
TrustedDB: A Trusted Hardware based Outsourced
Database Engine

Sumeet Bajaj
Stony Brook Computer Science

Stony Brook, New York, USA

sbajaj@cs.stonybrook.edu

Radu Sion
Stony Brook Computer Science

Stony Brook, New York, USA

sion@cs.stonybrook.edu

ABSTRACT

TrustedDB [11] is an outsourced database prototype that al-
lows clients to execute SQL queries with privacy and under
regulatory compliance constraints without having to trust
the service provider. TrustedDB achieves this by leverag-
ing server-hosted tamper-proof trusted hardware in critical
query processing stages.

TrustedDB does not limit the query expressiveness of sup-
ported queries. And, despite the cost overhead and perfor-
mance limitations of trusted hardware, the costs per query
are orders of magnitude lower than any (existing or) poten-
tial future software-only mechanisms. In this demo we will
showcase TrustedDB in action and discuss its architecture.

1. INTRODUCTION
Virtually all major “cloud” providers today offer a database

service of some kind as part of their overall solution. Numer-
ous startups also feature more targeted data management
and/or database platforms.

Yet, significant challenges lie in the path of large-scale
adoption. Such services often require their customers to in-
herently trust the provider with full access to the outsourced
datasets. But numerous instances of illicit insider behavior
or data leaks have left clients reluctant to place sensitive
data under the control of a remote, third-party provider,
without practical assurances of privacy and confidentiality –
especially in business, healthcare and government.

Most of the existing research efforts have addressed such
outsourcing security aspects by encrypting the data before
outsourcing. Once encrypted however, inherent limitations
in the types of primitive operations that can be performed
on encrypted data lead to fundamental expressiveness and
practicality constraints.

Recent theoretical cryptography results provide hope by
proving the existence of universal homomorphisms, i.e., en-
cryption mechanisms that allow computation of arbitrary
functions without decrypting the inputs [6]. Unfortunately
actual instances of such mechanisms seem to be decades

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 21508097/11/08... $ 10.00.

10
5

10
10

10
15

10
20

10
25

10
30

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

C
o

s
t

(p
ic

o
c
e

n
ts

)

Database size (items)

Cryptography based (SELECT query)
Cryptography based (JOIN query)

SCPU (SELECT query)
SCPU (JOIN query)

Figure 1: The SCPU is 1-2 orders of magnitude
cheaper than deploying cryptography (logarithmic).

away from being practical [7].
TrustedDB on the other hand utilizes secure, tamper resis-

tant hardware such as the IBM 4764/5 [3, 4] cryptographic
coprocessors deployed on the service provider’s side to im-
plement a complete SQL database processing engine. The
TrustedDB design provides strong data confidentiality as-
surances. Moreover, it does not limit query expressiveness.

2. THECASE FORTRUSTEDHARDWARE
A cost-based empirical comparison of solutions for query

processing using cryptography and trusted hardware [11]
(selected results in Figure 1)1) shows a 2+ orders of magni-
tude cost advantage of using trusted hardware over cryptog-
raphy based mechanisms. This is so because cryptographic
overheads (for cryptography that allows some processing by
the server) are extremely high even for simple operations, a
fact rooted not in cipher implementation inefficiencies but
rather in fundamental cryptographic hardness assumptions
and constructs (such as trapdoor functions – the cheapest
we have so far being at least as expensive as modular multi-
plication [9]). This is unlikely to change anytime soon (none
of the current primitives have, in the past half-century).

Tamper resistant designs provide a secure execution en-
vironment for applications, thereby avoiding the need to
use expensive cryptographic operations. However, they are
significantly constrained in both computational ability and
memory capacity which makes implementing fully featured
database solutions using secure coprocessors (SCPUs) very

11 US picocent = 10−14 USD

1359

Figure 2: TrustedDB architecture.

challenging. TrustedDB overcomes these limitations by uti-
lizing common unsecured server resources to the maximum
extent possible. For example, TrustedDB enables the SCPU
to transparently access external storage while preserving
data confidentiality with on-the-fly encryption. This elim-
inates the limitations on the size of databases that can be
supported. Moreover, client queries are pre-processed to
identify sensitive components to be run inside the SCPU.
Non-sensitive operations are off-loaded to the untrusted host
server. This greatly improves performance and reduces the
cost of transactions.

3. ARCHITECTURE
TrustedDB is built around a set of core components (Fig-

ure 2) including a request handler, a processing agent and

communication conduit, a query parser, a paging module,
a query dispatch module, a cryptography library, and two
database engines. While presenting a detailed architectural
blueprint is not possible in this space, in the following we
discuss some of the key elements and challenges faced in
designing and building TrustedDB.

3.1 Outline
Challenges. The IBM 4764-001 SCPU presents signifi-
cant challenges in designing and deploying custom code to
be run within its enclosure. For strong security, the un-
derlying hardware code as well as the OS are embedded
and no hooks are possible e.g., to augment virtual memory
and paging mechanisms. We were faced with the choice
of having to provide virtual memory and paging in user
land, specifically inside the query processor as well as all
the support software. The embedded Linux OS is a Mo-
torola PowerPC 405 port with fully stripped down libraries
to the bare minimum required to support the IBM cryptog-
raphy codebase and nothing else. This constituted a signifi-
cant hurdle, as cross-compilation became a complex task of
mixing native logic with custom-ported functionality. The
SCPU communicates with the outside world synchronously
through fixed sized messages exchanged over the PCI-X bus
in exact sequences. Interfacing such a synchronous channel
with the communication model of the query processors and
associated paging components required the development of
the TrustedDB Paging Module. The SCPU’s cryptographic
hardware engine features a set of latencies that effectively

crippled the ability to run for highly interactive mechanisms
manipulating small amounts of data (e.g., 32 bit integers).
To handle this specific case we ended up porting several
cryptographic primitives to be run on the SCPU’s main pro-
cessor instead, and thus eliminate the hardware latencies for
small data items. Space constraints prevent the discussion
of the numerous other encountered challenges.

Overview. To remove SCPU-related storage limitations,
the outsourced data is stored at the host provider’s site.
Query processing engines are run on both the server and in
the SCPU. Attributes in the database are classified as being
either public or private. Private attributes are encrypted
and can only be decrypted by the client or by the SCPU.

Since the entire database resides outside the SCPU, its
size is not bound by SCPU memory limitations. Pages that
need to be accessed by the SCPU-side query processing en-
gine are pulled in on demand by the Paging Module.

Query execution entails a set of stages. (0) In the first
stage a client defines a database schema (and partially pop-
ulates it). Sensitive attributes are marked, i.e., by deploying
the “SENSITIVE” keyword that the client layer transpar-
ently processes by encrypting the corresponding attributes:

CREATE TABLE customer(ID integer primary key,
Name char(72) SENSITIVE, Address char(120) SENSITIVE);

(1) Later, a client sends a query request to the host server
through a standard SQL interface. The query is transpar-
ently encrypted at the client site using the public key of the
SCPU. The host server thus cannot decrypt the query. (2)
The host server forwards the encrypted query to the Request
Handler inside the SCPU. (3) The Request Handler decrypts
the query and forwards it to the Query Parser. The query is
parsed and rewritten as a set of sub-queries, and, according
to their target data set classification, each query is identified
as being either public or private. (4) The Query Dispatcher
forwards the public queries to the host server and the pri-
vate queries to the SCPU database engine while handling
dependencies. The net result is that the maximum possible
work is run on the host server’s cheap cycles. (5) The final
query result is assembled, encrypted (and digitally signed if
correctness assurances are desired) by the SCPU database
and the Query Dispatcher and sent back to the client.

3.2 Query Parsing
Outline. Sensitive attributes can occur anywhere within a
query (e.g., in SELECT, WHERE or GROUP-BY clauses,
in aggregation operators, or within sub-queries). The Query
Parser’s job is then:

• To ensure that any processing involving private at-
tributes is done entirely within the SCPU. All private
attributes are encrypted using shared data encryption
keys between the client and the SCPU (Section 3.3),
hence the host server cannot decipher these attributes.

• To optimize the rewrite of the client query such that
most of the work is performed on the host server. This
significantly increases performance.

To exemplify how public and private queries are generated
from the original client query we use examples from the
TPC-H benchmark [2]. TPC-H does not specify any clas-
sification among attributes based on security. Therefore,
We define a specific attribute set classification into public

1360

(a) (b) (c)

Figure 3: TrustedDB query plans for TPC-H queries (a) Q6, (b) Q3, and (c) Q4. Showing private attributes
(in red) and public attributes (in green).

(non-encrypted) and private (encrypted) types. In brief, all
attributes that convey identifying information about Cus-
tomers, Suppliers and Parts are considered private. The re-
sulting query plans (including rewrites into main CPU and
SCPU components) are illustrated in Figure 3.
Aggregation Example. For queries that have WHERE
clause conditions on public attributes, the server can first
SELECT all the tuples that meet the criteria. The pri-
vate attributes’ queries are then performed inside the SCPU
on these intermediate results, to yield the final result. For
e.g., query Q6 of the TPC-H benchmark is processed as
shown in Figure 3 (a) The host server first executes a pub-
lic query that filters all tuples which fall within the desired
ship date and quantity range, both of these being public at-
tributes. The result from this public query is then used by
the SCPU to perform the aggregation operation on private
attributes extended price and discount. While performing
the aggregation the private attributes are decrypted inside
the SCPU. Since the aggregation operation results in a new
attribute composing of private attributes it is re-encrypted
before sending to the client. This encryption is also done
(transparent to the client) within the SCPU.

Note that the execution of private queries depends on
the results from the execution of public queries and vice-
a-versa even though they execute in separate database en-
gines. This sharing of intermediate results is made possible
by the TrustedDB Query Dispatcher in conjunction with the
Paging Module (figure 2).
Grouping Example. If the client query specifies a GROUP
or ORDER BY on public attributes but the selection in-
cludes an aggregation of the private attributes, the grouping
or sort operation is performed inside the SCPU. Figure 3 (b)
illustrates this for the TPC-H query Q3. If the aggregation
did not involve any private attributes then the host server
performs all the GROUP BY and sorting operations.
Nested Queries. The case of nested queries is similar,
yet additional care should be taken when computing exe-
cution plans to limit the amount of data transfer between
the host server and the SCPU which may result in sub-
optimal performance. One such example is query Q4 of the

TPC-H benchmark which includes a sub-query on a private
attribute. The query plan illustrated in Figure 3 (c) runs
the removal of duplicates on attribute order key within the
SCPU. An alternative would be to perform this operation
on the host server. The choice to do this in the SCPU is
made to reduce the traffic over the PCI interface.

3.3 Security
To cover all avenues of security clients need to be confident

that (i) the remote SCPU was not tampered with and (ii)
runs the correct TrustedDB code stack (including the correct
user-land TrustedDB modules as well as the underlying OS
and SCPU hardware logic). Finally, clients need to have
the means to (iii) communicate secretly with the TrustedDB
modules running inside the SCPU.

(i) is assured by the tamper-resistant construction of the
SCPU which meets the FIPS 140-2 level 4 [1] physical secu-
rity requirements. In the event of SCPU tamper detection,
sensitive memory areas containing critical secrets are auto-
matically erased. (ii) is ensured by deploying the SCPU Out-

bound Authentication [10] mechanisms. (iii) is achieved by
deploying public-private key cryptography in key messaging
stages. Both, client and the SCPU possess a public-private
key pair (Figure 2). Messages sent between the client and
the SCPU are encrypted 2.

Data Encryption.
For increased efficiency, fine-grained encryption of data

is employed wherein, each individual attribute value within
each tuple is encrypted separately with random keys gener-
ated by a cryptographic hash function based cipher initial-
ized with KDATA and per-tuple additional data that guar-
antees its uniqueness across the entire database. The result
is based on a NMAC construction [5, 8]:

E(tbl.attr.val) = ctrattr || tbl.pri key || idxK || (tbl.attr.val ⊕ k)

k = F (KDATA[idxK] || ctrattr || tbl.pri key||F (KDATA[idxK]))
(1)

2And thus, despite acting as a communication conduit be-
tween the client and the SCPU, the server cannot perform
man-in-the-middle attacks and gain access to sensitive data.

1361

Figure 4: TrustedDB Client.

where tbl is the table name, tbl.attr is the attribute to be
considered, tbl.attr.val is the plaintext value of the current
tuple, tbl.pri key is the primary key of the current tuple in
table tbl, ctrattr is a unique identifying number associated
with tbl.attr3, idxK is an index in a table of KDATA keys
which allows multiple such keys to exist simultaneously (and
be refreshed periodically) for increased security, and F (·) is
a cryptographic hash function (SHA,MD5) [5].

4. DEMONSTRATION
This demonstration will show how TrustedDB enables gen-

eralized query processing over encrypted data. The demon-
stration will cover

• Running queries, perform data manipulation and data
querying over outsourced encrypted data.

• Visualizing the workload schedule between the host
server and the secure coprocessor - a key to making the
use of trusted hardware in query processing practical.

• Gauging the security mechanisms employed to ensure
the execution of queries over sensitive data in a remote
secure environment.

Using more complex examples from standard benchmarks
such as the TPC-H we will also demonstrate how TrustedDB
achieves query processing over encrypted data without lim-
iting query expressiveness.

5. REFERENCES

[1] FIPS PUB 140-2, Security Requirements for
Cryptographic Modules. Online at http://csrc.nist.
gov/groups/STM/cmvp/standards.html#02,2001.

[2] TPC-H Benchmark. http://www.tpc.org/tpch/.

3For storage efficiency we don’t want to use the entire
tbl.attr value in the result.

[3] IBM 4764 PCI-X Cryptographic Coprocessor. Online
at http://www-03.ibm.com/security/cryptocards/
pcixcc/overview.shtml, 2007.

[4] IBM 4765 PCIe Cryptographic Coprocessor. Online at
http://www-03.ibm.com/security/cryptocards/

pciecc/overview.shtml, 2010.

[5] Mihir Bellare. New proofs for nmac and hmac:
Security without collision-resistance. In Advances in

Cryptology, Lecture Notes in Computer Science,
volume 4117, pages 602–619. Springer-Verlag, 2006.

[6] Marten Van Dijk, Craig Gentry, Shai Halevi, and
Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In Henri Gilbert, editor,
EUROCRYPT, volume 6110 of Lecture Notes in

Computer Science, pages 24–43. Springer, 2010.

[7] Rosario Gennaro, Craig Gentry, and Bryan Parno.
Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In Tal Rabin,
editor, CRYPTO, volume 6223 of Lecture Notes in

Computer Science, pages 465–482. Springer, 2010.

[8] O. Goldreich. Foundations of Cryptography I.
Cambridge University Press, 2001.

[9] M. O. Rabin. Digitalized signatures and public-key
functions as intractable as factorization. Technical
Report TR-212, Cambridge, MA, USA, 1979.

[10] Sean W Smith. Outbound authentication for
programmable secure coprocessors. Darmouth College,
Technical Report TR2001-401. Online at
http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.58.4066, 2001.

[11] Sumeet Bajaj and Radu Sion. TrustedDB: A Trusted
Hardware based Database with Privacy and Data
Confidentiality. In Proceedings of the ACM SIGMOD

Conference, pages 205–216, 2011.

1362

