
Bridging Two Worlds with RICE

Integrating R into the SAP In-Memory Computing Engine

Philipp Große Wolfgang Lehner Thomas Weichert Franz Färber Wen-Syan Li

SAP AG; Dietmar-Hopp-Allee 16; Walldorf, Germany
eMail: {philipp.grosse, wolfgang.lehner, thomas.weichert, franz.faerber, wen-syan.li}@sap.com

ABSTRACT

The growing need to use large amounts of data as the ba-
sis for sophisticated business analysis conflicts with the cur-
rent capabilities of statistical software systems as well as the
functions provided by most modern databases.

We developed two novel approaches towards a solution
for this basic conflict, based on the widely-used statistical
software package R and the SAP In-Memory Computing
Engine (IMCE).

We thereby propose an alternative data exchange mech-
anism with R. Instead of using standard SQL interfaces
like JDBC or ODBC we introduced SQL-SHM, a shared
memory-based data exchange to incorporate R’s vertical
data structure. Furthermore, we extended this approach
to R-Op introducing R scripts equivalent to native database
operations like join or aggregation within the execution plans.

With the calculation engine, IMCE provides a framework
to model logical execution plans and thereby offers a conve-
nient way to use the full functionality of R via SQL interface.
Moreover, this enables us to run R scripts in parallel without
the necessity of extending the R interpreter itself.

1. INTRODUCTION
Data found in today’s companies often ranges from terabytes
to petabytes in size. On one hand companies gather informa-
tion based on an extensive data set, such as the commercial
behavior of their customers (e.g. based on loyalty cards). On
the other hand they have a growing need to use this data
as a basis for business analysis. The knowledge hidden in
this enormous amount of data is often difficult to explore.
One of the reasons for this is the fact that most database
systems provide only very limited advanced analytics func-
tionality compared to the comprehensive environment that
statistical software packages offer [4].

One of those statistical software packages is the R frame-
work [21]. It is a popular open-source initiative involving
an international ecosystem of academics, statisticians, and
data miners. With over 2,000 add-on packages, it provides

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

roughly the equivalent to the ”big two” commercial packages
[15]: SAS and SPSS. It can therefore be used for a variety
of different statistical methods, such as linear and nonlinear
models, statistical tests, time series analyses, classification
and clustering, providing a rich background for advanced
analytics.
However most statistical software systems are not designed

to handle mass data. In particular, data is usually not stored
in these systems, but rather in a database, and therefore,
the data has to be propagated at least once. In R, this is
normally done by using a standard SQL interface such as
JDBC/ODBC, or by using a CSV import. In many busi-
ness use cases, the overhead for transferring the data is un-
acceptable, especially, if the statistical software system, like
the default R runtime environment, has to wait until all data
is transferred before the actual data processing can start.
Modern database systems on the other hand, provide some

statistical methods as predefined functions callable via SQL
or similar interfaces, but the functionality provided is usu-
ally very limited. The major difference is that statisti-
cal software packages, like R, do not only provide a num-
ber of such predefined functions, but they come with an
own language and runtime environment. This fact makes it
very easy to introduce new algorithms specifically designed
to meet custom-tailored demands, rather than providing a
generic set of callable functions.

Requirements. The number of specific algorithms using
the R language in both industry and in the scientific en-
vironment is enormous. We therefore derive the following
requirements for a solution of the basic conflict between the
need for sophisticated analytics and the enormous data vol-
umes involved. The solution should:

• Leverage the parallelization and efficient data pro-
cessing capabilities provided by the database system.

• Leverage the expressiveness of the R language and al-
low programming.

• Leverage the reuse of already existing functionality

in R and therefore prevent analysts from reinventing
the wheel.

• Avoid data transportation between the database
system and the statistical software package, or at least
reduce communication overhead.

To the best of our knowledge there is no solution that can
fully satisfy all of those requirements. Nevertheless, the goal
has to be to get as close as possible.

1307



R-Script

SQL
Script/Query

Classic R
(with RODBC/RJDBC)

SQL

MAD

R-Script

pR

R-Runtime

SQL

Database

SQL

R

R-Op

R

R

R R

R-Script

Jaql

R

Ricardo

Jaql

R

R R R

implicit

parallel in R

explicit

parallel in DB

implicit

parallel in DB

explicit

parallel in R

sequential

in R

single DB

instance

R-Script

SQL

SQL-SHM
(with RODBC/RJDBC)

SQL

SHM

Figure 1: Comparison of different possible approaches and their parallelization.

Paper Organization. In this paper, we are going to out-
line different approaches towards a transparent solution.
Specifically, we will first discuss a variety of existing ap-
proaches for advanced analytics on large data sets in Sec-
tion 2. Followed by Section 3 where we will give a gen-
eral overview over the SAP In-Memory Computing Engine
(IMCE) [8, 16], on which our R integration approach is
based. In this context, we argue that the growing need for
advanced analytics on mass data can be seen as one of the re-
quirements that a modern database system should take into
account. In Subsections 4.1 and 4.2, we are going to out-
line our two novel approaches (SQL-SHM and R-Op) and in
Subsection 4.3 we will discuss a use case for the integration
in more detail. Finally, the evaluations follow in Section 5.

2. RELATED WORK
Given the problem that ”statistical software is geared to-

wards deep analytics, but does not scale to large datasets,

whereas DMSs scale to large datasets, but have limited an-

alytical functionality.” [5], we identified three general ap-
proaches to tackle this deficit. In the following we will dis-
cuss each of them aligned with proposals found in the litera-
ture. Figure 1 illustrates some of them and their relationship
to parallelization and communication between the systems.

1.) Enhance the statistical software environment for
mass data support

The first method is to extend the statistical software pack-
age in a way that the handling of large amounts of data
is improved [17]. For example, there are a number of ap-
proaches aiming to parallelize R [19, 10]. Many of them re-
quire rewriting and adaptation of existing scripts and func-
tions, but there are also two approaches that are trying to
adapt the R environment in a transparent manner. The
first, called pR [18], focuses on teaching the R environment

to execute loops and function calls in parallel. It uses a
mixture of dynamic dependency analysis to identify tasks
and loops that can be parallelized, and incremental analy-
sis to delay the processing of conditional branches as well
as dynamic loop bounds until the related variables are eval-
uated. Instead of parallelizing the entire R script at the
granularity of individual statements, the authors adopt the
master-worker paradigm in such a way that only expensive
jobs (such as function calls and loops) are passed to work-
ers, whereas simple statements and conditional statements
are executed locally by the master. As shown in Figure 1,
pR is the only approach offering transparent and thereby im-
plicit parallelization of R scripts. However, it lacks database
support.
Another prominent attempt is called RIOT [24, 23]. It

focuses on avoiding intermediate results and making R more
I/O efficient by introducing a new expression algebra to R.
The basic idea is to use an expression DAG on single R
operations and to use it to do database-style optimizations
with a series of transformation rules.
Both approaches show very promising results in terms of

performance improvements. However, there is—as already
discussed—a very general problem concerning any solution
that focuses solely on the statistical software side: the need
for data transfer from the database to the statistical software
system and potentially vice versa.

2.) Enrich the database systems with advanced analyt-
ics functionality

Instead of moving data to the processing-centric R infras-
tructure, another possible approach is to extend the func-
tionality of the database system. In its basic form, we can
distinguish between three possible ways. The first and most
extreme approach is to specifically redesign the database
system to meet the specific requirements of statistical com-

1308



puting, like in SciDB [20]. Obviously, this approach goes far
beyond enriching an existing database system.

The second path is the deep integration of individual data-
mining and machine-learning algorithms into the code base
of the database system itself (e.g. Legler et al. [14]). This
kind of integration clearly has the advantage of being able
to use internal components inside the database system and
therefore, to take maximum advantage of the physical data
layout and/or parallel execution capabilities. The downside
of this deep integration is that it can usually only be done
for single algorithms one by one, because it is a very labor-
intensive task. Furthermore, the data analyst is bound to
the algorithms and parameters that were provided by the
database developers; the flexibility to extend or modify parts
of the algorithm is therefore very limited.

The third possible path is to use a database query lan-
guage—such as SQL—to express linear algebra functions or
even higher-level algorithms as proposed in MAD [4], and
therefore trying to get a database system to act like a sta-
tistical software environment. This approach clearly has the
advantage of being flexible: the analyst is able to develop
algorithms independently on top of the database and never-
theless is able to profit from parallel database execution, as
depicted in Figure 1. The general problem with this query
approach is the fact that SQL, or any other database query
language, is simply not designed to express statistical com-
putations. SQL follows a declarative logic, whereas statisti-
cal computing requires imperative and functional program-
ming logic. As stated in RIOT [23] ”SQL is too low-level

for representing many linear algebra operations; optimizing

at this level is much less effective than if we know the high-

level semantics of these operations”.

3.) Improve cooperation between the database and the
statistical software system

An example of the third possible approach is given by Ri-
cardo [5], where it is argued that the two systems (DBMS
and statistical software package) should be kept separate
and focus on what they are best at. Following the conclu-
sions from Chu et al. [3] the authors argue that many data-
mining and machine-learning approaches can be split into
two parts: a smaller data part where the actual semantic
is executed and therefore needs statistical software support,
and a second part, which operates on mass data and should
be handled in a database system. The authors therefore pro-
pose that the analysts should do an extensive study of their
algorithms and corresponding implementations to identify
those different parts within their given problem and to split
their logic in a MapReduce way [6]. The part concerning
the mass data shall be expressed as a Jaql query, which can
be executed by Hadoop in parallel. The benefit of this ap-
proach, as illustrated in Figure 1, is that after extensive in-
vestigation of the problem, the MapReduce paradigm helps
to fully utilize the parallel Hadoop framework. Even though
this idea is very intriguing, the basic assumption that only a
few parameters have to be transferred to the statistical soft-
ware environment does not hold true in general. In many
cases—e.g. if a trained model with linear complexity to eval-
uate is to be applied on a big dataset for classification—the
amount of data that has to be passed from the database
system to the statistical software side is not to be neglected,
which implies that the overall execution time is strongly in-
fluenced by it. Even though most of the implementation

details of Ricardo can be hidden from end users, a sophis-
ticated understanding of Jaql as well as of Hadoop and the
MapReduce paradigm is mandatory in order to refactor al-
gorithms this way.

None of the discussed approaches is fully satisfying. In par-
ticular, the combination of avoiding data transfer on the
one hand and having a transparent solution for a parallel
execution on the other hand is never fulfilled.

3. THE SAP IN-MEMORY COMPUTING

ENGINE
In order to outline the general idea of bridging the gap be-
tween the data management layer on the one side and so-
phisticated statistical software packages on the other side,
we highlight the key features of SAP’s new In-Memory Com-
puting Engine (IMCE) [8, 16]—also named the SAP HANA
database. The general goal of IMCE is to provide a main-
memory centric data management platform to support pure
SQL for classical applications as well as a specific interaction
model between SAP applications and the database system.
Moreover, the system is designed to provide full transac-
tional behavior in order to support interactive business ap-
plications. Finally, IMCE is designed with special emphasis
on parallelization ranging from thread and core level up to
highly parallel setups over multiple machines.
Figure 2 provides an overview of the general IMCE ar-

chitecture. As already mentioned, the IMCE operates in a
main-memory centric fashion, i.e. most of the data set re-
sides in main memory in a highly compressed format follow-
ing a huge variety of different compression schemes. Data
objects like regular tables may either live in a column store
or can be saved in a row store. The column store is typically
used to hold large tables for OLAP query access patterns,
i.e. scans and aggregation requests. Modifications of the
database will be buffered in a delta tree and asynchronously
propagated into a new compressed format (merge step). The
row store typically is well suited for point access as well as
database objects with a high update load, because the ex-
plicit merge step is no longer necessary. Obviously, data can
be moved between the different stores to allow query expres-
sions with database tables residing in both stores. The inter-
nal optimizer decides when to move which pieces of (inter-
mediate) data between the engines to perform the individual
database operators within the most suitable engine. The fi-
nal query plan will then be executed by an engine-agnostic
distributed execution framework following an abstract data
flow model (see below for details). For the IMCE product,
the specific engines for row and column-oriented data man-
agement are plugged into the framework – other engines are
used for other SAP products, e.g. Enterprise Search.
The different engines are usually located at multiple nodes

within one single IMCE landscape sharing a common per-
sistence layer. Unlike classical database systems, all data
structures within the column or row store are optimized to
be cache aligned, not to be block aligned for optimal use of
the classical disk environments. The persistence layer is only
used to create consistent snapshots for backup and subse-
quently allow recovery in the case of a system restart after an
explicit shutdown or failure. Every node holds a local trans-
action manager and a local metadata repository. Both com-
ponents synchronize their state with their global counter-

1309



Figure 2: SAP’s In-Memory Computing Engine Architecture.

parts. A data lifecycle manager orchestrates the state of dif-
ferent database objects. For example, database objects may
be transparently moved from column to row store or vice
versa. Moreover, the lifecycle manager may—instrumented
by the application—move database objects (tables, parti-
tions, etc.) from main memory to disk. The important
difference in comparison to classical database architecture
is the fact that the movement is driven by application se-
mantics compared to pure reference behavior in buffer pools.
Furthermore, the units of movement are much more coarse-
grained compared to small pages in block-oriented database
architectures.

From an application perspective, the IMCE provides mul-
tiple interfaces, offered by a session manager controlling the
individual connections between the database layer and the
application layer. IMCE provides a classical SQL inter-
face allowing standard applications to exploit the underly-
ing data management functionality. At the same time, the
IMCE provides a more comprehensive interface using the
calculation engine component to execute data flow graphs.
Data flow graphs (calcModels) reflect an internal abstrac-
tion for multiple interfaces. For example, classical procedu-
ral SQL extensions are implemented using this technology
by compiling SQL extensions to a proprietary intermediate
language (script compiler); this code is then further com-
piled within the calculation engine to the calculation engine
primitives. Following this route, multiple domain-specific
languages can be supported as long as a compiler generates
the IMCE-specific intermediate language.

As already mentioned, the primitives of a calcModel con-
stitute a logical execution plan consisting of an acyclic data
flow graph with nodes representing operators (plan opera-
tions) and edges reflecting the data flow (plan data). First
of all, operators represent classical operations to implement

the regular operations of a relational model. In addition,
the IMCE supports a huge variety of special operators for
directly implementing application-specific (i.e. SAP-specific)
components. For example currency conversion from a busi-
ness perspective is a highly complicated process and directly
supported as an application-specific operator. In order to
optimally support the SAP business applications, the IMCE
provides a predefined set of natively implemented operators.
Finally, the IMCE provides a set of non-database language
runtimes as operators. For example, Python or JaveScript
snippets can be directly plugged into predefined data flow
graphs and obviously combined with all other operators pro-
vided by the calculation engine. As outlined in the following
sections, we exploit the techniques of logical execution plans
in combination with generic operators for external language
runtimes as the backbone for our R integration.
A specific calcModel or logical execution plan—once sub-

mitted to IMCE in an SQL-style syntax—can be accessed in
the same way as a database view, making the calcModel a
kind of parameterized view. A query consuming a calcModel
invokes the database plan execution to process a plan that
is derived from the logical dataflow description provided by
the calcModel and the individual tables and attributes pro-
vided by the query. If the calcModel contains independent
data flow paths, the derived execution plan implicitly con-
tains inter-operator parallel execution.

4. THE R INTEGRATION
Starting from the observation that a (fast) data exchange
is mandatory for a database system to take advantage of
advanced analytics functionality provided by R, our first
step was to focus on the interface between R and the IMCE
database system. Experimenting with the different inter-
faces supported by R, we quickly realized that the implemen-

1310



a b c

1 „abc“ 1.5

2 „xyz“ 2.5

3 „1.2“ 3.5

L1
1

3

2

L2
3

8

4

L3

9

a
2

b
4

5

6

7

c

1

2

3

1.5

2.5

3.5

8

9
b1

5

b2
6

b3
7

„abc“

„xyz“

„1.2“

L1
1

L2
3

a
2

1 

2 

3

L3

b
4

c

1.5 

2.5 

3.5

8

9
b1

5

b2
6

b3
7

„abc“

„xyz“

„1.2“

database address space shared memory address space R address space

R dataframeintermediate data structure with shmIDscolumn table

write data

by RClient

access data

using RICE

Figure 3: R-like data structure used for data transfer between IMCE and R.

tations provided by external packages to interact with stan-
dard database interfaces (like JDBC or ODBC) are not par-
ticularly tuned for large datasets. By investigating the rea-
sons we identified a general—and therefore conceptional—
problem of any standard SQL interface used for data ex-
change from within the R environment.

The problem is that R uses a vector based—vertical—data
structure [2], whereas all standard SQL interfaces provide
query results as tuple based—horizontal—result sets. Pro-
viding query results in this way usually makes perfect sense,
since the horizontal data organization allows to stream the
dataset in chunks. However, in the case of an applica-
tion with vertical data structures, this streaming mechanism
does not work, because the query result has to be fully1

transferred into an intermediate buffer before the applica-
tion can start to create the internal vertical data structure.
In the case of R, the corresponding data structure for a ta-
ble is the dataframe, which can be seen as a list of vertical
vectors. Conceptionally, the R dataframe is similar to what
the database community calls a column table.

Having the data already stored in a column store, like in
the SAP In-Memory Computing Engine, it does not seem
to be reasonable to use a tuple-based transfer mechanism to
transfer the data from column table to ”column table”.

4.1 The SQL-shortcut
To avoid the previously discussed overhead of standard SQL
interfaces we introduce a shared memory (SHM) based data
exchange mechanism between R and the SAP In-Memory
Computing Engine (IMCE). The general idea, as shown in
Figure 4, is to retrieve the data from the IMCE by sending
a regular SQL command via a standard database interface
(¬), but instead of retrieving the result via this interface, we
only return a reference to a shared memory (®). Meanwhile,
we place the data into shared memory () in a format that
can easily be used on the R side to construct the dataframe
directly without having to copy the data again into its ad-
dress space (¯).

The SQL shared memory solution (SQL-SHM) consists
mainly of four parts. The first part is a built-in database
function, which allows us to bypass the normal result set

1An R vector is created with a fixed size, which can only be
known once all tuples of the given column are transferred.

return mechanism. This function is called from R by using
the RJDBC or the RODBC package with a regular SQL
command passed to the SQL interface of the database. The
second part is the so-called RClient, which is particularly re-
sponsible for the transformation of the column table query
result into the intermediate data structure. Together with
the third component, the RClient writes the intermediate
data structure into the shared memory. The third compo-
nent is the Shared Memory Manager (SHMManager), which
is responsible for allocating and freeing shared memory. The
SHM Manager is used to allocate big shared memory seg-
ments in advance and to orchestrate the nested shared mem-
ory blocks, which are required to store the intermediate R-
like data structure. The SHM Manager is also used to re-
trieve the intermediate data structure on the R side and
is therefore also part of the fourth component. The fourth
component is the external R package RICE. This package
extends the R environment in a way that allows us to regis-
ter a dataframe in the R environment, even though the data
of the dataframe is in fact still situated in shared memory.

R Database

RJDBC

RICE
SHM

SQL Interface

RClient

SHM

Manager

�

SQL

SHM ID

�

write data

�

SHM

Manager

access

�

Figure 4: SQL-SHM architecture.

Figure 3 illustrates the intermediate R-like data structure
we use to transfer a column table from IMCE to a dataframe
in the R environment. The figure shows three different data
structure representations of a column table. The first is a
column table on the database side, represented as a single
linked list of columns. The RClient transforms this data
structure into the second representation shown in Figure 3.
The intermediate data structure located in the shared mem-
ory address space is derived from the target data structure
needed on the R side to represent a dataframe. Each block
depicts a segment placed in shared memory. Instead of the
pointers used on the R side, this intermediate data struc-
ture contains shared memory IDs (depicted in Figure 3 as

1311



numbers), which will later be replaced on the R side during
the registering process of the dataframe. The called built-in
database function therefore only needs to return a reference
to the first element—in our example in Figure 3, this would
be a reference to the SHM segment L1—in order for the
RICE package to be able to register the whole dataframe
object in the R environment. During this process the SHM
Manager on the R side is needed to retrieve the shared mem-
ory segments associated with the respective shmIDs.

The fact that our intermediate data structure is very close
to the target R data structure allows us to avoid a data copy
on the R side. However, the R data structure is not specifi-
cally tuned for data transportation. While there is no issue
with integer or double columns, which fit as a whole into
a single shared memory segment, this is different for string
columns. Due to the variable byte size of strings, R repre-
sents a character vector (string column) as a list of point-
ers to the respective strings. For our intermediate shared
memory data structure this implies that a string column of
the length 3 allocates 4 shared memory segments, as seen
in Figure 3. Therefore, the SHM Manager organizes string
columns in nested shared memory blocks. To reduce the
number of shared memory segments needed to a minimum
we introduced a dictionary mechanism.

The SQL-SHM solution is designed in a way that no mod-
ifications of the R kernel itself are needed—and all of the
shared memory functionality is introduced by our external
R package RICE wrapping the functionality as ordinary R
functions, like getDataFrame. The getDataFrame function,
which triggers the described data exchange, takes three ar-
guments:

1. An SQL connection, which has to be created using either
the RJDBC or the RODBC package.

2. An SQL select statement.

3. The target name of the newly created dataframe2.

Since (for technical reasons) the R objects located in shared
memory have to be hidden from the normal R garbage col-
lector, it is necessary to explicitly free them from shared
memory, if they are not needed anymore. For this purpose,
we provide a function called cleanupObject. If the function
call is omitted, the shared memory associated with the spe-
cific dataframe will only be freed once the R runtime has
been stopped.

Analogous to the R function getDataFrame, we also pro-
vide a function called writeDataFrame, which triggers the
backward data transportation from the R environment to
the database. In this case, the RICE package writes the
dataframe to shared memory and the RClient takes over
from there to store the data on the database side.

Script 1 shows an example R script using those SQL-SHM
functions to retrieve a table from IMCE. In the first part of
the script (lines 1–3) the R external packages RICE, RJDBC

and kernlab are loaded into the R environment. For the
data transfer only the first two packages are needed, whereas
the third provides additional support vector machine (SVM)
functionality. The second part of the R script (lines 4–9)
sets up the JDBC connection using the functions provided
by the RJDBC package. In the third part of the script
(lines 10–13), this connection is used to retrieve a dataframe
using JDBC and our SQL-SHM solution. Both jdbcTab

2The getDataFrame function itself is void to circumvent an
additional copy implied by R’s copy by value.

1. library(RICE)
2. library(RJDBC)
3. library(kernlab)

4. ## setup JDBC connection ’ch’
5. drvName = "com.imce.sql.Driver"
6. drvPath = "/usr/sap/NDB/HDB01/exe/imprsjdbc.jar"
7. jdbcDriver = JDBC(drvName, drvPath, "‘")
8. con = "jdbc:imce:localhost:30115"
9. ch = dbConnect(jdbcDriver, con, "userXY", "pw123")

10. ## get table via JDBC and via SQL-SHM
11. sql = "SELECT CLASS, ATT1, ATT2, ATT3 FROM TABLE"
12. jdbcTab = dbGetQuery(ch, sql) ## use RJDBC
13. getDataFrame(ch, sql, "shmTab") ## use SQL-SHM

14. ## use dataframe ’shmTab’
15. ## for support vector classification
16. model = ksvm(CLASS ~ ., shmTab[1:100,])
17. pm = predict(model, shmTab[101:200,-1])
18. tab = table(pm, shmTab[101:200,1])
19. sum(diag(tab))/sum(tab)

20. ## free the shared memory from ’shmTab’ dataframe
21. cleanupObject("shmTab")

Script 1: R script using SQL-SHM solution

and shmTab contain the same contents and only differ in
the way they were received. The fourth part (lines 14–19)
finally uses the retrieved dataframe for further calculations.
In more detail, line 16 calls the kernlab function ksvm to
train a support vector machine model based on the first 100
tuples of the shmTab dataframe. In line 17 this SVM model
is used to classify the second 100 tuples, which will then be
evaluated in line 18 and printed in line 19. In the last line
of the R script the shmTab is freed from shared memory.

4.2 R as a database operator
Although our first approach, introducing shared memory
communication trigged via SQL interface (SQL-SHM), did
bridge the gap between the advanced analytic framework
R and the database system IMCE, it is not yet an integra-
tion of R into the database. In particular, if the result of the
advanced analytic functionality is to be used as basis for fur-
ther classical database operations, the SQL-SHM approach
is not sufficient, since the overall control flow is situated on
the R side.
In this section we are going to discuss our second ap-

proach, integrating R as a database operation (R-Op). The
basic idea of the R-Op approach is to execute R scripts,
equivalent to native database operations like joins or aggre-
gations, and thereby including the R runtime as part of the
database execution plans.
To realize this idea we take advantage of the calculation

engine of IMCE and its capability to define data flow graphs
(calcModels) describing logical database execution plans. A
node in this data flow graph can be, as already introduced in
Section 3, any native database operation, but also a custom
operation. One of those custom operations is our newly cre-
ated R operator. Like any other operator of the calcModel,
the R operator consumes a number of input objects (e.g.
intermediate tables retrieved from previously computed op-
erations or other data sources like a column or row store
table) and returns at least one result object. In contrast to
a native database operation, a custom operator is not re-
stricted to a static implementation and can be adjusted for
each node independently. In the case of the R operator this
is done by the R script, which is passed as a string argu-
ment and embedded by the operator. Figure 5(a) shows the

1312



calcModel

R-Op

Data

source

(a) sequentially processed R-Op

calcModel

R-Op

Data

source

R-Op R-Op

Filter

Union

Filter Filter

(b) parallel R-Op execution

calcModel

R-Op

Data

source

R-Op R-Op

Split

Op

Merge

Op

...

...

...

(c) using split-merge logic to
parallelize R-Op execution

Figure 5: Examples of calcModels containing R-operators.

minimal calcModel containing an R operator. It consists of
a data source node referring to a table and the R-operator
introducing the R script, which will be executed based on
the data provided by the data source node.

Figure 6 illustrates the internal mechanism used to em-
bed R during the calcModel plan execution. Whenever the
plan execution reaches an R node, a separate R runtime
is invoked (¬ and ) using the Rserve package [22]. The
input tables of the given node are then passed to the R pro-
cess using a shared memory transfer mechanism (® and °),
similar to the one we discussed in Subsection 4.1. The R
script is passed via TCP/IP (¯) again taking advantage of
the functionality provided by the Rserve package. After the
R runtime has completed the script execution, the resulting
dataframe(s) is again placed into shared memory (±), and
the IMCE takes care of the internal data structure conver-
sion (²). Since the internal column-oriented data structure
used within IMCE for intermediate results is very similar
to the vector oriented R dataframe, this can be done with
minimal effort.

RDatabase

RICE

SHM

RClient

SHM

Manager
SHM

Manager

Rserve
TCP/IP

�

fork R process

�

write data

�

pass R script

�

access data

�

write data

�

access data

�

Figure 6: R-Op architecture.

One of the key benefits of having the overall control flow
situated on the database side is the fact that the database
execution plans are inherently parallel and therefore mul-
tiple R runtimes can be trigged to run in parallel without
having to worry about parallel execution within a single run-
time. For instance, if the included R script also processes
data independently on subsets, we can split the data accord-
ingly (see Figure 5(b)) and execute the R script for each
subset in parallel without having to change a single line of
code in the R script itself. Nevertheless, this kind of paral-

lelization requires the calcModel to be designed accordingly.
This implies that even though arbitrary R scripts can be
included transparently, the surrounding calcModel needs to
be modeled thoughtfully if the integration is to fully utilize
the capabilities of the parallelization framework.
Instead of explicitly splitting the data into subsets by us-

ing different filter operations, like in Figure 5(b), it is also
possible to use the more general and optimized split and
merge operation, as shown in Figure 5(c). The split op-
erator is a custom operation, which is specifically designed
to divide data in a way that subsequent nodes can be ex-
ecuted in parallel. Respectively, the merge operator is a
custom operator, which is designed to combine the results
from operations previously executed in parallel. In a simple
configuration the split operator is equivalent to a number
of filters and the merge operation is equivalent to a number
of union or join operations, resulting in an execution plan
similar to Figure 5(b).
However, there are also other split-merge pairs possible,

for instance a split-merge pair can be used to prepare and
evaluate differently configured R script executions processed
in parallel. More concretely, the R-operator could be used
to train a number of different classification models using
different settings defined by the split operator. The merge
operator could be used to evaluate the different classification
models choosing the one with the highest accuracy. This ex-
tended split-merge logic is therefore not restricted to data
partitioning and allows the calcModel to be used for a num-
ber of possible world or what-if analysis, similar to the ideas
discussed in MCDB [11].
Another closely-related advantage is the fact that inte-

grating R into the database allows any application on top of
the database to directly benefit from it. This also includes
combining the R-Op and SQL-SHM approach in a way that
an external R (application on top of the database) is used to
query (with the getDataFrame function) a calcModel includ-
ing further R runtime executions. This combined approach
leverages the parallelization framework provided by the cal-
culation engine including multiple R-Ops with the control
flow on the R side.

1313



4.3 Sample use case
With the previously described R integration in place, it is
possible for the database user to take full advantage of the
capabilities provided by R. This includes a broad spectrum
of advanced analytic functions ready to use as well as the
ability to adjust the algorithms and to configure parameters
for even the most specialized demands.

To illustrate the potential provided by our R integration
we are going to demonstrate how R scripts can be com-
bined with the parallelization framework of IMCE in order
to implement a highly sophisticated classification algorithm.
Before we start to go into the details of the algorithm—the
Cascade Support Vector Machine—and the implementation
on IMCE, we will first introduce the classical Support Vector
Machine (SVM) itself.

4.3.1 Support Vector Machines

The Support Vector Machine is a frequently applied clas-
sification algorithm. The goal of classification is to train
a model which can be used to distinguish different groups
within the data, known as classes. The conceptual idea
behind the SVM is to find hyperplanes between the data
points dividing them into such classes. The SVM algorithm
transforms the data points into a higher dimensional space
where such hyperplanes can be found. These hyperplanes
are spanned by a small subset of the training data, the so-
called support vectors, which are computed by solving an
optimization problem with a quadratic target function and
linear constraints.

Since R already provides a wide variety of SVM imple-
mentations [12], using this functionality as part of an IMCE
execution is as simple as passing an SQL query including a
few lines of R code (as shown in Script 2).

1. ## definition of the input and output data types
2. CREATE TABLE TYPE SVM_IN (CLASS INTEGER, ...);
3. CREATE TABLE TYPE SVM_OUT (CLASS INTEGER, ...);

4. ## Creates an SQL-script function including the R script
5. ## for the classification task. The support vectors
6. ## are returned as dataframe/table.
7. ## ’input1’ is the reference name of the input table
8. ## ’SVM_IN’ describes the schema of the input table
9. ## ’result’ is the reference name of the returned table

10. ## ’SVM_OUT’ is expected schema of the returned table
11. CREATE FUNCTION svm(IN input1 SVM_IN, OUT result SVM_OUT)
12. LANGUAGE RLANG AS ’’’
13. ## loading SVM functionality
14. library(kernlab)

15. ## use dataframe ’input1’
16. ## for support vector classification
17. model = ksvm(CLASS ~ ., input1)
18. ## retrieve support vectors
19. sv = xmatrix(model)[[1]]

20. ## return support vectors as dataframe ’result’
21. result = as.data.frame(sv)
22. ’’’;

23. ## execute SQL-script function and retrieve result
24. CALLS svm(inputTab, resultTab);
25. SELECT * FROM resultTab;

Script 2: SQL script using R for SVM classification

The code shows the SQL-style syntax used by IMCE to
set up a calcModel with an R node. In the first block (lines
1–3), two table types are created representing the schema
of the actual input and result tables. They are used in the
next line (line 11) to set up the calcModel node defining the

function interface. The directive LANGUAGE RLANG (line 12)
defines the type of the script passed to the node. The code
is similar to what we discussed in Script 1 in Subsection
4.1: it computes an SVM model (lines 13–17) and sets the
support vectors as the result to the return variable (lines
18–21). After defining the calcModel, it is called via the
CALLS command (line 24): inputTab, containing the training
dataset, and resultTab are physical database tables. After
running the calcModel, the final result is obtained by the
SELECT statement on the resultTab (line 25).
This example illustrates a straightforward way to lever-

age the SVM implementation provided by R. Although this
example already takes full advantage of the R integration
itself, it does not use the full potential of IMCE, because
the computations will only be done sequentially, similar to
Figure 5(a).

4.3.2 Cascade Support Vector Machines

The major problem of the SVM algorithm is that it underlies
at least quadratic space and time requirements [1] in regard
to its input data. In general, splitting an optimization prob-
lem (like the SVM), solving the parts independently and
merging the results normally does not lead to the global op-
timum. Therefore, additional actions must be considered to
omit the limitations of the conventional SVM. One approach
to parallelize the algorithm was proposed by Graf et al. [9]:
the Cascade Support Vector Machine.

calcModel

R-Op

R-Op R-Op

R-Op R-Op R-Op R-Op

Data

source

2

Data

source

3

Data

source

1

Data

source

4

Data

source

5

3
rd

Layer

2
nd

Layer

1
st

Layer

Procedural Loop Logic

Figure 7: SVM cascade using calcModel with R.

In detail, the training data is split up into several (dis-
joint) subsets and the SVM algorithm runs separately on
each of them. Even though it is not expected that the par-
tial results are equal to the global optimum, it can be as-
sumed that at least some of the support vectors of the whole
problem are found in this way (if there is not a serious bias
in the initial subsets). By combining the support vectors of
different subsets and applying the SVM algorithm again, a
good approximation to the global optimum can be found.
This is based on the idea that “interior” points of the sub-
sets are likely to be “interior” points of the whole set. The

1314



RJDBC RODBC CSV SQL-SHM

0e+00 2e+07 4e+07 6e+07 8e+07 1e+08

0
5

0
1

0
0

1
5

0
2

0
0

10 integer columns

row_count

s
e

c
o

n
d

s

0e+00 2e+07 4e+07 6e+07 8e+07 1e+08

0
5

0
1

0
0

1
5

0
2

0
0

10 double columns

row_count

s
e

c
o

n
d

s

0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

0
5

0
1

0
0

1
5

0
2

0
0

10 varchar(10) columns

row_count

s
e

c
o

n
d

s

0e+00 1e+07 2e+07 3e+07 4e+07 5e+07

0
5

0
1

0
0

1
5

0
2

0
0

50 integer columns

row_count

s
e

c
o

n
d

s

0e+00 1e+07 2e+07 3e+07 4e+07 5e+07

0
5

0
1

0
0

1
5

0
2

0
0

50 double columns

row_count

s
e

c
o

n
d

s

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06

0
5

0
1

0
0

1
5

0
2

0
0

50 varchar(10) columns

row_count

s
e

c
o

n
d

s

Figure 8: R interface performance for different data types and tables sizes.

Cascade SVM merges the support vectors two-by-two in the
style of a binary tree into one single set of support vectors.

In many cases, this approach will return already good re-
sults after the first run through the cascade. However, if
the global optimum has to be reached, the process must
be iterated. For this reason, the result of the first run is
fed back into the first layer where it is used for classifica-
tion of each original training subset (with linear complex-
ity). All incorrectly-classified vectors are united with the
support vectors and the algorithm is executed repeatedly
as described above. The authors [9] showed that this ap-
proach often converges into the global optimum within just
2–5 iterations.

Due to the quadratic behavior of the SVM, the time re-
quirements are decreased enormously: in the first layer the
complexity is reduced by a factor of k2 with k number of
nodes, since those nodes can be executed in parallel. In all
subsequent layers the nodes only have to handle the result-
ing support vectors, usually consisting of small subsets of
the whole training data, thus the complexity is also quite
low.

The Cascade Support Vector Machine can formally be de-
scribed as a data flow plan, and therefore as a calcModel. A
schematic view of this model is shown in Figure 7.

Here, a database table containing the training data is split
initially by a series of data sources (1–4) serving as input for
the first layer of R-nodes of the cascade. The R operators
take them as inputs and compute the support vectors. Each
two results are united and passed to the next layer where
the SVM algorithm is applied again. This process is done
in every layer until the topmost node is reached.

The final set of support vectors is stored by an external
logic in the database, accessible through data source node

5. This logic is necessary, since the Cascade SVM requires
iterations and calcModels do not allow loops yet. When the
cascade is called again and the R-operators in the first layer
find a non-empty data source 5 (i.e. the support vectors
are fed back into the cascade), their training data subset is
classified and checked against the class labels. All vectors
that are predicted incorrectly are combined with the support
vectors and sent to the next layer where the Cascade SVM
algorithm continues as described above.
The external logic calling the cascade terminates as soon

as a user-defined criterion is fulfilled, e.g. a fixed number of
iterations or a steady set of support vectors is found.
Even though the Cascade Support Vector Machine is a

sophisticated algorithm, we had been able to implement it
with little effort using our R-Op approach.

5. EVALUATION
In the following section we discuss our evaluations for both
the SQL-SHM as well as the R-Op approach. The first part
of the evaluation focuses on the shared memory performance
from the perspective of our SQL-SHM solution, whereas the
second part discusses the performance achieved in the Cas-
caded Support Vector Machine use case. The hardware used
for our evaluation is an Intel(R) Xeon(R) X7560 (4 sockets)
with 32 cores 2.27GHz using hyper-threading and 256 GB
of main memory. We used R 2.11.1.

5.1 SQL-SHM performance
To evaluate the performance improvement achieved with our
SQL-SHM solution, we measured the query time on tables
of various sizes and with different datatypes. The datatypes
we used were integer, double, and varchar(10), which can be
mapped to the three native R datatypes integer (numeric),

1315



0
5

0
0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

Training times of an SVM model

number of parallel processes in the first layer

ti
m

e
in

s
e

c
o

n
d

s

1 4 8 16 32

Single run

Fully converged

(a) Training time

0
5

0
1

0
0

1
5

0
2

0
0

Classification times using an SVM model

number of parallel processes

ti
m

e
in

s
e

c
o

n
d

s

1 4 8 16 32

(b) Classification time

Figure 9: Cascade SVM on IMCE evaluation.

double (numeric), and character. Figure 8 shows the query
performance using the two standard SQL interfaces JDBC,
ODBC and our SQL-SHM solution. Additionally, we mea-
sured an SQL-triggered CSV export/import of the same ta-
bles.

Comparing the results, it is obvious that the RJDBC

package performance does not scale well. We can rule out
that this is caused by the JDBC driver of IMCE, because the
same queries triggered by other applications using the same
JDBC driver show much better performance. Comparing
the RJDBC results with the RODBC package performance
also implies that the additional overhead introduced by the
tuple-based data transfer is not the main cause either. We
therefore assume the reason to be implementation specific
due to the embedding of Java in the R environment.

Taking the 10 integer column table as example, it took
over 186 seconds to transfer 50 thousand rows via RJDBC.
In contrast, RODBC needed 203 seconds and our SQL-SHM
solution only 13 seconds to transfer 50 million rows. In
this particular case, the speedup between RODBC and our
SQL-SHM solution has a factor of 15.6, but since both in-
terfaces scale linearly the performance benefit achieved in-
creases naturally with the amount of data.

The influence of the datatypes can well be observed for
the CSV export/import. While CSV performance is always
worse than RODBC for the integer and double tables, it
is better than RODBC for the string tables. This can be
explained by the fact that for strings there is no additional
datatype conversion necessary during the import.

For the SQL-SHM solution the datatypes also have influ-
ence. In particular for string columns, additional overhead
is produced using multiple shared memory segments to rep-
resent a single column.

5.2 Performance for the parallel use case
To prove the speed enhancement by parallelization using
our R-Op approach, we tested the Cascade Support Vector
Machine on the KDD’99 dataset [7]. It consists of about
4.9 million data points of network connections with 41 fea-
tures grouped into “good” connections and several kinds of
attacks. The task was to create a classifier that is able to
distinguish between those types. For all tests, we achieved
similar accuracy rates as in the KDD’99 contest.

In our first evaluation, we are going to show the possible
speed-up by adding layers to the cascade. For this, we opt
out two basic cases that had to be taken into account: a
single run of the cascade and a fully converged classifier.
The set with 4.85 million data points was trained with the
sequential SVM using one single R-Node and the Cascade
SVM with 2, 4, 8, 16, and 32 nodes in the first layer. For all
tests we used the kernlab [13] implementation of the SVM
similar to Script 2.
Figure 9(a) shows the training times for a single itera-

tion of the cascade as well as for the fully converged case
in comparison to the conventional SVM algorithm with one
process. Using two R operators in parallel in the first layer
of the cascade achieves already a speed-up of factor 3.6 for
a single run and 2.9 for a fully converged model. Extend-
ing the number of parallel processes increases this further—
when using 32 nodes, the cascade is 173.5 times faster for
one single run and achieves a speed-up of factor 43.5 when
it is iterated until the global optimum is found.
For all our tests, the cascade converged in the second itera-

tion on the training set, except for the case with 32 parallel
nodes: here, three repetitions were neccessary. Therefore,
using only 16 nodes was faster for the fully converged case.
In general the speed-up is limited by the additional com-
munication overhead between the layers and the number of
needed iterations.
With the measured speed-up the SVM algorithm can be

applied in real business scenarios, since the training times
are reduced from several days/hours to hours/minutes. Es-
pecially if a model has to be trained more than once, e.g.
because of substantial changes within the data, this method
remains practical.
The second part of our evaluation was the classification

speed using implicit parallelism as indicated in Figure 5(c).
We implemented a split operator distributing the evalua-
tion set into 1 to 32 parallel processes. The R operators
classified 290k data points of the evaluation set and returned
their computed class labels. We used a previously-calculated
SVM model consisting of 5k support vectors. As seen in Fig-
ure 9(b), our setup was able to reduce the classification time
from 3.5 minutes to just 21 seconds by using 32 nodes simul-
taneously. Therefore, through parallelization the SVM algo-
rithm becomes practical in real time business applications,

1316



especially those where a fast evaluation of huge amounts of
data points is the most important part of the classification.

6. SUMMARY
The growing need to use large amounts of data as the ba-
sis for sophisticated business analysis conflicts with the cur-
rent capabilities of statistical software systems as well as the
functions provided by most modern databases.

In this paper we discussed a variety of existing approaches
for advanced analytics on large data sets and introduced the
two main concepts of our own novel approaches. We thereby
outlined the work of an ongoing project in an industrial
setup involving an international team located in Walldorf,
Germany and Shanghai, China. To date, the two approaches
(SQL-SHM and R-Op) are implemented and used internally
and we are just about to prepare the open source publication
of the R external package RICE.

Our first approach (SQL-SHM) significantly reduced the
communication overhead between R and the SAP In-Memory
Computing Engine (IMCE). Whereas our second approach
(R-Op) enabled IMCE to include R scripts as part of the
database execution plan and therefore allows us to use mul-
tiple R runtimes in parallel processing advanced analytic
functionality. This will, as we showed in our evaluations,
bridge the gap between the statistical software package and
the database system and thereby enable R functionality to
be transparently applied in real business scenarios.

7. ACKNOWLEDGMENTS
The authors would like to thank the SAP In-Memory Plat-
form development team and in particular Sebastian Seifert,
Christoph Weyerhäuser, Veit Spägele, Rick Liu, Caro Ge
and Jianfeng Yan for their numerous contributions to the
preparation of this paper and their constant work on the
software development.

8. REFERENCES
[1] C. Burges. A tutorial on support vector machines for

pattern recognition. Data mining and knowledge

discovery, 2:121–167, 1998.

[2] J. M. Chambers. Programming with Data. Springer
Verlag, 1998.

[3] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. R.
Bradski, A. Y. Ng, and K. Olukotun. Map-Reduce for
Machine Learning on Multicore. In NIPS ’06: Proc. of

Neural Information Processing Systems, pages
281–288. MIT Press, 2006.

[4] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and
C. Welton. MAD skills: new analysis practices for big
data. In VLDB ’09: Proc. of the VLDB Endowment,
volume 2, pages 1418–1492. VLDB Endowment, 2009.

[5] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J.
Haas, and J. McPherson. Ricardo: Integrating R and
Hadoop. In SIGMOD ’10: Proc. of the SIGMOD

international conference on Management of data,
pages 987–998, New York, NY, USA, 2010.

[6] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. In OSDI ’04: Proc.

of the conference on Symposium on Opearting Systems

Design & Implementation, page 10, Berkeley, CA,
USA, 2004.

[7] A. Frank and A. Asuncion. UCI machine learning
repository. http://archive.ics.uci.edu/ml/, 2010.

[8] F. Färber, B. Jäcksch, C. Lemke, P. Große, and
W. Lehner. Hybride Datenbankarchitekturen am
Beispiel der neuen SAP In-Memory-Technologie.
Datenbank-Spektrum, 10:81–92, 2010.

[9] H. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and
V. Vapnik. Parallel support vector machines: The
Cascade SVM. Advances in neural information

processing systems, 17:521–528, 2005.

[10] S. Guha. Computing environment for the statistical

analysis of large and complex data. PhD thesis,
Purdue University, 2010.

[11] R. Jampani, F. Xu, M. Wu, L. Perez, C. Jermaine,
and P. Haas. MCDB: a monte carlo approach to
managing uncertain data. In SIGMOD ’08: Proc. of

the SIGMOD international conference on

Management of data, pages 687–700, 2008.

[12] A. Karatzoglou, D. Meyer, and K. Hornik. Support
Vector Machines in R. Journal of Statistical Software,
15:1–28, 2006.

[13] A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis.
kernlab – An S4 Package for Kernel Methods in R.
Journal of Statistical Software, 11:1–20, 2004.

[14] T. Legler, W. Lehner, J. Schaffner, and J. Krüger.
Robust Distributed Top-N Frequent Pattern Mining
Using the SAP BW Accelerator. In VLDB ’09: Proc.

of the VLDB Endowment, volume 2, pages 1438–1449,
2009.

[15] R. A. Muenchen. R for SAS and SPSS Users.
Springer, Berlin, 2008.

[16] H. Plattner and A. Zeier. In-Memory Data

Management: An Inflection Point for Enterprise

Applications. Springer, Berlin, 2011.

[17] Revolution Analytics. RevoScaleR: Getting Started

Guide, July 2010.

[18] N. Samatova. pR: Introduction to Parallel R for
Statistical Computing. In CScADS ’09: Proc. of

Scientific Data and Analytics for Petascale Computing

Workshop, pages 505–509, 2009.

[19] M. Schmidberger, M. Morgan, D. Eddelbuettel, H. Yu,
L. Tierney, and U. Mansmann. State of the art
parallel computing with R. Journal of Statistical
Software, 31:1–27, 2009.

[20] M. Stonebraker, J. Becla, D. Dewitt, K. T. Lim,
D. Maier, O. Ratzesberger, and S. Zdonik.
Requirements for Science Data Bases and SciDB. In
CIDR ’09: Proc. of the conference on Innovative Data

Systems Research, 2009.

[21] R. D. C. Team. R: A Language and Environment for

Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2010.

[22] S. Urbanek. Rserve - A Fast Way to Provide R
Functionality to Applications. In DSC ’03: Proc. of

the International Workshop on Distributed Statistical

Computing, 2003.

[23] Y. Zhang, H. Herodotou, and J. Yang. RIOT: I/O
Efficient Numerical Computing without SQL. In
CIDR ’09: Proc. of the Conference on Innovative

Data Systems Research, 2009.

[24] Y. Zhang, W. Zhang, and J. Yang. I/O-Efficient
Statistical Computing with RIOT. In ICDE ’10: Proc.

of the IEEE International Conference on Data

Engineering, pages 1157–1160, 2010.

1317


