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ABSTRACT

We consider how to monitor and debug query processing
dataflows, in distributed environments such as Pig/Hadoop.
Our work is motivated by a series of informal user inter-
views, which revealed that monitoring and debugging needs
are both pressing and diverse. In response to these inter-
views, we created a framework for custom dataflow instru-
mentation, called Inspector Gadget (IG).

IG makes it easy to write a wide variety of monitoring
and debugging behaviors, and attaches seamlessly to an ex-
isting, unmodified dataflow environment such as Pig. We
have implemented a dozen user-requested tools in Inspector
Gadget, each in just a few hundred lines of Java code. The
performance overhead is modest in most cases.

Our Pig-based implementation of IG, called Penny, is
slated for public release in mid-2011, in conjunction with
the upcoming Apache Pig v0.9 release.

1. INTRODUCTION
Most data processing scenarios consist of data items be-

ing routed through a network of data transformation oper-
ators. Such dataflows are sometimes compiled from declar-
ative query expressions (e.g. SQL), and are sometimes pro-
grammed more directly (e.g. extract-transform-load (ETL)
pipelines [12], data visualization builders [17], data stream
processing engines (some approaches) [1], web mashup
tools [20], and dataflow frameworks for map-reduce [14]).
One of the reasons to program dataflows directly is to exert
more control over, and have a better understanding of, their
run-time behavior, e.g. to predictably satisfy service-level
agreements (SLAs), or to facilitate debugging.

Unfortunately, real-world dataflow implementations often
fail to achieve run-time visibility and ease of debugging, ap-
parently for two main reasons:

• Difficulty in providing useful status and error mes-

sages. Status and error reporting is essential for usabil-
ity of complex systems. Yet it is very challenging to en-
sure that status/error messages achieve the right balance
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between informativeness and brevity, and are expressed
at the right level of abstraction for users to comprehend.
Even relatively mature systems struggle with this issue.
The problem is exacerbated in multi-layer systems (e.g.
workflow middleware; Oozie-Pig-Hadoop [3, 4, 14]), due
to the difficulties in linking status and error messages
across layers, and in translating them from lower-layer
to upper-layer terminology.

• Expense of retaining intermediate data and cap-

turing provenance. For efficiency reasons, many in-
termediate results (data flowing between pairs of opera-
tors) are not materialized, making post-hoc examination
of the data processing sequence difficult. There is a great
deal of published work on capturing and querying data
provenance [9], but that only solves a subset of users’ de-
bugging needs (see Table 1), and it presents the dilemma
of balancing forward processing efficiency against post-
hoc debugging capability.1

Besides, implementors of dataflow processing engines have
enough on their hands ensuring correctness, achieving good
scalability and performance, and supporting new applica-
tions. “Nice-to-have” usability enhancements like informa-
tive error messages and data provenance tend (sadly) to be
perpetually pushed to future release cycles.

1.1 Users’ Debugging Needs
There is great demand from users for dataflow monitoring

and debugging capabilities. We conducted informal inter-
views of ten Yahoo employees from diverse product groups
that use dataflow programming. Many of them use Pig [14],
but a few use other proprietary dataflow tools. In the inter-
views we asked what monitoring and debugging capabilities
would be helpful. The responses are summarized in Table 1,
which shows the distinct capabilities mentioned, ranked by
the number of interviewees who mentioned each one.
Most of these capabilities are not particularly daunting to

implement, but adding all of them to the core code-base of
a dataflow engine such as Pig would impose a great deal of
complexity. Moreover, it seems likely that yet more capa-
bilities would be needed over time, as more users are inter-
viewed and as new scenarios arise.
A few (4/14) of the requested capabilities could be

addressed—wholly or in part—via “taint tracking” ap-

1Fine-grained provenance capture imposes heavy time and
space overheads on normal forward processing. To support
fine-grained provenance querying the data must be heavily
indexed, which is especially problematic in file-based envi-
ronments like map-reduce [11].
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# of
users desired capability description

7 crash culprit determination Determine which data record and/or processing operator triggered a crash.
5 row-level integrity alerts Throw an alert whenever a record violates a given predicate (e.g. field X not null, numerical

field Y ≥ 0, date-stamp field Z ≤ today).
4 table-level integrity alerts Throw an alert whenever an intermediate data set violates a given predicate (e.g. cardinality

> 0).
4 data samples Show a few samples of data on each dataflow edge, as a sanity check of the dataflow semantics

and to spot fishy data (e.g. a column filled with null values).
3 data summaries Compute a statistical summary (e.g. a histogram) of data values on a particular dataflow

edge, and perhaps automatically compare against histograms from previous dataflow runs (on
the same or related data) to spot sudden data distribution changes that might indicate a
processing error.

3 memory use monitoring Monitor the memory used for materializing intermediate data sets, including custom state
maintained by user-defined functions.

3 backward tracing Find the chain of input and intermediate records that led to a given output record.
2 forward tracing Find the chain of intermediate and output records that stem from a given input record.
2 golden data/logic testing Given a set of “golden” input/output record pairs that are known to be correct, or a function

known to contain correct logic for transforming an input record into an output record, compare
the dataflow input/output data against the golden pairs.

2 step-through debugging Set breakpoints and perform step-through debugging of user-defined functions running on
remote “cloud” nodes.

2 latency alerts Throw an alert if one record takes much longer to process through a particular operator than
the average record (e.g. the record contains a very large nested data set to be processed, or
induces a large number of interactions with an external service).

1 latency profiling Show the distribution of record processing latencies, perhaps in relation to record-level SLAs
(e.g. certain data items related to online advertising must be processed prior to their ad
campaign start date).

1 overhead profiling Report the per-operator breakdown of total dataflow execution time.
1 trial runs Run the dataflow on a small sample of the input data, as a quick sanity check to see whether

it crashes or succeeds, and if it succeeds whether reasonable-looking output is produced.

Table 1: Monitoring and debugging capabilities requested by users.

proaches, either in the system layer (see Section 1.3) or in the
query layer (e.g., add a special “taint” column, and rewrite
operators to propagate this column, or use compound data
values [10]). A system-layer approach would perhaps be dif-
ficult to correlate with query-layer semantics, and also would
preclude deployment on third-party “cloud” systems such as
Amazon’s Elastic Map-Reduce (which offers Pig/Hadoop as
a service). A query-layer approach would require invasive
re-writing of the user’s original dataflow program, thereby
potentially distorting error messages. In a debugging con-
text that would be unacceptable. Moreover, the “extra col-
umn” approach is especially problematic in loose-schema
and UDF-rich environments such as Pig, because there is
no simple and robust way to “add a column.”2

1.2 Our Approach
Motivated by the above considerations, we set out to

develop a framework that makes it easy to layer diverse
monitoring and debugging capabilities on top of an existing
dataflow engine, as unobtrusively as possible. Specifically,
our goals for the framework were:

• Exploit forward processing only, and not assume post-
execution availability of intermediate data sets or prove-
nance metadata.

2Prepending a column would shift column positions and
cause error messages to give the wrong column number,
thereby confusing users who think of their data in posi-
tional terms. Appending a column is not compatible with
“jagged” rows that have different numbers of fields, and
could transform “missing data” errors into “wrong type” er-
rors or, worse, defer or even suppress errors. Another chal-
lenge would be in obtaining the correct taint-propagation
semantics for user-defined functions (UDFs).

• Not require any modifications to the dataflow engine.

• Not tamper with data flowing through the dataflow op-
erators, e.g. inject special “taint” columns or bits.

• Incur low overhead relative to regular processing.

• Enable a wide variety of monitoring and debugging be-
haviors.

The framework we created, called Inspector Gadget,
provides abstractions for observing data passing through
dataflow edges, tagging pieces of data then viewing tags at
downstream observation points, and exchanging messages
between pairs of observation points and with a central coor-
dinator node. Using Inspector Gadget we have successfully
implemented most of the behaviors in Table 1, each in very
few lines of code (low hundreds). Our contributions lie not
in the specific behaviors we implemented, but rather in the
programming framework itself, and in demonstrating the
ability to layer such a framework on top of an unmodified
dataflow engine. Our implementation of Inspector Gadget
for Pig, called Penny, will be packaged with the upcoming
v0.9 release of Apache Pig (scheduled for mid-2011).

1.3 Related Work
Inspector Gadget focuses on a specific, but important,

class of applications: distributed data processing. In that
context, IG aims to enable a wide variety of behaviors (most
of the ones in Table 1) with simple coding, and to avoid in-
trusive modifications to the underlying dataflow system and
the data it manages. We believe those goals largely set it
apart from other work. That said, there are several prior
projects that do overlap in some ways with ours. Many of
them focus on a narrower set of behaviors (e.g. just forward
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tracing, latency profiling and overhead profiling) and embed
in the underlying systems at a much lower level, thereby po-
tentially achieving better performance (for those behaviors)
at the expense of more intrusiveness.

One class of mechanisms for achieving a few (4/14) of
the behaviors in Table 1 is tainting with tracing [2, 7, 6,
13, 8, 18]. These approaches annotate data with special
markers that enable it to be tracked as it moves through
complex system(s). Perhaps the most relevant of these is
X-trace [13], which can track data in and between nodes
of distributed systems, including dataflow systems such as
Hadoop. X-trace allows monitoring agents at data trans-
formation points to affect the taint of generated data, to
establish causal relations between the original and derived
data.

Causeway [7] also uses taint markers to establish causality
in distributed systems, with custom callbacks that intercept,
manipulate and propagate taint among modules in an in-
strumented kernel. A follow-on project called Whodunit [6]
added the ability to accumulate a stack-trace-like history of
the procedures that have dealt with a piece of data, across
multiple machines.

Aguilera et al. [2] focuses on network traces, and seeks to
identify causal relationships and measure latency for chains
of RPC calls. It makes a simplifying assumption that latency
is mostly due to the network. Inspector Gadget is also in-
terested in latency and causality, but because our dataflow
programs can be computation and I/O intensive, we cannot
rely on such an assumption. Instead, IG benefits from a
different kind of simplifying assumption: the set of possible
dataflow operators and control flow situations is small and
known a priori.

Magpie [5] uses events generated by operating and mid-
dleware components to address some issues similar to the
ones listed in Table 1. It relies on these core components to
properly generate events with enough information such that
events can be collected and correlated.

To instrument dataflow programs, Inspector Gadget in-
jects code into them before they are executed by the
dataflow engine. IG uses techniques similar to aspect ori-
ented programming [16] to instrument the programs after
they have been submitted but before they are executed.
Other projects have used this approach for general-purpose
languages, but because we are particularly interested in in-
strumenting dataflow programs we have a more structured
and limited set of operators to deal with than general pur-
pose languages.

1.4 Outline

The remainder of this paper is structured as follows. We
present the Inspector Gadget programming model, and de-
scribe a suite of applications implemented in the IG model,
in Sections 2 and 3 respectively. Then, Section 4 de-
scribes IGs semantics in the presence of distributed/parallel
dataflows. We describe an implementation we have devel-
oped in the context of Pig in Section 5. Section 6 discusses
the limitations of our approach. Performance experiments
are reported in Section 7.

2. PROGRAMMING MODEL

This section describes our Inspector Gadget dataflow
monitoring/debugging framework, from the point of view of

Figure 1: Instrumented dataflow.

a user of the framework (i.e. someone who wishes to create
a particular monitoring or debugging application).
Inspector Gadget provides abstractions for inserting mon-

itor agents (agents, for short) along dataflow edges to ob-
serve data records flowing through. The agents may com-
municate with each other and/or with a central coordina-
tor. The bottom portion of Figure 1 shows how a running
dataflow (shown as interconnected ovals) is instrumented
with IG monitor agents (small boxes), linked to a coordi-
nator (large box on left). The main data processing flow
(the ovals) behaves as normal—from the dataflow engine
runtime’s point of view the monitor agents behave as no-
op functions—and a separate processing and communication
plane for the IG application is layered on top.
IG applications supply code that runs inside the moni-

tor agents and coordinator. For example, in a simple (but
inefficient) implementation of the crash culprit determi-

nation application (Table 1), each agent sends a copy of
each record it sees to the coordinator; the coordinator keeps
track of the latest record sent from each agent, and if a crash
occurs the last-received records are flagged as candidate cul-
prits in triggering the crash.
Each IG application has a driver module, shown in the

top portion of Figure 1, that receives instructions from the
end user (e.g. “please provide clues about why my dataflow
program crashes”), configures and launches one or more IG-
instrumented dataflow runs, and composes a response to the
user (e.g. “your dataflow program crashes when it tries to
process records X, Y and Z”).

2.1 APIs

IG application implementations consist of three pieces of
code: (1) one or more monitor agent classes; (2) a coordi-
nator class; (3) a driver class that orchestrates the overall
execution. We describe the API associated with each class.
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init(args) Initialize the agent, given application-specific arguments.
tags = observeRecord(record, tags) Observe a record on the dataflow edge being monitored, with incoming tags; assign

outgoing tags or request record to be suppressed.
receiveMessage(source, message) Process an incoming message from another agent (instance).
finish() All records have been seen; perform any final actions.

Table 2: Monitor agent API.

sendToCoordinator(message) Send a message to the coordinator.
sendToAgent(agentId, message) Send a message to the agent associated with a particular dataflow edge.
sendUpstream(message) Send a message to the agent located immediately upstream in the dataflow.
sendDownstream(message) Send a message to the immediate downstream neighbor.

Table 3: Message sending API.

init(args) Initialize the coordinator, given application-specific arguments.
receiveMessage(source, message) Process an incoming message from an agent instance.
output = finish() All dataflow processing has ceased; finalize processing and emit some application-specific

output.

Table 4: Coordinator API.

parsed dataflow = parse(dataflow spec) Parse a dataflow specification (e.g. Pig Latin script) into a graph representation
with edge labels.

output = launch(parsed dataflow, agent map,
coordinator, coordinator args)

Instruct IG to launch a dataflow, instrumented according to agent map (a set
of 〈edge id, agent class, agent args〉 triples) and the given coordinator class
and arguments. Returns the coordinator’s output (if any).

Table 5: Driver API.

2.1.1 Monitor Agent

Monitor agents implement the API in Table 2. The
“workhorse” method is observeRecord(), which is invoked
each time a record passes through the dataflow edge to
which the agent is attached. For example, the row-level

integrity alerts application would use observeRecord()

to run integrity checks on each record, and report violations
to the coordinator.

Records are annotated with zero or more tags, which are
optional record annotations used by applications that need
to determine which downstream record(s) are influenced by
a given upstream record, e.g. for provenance determination
or to compare actual input/output pairs with “golden” pairs
(detailed tagging use-case examples are given in Section 3.5).
The observeRecord() method has access to the tags asso-
ciated with the record as it enters the agent, and can select
which tags are associated with the record as it exits. Al-
though the tagging abstraction makes it appear as if we are
altering the dataflow records (and hence going against one of
our goals from Section 1.2), our implementation (Section 5)
does not, in fact, alter the records.
observeRecord() has a special return option (a reserved

tags value) that instructs the framework to suppress the
record, i.e. not inject it back into the dataflow. This fea-
ture is used, e.g., in the trial runs application for running
the dataflow on a sample of the input data, and in over-

head profiling to isolate the cost of executing just a prefix
of the dataflow. Of course, this feature does tamper with
the data in the dataflow by dropping some data (and hence
goes against our goals stated in Section 1.2), but only in
explicitly-requested cases.

The init() method can be used to pass application-
specific parameters to the agent, e.g. a set of data values to
look for in the observed records, which initiate forward trac-
ing of the record. finish() is called when it can be guaran-
teed that the dataflow edge will not see any further records.
It can be used, for example, to signal the coordinator that

this part of the dataflow has completed its processing suc-
cessfully (i.e. no crash).
The receiveMessage() method is invoked each time a

message is received from the coordinator or another agent
(to be precise: agent instance, as explained in Section 4.1).
For sending messages, agents have access to the meth-
ods listed in Table 3, which may be invoked from within
any of the four API methods listed above, although most
commonly from within observeRecord(). These message
sending methods have very specific semantics, in terms
of whether messages are delivered synchronously, asyn-
chronously, or not at all. These semantics are described
in Section 4, coupled with a requisite discussion of how
dataflows execute in distributed/parallel settings.

2.1.2 Coordinator

Coordinators implement the API in Table 4. The init()

method receives parameters from the outermost layer of the
application (e.g. the golden data input/output pairs against
which to compare the actual input/output pairs from the
dataflow). The finish() method is called after all dataflow
processing has completed (or crashed); it returns a result
back to the outermost application layer (e.g. a “diff” of
the golden data versus the actual data). The coordinator
method implementations have access to the sendToAgent()

method from Table 3.

2.1.3 Driver

Application drivers interface with IG via a simple library
whose API is given in Table 5.3 A typical driver has four
steps: (1) parse the dataflow specification, (2) select edges
on which to deploy monitor agents, (3) execute the mon-
itored dataflow, (4) process the results returned by the
coordinator. Some drivers execute the dataflow multiple

3Of course, the specific representations of dataflow spec,
parsed dataflow and dataflow edge labels will depend on
the underlying dataflow environment (e.g. Pig).
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times, with different monitor agent arguments each time,
e.g. our iterative crash culprit determination imple-
mentation described in Section 3.3.

3. EXAMPLE APPLICATIONS
We have implemented most of the user-requested behav-

iors in Table 1 as IG applications. The only two behaviors
from Table 1 that do not fit neatly into our framework, and
which we did not implement, are: (1) memory use moni-
toring and (2) step-wise debugging. Obtaining a detailed
breakdown of memory usage would require access to the
internal data structures of the dataflow system and/or user-
defined functions, which is expressly outside the capabilities
of our framework. Step-wise debugging can be accomplished
without our framework by attaching a conventional debug-
ger to a remote process, which poses logistical and security
challenges unrelated to our framework.

Table 6 lists the applications we implemented, and gives
the code sizes (all code is in Java). Our implementations of
some of the applications (especially the ones marked with *)
are rather basic. For example, our implementation of row-
level integrity alerts just checks for null values in a user-
specified field of a user-specified dataflow edge.4 Our goal
in developing these implementations was to assess the ease
with which the IG-related part of the code could be writ-
ten. The additional code required to expand them into more
fully-fledged implementations (e.g. handling other types of
integrity checks) would be orthogonal to IG. In the same
vein, all of our implementations have simple command-line
user interfaces, and moving to more sophisticated interfaces
would of course involve additional non-IG-related code.

This section describes our implementations of the most
in-demand applications: ones that were requested by two
or more users interviewed (the top nine items in Table 6),
grouped into five categories.

3.1 Basic Applications
Row-level integrity alerts, data samples and data

summaries are all extremely simple to implement in our
framework. Most of their logic resides in the monitor agent
code, which occasionally transmits some data (alerts, sam-
ples, summaries) to the coordinator. In these applications
the coordinator does very little, other than propagate data
to the driver.

Table-level integrity alerts require the coordinator
to aggregate information gathered by the agent instances,
much like the reduce phase of a map-reduce job. For exam-
ple, to detect when the number of records flowing on a given
dataflow edge is zero, each agent maintains a counter and
sends its count to the coordinator in its finish() method;
the coordinator sums the counts across instances and then
checks the constraint.

4The specific functionality implemented in the other cases
marked with * is: table-level integrity alerts just checks
the table cardinality on a specified dataflow edge; data
summaries just builds a histogram of a specified field of
a specified edge; backward tracing does not implement
the weak inversion static analysis optimization to limit the
scope of tagging (see Section 3.5); golden data/logic test-
ing implements golden logic testing with respect to a user-
supplied golden logic class (not golden data testing).

lines of Java code
application driver coord. agents total

crash culprit determ. 72 29 40 141
row integrity alerts* 31 23 35 89
table integrity alerts* 31 33 35 99

data samples 31 28 38 97
(with savepoints) (35) (119) (118) (272)
data summaries* 36 36 58 130
backward tracing* 45 57 135 237
forward tracing 41 28 45 114

golden logic testing* 39 69 80 200
latency alerts 33 28 107 168

latency profiling 31 52 53 136
overhead profiling 72 22 30 124

trial runs 32 22 39 93

Table 6: IG application code size.

3.2 Applications that Pause the Dataflow
As stated in Table 1, the purpose of the data samples

application is to examine some intermediate data records as
a “sanity check” for spotting any obvious problems with the
data or processing. This feature is geared toward ad-hoc
analytics, in which the user is deploying untested analytics
code and needs to oversee the processing closely.
Sometimes the spotted problem takes the form of a faulty

processing step that occurs after a sequence of expensive
and/or selective steps that were performed correctly. In such
cases, once the problem is noticed it is useful to save the
result of the (correct) processing prefix, so the user can then
repair the faulty step and resume processing from there.
To this end, we implemented an advanced version of data

samples that includes a savepoints feature. It works as fol-
lows: Each time a sequence of pipelined operators is encoun-
tered (i.e. the operators in a map or reduce phase), just a
few records are released into the pipeline for the purpose
of displaying samples to the user; then processing pauses
until the user responds (or a timeout is reached). If the
user feels the samples “look okay,” she signals that process-
ing should proceed. If, on the other hand, the user spots a
problem with one of the processing steps, she can request
the dataflow to terminate early and produce an output cor-
responding to a prefix of the current pipeline (i.e., the steps
before the problematic one).
Our implementation buffers a copy of each “preview”

record at the start of the pipeline, and replays those records
in the event that a savepoint is requested. The savepoint
itself is achieved by simply opening and writing to HDFS
files.
Our simple savepoints implementation enables a “try-

before-you-buy” option for all non-blocking (pipelined) op-
erators. Unfortunately this feature does not apply to block-
ing operators such as group-by and join, but those tend to
be less problematic because they seldom involve custom user
code.
As future work, we plan to explore other behaviors that

pause the dataflow in order to request user input, e.g. to
substitute a user-specified data value in the event of an in-
tegrity violation, or to handle unanticipated corner cases in
a user-defined function.

3.3 Iterative Applications
Our implementation of crash culprit determination

invokes launch() n times, each time narrowing the scope of
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possible records “responsible” for the crash.5 In each iter-
ation the agent instances report every kth (record number,
record) pair to the coordinator, starting at record number s.
The coordinator keeps track of the highest record number
received from each agent before the crash. In each iteration
s is set to the last record number seen in the prior iteration6,
and k is progressively reduced (e.g. k = 100, 10, 1).

We ran our crash culprit determinator on a real Pig Latin
script that caused Pig to crash with error message “ERROR
2106: Error while computing count in COUNT” followed by
some detailed information that nonetheless left the exact
cause of the crash a mystery (for one thing, the offending
record was not printed). The script was attempting to count
the number of incoming links to a particular web site, start-
ing with a large data set of the form (url, site, inlinks, ...),
by first counting the number of items in each “inlinks” field,
and then grouping by site and summing the per-url inlink
counts to produce per-site counts. Our crash culprit deter-
minator produced from among millions of input records a
handful of candidate crash culprits. Upon inspection one
of those records turned out to contain a null value in its
inlinks field, which turned out to be the cause of the crash.
The problem was resolved by adding a filter expression to
the original Pig Latin script that bypasses null values.

3.4 Applications that Use Inter-Agent
Messaging

In our experience most applications only exchange mes-
sages between agents and the coordinator. One exception is
our latency alerts implementation, which exchanges mes-
sages among agent instances in a peer-to-peer fashion.

Recall that the goal is to throw an alert if, on a particu-
lar point in the dataflow, a given record takes a long time
to process compared to a typical record. Our implementa-
tion generates an alert if the processing time for the cur-
rent record is greater than some factor F times the average
processing time. The average processing time is based on
measurements of records that have already been processed.

An important nuance is that while the first few records are
seen, a reliable average processing time is not yet available.
Let us assume that the average processing time statistic is
considered reliable if it incorporates measurements from at
least k records. In our implementation the monitor agents
buffer the first k records, and when the (k + 1)st record ar-
rives the buffer is drained and any alerts are thrown retroac-
tively. To improve the convergence on a reliable average,
each agent instance also broadcasts the processing time mea-
surements of the first k records to all peer instances, using
sendToAgent(A) where A is the identifier of the edge being
observed.

Although we have only described one application that ex-
plicitly leverages peer-to-peer messaging among agent in-
stances, note that all applications that make use of the
record tagging feature (Section 3.5) also use peer-to-peer
messaging, albeit indirectly—our framework’s implementa-

5Our implementation assumes that the crash is being caused
by a particular, problematic record. It further assumes that
the order in which records are read, and the way in which
they are partitioned among stage instances, are both deter-
ministic (these are reasonable assumptions, e.g. they hold
for Pig/Hadoop).
6There are some details in the handling of parallel agent
instances that we omit for brevity.

tion of tagging (Section 5.3) uses sendDownstream() under
the hood.

3.5 Applications that Use Tagging
Recall from Section 2.1.1 that the observeRecord()

method provides the opportunity to associate free-form tags

with a record, which “follow” the record as it is transformed
by downstream processing steps.
A simple example of an application that uses tagging is

forward tracing, which uses two kinds of monitor agents:
an injection agent that injects a certain tag when it observes
a record of interest to trace, and a detection agent that no-
tifies the coordinator whenever it observes a tagged record.
The coordinator simply keeps track of received notifications
and returns them to the driver at the end. The driver inserts
a tag injection agent at the point in the dataflow from which
tracing is to originate (typically one of the dataflow inputs),
and tag detection agents at all downstream positions.
Backward tracing (determining the provenance of out-

put record o) can be implemented as a sequence of two steps:
(1) use a form of static dataflow analysis called complete

weak inversion [19] to determine a superset I of input records
that constitute o’s provenance; (2) use Inspector Gadget
with tagging to trace the path of each input record i ∈ I;
the ones that “hit” o constitute o’s true provenance.
Since our goal is to understand the complexity of the por-

tion of an application that uses the IG framework, we fo-
cused on implementing the tagging step and used a trivial,
conservative variant of weak inversion that places every in-
put record in the candidate set I.

As shown in Table 6, the tagging step of backward tracing
requires more code than forward tracing (described earlier).
This discrepancy stems from the fact that forward tracing
associates a single tag with all records being traced, whereas
for backward tracing we need to assign a distinct tag to every
input record in order to see which one(s) “hit” the output
record of interest o.
As a final example of applications that use tagging, con-

sider golden data testing. Recall that this application
compares actual input/output record pairs produced by (a
portion of) the dataflow, against “golden” input/output
pairs supplied by the user as baselines. Tagging is used
to construct the actual input/output pairs by discovering
which output(s) stem from a given input.

4. PARALLELISM AND MESSAGING

SEMANTICS
Inspector Gadget has somewhat nuanced message de-

livery semantics, developed in view of distributed/parallel
dataflow execution environments such as map-reduce.

4.1 Execution Environment
The dataflow execution environment assumed by Inspec-

tor Gadget (illustrated in Figure 2) is as follows: A dataflow
program is compiled into a series of execution stages (stages,
for short), with each stage running a portion of the dataflow.
In map-reduce, each map phase and reduce phase consti-
tutes a stage. Stages are executed in serial: stage i does not
begin until stage i − 1 has completed. Execution of stage
i is realized via a collection of n separate, and potentially
concurrent, processes called stage instances. Data is parti-
tioned among the stage instances such that each record is
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Figure 2: Distributed/parallel dataflow execution
model.

handled by exactly one instance.7 Although concurrency is
permitted, there is no guarantee that all n stage instances
are active at the same time—for example Hadoop [3] exe-
cutes map stage instances in a series of “waves” of size k

each, where oftentimes k < n.
Each dataflow edge occurs within a particular stage, and

if the stage has n instances there will be n instances of the
edge, each seeing a portion of the overall data on that edge.
Correspondingly n instances of a monitor agent deployed on
that edge will be run, each seeing a subset of the records
on that edge. The only guarantee is that if no crash occurs,
each record is seen by exactly one agent instance.

Consider a dataflow graph with edges E1 and E2 such
that E2 lies immediately downstream from E1 (i.e. there
is one vertex V that is the target of E1 and the source of
E2). Suppose that monitor agents are deployed on both E1

and E2, called A1 and A2 respectively. There are two cases:
either (1) A1 and A2 execute as part of the same stage,
or (2) A2 is part of the stage immediately following A1’s
stage. In Case 2 there is a simple temporal relationship
between the execution of A1 instances and A2 instances:
no instance of A2 can begin until all instances of A1 have
completed. In Case 1, for a given instance of A1 there must
be a corresponding instance of A2 executing at the same
time inside the same process; but other instances of A2, as
well as peer instances of A1, are part of other processes that
may have already completed, may still be active, or may

7If a stage instance crashes and gets re-started, already-
handled records may be handled again in the re-started in-
stance. We discuss the implications of this situation to ap-
plications briefly in Section 6.

not yet have started. This distinction has implications for
inter-agent messaging, as we discuss next.

4.2 Messaging Semantics
Suppose a message is aimed at a particular monitor agent

instance I. There are four possible scenarios:

1. I has already run to completion—it is no longer run-
ning.

2. I is currently running, and is executing in the same
process as the sender (i.e. both sender and recipient
are monitor agent instances running in the same stage
instance).

3. I is currently running, in a different process (possibly
on another machine).

4. I has not yet started.

In Scenario 1 the message of course cannot be delivered.
In Scenario 2 the message is delivered to the recipient (via
I.receiveMessage(); see Table 2) prior to the next invo-
cation of I.observeRecord(). In Scenario 3 an attempt is
made to deliver the message to the recipient in a timely
manner, but with no guarantees about the interleaving with
I.observeRecord() or that it is delivered at all (i.e. the
recipient might terminate before the message arrives). In
Scenario 4 the message is delivered via I.receiveMessage()
prior to any invocations of I.observeRecord().

Turning to the message sending API available to monitor
agents (Table 3), the semantics of the four methods are:

• sendToCoordinator() transmits a message to the co-
ordinator node asynchronously (i.e. the method invo-
cation may return before the message is delivered).

• sendToAgent() attempts to transmit the message to
all instances of a given agent, with the delivery timing
and success dictated by the four scenarios described
above.

• sendUpstream() just transmits to any same-stage-
instance (i.e. same process) agent instances deployed
on the immediate upstream edge, according to Sce-
nario 2 above.

• sendDownstream() behaves like sendUpstream() (ex-
cept of course targeted at downstream neighbors)
for neighbors that are part of the same stage. For
cross-stage neighbors the message is delivered to ev-
ery instance of the downstream agent according to
Scenario 4.

5. IMPLEMENTATION FOR PIG: PENNY
We describe our implementation of the IG abstraction for

Pig [14], an open-source dataflow engine originally developed
at Yahoo. Our implementation is written in Java (to match
Pig and its underlying processing platform Hadoop [3]) and
is called Penny. While parts of our implementation are, by
necessity, Pig-specific (e.g. use of wrapper UDFs to embed
monitor agents in a Pig dataflow), much of it is entirely sepa-
rate from the details of Pig itself and likely reusable in other
dataflow settings (e.g. our messaging implementation). Our
tagging implementation falls in-between these two extremes:
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Figure 3: Penny implementation details.

it exploits knowledge of Pig compilation and execution be-
havior, but the strategies it employs can likely be adapted
to other systems.

Figure 3 shows the implementation structure and com-
munication pattern during dataflow execution. The right-
hand side of the figure shows a single stage instance (one
process running one or more dataflow operators and mon-
itor agents). The left-hand side shows the coordinator.
The application’s coordinator code and monitor agent code
are both wrapped with harnesses, which is where most of
Penny’s implementation of the Inspector Gadget semantics
takes place; the harnesses and communication patterns are
described in detail below. Before we proceed, note that the
monitor agent harness is enclosed in a wrapper UDF, which is
a Pig Latin user-defined function (UDF) that interfaces be-
tween the harness and Pig’s UDF API for processing records.
The wrapper UDFs are inserted into the dataflow via sim-
ple Pig Latin script manipulation prior to execution (in the
driver launch() method).

5.1 Basic Processing
The harnesses take care of initializing (with arguments)

the application-provided coordinator or monitor agent class
running inside them, and exchanging messages with other
harnesses (including ones in the same process and ones on
different processes/machines; see Section 5.2). The coordi-
nator harness maintains a registry of currently running agent
instances. Monitor agent harnesses register and deregister
themselves by sending messages to the coordinator and wait-
ing for acknowledgments.

When a wrapper UDF is handed an input record from
the Pig runtime, the wrapper in turn hands the record to
the harness, which then hands it to the agent code (by in-
voking its observeRecord() method), possibly after asso-
ciating one or more tags (Section 5.3 describes how tags
are determined). After observeRecord() returns (its return
value specifies new tags, whose treatment is described in Sec-
tion 5.3), the harness hands the original input record back
to the wrapper UDF, which then gets handed back to the
Pig runtime as the UDF output (unless observeRecord()’s
return value requested that the record be suppressed). Bar-
ring suppression, from the Pig runtime’s point of view the
wrapper UDF is a no-op.

5.2 Messaging
The messaging abstractions between pairs of agent in-

stances and between agent instances and the coordinator
is implemented via a combination of mechanisms, mainly
for efficiency purposes.

sendToCoordinator(): The simplest case is when an
agent instance sends a message to the coordinator (the
sendToCoordinator() method in Table 3), which is handled
via a straightforward network message to the coordinator.
For all network messaging, Penny harnesses use thread pools
on both the sending side and the receiving side to allow
concurrency with other processing and messaging events.
(When a harness is ready to shut down it first waits for all
pending messages to be delivered.)
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sendToAgent(): When the coordinator sends a message to
an agent via sendToAgent(), a copy is immediately trans-
mitted to all currently registered instances of the agent. Ad-
ditionally, the message is placed in the coordinator’s message
queue, awaiting any instances that register in the future. If
an agent instance invokes sendToAgent() the message is first
relayed to the coordinator, which in turn handles it in the
same way as messages originating from the coordinator, as
just described.

sendUpstream(): As specified in Section 4.2, this method
only applies to transmitting a message to an upstream agent
instance running in the same stage instance, and hence the
same process. Our implementation leverages this fact by
simply inserting the message into the recipient agent in-
stance’s local queue (this data structure permits insertion
by the harnesses of other within-process agent instances, for
this purpose).

sendDownstream(): Recall from Section 4.2 that a given in-
vocation of sendDownstream() falls into one of two cases:
(1) if the immediate downstream neighbor agent is part of
the same stage, then the implementation matches that of
sendUpstream() (direct insertion into the recipient’s mes-
sage queue); (2) if the immediate downstream neighbor
agent is part of the subsequent stage, then the message is
relayed via the coordinator, where it will wait in the coor-
dinator’s message queue until downstream agent instances
come online and register.

When an agent instance registers with the coordinator,
any enqueued messages destined for that agent are copied
from the coordinator’s message queue to the agent instance’s
message queue, after which registration is considered com-
pleted. Each agent instance guarantees to process any
locally enqueued messages (via receiveMessage()) before
processing an incoming record (observeRecord()). Hence,
messages sent from an upstream agent instance to a down-
stream instance across a stage boundary are guaranteed to
be handled by the downstream agent instance before it han-
dles its first dataflow record. This guarantee is important
for correct semantics of applications that cascade initializa-
tion state down the dataflow, and is also relied upon by our
tagging implementation, described next.

5.3 Tagging
Tagging is implemented on top of our messaging abstrac-

tion (tagging-related messages are kept separate from ap-
plication messages using metadata in the message headers).
Consider a dataflow sequence A1 → O → A2 which has a
first monitor agent A1 followed by a Pig operator O followed
by a second monitor agent A2. Suppose A1 emits record ri
with associated tags τ , and suppose that when ri passes
through O it contributes to a (possibly empty) set of output
records Ro. The tagging implementation must ensure that
whenever a record ro ∈ Ro is passed to A2 the tags τ are
passed along with it.

Our implementation strategy relies on knowledge of the
rules for compiling a dataflow script into a sequence of stages
(map and reduce stages, in the case of Pig), which in Pig
are simple, deterministic, and have remained the same for
several years. In particular, our implementation handles the
following two cases differently:

1. O is a non-blocking operation (e.g. filter, project, or
user-defined functions (UDFs)8) and is executed as
part of a single stage. In this case, the Pig compiler
rules guarantee that A1 and A2 execute in the same
stage with O.

2. O is a blocking operation that spans a stage boundary
(for Pig, one of: group-by, co-group, join or sort, all
of which exploit the shuffle step that occurs between
a map phase and reduce phase). In this case, the Pig
compiler rules guarantee that A2 executes in a later
stage than A1.

Our implementation strategy for Case 1 exploits the fact
that Pig, like many dataflow systems, uses the iterator

model [15] for pulling data through operators within a given
stage instance. For our purposes the important aspect of
the iterator model is that there is no queueing of records
along dataflow edges. Our implementation works as follows:
Before A1’s harness releases record ri to downstream pro-
cessing, it signals to A2 (using sendDownstream()) that any
subsequent records arriving at A2 should be tagged with τ .
When A1 receives its next input record (or finishes, if there
are no more input records), it signals to A2 to stop using τ

to tag arriving records. The set of records received by A2 in
between the two signals from A1 are exactly Ro.
Our strategy for Case 2 exploits the semantics of specific

cross-stage Pig operators (there are four: group-by, cogroup,
join and sort). In this scenario A1 is in the stage prior to
A2, and sendDownstream() invocations from A1 broadcast
messages to all instances of A2, which they receive at reg-
istration time prior to seeing any records (see Section 4.2).
If the operator between A1 and A2 is group-by on field f ,
then A1 simply notifies all A2 instances to associate tags τ

with the grouped record with group key ri.f . For exam-
ple, if grouping web crawl records by f = web site, if ri’s
web site is amazon.com then the group formed by O with
group key amazon.com will be tagged with τ . Of course, in
many-to-one operations like group-by a single output record
may collect a large number of tags if many input records are
tagged.
Co-group, join and sort are handled similarly and we omit

the details. A caveat is that operations such as join and sort
do not produce a field that acts as a unique key for tag prop-
agation (unlike group-by and co-group, which do produce
unique group keys). Instead, for those operations one has to
either: (1) leverage a field that is known, through separate
means e.g. a system catalog or an assertion from a user, to
constitute a unique key (e.g. URLs or SSNs), or (2) use all
available record fields in combination as record identifiers,
and accept tag cross-overs among identical records (e.g. if
the input stream contains two identical records 〈Joe Smith,
Los Angeles〉 and we wish to tag only one of them and trace
it through the dataflow, we may not be able to do so).

6. LIMITATIONS
Inspector Gadget is a simple and powerful way to

add monitoring and debugging capabilities to an existing
dataflow system such as Pig. However, our strategy of not

8Our implementation only handles UDFs that are stateless,
i.e. the UDF does not buffer any data, and consequently the
result it produces upon seeing input record ri is a function
of ri alone.
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modifying the underlying dataflow system or tampering with
its data induces some limitations:

• IG assumes the translation from the user’s original
dataflow script to the dataflow execution graph is direct.
Aggressive query optimization, e.g. reordering opera-
tors, can get in the way of IG, and vice-versa (IG’s mon-
itor agent UDFs can interfere with operator commutativ-
ity). Pig’s current query optimizer is rather limited, but
future releases or other dataflow systems may be prob-
lematic. One possible workaround is for IG to instrument
the post-optimized dataflow graph, which requires a way
to view and modify the post-optimized graph and has
implications for the user interface.

• Since IG rests at a high level of abstraction, it can be
difficult to correlate observations made in the IG layer
with lower-layer observations. For example, it is difficult
to match a given IG agent instance with a particular
underlying Hadoop map or reduce task that failed.

• Stage instance re-execution (due to a crash) may result
in the same record being processed multiple times by a
monitor agent. Our framework does not provide special
support for this situation, and leaves it to be handled
by the application. In all of the applications we have
implemented (Table 6), re-starts do not cause any seri-
ous ill effects: Applications that transmit summaries to
the coordinator upon agent completion (e.g. table-level
integrity alerts) are unaffected, and ones that transmit
messages on the fly experience non-harmful redundan-
cies (e.g. the same row-level integrity alert is thrown
multiple times).

• Our tagging implementation (Section 5.3) relies on mes-
saging and is designed for applications that trace a small
number of records. Tracing a large number of records
with this mechanism incurs excessive overhead.

• The correctness of our tagging implementation relies on
several assumptions about the dataflow engine, operators
and data (e.g. no buffering/queueing inside or between
operators; availability of unique keys—see Section 5.3),
which hold in many contexts but are not universally
valid. Bear in mind that the majority of our applica-
tion scenarios (8/12 rows in Table 6) do not use tagging.

7. EXPERIMENTS

The key evaluation metrics for Inspector Gadget are: (1)
applications enabled and their code size (reported earlier in
Table 6), and (2) performance overhead (this section). In
a debugging context, users are generally more interested in
the added functionality offered by the debugging tools than
their performance impact—up to a point. Since IG is a
very general framework, it is possible for applications to use
its APIs in ways that generate very high performance over-
heads. In this section we show that the overheads incurred
by actual debugging applications requested by users are ac-
ceptable: In some cases (e.g. integrity alerts), the overhead
is so small that it could be used to monitor a production
deployment. For others, the overhead is not negligible, but
nonetheless small enough for debugging purposes. Even in a
few “bad” cases, the execution time remains within a factor
of two, which is probably acceptable for debugging.

Except where noted, our performance experiments use
Hadoop 0.20 with Pig 0.7. We used a cluster of 15 machines

connected to a common switch with 1G network links. Each
machine has two 7200 RPM SATA drives with dual core 2.13
GHz Xeon processors and 4G of memory. We dedicated one
machine to running the Hadoop JobTracker and NameNode.
Our experiments use four Pig Latin scripts selected for

their different optimization and compilation properties.
Each script runs over a small 10GB, 10 million record,
sample of web crawl data, in which each record represents
a web page and contains, among other fields, the URL,
site, language, spam score, inlinks, outlinks, and anchor
text. The scripts are described in Table 7, which indicates
whether each script can benefit from certain optimizations
that Pig performs (projecting unused columns early; using
the Hadoop combiner for early partial aggregation) and how
many map-reduce jobs the script gets compiled into.
Our goal is to evaluate IG’s overhead for the applications

listed in Table 6. We consider two baselines: (1) regular
Pig execution (without IG); (2) execution with a no-op IG
application, which deploys a no-op agent at every dataflow
edge. For comparison against those baselines, we take ap-
plications from Table 6 that perform a single pass and do
not filter any data.9 (Our iterative crash culprit determi-
nation application is studied separately in Section 7.1.) For
applications that monitor a particular dataflow edge (e.g.
integrity alerts), we monitor the first edge (i.e. right after
the loading step).
Figure 4 shows the running time of each baseline and ap-

plication, averaged over ten runs (the standard deviations
are shown as error bars). The application abbreviations are
as follows:

• RI: row-level integrity alerts, which checks for a null
value in one of the fields on one dataflow edge.

• TI: table-level integrity alerts, which checks for an inter-
mediate table (the set of records passing along an edge)
that is smaller than expected.

• DS: data samples, with five samples requested from each
instance of each edge.

• DH: data summaries, in the form of a histogram of data
values in one particular field on one edge.

• FT: forward tracing of one input record as it passes
through the rest of the dataflow.

• LA: latency alerts on all dataflow edges.

• LP: latency profiling, which tracks the latencies of five
input records per load instance, as they pass through the
rest of the dataflow.

Result analysis.

The no-op IG application baseline performs somewhat
worse than the regular Pig baseline in three of the four
scripts, reflecting the fact that adding monitoring agents
on all dataflow edges impedes the early projection and/or
combiner optimizations. The DS, FT, LA and LP appli-
cations place monitoring agents on all dataflow edges, and
hence their performance is bounded by that of the no-op
application on all scripts. The remaining applications (DH,
RI and TI) only monitor the first edge (the one immediately
following the initial loading of the data) and hence do not

9We did not include backward tracing in our experiments,
because its performance will depend almost entirely on the
effectiveness of the weak inversion analysis phase that we
did not implement.
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applicable optimizations # of map-
script name description early projection combiner reduce jobs

Distinct Inlinks Projects the data to just site and inlinks, groups by site,
and for each site finds the distinct inlinks and counts
them.

NO NO 1

Frequent Anchor Text Groups the data by site, and for each site uses a non-
combinable UDF to extract the frequent terms from the
anchor text of all its pages.

YES NO 1

Big Site Count Filters out records not belonging to one particularly large
web site, counts the inlinks of each page of that site,
groups the counts together, and adds them up.

YES YES 1

Linked by Large Finds the number of distinct inlinks each site has that
originate from a large site. It projects to just url, site
and outlinks, then groups by site, filters out sites with
fewer than k pages, projects and flattens the resulting
records to site and outlinks, groups by outlink, and for
each outlink gets the count of the distinct set of sites with
that outlink.

NO YES 2

Table 7: Pig Latin scripts used in experiments.
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Figure 4: Running times of two baselines and seven

IG applications, for each of the four scripts.

interfere with the combiner optimization, and only interfere
slightly with the early projection optimization.

Although DH, RI and TI do not suffer from
optimization-related slowdowns, they do exhibit other slow-
downs not related to optimization, as we can see clearly with
the Distinct Inlinks script (to which neither optimization ap-
plies). DH and TI require their agent instances to send a
message to the coordinator in their finish() method (DH’s
histograms, and TI’s record counts), which delays shutting
down the process (shutdown waits for all enqueued messages
to be sent). RI checks whether the inlinks field contains a
null value, and our naive implementation does this by first
deserializing the data in the field and then comparing it
with null—since some records have very large inlink sets the
deserialization process incurs a measurable overhead.

Most of the performance discrepancies are explained by
the aforementioned factors. The remaining cases, each
of which exhibits a fairly large performance degradation,
are:

• The Frequent Anchor Text and Linked by Large scripts
exhibit significant variability in per-record latency, which
causes LA to generate a large number of alerts; in our

implementation each alert transmits the entire content
of the offending record, which amounts to quite a bit of
data because many of the records contain large nested
inlink sets.

• The poor performance of DS on the Linked by Large
script is also due to transmitting a large amount of data
to the coordinator: since that script deals only with
records having large inlink bags, every sampled record
(except those on the edge prior to the initial filter step)
is large.

• LP performs poorly on the Linked by Large script, be-
cause it tags many records (whereas FT only tags one)
and the script’s group-and-flatten sequence causes the
tags to spread to a large number of downstream records.
One could presumably improve the LP implementation
to repeatedly trim the number of tagged records.

7.1 Crash Culprit Determination
We also measure the performance of our iterative crash

culprit determination application, using the scenario
mentioned at the end of Section 3.3 in which the Big Site
Count script failed because of bad data. For this test we re-
vert to an earlier version of Pig (version 0.6), because version
0.7 automatically converts null values into empty sets for the
purpose of counting. We also configured Hadoop to not retry
failed tasks, which is how a crash culprit determination ap-
plication would configure Hadoop in practice—however note
that our application is able to handle retries, and the relative
performance difference between our application and regular
Pig is not affected much by this configuration change.
The ten-run average of the running time of the plain

Pig script (i.e. time until the crash) is 24.5 seconds. Our
crash culprit determination application configured to
make three passes (k = 100, 10, 1) takes, on average over ten
runs, 81.4 seconds to find candidate culprit records, which is
not much more than three times the plain Pig running time.

8. SUMMARY
This paper presented Inspector Gadget, a framework that

layers highly customizable monitoring and debugging capa-
bility on an existing (distributed) dataflow engine such as
Pig. Inspector Gadget enabled us to implement 12 of the 14
monitoring/debugging capabilities requested by users that
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we interviewed, each in just a few hundred lines of code.
Experiments showed that our IG implementation, called
Penny, incurs only modest overhead for most real-world use-
cases. Penny is scheduled for public release as part of the
v0.9 release of Apache Pig, in mid-2011.
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