
Online Expansion of Large-scale Data Warehouses

Jeffrey Cohen† John Eshleman Brian Hagenbuch† Joy Kent†

Christopher Pedrotti† Gavin Sherry† Florian Waas†

†EMC Corp.
Data Computing Division

firstname.lastname@emc.com

ABSTRACT
Modern data warehouses store exceedingly large amounts of
data, generally considered the crown jewels of an enterprise.
The amount of data maintained in such data warehouses in-
creases significantly over time—often at a continuous pace,
e.g., by gathering additional data or retaining data for longer
periods to derive additional business value, but occasionally
also precipitously, e.g., when consolidating disparate data
warehouses and Data Marts into a single database. Having
to expand a data warehouse with 100’s of TB of data by a
substantial portion, e.g., 100% or more is a complex and dis-
ruptive maintenance operation as it typically involves some
sort of dumping and reloading of data which requires sub-
stantial downtime.

In this paper we describe the methodology and mecha-
nisms we developed in Greenplum Database to expand large-
scale data warehouses in an online fashion, i.e., without no-
ticeable downtime. At the core of our approach is a set
of robust and transactionally consistent primitives that en-
able efficient data movement. Special emphasis was put on
usability and control that lets an administrator tailor the
expansion process to specific operational characteristics via
priorities and schedules.

We present a number of experiments to quantify the im-
pact of an on-going expansion on query workloads.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—online expan-
sion, administration, performance

1. INTRODUCTION
Petabyte-scale data warehousing has pushed the envelope

of conventional database technology substantially in the last
couple of years. Massively parallel processing of increasingly
larger data sets has enabled unprecedented access to data
and redefined the role of analytics and transformed it from
being considered optional to mission critical. Today, data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

analytics is one of the fastest growing sectors in the data
management business.

Besides classic sales data, modern data warehouses store
and aggregate numerous data sources that describe user be-
havior, e.g., click stream data in Internet applications, sen-
sor data, or call-data-records in telephony to name but a few.
And although storage capacity has been increasing rapidly,
data keeps out-pacing hardware developments. In particu-
lar, data sets grow primarily along two dimensions:

Additional data sources. Analytics in large enterprises
is often limited to select, carefully prioritized sources.
Often, businesses strive to replicate the success of ini-
tial analytics projects and include additional data sour-
ces into their data warehouses such as additional ap-
plications, improved or more detailed monitoring ca-
pabilities etc.

Longer data retention periods. Data warehouses store
usually only a relatively short window of data such as
the last 90 days. For a number of applications this
may be already a useful range. However, in almost
all application scenarios longer retention of data re-
sults directly in higher quality analytics and increased
usefulness and monetization. In application areas like
fraud detection, extremely long data retention periods
are desirable, including the option of infinite retention.

Another critical dimension of size for a data warehouse is
the computing capability it provides, i.e., CPU and mem-
ory resources available for query processing. Like with data
capacity, increased demand stems from new analytics ap-
plications being developed. Providing additional capacity
be it storage, CPU or memory is a hard operational chal-
lenge especially when business demands call for expansion
of an existing system by significant increments, e.g., 100%
or more. Over-provisioning is not a viable option, in gen-
eral. Therefore, it is highly desirable that a data warehouse
solution provides expansion as a first-class operation.

In this paper we discuss the design and development of
an expansion strategy for Greenplum Database, a large-
scale MPP database. The central value proposition of large-
scale MPP data warehouses, built using commodity shared-
nothing systems, is the componentization of individual units
without central bottlenecks or significant dependencies be-
tween systems such as shared disks etc. Naturally, expand-
ing a shared-nothing system should be as simple as adding
additional shared-nothing hosts to the system. From an op-
erational point of view, however, there are a number of hard

1249



problems to be solved in order to expand a large cluster.
Primarily, the biggest challenge is to integrate a set of ad-
ditional hosts into a system with (1) basically no downtime
and (2) manageable and transparent performance character-
istics. All while providing the levels of fault-tolerance users
have come to expect.

Our solution is based on simple and transactionally consis-
tent primitives that allow us to layer the expansion process.
We implemented a number of control tables to empower ad-
ministrators to control all aspects of expansion, specifically
scheduling and monitoring of the on-going expansion work.

Related Work. Elastic expansion of server farms has
been explored in a variety of settings including hosted en-
vironments [1]. In the case of state-less applications expan-
sion is a rather straight-forward operation as only very small
amounts of data need to be moved. The techniques devel-
oped in that field are not suitable for a distributed database
system, however. Moving for example 10 TB of data requires
significant amounts of resources and time. Stateless cluster
expansion does not take this into account and provides no
mechanisms to coordinate an expansion.

Distributed Hash Tables are data structures specifically
designed for flexible group membership of individual storage
hosts [12]. They distribute/redistribute data on-the-fly and
allow adding and removing hosts rather seamlessly. These
techniques do not provide actual database functionality. To
the contrary, much of the flexibility can be achieved because
they do not have to provide transactional consistency. Also,
they are designed to expand systems by small increments
only and may not be able to keep up with the demand for
new resources. Similarly, systems built atop of Distributed
Hash Tables like Amazon’s Dynamo [5] or Apache’s Cassan-
dra [8] inherit these properties.

Hadoop, Apache’s version of MapReduce [3] which has
been successfully used in a series of data analysis applica-
tion scenarios [10] provides mechanisms for expansion. Un-
fortunately, Hadoop’s fault-tolerance model is at odds with
transactional consistency and the mechanisms developed in
this area cannot be transferred directly to database technol-
ogy.

In the database field online reorganization has a long-
standing tradition [11]. To some degree, most of the princi-
ples, e.g., index reorganization etc., are applicable to MPP
databases as well yet orthogonal to the problem at hand in
that they deal with reorganizing of data structures within
a stand-alone database—not with the redistribution of data
across several servers.

To the best of our knowledge there is no published work on
database systems that are able to redistribute large amount
of data and provide full functionality at the same time.

Roadmap. The remainder of this paper is organized as
follows: in Section 2 we explore the requirements such a
feature has to address in a production system from various
angles. To illustrate the technical framework to which our
work applies, we briefly survey the components of Green-
plum Database that are relevant for the understanding of
the feature in Section 3. In Section 4 we describe the differ-
ent layers and technical implements we have built. In the
subsequent sections we describe performance experiments
that illustrate the operational characteristics of the result-
ing system and describe our initial experience in the field.

2. DESIDERATA
For an expansion strategy to be successful, a number of

requirements must be met.

1. Scalability of capacity. The capacity of the expanded
system should be in line with default capacity plan-
ning, i.e., expanding a system by X% should provide
the same capacity as if the system had originally been
implemented as 100+X%. In other words, the added
capacity is used in the same way as the original.

2. Scalability of performance. Analogous to 1, the per-
formance of the expanded system must equal that of a
system that was built-out originally at the same size.

3. Uninterrupted service. Regular workloads, both sched-
uled and ad-hoc, must not be interrupted. A short
scheduled downtime period such as required for restart-
ing the system, may be acceptable though. In partic-
ular, the downtime must be independent of the size of
the system before and after expansion as well as inde-
pendent of the size of the data currently stored in the
system, i.e., any potential redistribution of data must
not require downtime.

4. Fault-tolerance. During expansion standard fault-tol-
erance mechanisms must not be suspended. A system
that provides k-safety—up to k components may fail
without impairing the system’s up time—must be able
to tolerate k failures including both old and new com-
ponents during expansion.

5. Replication and Disaster Recovery. Analogous to re-
quirements pertaining to fault-tolerance, any replica-
tion mechanisms must continue to function during ex-
pansion. This holds for replication as well as restore
mechanisms needed in case of a failure or a catas-
trophic event.

6. Transparency of process. Large-scale data warehouses
employ highly complex software and hardware compo-
nents. In order to provide certain service level agree-
ments, administration of the system must be suffi-
ciently transparent, i.e., administrators must be able
to reconstruct, to a certain degree, the internal work-
ings of the system. The process of expansion must be
easy to diagnose and troubleshoot.

7. Configurable process. An expansion may be a long-
running process, e.g., in order to satisfy 1 and 6, the ex-
panded system must achieve a certain symmetry with
regards to data placement. Depending on the time
needed, the expansion process must be fit into a sched-
ule of ongoing operations.

• Ability to pause/resume; both in an ad-hoc fash-
ion and according to a predetermined schedule;

• Prioritize data sets; if not all data sets can be
expanded without temporarily degraded perfor-
mance enable administrators and business users
to express their preferences regarding their work-
ing sets;

8. Support Data Warehousing specific data patterns. A
significant ratio of data in a data warehouse is stored

1250



in fact tables. Fact tables are extended frequently, and,
once loaded, queried in read-only fashion. In addition,
fact tables are partitioned heavily for operational rea-
sons, in particular, to facilitate loading and rolling off
of data. In the vast majority of cases fact tables are
partitioned on a per-day basis.

9. Leverage existing infrastructure. Ideally, the expansion
mechanism re-uses components so as to avoid increas-
ing the complexity of the product.

Not all of these are hard requirements, i.e., an expansion
mechanism may not meet it but must sufficiently mitigate
the resulting effects.

Similarly, not all of the above are equally important: dur-
ing our requirements analysis we met with a variety of cus-
tomers and their users and administrators. It quickly be-
came clear that expansion of a large-scale data warehouse
is much more intricate than a simple requirement of “no
downtime”. Specifically, transparency and providing users
with a maximum degree of control over the process are
mandatory—if hard to quantify.

3. ARCHITECTURE OVERVIEW
The expansion mechanisms we present in this paper are

rather general and are applicable to a wide variety of data-
base systems based on MPP shared-nothing architectures.
This section surveys the basic principles and architectural
considerations that went into building Greenplum Database
[13, 2].

Greenplum Database, as shown in Figure 1, is an MPP
shared-nothing architecture built from commodity hardware
components, i.e., no proprietary hardware is used. More-
over, one of the underlying design principles was to avoid
customizing the software explicitly to take advantage of spe-
cific hardware properties—rather, the software abstracts the
platform. Not only does this result in better portability
between different operating systems—Greenplum Database
supports several different Linux, Solaris, and for develop-
ment purposes Mac OS versions—but makes the system less
sensitive to variations in hardware configurations.

3.1 Basics
The system distinguishes two types of hosts: (1) a master

host and (2) segment hosts. The master accepts incoming
connections and after optimizing a statement or query sends
a parallel query plan to the segment databases to do the
processing. Each segment host holds one or more segment
databases. If results need to be returned to the client—as
is the case in query processing—they are gathered on the
master and forwarded to the client.

Greenplum Database manages two types of segment data-
bases: primaries and mirrors. A mirror is a logical copy of
the primary. Mirrors and primaries are placed across the
segment hosts in configurable patterns. By default each seg-
ment host will hold N primaries and N mirrors. Mirrors are
used in read queries only after a primary is down, in which
case they are upgraded to become the acting primary. Oth-
erwise, mirrors simply replicate write activity from the pri-
mary in a synchronous fashion. As one should expect with
a database system, all data management is transactionally
consistent.

3.2 Data Distribution
Besides catalog tables, which are located on the master

only, all data is distributed across the segments. Greenplum
Database offers several modes of assigning data to segments.

The most prominent is distribution by hashing of the des-
ignated distribution columns of each table. The concept of
using one or more columns to determine the distribution
of data provides users with the ability to align tables to
improve the processing of frequently encountered or partic-
ularly important query patterns. In order to designate a set
of columns as distribution columns, a syntax extension is
used. In this example, the data of the nation table of the
TPC-H Benchmark schema will be distributed based on the
hash function over the column n nationkey.

CREATE TABLE nation

(

n_nationkey INTEGER NOT NULL,

n_name CHARACTER(25) NOT NULL,

n_regionkey INTEGER NOT NULL,

n_comment CHARACTER VARYING

)

DISTRIBUTED BY (n_nationkey)

In addition to hash partitioning of data, Greenplum Da-
tabase also provides a special type of distribution labeled
RANDOMLY. This type of distribution is particularly useful if
a table has only a very small number of distinct rows. In
this case, hashing would assign the data to a small number of
segments only. In contrast, distributing the data randomly
avoids this problem by assigning data based on a round-
robin schema to segments. In the following sections we will
make extensive use of various distribution types.

In addition, Greenplum Database uses several transient
distribution types (see below) during execution of a query;
these distributions are mentioned here only for complete-
ness; they are not used for materializing data on disk.

3.3 Query Processing
Based on the data they access, we distinguish three cate-

gories of queries:

• Master-only queries. These queries involve only data
located on the master, e.g., catalog tables, or expres-
sions that can be evaluated on the master without dis-
patching the query plan to the segment databases.

• Symmetrically dispatched queries. All segments exe-
cute a symmetric query plan, i.e., each segment exe-
cutes the same set of operators although over different
sets of data. A query plan may contain operators that
distribute data between segments including the case of
concentrating all data in a single segment as well as re-
distributing all data from a single segment to all other
segments. This is the standard situation for almost all
non-trivial queries over user data. See also e.g., [7] for
a broader discussion of this technique.

• Targeted-dispatch queries. In this case, all data rel-
evant for the query is located on a single segment
database; the query plan is dispatched only to a sin-
gle segment database instead to all segment databases.
A typical example of this type of query are singleton
lookups.

1251



- Catalog
- System Conf
- Parser
- Optimizer
- Query Coord

- Catalog
- System Conf
- Parser
- Optimizer
- Query Coord

Master Stand-By

- Segment DBs
- Query Exec
- Storage
- Interconnect

Network Interconnect

...- Segment DBs
- Query Exec
- Storage
- Interconnect

- Segment DBs
- Query Exec
- Storage
- Interconnect

- Segment DBs
- Query Exec
- Storage
- Interconnect

Greenplum Database

Client Applications

- Segment DBs
- Query Exec
- Storage
- Interconnect

- Segment DBs
- Query Exec
- Storage
- Interconnect

SQL
Ad-hoc queries MapReduce BI-Tools

Reporting
Loaders

ETL Tools
ODBC
JDBC
LIBPQ

Figure 1: Architecture of Greenplum Database.

This categorization of queries is closely related to the
distributions of tables. The distribution of each table is
recorded in the catalog and known to the query optimizer
at compile time. Based on this knowledge, the optimizer
compiles a query plan that takes into account where the
data is located. Operations like join or aggregation require
specific data distribution in order to guarantee correct re-
sults. We discuss this here in more depth because it will be
one of the key ingredients for the expansion mechanism we
present in Section 4. The optimizer creates a plan that ei-
ther correctly redistributes the data as needed and exploits
the pre-existing distribution or co-location of data whenever
possible. To this end, the query processor uses different
types of data redistribution operators:

• Redistribute N:N. The input relation is redistributed
according to the values of a set of columns. This type
of distribution operator is typically used when redis-
tributing relations to co-locate them for equi-joins or
for grouping of rows.

• Gather N:1. All data is sent to one single segment
database. This type of distribution operator is usually
placed at the root of the plan to concentrate all data in
the master segment; it may also be used in the middle
of a plan before executing an operation that cannot be
executed in parallel on different segment databases.

• Broadcast 1:N. The input relation is sent to all other
segment databases. The common use case for this op-
eration are join predicates other than equi-joins where
one relation is distributed on some column and the
other is replicated.

All segment databases execute the same plan and ex-
change data via the distribution operators as part of the
processing. Encapsulating the distribution logic into self-
contained operators enables concise reasoning over query
plans. The data exchange is pipelined, i.e., data is ex-
changed whenever available.

Figure 2 (a)–(c) illustrates the different distributions and
their effect on query plans for a simple query. Consider
the following query over the standard TPC-H Benchmark
schema:

SELECT lineitem.*

FROM lineitem, orders

WHERE l_orderkey = o_orderkey

Figure 2(a), shows a query plan for the case where the
table lineitem is distributed on l oderkey and orders on
o orderkey, i.e., both tables are already co-located and the
join can be executed immediately on all segment databases
in parallel. The results are gathered on the master and
returned to the client. In Figure 2(b) a query plan is shown

1252



for the case where the orders table is distributed randomly.
In order to achieve the correct join result, the table needs
to be aligned properly, i.e., all data of orders needs to be
redistributed on o oderkey. Finally in Figure 2(c), a query
plan is shown for the case where both tables are distributed
randomly; in this case both tables need to be redistributed
to be aligned on the join keys.

The example underlines that the query plan makes up for
incorrect or insufficient distribution of data. However, re-
distributing data as part of processing the query comes at
additional cost in terms of running time as well as network
bandwidth. We can expect plan (a) to outperform plan (b)
significantly and a further significant difference in perfor-
mance between plan (b) and plan (c).

While this example illustrates the basic concept, the query
optimizer actually takes distribution into account as part of
all of its optimization decisions. In particular, when deter-
mining the join order for queries involving more than two
tables or derived tables the distribution of data becomes a
substantial contributing factor in the optimization and pre-
serving data distributions or establishing distributions that
may benefit several joins is one of the optimization goals. In
Greenplum Database all optimization decisions are made in
a cost-based manner.

3.4 Fault-tolerance & Replication
Since preserving fault-tolerance during expansion is a key

requirement for a production system, we briefly survey Green-
plum Database’s fault-tolerance mechanism. Greenplum Da-
tabase supports a 1-safety model that tolerates the failure
any given component. All hardware components are redun-
dant, including storage and network infrastructure. The
data on the segments databases including the master is repli-
cated, i.e., the data is replicated to a designated mirror.
Data replication is accomplished using standard physical
replication techniques.

The master runs a fault-detection algorithm checking the
health of all segments periodically. If a failure is detected,
the system is reconfigured to route traffic meant for a failed
primary to its mirror, accordingly. Through alerting mech-
anisms including SNMP as well as online monitoring tools,
administrators can troubleshoot the failed primary and, af-
ter resolving the root cause of the failure, may start recov-
ery using the system-side provided tools and integrate the
restored primary back into the system.

The interaction with the fault-detection system is orthog-
onal to query processing—none of the components are aware
of their replica. During an expansion, holding up the same
guarantees for fault-tolerance is an absolute must.

4. EXPANSION
In this section, we present the actual expansion method-

ology we developed and implemented, in detail. As we will
see, the design addresses the requirements as outlined in
Section 2.

The fundamental idea underlying our methodology is this:
extend the system initially with “empty” segment hosts and
then over time redistribute small quanta of the total data set
from their original allocation to segment databases across
the entire expanded system until all data has been redis-
tributed. The redistribution process is of low impact and
happens in the background while regular query workloads
are running.

The entire expansion process is orchestrated by a utility
called gpexpand that uses documented API’s of Greenplum
Database [4]. Specifically, there are three major phases the
tool aides administrators with:

1. Initialization. After new segment hosts are physically
added to the existing cluster the new systems are ini-
tialized and empty segment databases are spun up on
the new segments. After this step completed, the new
segment hosts are full members of the system and are
ready to be used for query processing, data loading,
etc.

2. Redistribution. The pre-existing data set is redistribut-
ed over a—potentially extended—period of time by re-
distributing individual tables one-by-one according to
a pre-defined schedule. gpexpand manages this pro-
cess and allows administrators to prioritize, monitor,
pause, and/or resume the distribution process at a
rather detailed level to assure the expansion is per-
formed in the background without affecting regular
user workloads.

3. Finalizing. Once the actual redistribution of data is
completed auxiliary tables used for scheduling and pri-
oritization are removed.

As mentioned above, gpexpand is primarily provided for
convenience. All steps of the expansion process can be exe-
cuted manually. In the following, we describe the individual
aspects of each phase, the API’s it uses, and its practical
relevance in detail.

4.1 Provisioning and Initialization
The preparation for an expansion is by far the most time-

consuming as well as the most labor-intensive part of the
process.

Provisioning. The biggest challenge in this phase is the
technical build-out of the extended system: obstacles that
need to be overcome include space constraints in terms of
rack space, cabling issues, etc. Once fully assembled, the
new servers are burnt in using stress test tools provided
with the product suite. At this point, the new hardware
simply sits physically close to the existing system but is not
integrated in any way with the cluster. Stress testing the
new hardware ensures defective drives are detected and can
be replaced before going into production. In addition to
stress testing tools, Greenplum Database also comes with a
number of check tools that examine the installation, detect
performance anomalies and check for proper configuration
of the underlying operating system.

Initialization. With the new servers in place, the next
step is to install the database software and initialize the
new segment hosts. This step is facilitated by gpexpand and
administrators are guided through an interactive interview
process that determines the hostnames of the additional seg-
ment hosts and the layout of primaries and mirrors. Alter-
natively, the extension can also be configured using special
configuration files—this is particularly useful if the expan-
sion concerns several 10’s of machines and interactive con-
figuration may be error-prone.

Once configured, all segment databases are initialized us-
ing the master database catalog as a template for all new

1253



GATHER
N:1

HASHJOIN
l_orderkey = o_oderkey

SEQ SCAN
lineitem (l_orderkey)

SEQ SCAN
orders (o_orderkey)

(a)

GATHER
N:1

HASHJOIN
l_orderkey = o_oderkey

SEQ SCAN
lineitem (l_oderkey)

SEQ SCAN
orders (random)

REDIST
N:N

(b)

GATHER
N:1

HASHJOIN
l_orderkey = o_oderkey

SEQ SCAN
lineitem (random)

SEQ SCAN
orders (random)

REDIST
N:N

REDIST
N:N

(c)

Figure 2: Query plan for equi-join with different distributions of input tables.

segment databases. The original distribution policy infor-
mation is saved off and the metadata for all tables is modi-
fied to indicate that the table is distributed randomly. That
is, all tables can be queried or modified across all segment
databases afterwards as if they had a skewed but unknown
distribution. During this step, the system stalls all incom-
ing connection or write activity to ensure a consistent copy
of the catalog across the new segment databases. In ad-
dition, auxiliary tables are created to capture the current
status of the expansion listing all tables that have yet to be
redistributed.

At this point the system is effectively extended to include
the new segment databases and is fully operational. How-
ever all data is still located only on the pre-existing system
and is nominally distributed randomly. Regular query work-
loads, loads, etc. can resume at this time. Note, that new
tables will be created on all segment databases including
the new ones.

As mentioned above, Greenplum Database does not re-
quire the hardware to be homogenous meaning the new
servers may be configured differently, e.g., different num-
ber of CPU’s, different disk capacity, etc. For simplicity, we
assume all servers to be identical to those in the existing
system in the following.

4.2 Establishing Distribution Policies
Once the system is back in service, new tables created for

data loads immediately leverage the new segment databases.
Data Roll-off. Most data warehouse applications load

data using daily partitioning for the fact tables. This means
for the expanded system that new data will be distributed
optimally within the expanded system using the distribution
policy of the original table. As older data is rolled off over
the next days and weeks, the data distribution automati-
cally converges to the original design: all new tables are
distributed correctly, older tables are successively deleted.
In many application scenarios a readjusting due to roll-off
of data is sufficient. However, certain tables are not par-
titioned and not subject to a small retention window, e.g.,
dimension tables. These tables need to be redistributed to

span all segment databases and to re-establish the original
distribution policy in order to achieve the desired perfor-
mance.

Redistribution. In order to redistribute data we needed
a simple and robust primitive, ideally of general usefulness,
that allows us to redistribute individual tables one at a time
to the desired distribution policy.

As the core primitive of the redistribution of data we chose
to extend the conventional ALTER TABLE syntax to allow ad-
ministrators to modify the distribution policy of a table and
redistribute its data implicitly. The following example re-
stores the distribution policy of linitem to be distributed
by l orderkey and rebalances its data across all segment
databases:

ALTER TABLE lineitem

SET DISTRIBUTED BY (l_orderkey)

This variant of the conventional ALTER TABLE command
is fully integrated with the existing DDL framework within
Greenplum Database and provides the same transactional
consistency as other alterations. Internally, it performs the
following tasks:

1. a new temporary table extent is created using the same
schema as the original table;

2. all data is read from the original table and redistributed
using the standard distribution operators as shown in
Section 3 and inserted at the target segment databases
as determined by the new distribution policy;

3. all indexes are rebuilt;

4. the metadata of the temporary table is swapped with
the one of the original table in the catalog;

The entire sequence of steps is an atomic unit as it is
executed within a single transaction. Since it leverages the
standard components of the query processor and storage lay-
ers all operations provide the same fault-tolerance as regular

1254



operations. During the redistribution, the process holds a
table lock to prevent modifications of the table.

Augmenting ALTER TABLE in above way has proven to be
a very useful tool in general for a number of maintenance
operations way beyond expansion only. For completeness,
we also cover some special cases here: Changing a table’s
distribution to be randomly distributed simply wipes out
the distribution policy and does not move any data:

ALTER TABLE lineitem

SET DISTRIBUTED RANDOMLY

In order to redistribute tables that do not have a distribu-
tion policy, i.e., are supposed to be randomly distributed,
reorganization of the table must be requested explicitly:

ALTER TABLE nation SET

WITH (REORGANIZE=TRUE);

The latter redistributes all data according to the current
distribution policy.

4.3 Query Processing
In order to achieve online or near-online expansion, it is

important to resume regular query processing immediately.
Depending on the amount of data stored in the database at
the time of expansion, waiting for all data to be redistributed
is usually not an option.

Modifications to the distribution policy do not affect the
query optimizer’s ability to create a valid query plan, see
Section 3. Although, plans for different distribution policies
may differ vastly in performance as we have illustrated ear-
lier. That means no expansion-specific changes need to be
made to either optimizer or executor.

Rather, query processing over tables with modified and
distribution policies is fully transparent. Its performance
characteristics are straight-forward and simple to under-
stand which facilitates troubleshooting.

4.4 Scheduling
During expansion, query performance is degraded because

(i) tables are not distributed optimally and (ii) system band-
width is used to redistribute the data. However, usually not
all data is equally “hot” in terms of usage. It is desirable
to distribute hot data sets first and prioritize cold data sets
lower.

Besides temperature a whole set of other considerations
are important when it comes to scheduling the actual ex-
pansion of individual tables. To this end gpexpand provides
options to

• prioritize data sets; hot data sets can be redistributed
first

• control degree of parallelism, i.e., number of tables to
redistribute simultaneously

• pause/resume redistribution to work around scheduled
loads/reports, e.g., redistribute low priority data only
during off-hours

• indicate progress

All parameters and options that describe the status of
the expansion are stored in auxiliary tables in a dedicated
schema inside the database itself. Table 1 shows a simpli-
fied version of the schema of the tracking table including

Table 1: Schema of expansion status table; used by
gpexpand to track status per user table.

Name Description

oid unique identification of user ta-
ble;

distribution policy original distribution policy for
the table; includes column
names and oid’s; required to re-
construct original distribution

rank rank determines order in which
to expand remaining tables; ta-
bles with lowest rank are ex-
panded first; enables prioritiza-
tion according to business value
or frequent access patterns

status status of expansion; possible
values are NOT STARTED, IN

PROGRESS, FINISHED
last updated timestamp of last change of sta-

tus
expansion started timestamp at start of ALTER

TABLE command
expansion finished timestamp at completion of

ALTER TABLE command
source bytes disk space occupied by original

table; used to estimate progress

descriptions of the columns. During initialization the tool
inserts one row per user table into the tracking table. Be-
sides the status of the expansion, we also track parameters
that are required to redistribute the table correctly such as
the original distribution policy.

After initialization, administrators can modify this table
to adjust the priority with which a table is expanded. In
case of data roll-off, where old data simply ages out of the
system and no redistribution of certain tables is needed or
desirable, administrators simply delete the row pertaining
to the table in question.
gpexpand runs SQL queries against these tables to de-

termine what tables to redistribute next and issues ALTER

TABLE commands accordingly. The manipulation of the track-
ing table is transactionally consistent. That is if either the
database or gpexpand fail the redistribution can be simply
restarted. The database is at all times transactionally con-
sistent. The expansion is complete when the status column
in all rows in the tracking table has been set to FINISHED.

By providing timestamps that indicate when the redistri-
bution of a table was initiated we address one of the most
important operational issues: together with the size of the
original table administrators can extrapolate and determine
expected time of completion.

On the command line of the utility administrators specify
the maximum time gpexpand may use to redistribute ta-
bles. When this timeout expires, no further redistributions
are started and the current command is rolled back. This
enables administrators to set strict schedules, e.g., to use
off-hours for redistribution but stop data movement before,
say, nightly loading begins. When restarted at a later point
in time, gpexpand will automatically pick up where it left
off when it was stopped.

1255



0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1.1 

2  4  8 

N
or
m
al
ize

d 
Ex
ec
u;

on
 T
im

e 

Number of Database Segments 

R‐OPT Comp0  R‐OPT Comp1  R‐OPT Comp5  Heap 

(a)

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1.1 

2  4  8 

N
or
m
al
ize

d 
Ex
ec
u;

on
 T
im

e 

Number of Database Segments 

R‐OPT Comp0  R‐OPT Comp1  R‐OPT Comp5  Heap 

(b)

Figure 3: Scalability of redistribution of data for different table types using three different database cluster
sizes; (a) TPC-H data, (b) customer data.

The robustness of this approach provides much needed
flexibility for a long-running expansion process: redistribut-
ing 100’s of TB of data may take up to several weeks if the
continuous redistribution in the background is run at very
low process priority. Being able to interrupt the redistribu-
tion process at any given point in time together with the
ability to modify priorities and simply continue with the
expansion of the remaining tables allows administrators to
work around unforeseeable events.

Currently the user surface of gpexpand consists of a com-
mand line interface and database tables that can be queried
directly using SQL. However, these abstractions should make
it rather simple to create graphical user interfaces to facili-
tate configuration and progress reporting in the future.

5. PERFORMANCE EVALUATION
The previous section underlined that expansion of a pro-

duction data warehouse is a rather convoluted process that
depends on a large number of factors besides the size of the
original system, the size of the extended system, and the
data that needs to be redistributed. This makes it difficult
to provide a meaningful performance evaluation.

Nevertheless, in this section we attempt to shed light on
some of the most performance critical elements of the ex-
pansion process, namely the performance characteristics of
redistributing individual tables which focuses on the scala-
bility of our approach. Lastly, we demonstrate the perfor-
mance impact an ongoing expansion has on a TPC-H query
workload.

Hardware Setup. All experiements below were con-
ducted on set of 8 + 1 Sun Microsystems X4540 Sun Fire
“Thor” servers with 2 × 4-core AMD CPUs, 32 GB main
memory, 20 TB disk space, and 4 network interfaces. Each
segment host is configured to hold 8 primary and 8 mir-
ror segment databases. The per-server configuration corre-
sponds to one of the popular reference architectures used by
Greenplum customers in the past.

Depending on the experiments we configured database
clusters of 2 + 1 (2 segment hosts + 1 master), 4 + 1 and
8 + 1 machines with 2× 8 segment databases each.

Test Data. To motivate the specific choice of test data
it is helpful to review the different storage types Greenplum
Database supports first: besides the standard heap-based
table type, Greenplum Database also offers read-optimized
tables (R-OPT) that support zlib compression, c.f. [6]. The
most frequently used compression levels at customer sites
are 0, 1, and 5. Compressed tables trade off a smaller disk
footprint with additional CPU requirements. Therefore, it
is important to understand if the different resource demands
influence the performance of data movement that would be
relevant for redistribution of tables. Heap tables are typi-
cally used for dimension tables, R-OPT tables are commonly
used for fact tables.

In the experiments below we use both TPC-H data and
customer data. We use the lineitem table which represents
the fact table of the TPC-H schema; we use instances of size
50 GB, 100 GB, and 200 GB, respectively.

Unlike the TPC-H data, the customer data contains more
text and is therefore more amenable for compression. The
data compresses approximately at a ratio of 7:1 when using
Greenplum Database’s R-OPT tables with compression level
5 (R-OPT/5). We use samples of sizes comparable to the
TPC-H data: 120 GB, 240 GB, and 480 GB, respectively.

5.1 Scalability of Approach
We developed our approach with the aim to be able to

expand very large clusters in an online fashion. Therefore,
one of the most important criteria to evaluate our method
on is scalability.

Initially, we evaluate the scale-up of the basic query pro-
cessor and storage components involved in the distribution
of data. Data passes 5 conceptual components as part of
this experiment:

1. read data at source segment database

2. uncompress as necessary

3. send/receive data over the interconnect

4. compress data as necessary

5. insert data at target segment database

1256



Since we are leveraging the regular query processor without
taking short-cuts on a lower level of the system, the data
needs to be unpacked in the heap and R-OPT/0 cases and, in
addition, compressed and uncompressed for R-OPT/1 and
R-OPT/5. While using the query processor reduces software
complexity markedly, we expect it to be heavier on the CPU
requirements. Consequently, we expect this experiment to
scale-up near-optimal.

Scale-up of N:N Redistribution. In the first set of
experiments, we redistribute data from N source segment
databases to N target segment databases.

In each experiment we used 3 different system configura-
tions with 2, 4, and 8 segment hosts. To measure scale-up
we need to use proportionate amounts of data, i.e, 50, 100,
and 200 GB of TPC-H data as well as 120, 240 and 480 GB
or customer data, that is, when doubling the system we also
double the amount of data. Recall, that for this experiment
the data is originally distributed across N hosts and gets
redistributed across N hosts.

In Figure 3 we show results for different system sizes
and different storage types. In 3(a), results for TPC-H’s
lineitem data is shown, in 3(b) results with customer data.
The results indicate near-optimal scale-up close to 1. In all
cases, the results are within less than 10% of the optimum.
Also, all table types scale about equally well.

Scale-up of N:2N Redistribution. In the next set of
experiments, we vary the number of segment databases and
examine the scalability of our approach when distributing
data from N to 2N segment databases. This corresponds to
the data movement when expanding a system by 100%. In
Figure 4 we present results for the redistribution of 480 GB
of customer data from 2 to 4 segment databases and 4 to 8
respectively. Again, we examine the different table types.

For this experiment we first loaded the data using a 2
node cluster and expanded it to 4 nodes. In the second
experiment we loaded the data using a 4 node cluster and
expanded it to 8 nodes. The results are shown in Figure 4.
The graph shows near-linear scaling also for this experiment;
again, for all different storage types.

In addition, the actual data transfer times are in line
with the times expected for loading data from external data
source such as an MPP loader; this enables relatively accu-
rate predictions concerning the total transfer time given a
certain amount of data.

5.2 Query Performance
In our final set of experiments, we examine the impact

of an ongoing expansion on a query workload in terms of
overhead due to misaligned data distributions.

Starting with a cluster with 4× 8 segment databases, we
baseline our experiment by running the full suite of TPC-H
queries. Then over the course of an expansion and full redis-
tribution of all data to 8 × 8 segment databases, we re-run
the TPC-H query suite after several individual redistribu-
tion operations. We distinguish 2 redistribution patterns.
First, complete redistribution of all partitions for each table,
one table at a time, and, second, simultaneous redistribution
of sets of partitions from each table at a time.

1. The order in which we redistribute the tables corre-
sponds to the sizes of the tables beginning with the
fact table.

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

R‐OPT comp0  R‐OPT comp1  R‐OPT comp5  Heap 

2‐>4 (normalized) 

4‐>8 (normalized) 

Figure 4: Performance results on expanding a table
of 480 GB of customer data from 2 to 4, and from 4
to 8 nodes.

In Figure 5 the complete running time for the TPC-
H query suite after each redistribution is shown. As
expected, the running time is noticeably longer imme-
diately after the expansion as all tables are marked to
be distributed randomly (first data point, about 20%
slower). The performance hit is mitigated by the fact
that the expanded system has double the number of
segment hosts that participate in a query which help
with non-trivial queries with numerous joins such as
Query Q9.

After redistributing lineitem, the running time drops
significantly, and is at par with the initial running
time. After the complete redistribution of orders the
running time is already below 60% of the original time.
With every further redistribution of a table, the run-
ning time approaches 50%, as expected for a system
double the size of the original one. For the TPC-H
query set, we expect near-linear speed-up when dou-
bling the system in size as almost all individual queries
scale perfectly.

2. For the second redistribution pattern, we expand 1, 2,
4, 8, 16 partitions from each table between query runs.
This redistribution pattern is more favorable as parti-
tions of different tables that pertain to the same time
ranges are redistributed simultaneously. In this case,
we see a quicker drop in running time early on and sim-
ilar convergence toward the expected 50% in elapsed
time as all tables are redistributed. See Figure 6.

The last experiment quantifies the impact of unfavorable
distributions of tables on a standard query workload. Note
that increasing query complexity mitigates the impact of
randomly distributed partitions as the query may implement
multiple redistribution operations anyways.

In addition, by using query prioritization the actual re-
distribution can be performed in the background to further
reduce the impact on an ongoing query workload once the
most significant tables have been redistributed, see [9].

1257



0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0  20  40  60  80  100 

N
or
m
al
ize

d 
Ex
ec
u7

on
 T
im

e 

Progress of Expansion (%) 

Figure 5: TPC-H query response times during table-
by-table redistribution.

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0  20  40  60  80  100 

N
or
m
al
ize

d 
Ex
ec
u7

on
 T
im

e 

Progress of Expansion (%) 

Figure 6: TPC-H Query response times during si-
multaneous redistribution of all tables.

6. DISCUSSION
Our expansion technique is a careful trade-off accomplish-

ing online expansion on the one hand and using robust and
semantically sound primitives on the other hand. More elab-
orate solutions are conceivable—e.g., distributing data on a
finer level of granularity etc. However, we found customers
and database administrators clearly preferred the model pre-
sented here for its clarity and control: at any point in time,
location of data and system behavior are easily discernible
and comprehensible for administrators and users alike.

6.1 Evaluation against Desiderata
In Section 2, we enumerated the requirements we origi-

nally set out to satisfy. Our approach addresses scalability
requirements for resulting capacity as well as the perfor-
mance goals for the expanded system naturally in that the
final configuration is virtually indistinguishable from a sys-
tem that was built out on a platform of post-expansion size.

Replication and disaster recovery are fully orthogonal to
our approach and at no time different than during regular
operations.

Our approach scores particularly high on transparency
and configurability of the process: all steps are simple to
comprehend for administrators. At any time during the ex-
pansion, the system is always in a configuration that could
also be created manually by distributing tables in a spe-
cific way. As a result, performance expectations can be set
accordingly. As we learned from customer interaction, the
importance of this property cannot be overstated.

6.2 Disk Space Requirements
Since our approach uses a transactional ALTER TABLE com-

mand subsequently on individual tables or partitions, it re-
quires extra disk space proportionately to the largest table
or partition that is redistributed.

For example, when expanding a system from 20 to 40 seg-
ments, the redistribution of a table of size 1 TB requires
50 GB per segment prior to expansion, and 25 GB in the
expanded configuration. Given today’s multi-TB configura-
tions, the extra disk space needed is negligible.

More generally, the required additional space on all seg-
ments is strictly less than the size of the largest unit. In
practice, the largest partitions or tables are in the order of

less than 5% of the total capacity. Accordingly, this ap-
proach will require additional disk space of less than 5%
of the total capacity. The extra capacity needed can be
computed accurately in advance—the utility provides this
information up front—to facilitate planning accordingly.

Since continuous capacity planning is one of the key re-
sponsibilities of every administrator, this behavior, together
with the ability to forecast space requirements accurately,
has been greatly appreciated by operators.

6.3 Lock Contention
ALTER TABLE acquires locks on individual partitions dur-

ing the redistribution process. This affects access to tables
in the same way various common and frequently applied
DDL operations affect access.

In practice, we have found these lock periods not to be
noticeable for users for two reasons:

1. Due to the highly partitioned nature of a data ware-
house database schema, even the largest table or par-
tition is generally small. Hence, the time during which
locks are held for redistribution is short and similar to
that of any of a variety of maintenance operations. In
most cases the time needed to redistribute a partition
is in the order of a few 10’s of seconds.

2. Updates are infrequent in a data warehouse environ-
ment. In particular, fact tables are almost exclusively
loaded in an append-only fashion. Updates to dimen-
sion tables are of low frequency, in general.

6.4 Customer Application Scenario
The ultimate test for such an expansion method remains

the deployment in production systems at customers’ sites.
The expansion mechanism we present in this paper has

been developed in close collaboration with several marquee
customers. Since its first release in Greenplum Database
3.3, the technique was deployed in a number of customer
accounts on production systems—most recently in an ex-
pansion from a 12 to a 18 node cluster. The total size of
the data set was about 260 TB. The customer successfully
leveraged the scheduling facilities of gpexpand to avoid re-
organizing tables during peak hours, though avoiding peak
usage times as precaution rather than actual necessity.

1258



Over the course of several weeks, this customer redis-
tributed all data with no discernible impact on the regu-
lar query workloads and no additional disk space or other
resource requirements.

7. SUMMARY
Expanding a large production data warehouse is a chal-

lenging maintenance operation for any database administra-
tor. In conventional database systems an expansion entails
significant downtime, the operation is of high risk, and a
logistic feat that is poorly supported by tools.

In this paper we state a set of desiderata that need to be
met in order to address the problem satisfactorily in prac-
tice. We presented the online expansion mechanism we im-
plemented in Greenplum Database. The foundation for the
mechanism is a simple, highly robust and transactionally
consistent redistribution technique, fully integrated in the
existing DDL framework and exposed as a variant of the
ALTER TABLE command. We developed a tool based on this
primitive to enable sophisticated scheduling and various con-
trols for the database administrator.

Our experiments show this mechanism scales well, is of
relatively little impact to ongoing workloads, and enables ex-
panding a data warehouse over an extended period of time,
e.g., days or even weeks. Our experience in the field corrob-
orates the in-house experiments, validating our approach.

Acknowledgements
The authors would like to thank all members of Greenplum
Engineering who contributed to this work.

8. REFERENCES
[1] Amazon.com. Amazon Elastic Compute Cloud.

http://aws.amazon.com/ec2.

[2] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and
C. Welton. MAD Skills: New Analysis Practices for

Big Data. In Proc. VLDB, pages 1481–1492, 2009.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In Symp. on
Operating Systems Design and Impl., pages 137–150,
2004.

[4] EMC Data Computing Division. Greenplum Database
Admin Guide. http://gpn.greenplum.com, 2010.

[5] G. DeCandia et al. Dynamo: Amazon’s Highly
Available Key-value Store. In Symp. on Operating
Systems Principles, pages 205–220, 2007.

[6] J.-L. Gailly and M. Adler. Zlib.
http://www.zlib.net, 2010.

[7] D. Kossmann. The State of the Art in Distributed
Query Processing. ACM Computing Surveys,
32:422–469, December 2000.

[8] A. Lakshman and P. Malik. Cassandra A structured
storage system on a P2P Network.
http://on.fb.me/PwGBa, 2008.

[9] S. Narayanan and F. Waas. Dynamic Prioritization of
Database Queries. In Proc. ICDE, pages 1232–1241,
2011.

[10] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In Proc. ACM SIGMOD, pages
1099–1110, 2008.

[11] G. H. Sockut and B. R. Iyer. Online reorganization of
databases. ACM Comput. Surv., 41:14:1–14:136, July
2009.

[12] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. In Proc.
ACM SIGCOMM, pages 17–32, 2001.

[13] F. Waas. Beyond Conventional Data Warehousing -
Massively Parallel Data Processing with Greenplum
Database. In Proc. BIRTE, 2008.

1259


