
CrowdDB: Query Processing with the VLDB Crowd

Amber Feng Michael Franklin Donald Kossmann Tim Kraska
AMPLab, UC Berkeley AMPLab, UC Berkeley Systems Group, ETH Zurich AMPLab, UC Berkeley

amber.feng@berkeley.edu franklin@cs.berkeley.edu donaldk@inf.ethz.ch kraska@cs.berkeley.edu

Samuel Madden Sukriti Ramesh Andrew Wang Reynold Xin
CSAIL, MIT Systems Group, ETH Zurich AMPLab, UC Berkeley AMPLab, UC Berkeley

madden@csail.mit.edu ramess@student.ethz.ch awang@cs.berkeley.edu rxin@cs.berkeley.edu

ABSTRACT
Databases often give incorrect answers when data are missing or
semantic understanding of the data is required. Processing such
queries requires human input for providing the missing informa-
tion, for performing computationally difficult functions, and for
matching, ranking, or aggregating results based on fuzzy criteria.
In this demo we present CrowdDB, a hybrid database system that
automatically uses crowdsourcing to integrate human input for pro-
cessing queries that a normal database system cannot answer.

CrowdDB uses SQL both as a language to ask complex queries
and as a way to model data stored electronically and provided by
human input. Furthermore, queries are automatically compiled and
optimized. Special operators provide user interfaces in order to in-
tegrate and cleanse human input. Currently CrowdDB supports two
crowdsourcing platforms: Amazon Mechanical Turk and our own
mobile phone platform. During the demo, the mobile platform will
allow the VLDB crowd to participate as workers and help answer
otherwise impossible queries.

1. INTRODUCTION
Relational database systems are the de-facto standard to store

and query data. Still, many queries cannot be answered correctly
and require human interactions. One obvious situation where ex-
isting systems produce wrong answers is when information that is
required for answering the question is missing. For example, the
query:

SELECT abstract FROM paper
WHERE title = "CrowdDB";

will return an empty answer if the paper table at that time does not
contain a record for “CrowdDB”. The database system will also
give a wrong answer if the record was entered incorrectly, say, as
“CrowDB”, or if the same real-world entity has multiple represen-
tations. This latter “entity resolution” problem can even arise, if no
error was made during data entry. Finally, the database is incapable
of answering queries that require semantic understanding of exist-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

ing data. For example, the following query, which tries to find the
10 papers with the most novel ideas:

SELECT title FROM paper
ORDER BY novel_idea LIMIT 10;

will fail, unless the novelty of the ideas has been previously ob-
tained and stored.

For all these queries, relational database systems require the user
to look at the data and manually collect or correct them. Even
worse, the relational database provides little or no support during
this process. Typically, the whole burden of the task lands on the
shoulders of a single user, forcing him/her to look or enter possibly
thousands of records manually.

CrowdDB[3] aims at answering those types of queries by auto-
matically leveraging the knowledge of people through crowdsourc-
ing. Microtask crowdsourcing platforms such as Amazon’s Me-
chanical Turk (AMT)[1] enable people to access the crowd in an
on-demand fashion. The platforms provide the infrastructure, con-
nectivity, and payment mechanisms that allow hundreds of thou-
sands of people to perform paid work on the Internet. CrowdDB
uses these platforms by extending a traditional query engine with
a small number of operators that solicit human input. Consider-
ing the previous sample queries, correctly answering these queries
relies on two capabilities of people:

Finding new data - Relational database systems are based on
the “Closed-World Assumption”: information that is not in the
database is considered to be false or non-existent. The crowd, on
the other hand, aided by tools such as search engines and reference
sources, are usually capable of finding information that they do not
have readily at hand.

Comparing data - People are skilled at making comparisons
that are difficult or impossible to encode in computer algorithms.
For example, if given the right context, it is easy for a person to tell
whether “CrowDB” and “CrowdDB” refer to the same entity. Like-
wise, people can easily compare items using the derived attributes,
for example comparing the level of novelty of ideas presented in
various papers (assuming that they understand the field).

For CrowdDB, we develop crowd-based query operators for find-
ing and comparing data, while relying on the traditional relational
query operators to do the heavy lifting for bulk data manipulation
and processing. We also introduce some minimal extensions to the
SQL data definition and query languages, called CrowdSQL, to en-
able the generation of queries that involve human computation.

Our approach has four main benefits. First, by using SQL we cre-
ate a declarative interface to the crowd. We strive to maintain SQL
semantics so that developers are presented with a known computa-
tional model. Second, CrowdDB provides Physical Data Indepen-

1387



dence for the crowd. Application developers can write SQL queries
without having to worry which operations will be performed by the
computers and which by the crowd. Existing SQL queries can be
run on CrowdDB, and in many cases will return more complete and
correct answers than if run on a traditional DBMS. Third, as we
discuss in subsequent sections, user interface design is a key fac-
tor in enabling questions to be answered by people. Our approach
leverages schema information to support the automatic generation
of effective user interfaces for crowdsourced tasks. Finally, by us-
ing the crowd, we enable hundreds of workers to work in parallel
on obtaining new or comparing data. This allows us to free the
user/developer from a very time-consuming task.

We currently have a working prototype of CrowdDB that we plan
to demonstrate. CrowdDB implements all key features for an end-
to-end study: it compiles CrowdSQL queries, optimizes the query
with rule-based heuristics, creates tasks and collects answers from
the crowd at run-time, caches the answers, and performs simple
quality control before finally showing the results to the user.

In addition to CrowdDB, we have developed a local-area mobile
crowdsourcing platform which allows tasks to be posted to users
in a specific geographic area. CrowdDB can compile tasks to run
on this platform as well as on Amazon Mechanical Turk (AMT).
We plan to run the demo over the course of the conference. We
will use CrowdDB to post a number of tasks to our mobile crowd
service, allowing people at the conference to complete tasks us-
ing a mobile application. We will use CrowdDB to issue several
conference-specific tasks, such as rating and commenting on talks,
recommending restaurants, and noting interesting events. We will
show how CrowdDB tasks are compiled onto the crowdsourcing
platforms, and demonstrate other features of CrowdDB, such as our
query language. This demo will differ from other crowd-sourced
databases, such as Qurk [5] at SIGMOD 2011, by not only show-
ing the different architecture and query language of CrowdDB, but
also highlighting our mobile platform and the ability of CrowdDB
to compile for it.

In the remainder of this demonstration proposal, we first sketch
the syntax and semantics of CrowdSQL. Afterwards we present an
architectural overview of CrowdDB and outline the query execu-
tion process. More details about the system such as the quality
control mechanisms or the optimization heuristics, however, have
to be omitted due to space constraints and can instead be found in
[3]. Finally, in Section 4 we describe in more detail how we plan to
demonstrate CrowdDB at VLDB and how we encourage the VLDB
crowd to participate during the demo.

2. CrowdSQL
CrowdSQL is our small extension to SQL to support use cases

that involve missing data and subjective comparisons. This ap-
proach allows application programmers to write (Crowd) SQL code
in the same way as they do for traditional databases; i.e., in most
cases, developers need not be aware that their code involves crowd-
sourcing. In the following we sketch the syntax and semantics of
CrowdSQL with help from a series of running examples. Further-
more, the examples will also be part of the demo and hopefully
result in some interesting facts about the VLDB conference itself.

2.1 Incomplete Data
Incomplete data can occur in two flavors: First, specific attributes

of tuples could be crowdsourced. Second, entire tuples could be
crowdsourced. We capture both cases by adding a special key-
word, CROWD, to the SQL DDL, as shown in the following two
examples.

EXAMPLE 1 (Crowdsourced Column) The following Talk table con-
tains a list of technical presentations at VLDB 2011. The abstract
and nb attendees attributes are marked as crowdsourced. It is rel-
atively easy to populate the table with the titles of the talks from
the conference website. We cannot, however, determine the num-
ber of people in the audience but can use crowdsourcing to fill in
this attribute. Similarly, the abstracts are often not provided on the
conference website but likely available elsewhere.

CREATE TABLE Talk (
title STRING PRIMARY KEY,
abstract CROWD STRING,
nb_attendees CROWD INTEGER );

EXAMPLE 2 (Crowdsourced Table) This example models a No-
tableAttendee table as a crowdsourced table. Here, notable atten-
dees are recognized by other attendees as “well-known” researchers
in the community. It is assumed that the database captures none or
only a subset of the notable attendees of a talk. In other words,
CrowdDB will expect that additional notable attendees may exist
and possibly crowdsource more attendees if required for process-
ing specific queries. We can query this table, for example, to sense
new trending topics.

CREATE CROWD TABLE NotableAttendee (
name STRING PRIMARY KEY,
title STRING,
FOREIGN KEY (title) REF Talk(title) );

In order to represent values in crowdsourced columns that have
not yet been obtained, CrowdDB introduces a new value to each
SQL type, referred to as CNULL. CNULL is the CROWD equiva-
lent of the NULL value in standard SQL. CNULL indicates that a
value should be crowdsourced when it is first used.

CrowdDB supports any kind of SQL query on CROWD tables
and columns; for instance, joins between two CROWD tables are
allowed. Furthermore, the results of these queries are as expected
according to the (standard) SQL semantics. What makes Crowd-
SQL special is that it incorporates crowdsourced data as part of
processing SQL queries. Specifically, CrowdDB asks the crowd
to instantiate CNULL values if they are required to evaluate predi-
cates of a query or if they are part of a query result. Furthermore,
CrowdDB asks the crowd for new tuples of CROWD tables if such
tuples are required to produce a query result. More details on the
semantics can be found in [3].

2.2 Subjective Comparisons
Recall that beyond finding missing data, the other main use of

crowdsourcing in CrowdDB is subjective comparisons. In order to
support this functionality, CrowdDB has two new built in functions:
CROWDEQUAL and CROWDORDER. CROWDEQUAL takes two pa-
rameters (an lvalue and an rvalue) and asks the crowd to decide
whether the two values are equal. CROWDORDER is used whenever
the help of the crowd is needed to rank or order results.

EXAMPLE 3 The following CrowdSQL query asks for the titles of
the 10 most favorable presentations.

SELECT title FROM Talk
ORDER BY CROWDORDER(p,
"Which talk did you like better")
LIMIT 10;

1388



3. CrowdDB PROTOTYPE
Our first CrowdDB prototype implementation is based on the

open-source Java database engine H2 [4]. We decided to build on
top of a Java database engine as the range of available Java web-
frameworks significantly simplifies the integration of web-services
and creation of web-based data entry forms. The high-level com-
ponents of our prototype are shown in Figure 1. CrowdDB answers
queries using data stored in local tables when possible, and invokes
the crowd otherwise. At the moment, CrowdDB is able to work
with two crowdsourcing platforms: Amazon Mechanical Turk and
our own mobile crowdsourcing platform. Results obtained from
the crowd are always stored in the database for future use.

Disk 2

Disk 1

Parser

Optimizer 

St
at

is
tic

s

CrowdSQL Results

Executor 

Files Access Methods

UI Template Manager

Form 
Editor

UI 
Creation

Task Manager

M
et

aD
at

a

Worker Relationship 
Manager

Crowd Mobile Platform

Figure 1: CrowdDB Architecture.

As shown on the left side of the figure, CrowdDB incorporates
the traditional query compilation, optimization and execution com-
ponents from H2. These components are extended to cope with
human-generated input as described in Section 3.2. On the right
side of the figure are new components that interact with the crowd-
sourcing platform.

The Worker Relationship Manager (WRM) helps to build com-
munities for requesters. Unlike computer processors, crowd work-
ers are not fungible resources and the worker/ requester relationship
evolves over time and thus, requires special care. Currently, the
WRM component assist the requester with paying workers in time,
granting bonuses and reporting and answering worker complaints.

In contrast to physical IO requests, the interface for crowdsourc-
ing data consists of HTML forms and instructions in natural lan-
guages. CrowdDB generates the HTML form using the available
database schema information. The three components, UI Creation,
UI Template Manager, andForm Editor, are responsible for creat-
ing, managing and editing user interface templates.

The Task Manager provides an abstraction layer that manages
the interaction between CrowdDB and the crowdsourcing platforms.
It instantiates the user interfaces, makes the API calls to post tasks,
assess their status, and obtain results. The Task Manager also in-
teracts with the storage engine to obtain values to pre-load into the
task user interfaces and to memorize the results sourced from the
crowd.

3.1 User Interface Generation
CrowdDB leverages the available database schema information

to automatically generate user interfaces. This generation is a two-
step process. At compile-time, the UI Creation component creates
templates to crowdsource missing information from all CROWD
tables and all regular tables which have CROWD columns. These
user interfaces are HTML templates that are generated based on the
CROWD annotations in the schema and optional free-text annota-
tions of columns and tables that can also be found in the schema.
All generated templates are centrally managed by the UI Template
Manager. Furthermore, these templates can be edited by applica-
tion developers in order to provide additional custom instructions.
Finally, at runtime the Task Manager instantiates the templates on
request of the crowd operators in order to provide a user interface
for a concrete tuple or a set of tuples.

Figure 2 shows an example interface based on the schema in
Example 1 and the query:

SELECT abstract FROM talk
WHERE title = "CrowdDB";

for crowdsourcing the missing abstract of the “CrowdDB” talk.
The instructions of the HTML ask the worker to enter the miss-
ing information for the Table (i.e., Talk in this example). In gen-
eral, user interface templates are instantiated by copying the known
field values from a tuple into the HTML form (e.g., “CrowdDB” in
this example). Furthermore, all fields of the tuple that have CNULL
values and are asked by the query become input fields of the HTML
form (i.e., URL in this example).

3.2 Query Processing
Query plan generation and execution follows largely a traditional

approach. In particular, as shown in Figure 1, CrowdDB uses the
database parser, optimizer, and runtime system from H2. The main
differences are that CrowdDB has additional operators that affect
crowdsourcing (in addition to the traditional relational algebra op-
erators found in a traditional database system), and the CrowdDB
optimizer includes special heuristics to generate plans with these
additional Crowd operators.

3.2.1 Crowd Operators
CrowdDB extends the relational algebra operators (e.g. join,

scan) from H2, with a small set of operators that supports crowd-
sourcing. The basic functionality of all Crowd operators is the
same: At runtime, they consume a set of tuples, e.g., Talk. Depend-
ing on the Crowd operator, crowdsourcing can be used to source
missing values of a tuple (e.g., the abstract of a Talk) or to source
new tuples (e.g. new NotableAttendee). In addition to the creation
of tasks, each Crowd operator consumes and cleanses results re-
turned by the crowd. The current version of CrowdDB has three
Crowd operators:

CrowdProbe: This operator crowdsources missing data from
CROWD columns and new tuples.

CrowdJoin: This operator implements an index nested-loop join
over two tables, at least one of which is marked as crowdsourced.

CrowdCompare: This operator uses crowdsourcing to compare
data. It can be used inside another “traditional” operator, such
as sorting or predicate evaluation. For example, an operator that
implements quick-sort can use CrowdCompare to perform the re-
quired binary comparisons.

Note that since human inputs are inherently error prone and di-
verse in formats, answers from the crowd workers can never be
assumed to be complete or correct. The above operators also have
majority-vote driven quality control measures built-in.

1389



Figure 2: Mechanical Turk Task. Figure 3: Mobile Task.

3.2.2 Physical Plan Generation
Similar to traditional query processing, the physical plan gener-

ation involves three stages. First, CrowdDB generates the logical
plan by parsing the query. Second, this logical plan is optimized us-
ing traditional and crowd-specific optimizations such as predicate
push-down. Finally, the logical plan is translated into a physical
plan which can be executed by the CrowdDB runtime system. As
part of this step, Crowd operators and traditional operators of the
relational algebra are instantiated.

The current CrowdDB compiler is based on a simple rule-based
optimizer. The optimizer implements several essential query rewrit-
ing rules such as predicate push-down, stopafter push-down, join-
ordering and determining if the plan is bounded. The last opti-
mization deals with the open-world assumption by ensuring that
the amount of data requested from the crowd is bounded. Thus,
the heuristic first annotates the query plan with the cardinality pre-
dictions between the operators. Afterwards, the heuristic tries to
re-order the operators to minimize the requests against the crowd
and warns the user at compile-time if the number of requests cannot
be bounded.

4. DEMONSTRATION DETAILS
We plan an end-to-end demonstration, which visualizes the whole

workflow from formulating the query, to compiling and creating the
user interfaces, posting the tasks, collecting the answers and finally
showing the query result.

Users will have the chance to choose from two crowdsourcing
platforms: Amazon Mechanical Turk and our locality-aware mo-
bile crowdsourcing platform [2]. While the first addresses a gen-
eral crowd with people from all over the world, the latter allows

to constrain the workers to the attendees at VLDB. Figures 2 and
3 show screenshots for one of the queries from Section 2 on the
Mechanical Turk platform respectively the mobile crowdsourcing
platform. The mobile platform can be used without registration and
everybody with a mobile phone is welcome to join. This platform
will allow us to access the knowledge of the VLDB crowd as part
of the demo.

We will use the examples from Section 2 as well as additional
conference-specific queries, such as nearby restaurant recommen-
dations, as our main queries for the demo. In addition, we plan
to demonstrate the capabilities of CrowdDB to combine existing
electronic data with the crowdsourced information. Thus, we will
pre-load different tables, such as VLDB talks, restaurants or com-
panies near the VLDB conference location, into CrowdDB. Those
tables can then be extended by the audience with crowd columns
or be joined with new crowd tables. By means of the individual
queries from the audience as well as the examples from Section 2,
we will present the query compilation and execution process.

5. REFERENCES
[1] Amazon Mechanical Turk. http://www.mturk.com, 2010.
[2] CrowdDB Mobile Service. http://www.crowddb.org/mobile.
[3] M. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin.

CrowdDB: Answering Queries with Crowdsourcing. In
SIGMOD, pages 61–72, 2011.

[4] H2 Database Engine. http://www.h2database.com/.
[5] A. Marcus, E. Wu, D. Karger, S. Madden, and R. C. Miller.

Demonstration of Qurk: A Query Processor for Human
Operators. In SIGMOD, pages 1315–1318, 2011.

1390


