uses ordering based on ob-

ject dependency may be looser than one using total order-
ing, which explains why we place it on the right of it within
our spectrum (Figure 3), but it is still stricter than nec-
essary, since it does not distinguish between commit and
non-commit calls when it decides for their ordering. So, it

enforces waits even between non-commit calls, if they access
objects in common, although they are collision-independent;
thus, it creates some unnecessary waits (read-only depen-
dencies). For instance, in Figure 4(d), the synchronization
scheme enforces waits between the following pairs of calls,
just because they access objects in common: must wait(X2,
Y1), must wait(Z3, X2). The aforementioned calls are non-
commit and hence collision-independent. By enforcing un-
necessary waits, a scheme of this category still degrades con-
currency and decreases replay performance.

When it comes to comparing which replay synchroniza-
tion scheme is stricter between one that is based on commit
dependency and one that is based on object dependency, the
answer depends on the properties of the given workload. In
more detail, which one is stricter depends on the relationship
between the sizes of the corresponding sets, i.e., |Scom| and
|Sobj |. The more elements a set contains, the more waits the
corresponding synchronization scheme must enforce, hence
the stricter it is. So, for example, if for a given workload
|Scom| > |Sobj |, then a scheme based on commit dependency
is stricter for this workload. Based on the observation that
in the general case we cannot know which scheme between
these two is stricter, in Figure 3, we have placed schemes
that enforce ordering based on commit dependency at the
same coordinates on the horizontal axis with schemes that
enforce ordering based on object dependency.

2.3.4 Ordering Based on Collision Dependency

All the synchronization schemes we have presented so far
are stricter than necessary, since they enforce waits between
pairs of collision-independent calls. The schemes that are
based on collision dependency overcome this drawback by
directly enforcing the consistency rule (Section 2.2).

In our running example, if the captured workload is the
one in Figure 4(a), then a synchronization scheme that en-
forces ordering based on collision dependency could have
generated the replay workload in Figure 4(e). In this exam-
ple, we can observe that call Y1 (the first call during cap-
ture) has delayed during replay for some reason. However, a
very large number of other calls have been executed before it
without having to wait for it: X1, X2, Z1, Z2, and Z3. If the
ordering was based on commit dependency, Z2 would have
to wait. If the ordering was based on object dependency,
X2 and Z3 would have to wait. However, a scheme of this
class does not suffer from these problems, since it enforces
the minimum required number of waits, i.e., only between
calls that are collision-dependent.

The previous example indicates the advantages of a loose
scheme. Actually, as we have shown above, a scheme that
orders calls based on collision dependency is the loosest pos-
sible (this explains why we have placed in the rightmost po-
sition within the spectrum of Figure 3). Hence, it is more
promising than the one proposed in the existing literature
(Section 2.3.2), and therefore the scheme of our choice. We
have implemented the new scheme in Oracle 11g Release 2
as an alternative to the pre-existing one.

2.3.5 Investigation of Using Finer­Grained Objects

In the previous subsection, we presented schemes that en-
force ordering based on collision dependency and argued
that they are the loosest possible within the spectrum of
consistent schemes. Furthermore, in Section 2.1, we men-
tioned that for the sake of simplicity, we consider that a

1230

database object is merely a table. So the question that arises
is whether we could devise even looser schemes, if we used
objects at a finer level of granularity, e.g., blocks or rows.
Intuitively, this alternative sounds reasonable. Consid-

ering objects at a finer level of granularity should reduce
the number of dependencies and could therefore produce
a scheme that enforces a smaller number of waits between
calls, resulting into even higher levels of concurrency during
replay. Unfortunately, this intuitively reasonable approach
does not work in practice, since it may generate systematic
inconsistency. We show that with a counterexample.
Counterexample (use of blocks or rows): Assume the same

company we described in examples 1 and 2 (Section 2.1). Let
its database contain a table emp storing information about
1,000,000 employees, which correspond to 1,000,000 rows
R1-R1,000,000. Furthermore, consider that, on the produc-
tion system, table emp consists of 20,000 blocks B1-B20,000.
Let each block fit 50 rows; hence, all of them are full. More-
over, imagine that the company acquires another company,
which also has 1,000,000 employees. Finally, assume two
queries Q4 and Q5, expressed in SQL as follows.

Q4: select avg(salary) from emp;

Q5: insert into emp (select * from acquired emp);

Q4 prints out the average salary of all the employees, while
Q5 inserts the employees of the acquired company to the ta-
ble emp of the first company. For simplicity, we assume that
Q5 automatically commits its changes. Executing Q4 before
Q5 aggregates rows R1-R1,000,000 from blocks B1-B20,000.
Additionally, Q5 inserts 1,000,000 new rows in emp, say

R1,000,001-R2,000,000. Since all blocks B1-B20,000 are full, the
new rows go into newly allocated blocks, say B20,001-B40,000.
If we consider objects at the block level, then Q4 and Q5

are collision-independent, since they access different objects
(the former accesses blocks B1-B20,000, whereas the latter
B20,001-B40,000). Likewise, if we consider objects at the row
level, then Q4 and Q5 are once again collision-independent,
since they access different objects (the former accesses rows
R1-R1,000,000, whereas the latter R1,000,001-R2,000,000). In
both cases, a scheme that orders calls based on collision de-
pendency would not enforce a wait between these calls dur-
ing replay. This would cause systematic inconsistency, since
in case of reordering Q4 and Q5 during replay, Q4 would ag-
gregate 2,000,000 rows (R1-R2,000,000) instead of 1,000,000
that it had aggregated during capture. This difference would
affect both the result and the performance of Q4. �
Apparently, a scheme based on block-level or row-level de-

pendency cannot guarantee consistency in the general case.
Solutions identifying overlaps between queries that dynam-
ically determine their read set in an attempt to solve the
problem might be possible in theory. However, we strongly
believe that they would not be practical in a real system,
due to their expectedly high complexity. Therefore, we do
not investigate them any further.

3. EFFICIENT IMPLEMENTATION
The architecture of the first release of Oracle Database

Replay has been described in great detail in previous work
[9]. We summarized it briefly in Section 1 and Figure 1. In
this section, we extend the description found in the original
publication by explaining the extensions we implemented
in the second release of the tool to make it support the
advanced synchronization scheme proposed in this paper.

3.1 Discovery of Dependencies
Oracle Database Replay works as follows: A given number

of processes, called replay clients (Figure 1), scan through
the calls recorded in the capture files and send appropriately
concurrent requests to the testing database server through
an adequate number of connections asking for execution of
these calls. By doing so, the replay clients simulate the
application and middle-tier layers that were running on the
production system during capture.

To ensure consistency in the replay results, before execut-
ing a call a, the testing database server first identifies all the
other calls on which a depends according to the synchro-
nization scheme employed, and enforces a wait on a until
all of them have finished. Searching for such dependencies
on the fly can be computationally very expensive, due to
the typically large number of calls comprising a workload.
Hence, since time is critical during replay, an efficient im-
plementation of replay synchronization requires execution of
a preprocessing algorithm in an off-line fashion that builds
in advance the graph G of dependencies between calls. G
is a directed acyclic graph (DAG) that represents the par-
tial ordering among the calls that comprise the workload.
These calls are the vertices of G. A directed edge starts
from a vertex a and ends at a vertex b, if must wait(b, a)
is true, according to the synchronization scheme employed.
The use of a dependency graph for our problem resembles
the use of a similar graph in theory of conflict serializability
[6]. However, unlike the latter, our graph is acyclic by de-
sign. Moreover, we are using it to attack a different problem:
replay consistency, rather than transaction serializability.

Algorithm BuildDependencyGraph presents in pseudocode
our efficient preprocessing algorithm that computes the de-
pendency graph for workload replay. Its input is the set of
calls S that comprise the captured workload. Its output is
the dependency graph G. Initially, the algorithm sets G’s
vertices to S (line 1) and initializes G’s edges to the empty
set (line 2). Then, it enumerates all the candidate pairs of
calls in S that are potentially dependent in order to identify
the edges of G. To do so, it visits every call a in S, ordered
by the identifier cfa of the capture file that stores a and
the start-execution time ta at which the execution of a had
started during capture (line 3). Then, it searches for every
other call b on which a might depend.

A straightforward implementation of the aforementioned
search of b would exhaustively enumerate all possible calls
of the workload. Since the number of these calls is typi-
cally very large, the exhaustive approach is impractical. To
overcome this drawback, below, we present some properties
based on which our algorithm can prune its search space by
predicting in advance that the synchronization scheme does
not need to work on particular pairs of calls.

Property 1 (Avoid search within the same capture file):
All the calls that are stored in a particular capture file are
the ones that were sent to the database server through the
same connection on the production system. Anything that
came into the database server through the same connection
should just be replayed in the same way. Such behavior
mimics in a more realistic fashion the production workload
a database sees. Recall that reordering of calls during replay
tries to achieve better concurrency across requests coming
from different threads of execution and not to change the
natural order of calls coming from the same one, since the
latter change would modify the behavior of the users during

1231

Algorithm BuildDependencyGraph(S:in, G:out)

1: G.V = S;
2: G.E = ∅;
3: foreach(a ∈ S, ordered by cfa and ta) do

4: foreach(cf ∈ S.capture files)
5: if(cf == cfa) then

6: continue;
7: end if

8: found = FALSE;
9: bmin = RecallDependency(cf , a.previous call);

10: bmax = FindFirstCallAfterGivenTime(cf , ta);
11: b = bmax.previous call;
12: while(!found && tb > tbmin

&& tb < tbmax
) do

13: decision = ApplyRule(a, b);
14: switch(decision)
15: case Decision 1:
16: G.E = G.E ∪ {(b→a)};
17: found = TRUE;
18: break;
19: case Decision 2:
20: RaiseError(“This case can never happen”);
21: break;
22: case Decision 3:
23: b = b.previous call;
24: break;
25: end switch

26: end while

27: end foreach

28: end foreach

29: Reduce(G);

replay. Hence, although possible, reordering calls stored in
the same capture file is not recommended.
Based on this property, BuildDependencyGraph does not

search for dependent calls stored in the same capture file;
hence, for every call a, it scans through every capture file cf
(line 4), but skips cfa, the file that stores a (lines 5-7).
Property 2 (Constrain search within a range): For ev-

ery file cf other than cfa, our algorithm scans through the
calls stored in it (line 12). As we explain below, instead
of performing a time-consuming scan of the entire file, it
constrains the search space into a particular range of calls.
Let ta be the time at which a was executed during cap-

ture and a.previous call the previous call of a in file cfa
(a.previous call can be NULL, if a is the first call in cfa).
Moreover, let b0 and b∞ be two artificial calls that our algo-
rithm considers as existing by default in cf , assuming that
tb0=0 and tb∞=∞. They play the role of the first and last
call in cf , respectively. They are not replayed, but only used
for easier handling of boundary cases, as we explain below.
Furthermore, let RecallDependency (line 9) be a method

that returns a call in cf , say bmin, for which a.previous call

must wait. If such a call exists, it is unique (based on
Property 3 below) and BuildDependencyGraph must have
already found it in some previous iteration, since it processes
calls ordered by start-execution time (line 3). Otherwise, if
a.previous call is NULL, or such a call does not exist, Re-
callDependency returns b0, the artificial call defined above.
Finally, let FindFirstCallAfterGivenTime (line 10) be a

method that returns the first call in cf , say bmax, such that
ta < tbmax

(bmax is the first call in cf executed after a). If
such a call does not exist, the method returns b∞.
Based on the previous definitions, the following prece-

dence holds: bmin→a.previous call→a→bmax. Hence, our
algorithm (line 12) suffices to consider as candidate calls in
cf for which a needs to wait, only calls that belong to the
range (bmin, bmax). Note that the aforementioned range is
open on both sides. Therefore, it does not include bmin and
bmax, and is valid even when bmin=b0, or bmax=b∞.

Property 3 (Search in reverse time order and stop on first
match): For every candidate pair it generates, say (a, b),
BuildDependencyGraph calls method ApplyRule (line 13).
Depending on the synchronization scheme it employs, Ap-
plyRule combines the evaluation of some proper subset of
the predicates precedes, commit, and access common object,
defined in Section 2.2. It returns a decision that can be De-
cision 1, 2, or 3 (the three alternatives have been defined in
Section 2.3), indicating whether specific ordering is required
between the individual calls a and b. Note that ApplyRule is
the only part of our algorithm that depends on a particular
synchronization scheme. Other than that, our algorithm is
general enough and applies to all consistent synchronization
schemes we described in the previous section.

If ApplyRule returns Decision 1, call a must wait for b;
hence, the algorithm adds edge b→a in G’s edges (line 16).
We argue that after finding b, a call in cf for which a must
wait, our algorithm does not need to keep searching for other
calls in cf preceding b on which a depends; a will be indi-
rectly executed after all of them, since it will be explicitly
executed after b, and all of them will have been executed be-
fore b, based on Property 1. Therefore, enforcing an explicit
wait on a for any one of them would be redundant. This
observation explains Property 3, based on which BuildDe-
pendencyGraph searches within cf in reverse start-execution
time order and stops searching upon finding the first match.

BuildDependencyGraph implements searching in reverse
start-execution time order as follows: It initializes b with
the call in cf that precedes bmax (line 11). This is the call
with the maximum start-execution time that belongs to the
range defined by Property 2. As long as ApplyRule (line
13) returns Decision 3 indicating that a and b are indepen-
dent, the algorithm iterates backwards, by considering as
new value for b the call that precedes the old b in cf (lines
22-24). Upon finding the first match (lines 15-18), the al-
gorithm sets flag found to TRUE. This forces the algorithm
to exit the loop in line 12, interrupting the search.

So far, we have explained what happens when ApplyRule
returns Decision 1 or 3. Decision 2 implies that call b must
wait for a. In our setting, such a result is impossible, since
every call b that our algorithm visits belongs to the range
defined by Property 2 and all the calls in this range must
have been executed before a during capture, by definition.
In the impossible case of Decision 2 (lines 19-21), our algo-
rithm raises an error for the sake of completeness.

Property 4 (Prune edges in G): After enumerating all re-
quired pairs of calls and constructing graph G, BuildDepen-
dencyGraph finally calls method Reduce (line 29). Reduce
prunes some redundant edges in G. In more detail, it com-
putes the transitive reduction of G [5], which is the subgraph
of G that has a minimum number of edges and represents
the same partial ordering as G. Since G is a DAG, its tran-
sitive reduction is unique and can be found in linear time
[14]. By exploiting the properties of transitivity, this opti-
mization minimizes the number of edges in G and therefore
the number of waits the replay client has to enforce.

3.2 Implementation Details
Let us now provide some more implementation details,

focusing mainly on the modifications we had to make in
the second release of Oracle Database Replay to make it
support a synchronization scheme based on collision depen-
dency. Below, we study every step of execution separately.

1232

Capture: During capture, Oracle Database Replay stores
some metadata required for consistently replaying a work-
load, e.g., SQL text, bind values, timing information, and
system change numbers2 (SCNs). On top of that, in the
new release, it also stores the identifiers of the objects a call
accesses along with the corresponding type of access (read
or write). The additional metadata makes our algorithm
able to decide whether two calls collide or not, according to
the consistency rule (Section 2.2). Note that we have im-
plemented workload recording using callbacks in the DBMS
kernel; hence, all the required metadata is easily available.
For performance reasons, Oracle Database Replay stores

the additional metadata we described above only once per
cursor, during the open cursor call. To avoid unnecessary
redundancy, it does not explicitly store it again and again
for every cursor execution. Instead, in this case, it only
stores the cursor number, which is enough for retrieving the
related information whenever necessary in subsequent steps.
Finally, note that the aforementioned object identifiers

that the tool stores always refer to base tables, even when
the SQL text associated with the corresponding cursor refers
to complex views. This property guarantees that Oracle
Database Replay does not lose any dependencies.
Preprocessing: During preprocessing, Oracle Database

Replay spawns a number of threads, each one of which parses
a number of capture files, gathers information stored dur-
ing capture, and populates proper structures and internal
tables with metadata required for the replay step. In the
new release, it also populates an additional table: DEPEN-
DENCIES(file id, call ctr, object id, RW, scn, pc scn). This
table stores a row for every object a call accesses. This in-
formation is necessary for identifying collisions during syn-
chronization. Column file id holds the identifier of the cap-
ture file where a given call is stored, call ctr is a counter
that identifies the sequence number of the given call in the
capture file, object id holds the identifier of an object that
the given call accesses, RW stores the corresponding access
type, scn holds the SCN of the database at the beginning
of execution of the given call, and pc scn holds the post-
commit SCN, i.e., the new SCN produced after the given
call committed its changes. If the given call is non-commit,
then pc scn is simply equal to scn.
Oracle Database Replay uses the raw data in DEPEN-

DENCIES for constructing the dependency graph G we dis-
cussed about in the previous subsection. We have imple-
mented algorithm BuildDependencyGraph (Section 3.1) in
PL/SQL for this purpose. In the pseudocode that describes
the general sketch of the algorithm we have used an abstract
notion of time for ordering the calls and deciding precedence.
Our purpose has been to keep the pseudocode as general as
possible. In our particular implementation though, we have
used call ctr as a measure of time for ordering calls within a
capture file. Furthermore, we have used scn and pc scn for
ordering calls across different capture files. Since SCN is a
sequential counter that identifies a moment in an ORACLE
database, it is ideal for deciding precedence.
In summary, our PL/SQL implementation performs the

scanning of calls that are stored in the capture files (Build-
DependencyGraph, lines 3-4) by selecting appropriate rows
from DEPENDENCIES. It tests whether two calls collide
(line 13), based on the corresponding values in columns

2SCN is a sequential counter, identifying precisely a moment
in an ORACLE database. SCN is advanced by commits.

object id and RW. Whenever it discovers collision between
two calls (lines 15-18), it inserts a new row in another ta-
ble DEP GRAPH(file id, call ctr, dep file id, dep call ctr).
DEP GRAPH implements G; a row in it represents a depen-
dency between two calls. The pair (file id, call ctr) uniquely
identifies the first call, which is stored in position call ctr in
the capture file with id file id. Likewise, the pair (dep file id,
dep call ctr) uniquely identifies the second one.

Replay: During replay, the database server has access to
table DEP GRAPH. Hence, it knows which dependencies it
needs to enforce. Therefore, it blocks calls that need to wait
on others, until the latter have been executed.

Our experience from implementing different synchroniza-
tion schemes, one based on commit and one on collision
dependency, verified our expectation that implementing the
former requires less effort. For this scheme, maintaining
in the server a central SCN-clock storing the greatest SCN
among the calls that have been already executed during
replay has been enough for efficiently keeping track of all
dependencies, without having to materialize G. The SCN-
clock is similar to simulation clocks in that it is advanced
by specific events. In the case of replay these events are
commit actions. So, in the scheme that is based on commit-
dependency, the server enforces consistency by simply block-
ing all new calls whose recorded SCN is greater than the
current value of the clock, until some other call advances
the clock to their SCN, or to a value greater than that. For
more details, refer elsewhere [9]. The tradeoff is obvious: we
chose to implement a more restrictive but simpler scheme for
the first release of Oracle Database Replay, and implement
the advanced one in the second release.

4. EXPERIMENTAL EVALUATION
In Section 2, we studied the spectrum of consistent syn-

chronization schemes and argued that a scheme enforcing or-
dering based on collision dependency is the most fine-grained
one; therefore, it is expected to maximize the level of con-
currency and the associated replay performance. We have
implemented this new scheme in Oracle 11g Release 2. To
verify our argument, we have compared it experimentally
with its only counterpart that has been proposed in the ex-
isting literature [9], i.e., the scheme that enforces ordering
based on commit dependency. Recall that this scheme was
introduced in Oracle 11g. In this section, we present the re-
sults of our experimental evaluation. Note that we have ex-
cluded from our evaluation schemes based on total ordering
or object dependency. The reason is that these schemes ex-
hibit less practical significance. As we already mentioned in
Section 2.3.1, a scheme of the former type does not allow for
realistic concurrency and has been presented for illustration
purposes only. Likewise, as we explained in Section 2.3.3, a
scheme of the latter type creates dependencies among read-
only calls. This property is required to avoid deadlocks in
DBMSs that acquire locks for reading. The explanation of
the deadlocks is beyond the scope of this paper.

Hardware: We have run our experiments on two ma-
chines running Linux 2.6.9. Machine A has 4 GB of physi-
cal memory, and 2 Intel Xeon CPUs at 3 GHz with 6 MB of
cache size each. Machine B is more powerful. It has 32 GB
of physical memory, and 8 Intel Xeon CPUs at 2.53 GHz
with 8 MB cache size each.

Workload Scenarios: We have experimented with dif-
ferent workloads and various capture/replay scenarios. All

1233

results have been consistent. Below, we describe the most
indicative ones. We omit the rest due to space limitation.
In more detail, we present results related to workloads

generated by three different benchmarks: TPC-C [4], Swing-
bench [11], and a real application (RA), whose characteris-
tics we explain below. TPC-C is a benchmark widely ref-
erenced in the database literature. It portrays a wholesale
supplier with a number of geographically distributed sales
districts and associated warehouses. It takes the number of
warehouses as an input parameter. In our experiments, we
have set it to 10, which is a commonly used value. Swing-
bench is a benchmark designed to stress test a database
server. It simulates the workload coming from concurrent
customers that place orders. We have configured Swing-
bench to generate 100 concurrent sessions. Finally, RA is a
benchmark that uses workloads generated by an application
of a real company we are working with. The agents of this
company use this application in order to quote prices for
different services, based on formulas that take into account
the customer’s history and profile. In our experiments, we
have used 100 concurrent sessions coming from the afore-
mentioned application. Note that our primary goal while
choosing values for the input parameters of all the bench-
marks we described above has been the creation of a con-
siderable but still manageable load on machine A (CPU was
busy on average by 97% during capture).
We can cluster the workloads generated by the bench-

marks we have used into two different categories. RA’s
workload is read-dominated, since only 3.3% of its calls are
commit calls. The workloads of TPC-C and Swingbench are
commit-dominated, since the percentage of the commit calls
they contain reaches 62% and 36%, respectively. In the case
of TPC-C, a percentage of commit calls is so high because
most update calls use automatic commit.
The main scenario we used in the experiments we are pre-

senting here is the following: We first captured 32 min of
different combinations of the three workloads we described
above, while they were being executed on the database server
that was running on machine A. Then, we replayed the cap-
tured workload on the database server running on machine
B. Our scenario simulates a very common real-world situ-
ation. An application is running on a moderate-sized pro-
duction system (like machine A) and the database adminis-
trator is planning to deploy it on a more powerful machine
(like machine B). Before implementing the upgrade, the ad-
ministrator uses database replay to estimate the expected
performance gains related to the upgrade.
Additionally, we have used three different modes for re-

play: same, fast, and fastest. We explain their meaning with
an example. Imagine two consecutive calls a and b stored in
the same capture file, such that a→b. Let ta and tb denote
the time at which a and b were executed during capture,
respectively. Moreover, let t′a be the time at which a was
executed during replay and da the duration of its execution.
Then, for each mode, the time t′b at which b becomes a can-
didate for execution during replay is given by the following
formulas. Same mode: t′b = t′a+max(tb − ta, da), fast mode:
t′b = t′a+max(tb−ta

2
, da), and fastest mode: t′b = t′a+da.

The first formula implies that replaying on same mode
tries to reproduce during replay the same rate of calls that
was observed during capture. Likewise, replaying on fast
mode tries to double that rate. Finally, replaying on fastest
mode tries to replay all calls one after the other at the max-

imum rate possible, i.e., without leaving any gap between
consecutive calls. Note that in the previous description we
have stressed out that each different mode tries to achieve a
given rate. Achieving it in practice depends on the duration
of call execution and on any additional waits enforced by
the synchronization scheme employed.

Analysis of Results: First, we present a set of experi-
ments on a read-dominated workload, the one generated by
RA. We replayed this captured workload on three different
modes, using two different synchronization schemes. Note
that both of these schemes are consistent; hence, by design,
they reproduce the captured workload without any data or
result divergence. Since both schemes produce the same
results, we compare them by focusing on performance met-
rics: Figure 5 shows the elapsed time of each replay, Figure
6 the corresponding throughput (i.e., the average number of
transactions per second), and Figure 7 the total time that
commit calls had to wait until they could acquire a lock on
the commit log file. All figures contain three groups of two
columns. Each group corresponds to a replay mode: same
mode on the left, fast mode in the middle, and fastest mode
on the right. A pair of columns corresponds to each mode:
the black column represents the synchronization scheme that
is based on commit dependency, whereas the white one rep-
resents the scheme that is based on collision dependency.

The main conclusion that comes from these graphs is that
both schemes produce good quality replays for the read-
dominated workload. Recall that the duration of the orig-
inal capture on machine A was 32 min. Figure 5 indicates
that both schemes manage to synchronize replay ideally on
same mode, since they achieve the same call rate as during
capture and make the replay finish after 32 min, too. On
the other two modes, they manage to drive the replay faster
by reducing the time between calls, taking better advan-
tage of the additional computational power of machine B.
So, the elapsed time decreases (Figure 5) and the through-
put increases (Figure 6). On same and fast mode, both
schemes behave equally well, but on fastest mode, our new
scheme, the one based on collision dependency, outperforms
the existing one by nearly 23%. This result indicates that
even though the number of commits is relatively small in
the particular workload, collision-based synchronization can
still gain some benefit by the fact that it enforces fewer waits
and manages to increase the level of concurrency, driving
the load on machine B to higher levels (average CPU us-
age reaches 47%, whereas the same number for the scheme
based on commit dependency is 40%) and revealing to the
administrator the real potential of the machine upgrade.

With respect to commit wait times (Figure 7), they are
rather low, since the number of commits is small and there
is not much contention on the commit log file. Wait time for
the scheme based on commit dependency is smaller, since it
issues all commit calls in a serialized fashion. Note that in
this case, the issuing of the commits is serialized but the
completion is not; so, there is still some contention, albeit
smaller. Wait times decrease on fast and fastest modes, since
both schemes enforce smaller wait times on these modes
(recall the formulas that calculate t′b for the different modes).

In order to better reveal the potential of our new scheme,
we further experimented with a commit-dominated work-
load. To do so, we mixed the previous workload with the
workloads generated by TPC-C and Swingbench. The re-
sulting workload is heavier and commit-dominated. Fig-

1234

same fast fastest
0

10

20

30

40

50

60

E
la

p
s
e
d
 T

im
e
 (

m
in

)
 Commit Dependency

 Collision Dependency

Figure 5: Elapsed time of replay
(read-dominated workload).

same fast fastest
0

50

100

150

200

250

300

T
ra

n
s
a
c
ti
o
n
s
 p

e
r

s
e
c

 Commit Dependency

 Collision Dependency

Figure 6: Transactions per second
(read-dominated workload).

same fast fastest
0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

m
it
 T

im
e
 (

m
in

)

 Commit Dependency

 Collision Dependency

Figure 7: Commit wait time
(read-dominated workload).

same fast fastest
0

10

20

30

40

50

60

E
la

p
s
e
d
 T

im
e
 (

m
in

)

 Commit Dependency

 Collision Dependency

Figure 8: Elapsed time of replay
(commit-dominated workload).

same fast fastest
0

50

100

150

T
ra

n
s
a
c
ti
o
n
s
 p

e
r

s
e
c

 Commit Dependency

 Collision Dependency

Figure 9: Transactions per second
(commit-dominated workload).

same fast fastest
0

10

20

30

C
o
m

m
it
 T

im
e
 (

m
in

)

 Commit Dependency

 Collision Dependency

Figure 10: Commit wait time
(commit-dominated workload).

ure 8, Figure 9, and Figure 10 show the elapsed time, the
throughput, and the commit wait time, respectively, for the
different replays of the commit-dominated workload.
The first remark that we can make is that the scheme that

is based on commit dependency fails to efficiently drive the
replay of the commit-dominated workload. Note that all
black columns have approximately the same height within
each figure, showing that the corresponding scheme is al-
ready saturated, even on same mode. Although individ-
ual requests gain some benefit from the increased power of
machine B, by holding on to resources for shorter time on
average, the scheme is unable to increase the level of con-
currency in order to decrease running time of the workload.
Note that in Figure 8, the elapsed time of the scheme based
on commit dependency is around 38 min on all modes. This
time is even higher than capture time, which was 32 min.
Our new scheme does not suffer from the same problem.

It manages to replay the workload in approximately 32 min
on same mode and also succeeds in accelerating it further
on fast and fastest modes, boosting the level of concurrency
and increasing the throughput by 40% (Figure 9). By doing
so, it generates a faster and better quality replay, since it
drives machine B to higher levels of load (average CPU us-
age reaches 45%, whereas the same number for the scheme
based on commit dependency is 35%), revealing the real
potential of the upgrade to the administrator, not just the
improvement of overall resource consumption.
With respect to commit wait time (Figure 10), we can

observe that in this series of experiments it is increased
compared to the corresponding time in Figure 7. This is
attributed to that the commit-dominated workload includes
more commit calls and therefore generates more contention
on the commit log file. For the scheme that is based on
collision dependency the wait time increases significantly,
especially on fastest mode. This indicates that it issues
many commit calls concurrently, the ones that are collision-
independent. The scheme based on commit dependency can-

not do that, by design. Note that commit wait time adds
up rapidly as the number of commit calls that stay in the
queue increases. This explains the significant height of the
white column on fastest mode in Figure 10.

Overall, our results verify that the new scheme behaves
equally well with or slightly better than the existing one,
when replaying read-dominated workloads. Moreover, it
outperforms the existing one by far, when replaying commit-
dependent workloads. Being finer-grained, it produces bet-
ter quality replays, reproducing better the workload on the
test machine on same mode, and accelerating it further on
fast and fastest modes. Therefore, it leads to more represen-
tative and more reliable tests, a property that makes it the
scheme of choice within the spectrum of consistent schemes.

5. RELATED WORK
Concurrency control in DBMSs and the associated the-

ory on conflict serializability are rather old and well-studied
problems related to our work [6, 13, 17]. Algorithms in
this area have used similar notions of dependency between
transactions and analogous theoretical constructs, e.g., the
conflict dependency graph. Despite the aforementioned sim-
ilarities, the two problems differ fundamentally. The main
difference is that concurrency control mechanisms ensure
database integrity, whereas replay synchronization schemes
guarantee replay consistency. In summary, the task of a
concurrency control mechanism is to generate one legitimate
schedule for executing a workload consisting of transactions
that compete for resources. A schedule is legitimate if it
guarantees the integrity of the database state (e.g., by en-
forcing serializability). On the other hand, replay synchro-
nization mechanisms do not focus on integrity and therefore
they adhere to different constraints. Instead of having to
generate just any legitimate schedule, they must generate
a schedule that is equivalent with the particular schedule
that was actually executed in the production system dur-

1235

ing capture. Another important difference is that concur-
rency control mechanisms work on the fly, since they do
not know the entire workload in advance, whereas replay
synchronization schemes can discover all dependencies in an
off-line fashion, since they have access to the entire workload
in advance. Hence, the former may have to backtrack, if a
cycle is detected in the dependency graph they maintain;
such a situation is never possible in the latter. The afore-
mentioned differences justify the requirement for different
synchronization schemes for workload replay. The study of
such schemes and the adaptation of known theories into our
new problem has been the main purpose of this paper.
Recording and replaying a real database workload has

been studied in the past and some commercial tools already
offer some of the features described here. Among them, the
tool closer to our work is the first release of Oracle Database
Replay [9]. Its implementation in Oracle 11g uses a consis-
tent replay synchronization scheme that orders calls based
on commit dependency. As shown in this paper, this scheme
is more restrictive than necessary, leaving a lot of room for
improvements. In this paper, our goal was to study for the
first time the properties and tradeoffs of all consistent replay
synchronization schemes, formalize their characteristics, dis-
cover new schemes, and nominate the best, which we have
implemented in Oracle 11g Release 2.
Other tools of the same category, including Quest Bench-

mark Factory for Databases [1] and Microsoft SQL Server
Profiler [3], rely on SQL trace for recording a database work-
load. The problem with these approaches is that SQL trace
adds considerable overhead on the database server and does
not contain transactional information necessary to imple-
ment a consistent synchronization scheme. Therefore, their
techniques do not apply on our problem.
Furthermore, there is another family of tools, including

iReplay [2], which implement capture and replay at the net-
work level. During capture, they use sniffing to record the
traffic that enters into the DBMS. During replay, they re-
produce the same traffic. A significant disadvantage of such
tools is that they are built outside the DBMS; hence, they
can only rely on the timing information observed at its entry
point. In other words, they only know when a request ar-
rived at the DBMS, but they have no access to information
about when this request was actually executed, what depen-
dencies it exhibited, what SCN was assigned to it, or what
objects it accessed. So, during replay, they cannot apply
any synchronization scheme of the spectrum we discussed in
this paper. The best they can do is issuing the same calls in
the same order as during capture. Clearly, such a solution
does not guarantee that the same order will be preserved
during execution in the DBMS. Therefore, these tools do
not guarantee replay consistency, which has been our main
focus, and they belong outside the scope of this paper.
Finally, several other algorithms generate synthetic data

or workloads for testing purposes [7, 8, 12, 15, 16]. None
of them studies the problem of synchronizing the replay of
the generated workloads though, which is our main focus.
Moreover, our approach applies on workloads captured on
real systems. Real workloads are expectedly more represen-
tative for database testing than synthetic ones.

6. CONCLUSIONS
In this paper, we performed for the first time an extensive

study of consistent synchronization schemes for real work-

load replay. We defined their class, we identified the spec-
trum they cover, and investigated the properties and trade-
offs of various points within this spectrum. Moreover, we
showed that, while adequate in many practical applications,
the only consistent replay synchronization scheme proposed
so far [9] is coarse-grained and more restrictive than nec-
essary, enforcing dependencies between independent calls.
To overcome this drawback, we identified the ideal scheme
within the spectrum that uses finer-grained rules for replay
synchronization. Furthermore, we described our efficient
implementation of the new scheme and showed both theo-
retically and experimentally that it produces better quality
replays than the existing one for major classes of workload.

7. REFERENCES
[1] Benchmark Factory for Databases.

http://www.quest.com.

[2] iReplay: Database Workload Capture and Replay.
http://www.exact-solutions.com/products/ireplay.

[3] SQL Server Profiler. http://msdn.microsoft.com.

[4] Transaction Processing Performance Council. TPC-C
benchmark. http://www.tpc.org/tpcc/.

[5] A. V. Aho, M. R. Garey, and J. D. Ullman. The
transitive reduction of a directed graph. SIAM J.
Comput., 1(2):131–137, 1972.

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[7] C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu.
QAGen: generating query-aware test databases. In
SIGMOD Conference, pages 341–352, 2007.

[8] M. Emmi, R. Majumdar, and K. Sen. Dynamic test
input generation for database applications. In ISSTA,
pages 151–162, 2007.

[9] L. Galanis, S. Buranawatanachoke, R. Colle,
B. Dageville, K. Dias, J. Klein, S. Papadomanolakis,
L. L. Tan, V. Venkataramani, Y. Wang, and G. Wood.
Oracle database replay. In SIGMOD Conference,
pages 1159–1170, 2008.

[10] G. R. Ganger. Generating representative synthetic
workloads: An unsolved problem. In Int. CMG
Conference, pages 1263–1269, 1995.

[11] D. Giles. Swingbench benchmark.
http://www.dominicgiles.com/swingbench.html.

[12] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and
P. J. Weinberger. Quickly generating billion-record
synthetic databases. In SIGMOD Conference, pages
243–252, 1994.

[13] H. T. Kung and J. T. Robinson. On optimistic
methods for concurrency control. ACM Trans.
Database Syst., 6(2):213–226, 1981.

[14] T.-H. Ma and J. Spinrad. Cycle-free partial orders and
chordal comparability graphs. Order, 8(1):49–61, 1991.

[15] M. Poess and J. M. Stephens. Generating thousand
benchmark queries in seconds. In VLDB, pages
1045–1053, 2004.

[16] D. R. Slutz. Massive stochastic testing of SQL. In
VLDB, pages 618–622, 1998.

[17] R. E. Stearns, P. M. L. II, and D. J. Rosenkrantz.
Concurrency control for database systems. In FOCS,
pages 19–32, 1976.

1236

