
A Demonstration of HYRISE—
A Main Memory Hybrid Storage Engine

Martin Grund
Hasso-Plattner-Institute

Germany

martin.grund@hpi.uni-
potsdam.de

Philippe Cudre-Mauroux
MIT CSAIL, USA &

U. of Fribourg, Switzerland

pcm@unifr.ch

Samuel Madden
MIT CSAIL

USA
madden@csail.mit.edu

ABSTRACT
We propose to demonstrate HYRISE, a main memory hybrid
database system, which automatically partitions tables into verti-
cal partitions consisting of variable numbers of columns based on
access patterns to each table. Using an accurate model of cache
misses, HYRISE is able to predict the performance of different
partitionings, and to automatically select the best partitions using
an automated database partitioning algorithm. Our demonstration
will show the results of the physical partitioning based on different
query workloads, allowing demo attendees to visualize, fine-tune,
and modify the partitioning using a GUI. It will then show how
the various physical designs affect the query plans and the perfor-
mance of the database as a whole. Attendees can thus experiment
with various physical models, and can grasp the potential of hybrid
partitionings, which achieve a 20% to 400% performance improve-
ment over pure all-column or all-row designs on our realistic hybrid
workload derived from customer applications.

1. INTRODUCTION
Traditionally, the database market divides into transaction pro-

cessing (OLTP) and analytical processing (OLAP) workloads.
OLTP workloads are characterized by a mix of reads and writes
to a few rows at a time, typically through a B+Tree or other in-
dex structures. Conversely, OLAP applications are characterized
by bulk updates and large sequential scans spanning few columns
but many rows of the database, for example to compute aggregate
values. Typically, those two workloads are supported by two dif-
ferent types of database systems – transaction processing systems
and warehousing systems.

This simple categorization of workloads, however, does not en-
tirely reflect modern enterprise computing. First, there is an in-
creasing need for “real-time analytics” – that is, up-to-the-minute
reporting on business processes that have traditionally been han-
dled by warehousing systems. Although warehouse vendors are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

doing as much as possible to improve response times (e.g., by re-
ducing load times), the explicit separation between transaction pro-
cessing and analytics systems introduces a fundamental bottleneck
in analytics response times. For some applications, directly an-
swering analytics queries from the transactional system is prefer-
able. For example “available-to-promise” (ATP) applications pro-
cess OLTP-style queries while aggregating stock levels in real-time
using OLAP-style queries to determine if an order can be fulfilled.

Unfortunately, existing databases are not optimized for such
mixed query workloads because their storage structures are usu-
ally optimized for one workload or the other. To address such
workloads, we built a main-memory hybrid database system,
called HYRISE, which partitions tables into vertical partitions of
varying widths depending on how the columns of the tables are
accessed (e.g., transactionally or analytically). Our model captures
the idea that it is preferable to use narrow partitions for columns
that are accessed as a part of analytical queries, as is done in pure
columnar systems [3, 4]. In addition, HYRISE stores columns that
are accessed in OLTP-style queries in wider partitions, to reduce
cache misses when performing single row retrievals.

A paper about HYRISE will appear in this VLDB 2011 [5],
along with this demo. In this paper, we describe the architecture
of HYRISE and some of its key features, and provide a description
of the demonstration we plan to show.

2. HYRISE ARCHITECTURE
The main architectural components of HYRISE are depicted in

Figure 1. The storage manager is responsible for creating and main-
taining the hybrid containers storing the data. The query processor
receives user queries, creates a physical query plan for each query,
and executes the query plan by calling the storage manager. The
layout manager decides on how to partition the data. The layout
manager can make decisions based on two methods: i) it can an-
alyze a sample query workload and automatically suggest a parti-
tioning minimizing the expected cost of the workload (see below
Section 2.3) or ii) it can suggest a partitioning and let the database
administrator manipulate and finalize the partitioning through a vi-
sual interface.

We have built a prototype of this architecture. Our prototype ex-
ecutes hand-coded queries based on the query processor API and
currently lacks support for transactions and recovery. We omit
these features because we believe they are orthogonal to the ques-
tion of which physical design will perform best for a given work-
load. However, to minimize the impact of transactions in HYRISE,
in addition to normal write operations, we use non-temporal writes,
which allow to directly write back to main memory without loading

1434

Q
ue

ry
 P

ro
ce

ss
or Layout Manager

Layouter Workload
Data

In-Memory Storage
Manager Data Container

Attribute
Groups

Attribute
Groups

R

R

R

● ● ●

Figure 1: The HYRISE architecture.

the written content into the CPU cache. Even though our prototype
currently executes one query at a time only, we use thread-safe data
structures that include latch acquisition costs to support later query
parallelization.

We give an overview of the different HYRISE components be-
low, before describing the contents of our demonstration.

2.1 Storage Manager
HYRISE supports a fine-grained hybrid storage model, which

stores a single relation as a collection of disjoint vertical partitions
of different widths. Each partition is represented by a data struc-
ture we call container. Containers are physically stored as a list
of large, contiguous and compressed blocks of data. Data types
are dictionary-compressed into fixed-length fields to allow direct
access (offsetting) to any given position.

Figure 2 shows an example of a relation r with eight attributes
partitioned into three containers. In this example, the first container
contains one attribute only. The second and third containers contain
five and two attributes respectively.

C1 (a1) C2 (a2 .. a6) C2 (a7 .. a8)
r = (a1 ... a8)

Figure 2: An example of physical partitioning where a table
containing eight attributes is partitioned into three containers,
containing one, five, and two attributes respectively.

2.2 Query Processor
The HYRISE query processor creates a query plan, consisting of

a tree of operators, for every query it receives. HYRISE currently
implements the following operators: projection, selection, sort, and
group by. For joins, HYRISE includes hash and nested loops join
algorithms. Most of our operators support both early and late mate-
rialization, meaning that HYRISE provides both position or value-
based operators [1]. In late materialization, filters are evaluated by
determining the row indexes (“positions”) that satisfy predicates,
and then those positions are looked up in the columns in the SE-
LECT list to determine values that satisfy the query (as opposed
to early materialization, which collects value lists as predicates are
evaluated.)

Non-join queries are executed as follows: index-lookups and
predicates are applied first in order to create position lists. Posi-
tion lists are combined (e.g., ANDed) to create result lists. Finally,
results are created by looking-up values from the containers using
the result lists and are merged to create the output tuples. For join
plans, predicates are first applied on the dimension tables. Then,

Filter Filter Filter

Position
AND

Position
Lookup

Positions
Values

Positions

1,3,4,5 1,2,3,43,4,5

3,4

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

Filter Filter

Position
Lookup

Dimension Tables

Values

Hash Join

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

Fact Table

Position
AND

Positions

i. ii.

Figure 3: Two examples of query plans illustrating i) non-join
queries and ii) join queries.

foreign-key hash-joins are used to build position lists from the fact
tables. Additional predicates can be applied on the fact tables to
produce additional position lists. All position lists are combined
with the output of the joins, and the final list of positions is used to
create the final results. Figure 3 shows two sample query plans.

2.3 Layouter
There are a very large number of possible hybrid physical de-

signs (combinations of non-overlapping containers containing all
of the columns) for a particular table. There exists for example 73
different hybrid layouts for a table of 5 attributes, 4,596,553 layouts
for a table of 10 attributes, or 3,535,017,524,403 possible layouts
for a table of 15 attributes. HYRISE is to the best of our knowledge
the first hybrid database system offering a fully automated designer
capable of determining the most appropriate physical design for ta-
bles of many tens or hundreds of attributes given a database and a
query workload.

Our layouter is based on a very accurate cost-model, used
to compare the performance of various hybrid layouts given a
query workload. Most of the query execution time spent in a
main-memory system like HYRISE originates from CPU stalls—
typically caused by cache misses when moving data from main
memory into CPU registers; those CPU stalls are known to account
for a significant fraction of the total cost of a query (see [2]).

Our model is based on a detailed analysis of such costs, taking
into account the cache misses for different cache levels (e.g., L1
and L2 cache), the alignment of the data with regards to the cache
lines, the various prefetching policies available, and the cache con-
tention. Our model captures all important operations available in
HYRISE including:

1. projections
2. selections
3. joins
4. aggregations
5. combinations of intermediate results and
6. result reconstructions.

The details of our cost-model are available in [5].
The role of the layouter is to determine good layouts that will

minimize query response time. More formally, given a database
DB and a workload W , the layouter determines one (or several)

1435

physical layout λopt minimizing the workload cost according to
our cost model:

λopt = argmin
λ

(CostDB(W)) .

The layouter generates the best possible layouts in three phases.
The first phase, called candidate generation, generates the largest
partitions presenting no overhead according to the given workload
(that is, the partitions whose attributes are always co-accessed to-
gether). The second phase, candidate merging, generates new parti-
tions by iteratively merging and pruning the candidates returned by
the first phase. The third and final phase, called layout construction,
creates all valid layouts by combining the candidates of the second
phase, and returns the best layout according to our cost-model.

Scalable Partitioning. The worst-case space complexity of our
layout generation algorithm is exponential with the number of can-
didate partitions. However, it performs very well in practice since
very wide relations typically consist of a small number of sets of
attributes that are frequently accessed together (thus, creating a
small number of primary partitions during the first phase described
above) and since operations across those partitions are often rela-
tively infrequent (thus, drastically limiting the number of new par-
titions generated by the second phase above).

For large relations and complex workloads involving hundreds of
different frequently-posed queries, the running time of the above
algorithm may still be high. Thus, HYRISE supports a second,
approximate but very scalable partitioning algorithm. This second
algorithms starts like the first one above by generating candidate
partitions. In addition, it computes the affinity between the candi-
date partitions, namely the frequency with which pairs of partitions
are accessed together.

Our scalable layouter partitions this graph in order to obtain a
series of min-cut subgraphs each containing at most K primary par-
titions (where K is a system parameter). HYRISE uses an existing
approximate multilevel k-way graph partitioner [6] in this context.
At this point, each subgraph contains a set of candidate partitions
that are often accessed together, and which thus represent excellent
candidates for our merging phase (see above). We determine the
optimal layout of each subgraph separately, which is in the worst-
case exponential with the maximum number of primary partitions
in a subgraph (K). Finally, we combine the sub-layouts obtained
in the previous step in order to yield the most savings according
to our cost model, until no further cost-reduction is possible. Fig-
ure 4 gives a graphical illustration of the process. This approxi-
mate algorithm is very effective in practice, as will be shown in the
demonstration and as explained in [5].

3. DEMONSTRATION
Our demonstration will allow conference attendees to issue

queries dynamically, view the query plans (Figure 3), results, and
the time to execute the various queries. In addition, it will provide
a visualization of the partitioning (Figure 2) and will allow atten-
dees to experiment with various physical designs (e.g., columns,
rows, various hybrid layouts) and observe the influence of the vari-
ous physical designs on query execution and on the performance of
HYRISE. We start below by detailing the data and queries we will
use, before giving a few details about the user interface we will
build for this demonstration.

3.1 Schema & Data
To evaluate our model we choose a set of queries derived from an

SAP enterprise resource planning (ERP) application that includes

p2 p1 p5

p6

p0

p4

p3

p10

p8

p7

p9

Figure 4: An example of scalable partitioning: a graph of
eleven candidate partitions (nodes) with their respective affini-
ties (edges); the graph is partitioned to obtain a series of min-
cut subgraphs, each containing at most K partitions; our algo-
rithm then determines the optimal layout for each subgraph,
and finally combines all subgraphs.

several analytical queries that model lightweight reporting over the
recent history of these transactions. We chose to use our own
application-derived workload in this demonstration because real
enterprise applications (such as those we have encountered at SAP)
exhibit significant differences in terms of number of attributes per
table from benchmarks like TPC-C, TPC-E, and TPC-H. For ex-
ample, in TPC-E (the most complex of these three benchmarks) the
maximum number of attributes per relation is about 25; in SAP’s
enterprise applications it is not uncommon to see tables with 200
attributes or more.

Furthermore, we wanted to execute both OLTP-style and
analytical-style queries on the same data. It is not easy to retrofit an
existing analytical benchmark like TPC-H to support transactional
queries, since the business model in TPC-C and TPC-H are quite
different, and TPC-H uses a star-schema design whereas TPC-C
uses a more conventional normalized schema. Even though a verti-
cal partitioning of attributes is suitable for single-style workloads,
we see the biggest performance gains for hybrid layouts for het-
erogeneous applications, due to the fact that neither row-wise nor
column-wise storage would be optimal for such applications.

The business entities involved in our ERP scenario – following
the sales and distribution processes – are modeled as a large num-
ber of relations. This is both due to the application’s use of highly
normalized OLTP schemas and a result of so-called header-items.
Header-items cause the sales order entity to be partitioned into a
sales order header table and a sales line item table. The header con-
tains data relevant to the entire sales order. For example, its descrip-
tion, order date, and sold-to-party are stored there. Attributes of the
ordered material, number and price are kept in the line item table,
with each row representing one item and belonging to one order. In
general, a single sales order consists of several line items. Master
data tables do not follow this pattern and store data in single tables
for each type. For example, in the sales and distribution scenario,
material and customer detail tables are both stored. The customer
details table contains customer attributes, including name, account
type, contact, and billing data. Specifics about a material, such as
its description, volume, weight and sales-related data are kept in the
material details table and the material hierarchy. In contrast to the
tables used by TPC-E or TPC-C, the tables we consider are mod-
eled after a real enterprise system and are much wider. The widest
tables are the sales order line items table with 214 attributes and

1436

Sales Document Header
(VBAK)

Sales Document Item
(VBAP)

Business Partner
(KNA1)

Material
(MARA)

Business Partner Address
(ADRC)

Material Text
(MAKT)

KUNNR

KUNNR

VBELN

MATNR

MATNR

Material Hierarchy
(MATH)

MATNR

Figure 5: The sales schema used for the demo.

the material details table with 204 attributes. The other tables have
between 26 and 165 attributes (e.g. KNA1). Figure 5 illustrates the
schema of our benchmark.

3.2 Benchmark Queries
Our demonstration suggests a set of queries covering all stan-

dard operations of our ERP scenario, from small transactional
operations—including writes—to more complex, read-mostly ag-
gregates on larger sets of data. In addition, conference attendees
will be able to write their own queries manually.

The default queries for our demonstration will be as follows:
Q1 Search for a customer by first or last name (ADRC)

select ADDRNUMBER, NAME CO, NAME1, NAME2,
KUNNR from ADRC where NAME1 like (..)
OR NAME2 like (..);

Q2 Read the details for this customer (KNA1)
select * from KNA1 where KUNNR = (...);

Q3 Read all addresses belonging to this customer (ADRC)
select * from ADRC where KUNNR = (...);

Q4 Search for a material by its text in the material text table (MAKT)
select MATNR, MAKTX from MAKT where
MAKTX like (..);

Q5 Read all details for the selected material from the material table
(MARA)
select * from MARA where MATNR = (...);

Q6.a Insert a new row into the sales order header table (VBAK)
insert into VBAK (..) values (..);

Q6.b Insert a new row into the sales order line item table based on the
results of query Q5 (VBAP)
insert into VBAP (...) values (...);

Q7 Display the created sales order header (VBAK)
select * from VBAK where VBELN = (..);

Q8 Display the created sales order line items (VBAP)
select * from VBAP where VBELN = (..);

Q9 Show the last 30 created sales order headers (VBAK)
select * from VBAK order by VBELN desc limit
30;

Q10 Show the turnover for customer KUNNR during the last 30 days
select sum(item.NETWR), header.KUNNR from
VBAK as header, VBAP as item where
header.VBELN = item.VBELN and
header.KUNNR = $1 and header.AEDAT >= $2;

Q11 Show the number of sold units of material MATNR for the next 10
days on a per day basis
select AEDAT, sum(KWMENG) from VBAP where
MATNR = $1 and AEDAT = (..) group by AEDAT;

Q12 Show the number of sold units of material MATNR for the next 180
days on a per day basis
select AEDAT, sum(KWMENG) from VBAP where
MATNR = $1 and AEDAT = (..) group by AEDAT;

Q13 Drill down through the material hierarchy starting on the highest
level using an internal hierarchy on the table, each drill-down step
reduces the selectivity, starting from 40% selectivity going down to
2.5% selectivity.

Queries Q1. . .Q9 can be categorized as typical OLTP queries,
while queries Q10, Q11, Q12 and Q13 can be categorized as
OLAP-style queries.

3.3 User Interaction
Users are given two main ways of interacting with our system

during the demonstration:

1. The workload panel lets the user select one or several of our
benchmark queries (see above) in order to create a workload.
The user can add weights to the queries to simulate the fact
that some queries are run much more often than others, and
can also manually enter a query of his/her choosing if he/she
prefers to. The user can also select one or several queries
to be executed; the panel then displays the query execution
plan the system picked to execute the query, the query results,
and the time taken to execute the query. The system gives
a number of additional details on the execution, including
the number of containers touched, the number of tuples read,
the number of cache lines loaded for each cache level, and
the CPU time taken to execute each operator in the query
execution plan.

2. The layouter panel shows the candidate partitions and the
top-5 different partitionings that are automatically generated
by our system based on the current data and the query work-
load selected by the user. In addition, the user is able to
directly influence the physical layout of the database: he/she
can select arbitrary attributes and move them from one par-
tition to the other, or create entirely new partitions. The
system dynamically computes the expected cost of running
the current workload on the physical layout chosen by the
user; It compares the user’s layout to the top-5 partition-
ings determined automatically, and also to an all-row and an
all-column layouts. Finally, the user can ask the system to
rewrite the database according to the layout he/she picks (the
rewriting takes a few seconds), and can then switch back to
the workload panel to execute some queries on the new phys-
ical layout he/she created.

Using both the workload and the layouter panel, the user can thus
get familiar with the concept of hybrid layouts and can experiment
in real time with various query workloads and partitionings, and
observe their impact on the overall performance of the system.

4. REFERENCES
[1] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. Madden.

Materialization Strategies in a Column-Oriented DBMS. In
ICDE, pages 466–475, 2007.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood.
DBMSs on a Modern Processor: Where Does Time Go? In
VLDB, pages 266–277, 1999.

[3] P. A. Boncz, S. Manegold, and M. L. Kersten. Database
Architecture Optimized for the New Bottleneck: Memory
Access. In VLDB, pages 54–65, 1999.

[4] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In CIDR, pages 225–237,
2005.

[5] M. Grund, J. Krger, H. Plattner, A. Zeier, P. Cudre-Mauroux,
and S. Madden. Hyrise - a main memory hybrid storage
engine. PVLDB, pages 105–116, 2010.

[6] G. Karypis and V. Kumar. Multielvel k-way partitioning
scheme for irregular graphs. Journal of Parallel and
Distributed Computing, 48(1):96–129, 1998.

1437

	Introduction
	HYRISE Architecture
	Storage Manager
	Query Processor
	Layouter

	Demonstration
	Schema & Data
	Benchmark Queries
	User Interaction

	References

