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ABSTRACT
MapReduce-based data processing platforms offer a promising ap-
proach for cost-effective and Web-scale processing of Semantic
Web data. However, one major challenge is that this computational
paradigm leads to high I/O and communication costs when process-
ing tasks with several join operations typical in SPARQL queries.
The goal of this demonstration is to show how a system RAPID+,
an extension of Apache Pig, enables more efficient SPARQL query
processing on MapReduce using an alternative query algebra called
the Nested TripleGroup Algebra (NTGA). The demonstration will
offer opportunities for users to explore NTGA-Hadoop query plans
for different SPARQL query structures as well as explore relation-
ships between query plans based on relational algebra operators and
those using NTGA operators.

1. INTRODUCTION
The amount of Semantic Web data represented using the Re-

source Description Framework (RDF) is increasing rapidly. For
example, the statistics page of Freebase datasets shows that about
337 million triples has been added to its repository in the past 4
years. Also, the statistics for the Linking Open Data community
shows an increase of a few billion RDF triples just in the past cou-
ple of years. Consequently, an issue of increasing importance is
how to enable Web scalable data processing techniques for Seman-
tic Web data.

Parallel data processing techniques based on MapReduce[3] have
recently been explored for graph pattern matching[7] and index-
ing[5] of large-size RDF triple datasets. One challenge that arises
when processing SPARQL graph pattern queries using the MapRe-
duce computational paradigm is the large amount of disk I/Os and
communication generated. This is due to the fact that the fine-
grained modeling of data in RDF requires multiple join operations
to assemble related data even for relatively simple tasks. Multiple
join operations lead to multiple MapReduce(MR) cycles resulting
in a huge amount of intermediate data being materialized and ex-
changed between the multiple Map and Reduce phases.

Our work [9][10] addresses this problem by proposing an inter-
mediate algebra called the Nested Triple Group Algebra (NTGA).
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NTGA re-interprets subquery structures in a SPARQL query graph
pattern in a way that leads to fewer MapReduce cycles during query
processing. NTGA also enables the use of a data representation
format that allows a more compressed representation of interme-
diate results which further helps to mitigate I/O costs. This ap-
proach has been implemented as an extension to Apache Pig[8]
and shows up to 60% performance improvement over processing
SPARQL queries using the traditional Pig approach.

The goal of this proposal is to demonstrate how efficiency in
SPARQL query processing is achieved using the NTGA algebra
when compared with relational algebra-like operators in systems
such as Pig. The remainder of this demonstration proposal is or-
ganized as follows: Section 2 provides some relevant background.
Section 3 gives an overview of the NTGA data model and operators
along with the query optimization strategies presented in [9][10]. It
also overviews the architecture of the extended Pig system that we
have implemented called RAPID+. Section 4 describes the demon-
stration scenario along with the sample datasets and queries.

2. BACKGROUND
An RDF database is a collection of triples (Subject, Predicate,

Object) where predicates are named binary relations between re-
sources or between resources and literal values. For example, the
triple {Vendor1 foaf:homepage <http://www.v1.com>} as-
serts that a resource Vendor1’s homepage is http://www.v1.-
com/. Its data model can also be viewed as a labeled graph in
which resources and literals are nodes labeled with URIs and val-
ues respectively, and edges are labeled with predicate names. The
fundamental querying construct of SPARQL, the standard query
language for RDF, is a graph pattern, which is essentially a col-
lection of triple patterns. Each triple pattern is a triple in which at
least one of the subject, predicate or object is a variable (denoted by
a leading ?). The result of a graph pattern query is a list of all vari-
able substitutions that cause a query pattern to match a subgraph in
the database. For example, the following triple pattern will match
the country where Vendor1 is located: {Vendor1 bsbm:country

?country .}. Generally, the evaluation of a graph pattern is done
using a series of join operations to connect triples into subgraph
structures that match the query graph pattern.

In MapReduce paradigm, a task is represented in terms of two
functions: Map and Reduce. Using the open source implementation
of MapReduce called Hadoop, a join operation in this paradigm can
be interpreted in the following manner: Map and Reduce are exe-
cuted by a set of nodes designated as ”Mappers” and ”Reducers”
respectively. In the Map phase of the join operation, the tuples are
annotated based on the value of the join key. The output of the Map
phase is written onto the local disk of the Mappers. Once the Map
phase is completed, the Reducers connect to pre-assigned Mappers,
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Figure 1: Plan and Data Flow.

retrieve their designated intermediate results, and ”reduce” them
based on the Reduce function. For the join operation, the Reduce
phase is responsible for packaging tuples that have matching join
values and the resulting joined tuples are written out to the HDFS.
If a naive approach is employed in scenarios with multiple join op-
erations, each join is processed in a separate MapReduce cycle. In
other words, in each MapReduce cycle, the Mappers materialize
their results on disk for consumption by the Reducers in that cy-
cle while the Reducers materialize their results on disk for use by
the Map phase of the next MapReduce cycle. Since several join
operations are typical in SPARQL graph pattern matching, multi-
ple intermediate results are generated requiring several materializa-
tion steps and communication messages. Consequently, proposing
techniques to reduce the number of MapReduce cycles is crucial
for optimization of query processing performance.

One observation that has been exploited for optimization of SPA-
RQL query processing is that graph patterns often consist of mul-
tiple star structures as sub patterns. Pig offers some optimizations
that can exploit star sub query patterns - several join operations
on the same join key (i.e. star patterns) can be processed in the
same MapReduce cycle. This optimization will allow us to reduce
the number of MapReduce cycles needed for processing a query to
single MapReduce cycle per star subpattern plus cycles for the join
operations connecting the star substructures. The result is less I/O
costs compared to the “MapReduce cycle per join” approach. The
upper section of Figure 1 shows an example SPARQL query based
on the Berlin SPARQL benchmark dataset[1] describing Vendors
and their product Offers. It asks to “retrieve the name of Vendors,
the country where the vendors are located, and their product Of-
fers”. Processing this query using Pig Latin’s query algebra results
in the query plan shown in Figure 1a. The logical plan can be de-
scribed as follows:
1. Load the input dataset using the LOLoad operator.
2. Create vertical partitioned relations using the LOSplit operator.
3. Join partitioned relations based on join conditions. (In SPARQL,

join conditions are implied by repeated occurrence of variables
in different triple patterns e.g. ?v and ?o in the example SPARQL
query of Figure 1). For each star join i.e. join of multiple rela-
tions on the same variable, the join will be computed in a single
MR cycle such as LOJoin #1 and #2 in Figure 1a.4 and Figure
1a.5. Subsequently, the join process is repeated for each star
join such as LOJoin #3 in Figure 1a.6.

4. Store the final result on disk using the LOStore operator.

Though the star-join/MapReduce cycle approach reduces the re-
quired number of MapReduce cycles, processing queries with mul-
tiple star patterns may still be expensive. [9] also discusses some
additional limitations with naive processing of semistructured data
such as RDF data using the Pig Latin algebra. An alternative alge-
bra called the Nested TripleGroup Algebra NTGA and data repre-
sentation format was proposed in [10] to address these limitations
and allow for processing RDF data in a more natural way - in terms
of “groups of triples” or TripleGroups rather than a set of n-tuples
like in relational algebra.

Essentially, the functionality of NTGA operators have been re-
factored differently to allow processing of graph pattern queries us-
ing fewer MapReduce cycles. Given our example query, the NTGA
based query plan in Figure 1b uses 2 vs. 4 MR cycles in the pre-
vious approach. Our empirical evaluation of TripleGroup-based
processing showed up to 60% of performance improvement over
the approach using the traditional algebra for certain types of graph
pattern matching queries.

3. SYSTEM MODEL & ARCHITECTURE

3.1 Nested TripleGroup Data Model and Al-
gebra

A foundational concept in the NTGA data model is that of a
TripleGroup.

Definition. A TripleGroup tg is a relation of triples t1,t2,...tk,
whose schema is defined as (S, P , O). Further, any two triples
ti, tj ∈ tg have overlapping components i.e. ti [coli ] = tj[colj]
where coli, colj refer to subject or object component.

When all triples agree on their subject (object) values, we call
them Subject (Object) TripleGroups respectively, and they corre-
spond to a star sub graph rooted at the Subject (Object) node. To
understand the intuition that motivates our TripleGroup based pro-
cessing approach, observe that performing a GROUP BY operation
on the subject (S) column of a triple relation (S, P, O) results in a set
of groups of triples that have the same value for the subject field i.e.
Subject TripleGroups. Most importantly, this operation computes
ALL possible star substructures in a single operation executed in
a single MapReduce cycle. This implies that the results for ALL
star join subquery patterns in a query will be computed in a single
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Figure 2: Overall Execution Flow and Architecture.

MapReduce cycle rather than one MapReduce cycle/star join. This
provides the opportunity for optimizing graph pattern query pro-
cessing. Having computed the results of multiple star-structured
subquery patterns, the next issue is manipulating these groups of
triples to generate the final query result. This leads to the following
operators that comprise the NTGA.
• TG GroupBy: this operator groups a triple relation T on either

the subject or object columns i.e.,

TG GroupBy(T, [T.subject | T.object])

returns a set of TripleGroups TG that agree on their subject/object
values i.e. Subject/Object TripleGroups. Figure 1b.4 shows
the result of this operator on the example input relation with
the subject column specified as grouping column. We assign
types to TripleGroups based on the predicates they contain. e.g.
TG{:label,:country} and TG{:vendor,:product} in Figure 1b.4.
The subset of TripleGroups that have the same type contains
information equivalent to a relation in the relational model.
• TG GroupFilter: this operator filters a set of TripleGroups

based on structural constraints given in a query. Since the Triple-
Groups are created by a mere grouping operation, it is not guar-
anteed that all TripleGroups meet the constraints given in query
e.g. may not contain all predicates specified by the graph pat-
tern. The following expression

TG GroupFilter(TG,QueryPredicateList1,

QueryPredicateList2, ..., QueryPredicateListk)

returns the set of TripleGroups that each contains all predicates
in ONE of the Query Predicate Lists. i.e. are structurally com-
plete with respect to some query subpattern; e.g. TG Group-
Filter(TG, ({:label, :country}, {:product, :vendor})).
• TG Join: in many cases, a query will be comprised of multi-

ple star-join subpatterns that are linked together to form a larger
graph pattern. The TG GroupBy and TG GroupFilter opera-
tors compute answers to all star subpatterns which may need to
be ”joined” to create the final result. The TG Join operator is
defined on a set of TripleGroups and takes in as parameters, the
labels of the two types of TripleGroups to be joined and a join
condition e.g.

TG Join(TGtype1, TGtype2, join condition)

Figure 1b.5 shows the result of the join expression, TG Join-
({:label, :country}, {:vendor, :product}, TG{:vendor,:product}.-
object = TG{:label,:country}.subject). The result of a object-
subject join operation like our example is a set of Nested Triple-
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Figure 3: Mappings between Query, Logical/Physical Plan.

Groups which nests the TripleGroups from the right operand in
one triple from each of the TripleGroups of left operand.

3.2 Architecture and Data Flow in RAPID+

3.2.1 SPARQL-To-Logical Plan Layer
RAPID+ is an extended Apache Pig system that integrates the

NTGA data model and algebra. Its extensions include support
for expression of graph pattern matching queries either via an in-
tegrated SPARQL query interface using Jena’s ARQ[6] or using
NTGA-related high level commands that have been added to the
Pig Latin interface. At the logical and physical layers, NTGA op-
erators are implemented as either extensions of the Pig Latin logical
and physical operators or new operators. It also introduces appro-
priate extensions to query plan generation components to enable
generation of logical and physical plan based on NTGA operators.
Figure 2 shows the process which is elaborated in the next section.

3.2.2 Data Flow and Logical-to-Physical Plan with
NTGA Operators

Assume that we want to process the SPARQL query in Figure
3, which is a slightly more complex version of the previous exam-
ple query. It seeks to the list of vendors, their products, and price
from the vendors selling products in US within a delivery time of
two days and review rating is at least 4. This query’s graph pattern
consists of three star-join structures combining descriptions of re-
sources of type Vendor, Offer, and Review denoted by the variables
?v, ?o and ?r respectively, and two chain-join patterns combining
these star patterns. This query is expressed using either interface
and finally results in an NTGA based logical plan which consists
of the following operators:
• TripleStorage: this loader is a specialized one for RDF data,

parameterized with value-based filter conditions. Figure 3.b
shows the logical plan which contains LOLoad operator load-
ing triples and applying the value-based filter condition such as
?days ≤ 2. This offers some cost savings by avoiding future
processing and materialization steps for irrelevant triples to a
given query.
• LOCogroup: the next logical operator is an extended version of

Pig Latin’s LOCogroup that combines the grouping operation
specified by TG GroupBY with the TG GroupFilter structure-
based filtering operation. The traditional execution plan would
execute the grouping step in the reduce phase of a MapReduce
cycle, then the groupfiltering phase in a Map cycle of the sub-
sequent MapReduce cycle, thus requiring at least 2 MapReduce
cycles. Our extended LOCogroup merges both operations into
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a single MapReduce cycle. This is achieved at the physical plan
level by the introduction of a new Reduce-phase ”packaging”
operator called PORDFGenPackage. This results in reducing
the amount of materialized intermediate data and and savings
in I/O and communication costs. For example, Figure 3.c shows
a TripleGroup containing only the predicates :price and :deliv-
Days being filtered out by the PORDFGenPackage operator be-
cause it is missing 2 specified predicates, :vendor and :product.

• LORDFJoin: to support the TG Join between TripleGroups, a
new logical operator called LORDFJoin is added in RAPID+.
This logical operator takes as input a single TripleGroup relation
containing Nested TripleGroup and produces a set of Nested
TripleGroups. As an example, the plan shown in Figure 3 uses
two LORDFJoin operators to join the Nested TripleGroups whose
subjects are ?o and ?r and the ones whose subjects are ?v and
?o.

In general, the TripleGroup based pattern matching for a query with
n star sub patterns compiles into a MapReduce flow with n MR
cycles (1 cycle to compute all star TripleGroup subquery results
and n -1 cycles to join the n star join subqueries), which is half the
number of MR cycles (n for each star join subquery + n -1 joins
to link the star join subquery results) required to process the same
query using the relational style operators in Pig.

4. DEMONSTRATION SCENARIO
The goal of the demonstration is to allow users to explore Triple-

Group based processing of SPARQL queries on MapReduce plat-
forms using our Nested TripleGroup Algebra. Users can also com-
pare the performance of query plans obtained by using TripleGroup
operators against the relational-style processing in existing systems
like Apache Pig. Metrics for I/Os and communication cost such as
the number of MapReduce cycles, the size of intermediate results,
and the amount of bytes read and written in HDFS among MapRe-
duce phases, etc, for the two types of query plans will be shown to
users to help them understand the impact of the NTGA operators
query processing performance. The demonstration will use a re-
mote 5-node cluster hosted on NCSU’s VCL[2]. In case of limited
connectivity in the demo room, we will alternatively use a local vir-
tual machine cluster. This section provides details about the queries
and data set that will be used in our demonstration, followed by a
brief description of the demonstration scenarios.

4.1 Data Set and Queries
The demonstration will use one synthetic and one real-world data

set. The BSBM is a synthetic benchmark dataset generator used for
evaluation of SPARQL query processing systems. Its dataset con-
tains information about vendors, the products that they offer, and
the reviews of these products. YAGO[4] is a real-world knowledge
base that is derived from Wikipedia and contains various entities
like persons, organizations etc. In this demonstration, we will use
pattern matching SPARQL queries with varying sub structures. The
queries will include Graph Patterns with two or more star sub struc-
tures and Filtered Graph Patterns which are graph patterns that also
include filter constructs.

4.2 Description
In our demonstration, users will be given a list of sample queries

to choose from and based on their selection, an NTGA based query
plan will be generated. Users may then be allowed to make mod-
ifications to NTGA query plans and see its impact on the cost of
query processing. For a given NTGA query plan, a user can request
to replace an NTGA operator with an “equivalent” relational query

RAPID+: From SPARQL to MapReduce

DataSet BSBM Query Retrieve details about Vendors and their Offers

Type Simple Graph Pattern 
Join Sub

Structures

SJ1        ?s1 type Vendor .  ?s1 country ?country .

SJ2 ?s2  vendor ?s1 .   ?s2 type Offer . 

?s2  price ?price .   ?s2 delivDays ?dDays . 
Default NTGA Operators

NTGA Logical Plan Updated Hybrid Algebra Logical Plan

Select the 

NTGA 

operator to be 

substituted

Map-Reduce cycles = 3

HDFS Bytes Read/Written = 1354

Map Input/Output Bytes  = 263

Reduce Input/Output Bytes = 253

Map-Reduce cycles = 4

HDFS Bytes Read/Written= 1635

Map Input/Output Bytes = 280

Reduce Input/Output Bytes = 306

TG_GroupBy + 

TG_GroupFilter
(SJ1, SJ2)

TG_Join (SJ1, SJ2)

STORE

FILTER (p1, p2,… ,pN)

LOAD input.rdf

Substitute

Reset

FILTER (p1, p2,… ,pN)

LOAD input.rdf

SPLIT

JOIN (SJ1)

JOIN (SJ2)

FOREACH tuple 

convertToTripleGroup()

TG_Join (SJ1, SJ2)

STORE

Figure 4: Comparative Exploration of Relational and Triple-
Group Algebra Query Plans.

operator or set of operators. The hybrid query plan will be gen-
erated with operators from the two algebras and the differences in
costs will be shown. Figure 4 shows an example demonstration sce-
nario where the user decides to compute the star patterns using the
relational style JOIN operator instead of the NTGA TG GroupBy +
TG GroupFilter operators. The right hand side of Figure 4 shows
the updated hybrid logical query plan after the substitution. This
task will help users gain better insights into the costs of each oper-
ator viz a viz relational algebra operators as well as the relationship
between the two query algebras.
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