Data Generation for Application-Specific Benchmarking

Y.C. Tay

National University of Singapore
dcstayyc@nus.edu.sg

ABSTRACT

The Transaction Processing Council (TPC) has played a
pivotal role in the database industry’s growth over the last
twenty-five years. However, its handful of domain-specific
benchmarks are increasingly irrelevant to the multitude of
data-centric applications, and its top-down process is slow.

This mismatch calls for a paradigm shift to a bottom-
up community effort to develop tools for application-specific
benchmarking. Such a development program would center
around techniques for synthetically scaling (up or down) an
empirical dataset. This engineering effort in turn requires
the development of a database theory on attribute value
correlation.

1. INTRODUCTION

A database management system for an enterprise or web
service is a complicated collection of software and hardware.
Its complexity and its importance require that a storage
redesign, a scale out of machines, a new business application,
etc., be adequately tested before deployment. Such testing
needs to use a dataset of an appropriate size.

One possibility is to use a TPC! benchmark for such tests.
TPC datasets can be scaled to desired sizes, and are also
domain-specific: TPC-C for online transaction processing,
TPC-H for decision support, etc. Vendors have used these
benchmarks to improve and compare their products, and
researchers have used them to test and compare their al-
gorithms and prototypes. The TPC benchmarks have thus
played an important role in the growth of the database in-
dustry and the progress of database research.

However, while there is a tremendous variety of database
applications, there are only a few TPC benchmarks. It fol-
lows that a TPC benchmark may not be equally relevant to
two different applications within its domain; furthermore,
at any moment, there are numerous applications that are

*This research was supported in part by MOE Grant No.
R-252-000-394-112.

"http://www.tpc.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.

Proceedings of the VLDB Endowment, Vol. 4, No. 12

Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

1470

not covered by the benchmarks. This situation can only get
worse, as the proliferation of new data-centric applications
far outpaces the approval of new TPC benchmarks [18].

Hence, there is an urgent need for a paradigm shift: In-
stead of continuing with TPC’s top-down approach to
domain-specific benchmark design by committee con-
sensus, the database community should collaborate in
a bottom-up program to develop tools for application-
specific benchmarking.

The pivotal role played by the TPC benchmarks in the
last two decades suggests that such a program will play a
similar role in database research and development for many
years to come.

2. THE DATASET SCALING PROBLEM

The central problem for the above program lies in the
scaling of an empirical dataset. We state this issue as the
Dataset Scaling Problem:

Given a dataset D and a scale factor s, generate
a synthetic dataset D that is similar to D but s
times its size.

One can define “s times its size” in various ways (number
of records or bytes, etc.), and numerical precision is unnec-
essary — if s = 3, it would not matter if the generated D
were actually 3.14 times D’s size (however defined).
Rather7 the issue is “similarity”; e.g. if D is a set of tables,
then D must reflect relationships among the columns and
rows of D. Depending on the application, one could define
similarity in terms of statistical correlation, graph properties
(e.g. if D represents a social network), etc. If similarity is
defined by query results, then that raises the question of
how queries are to be factored into the generation of D.

3. MOTIVATIONFOR s>1,8=1,8<1

There are various possibilities for why one might want to
synthetically scale up (s > 1) an empirical dataset. Some
web applications have user populations that grow at break-
neck speed (one recent example being Animoto?), so a small
but fast-growing service may need to test the scalability of
their hardware and software architecture with larger ver-
sions of their datasets.

Another example is where an enterprise supplies a vendor
with only a sample of its dataset (e.g. the entire dataset is
too large for easy transfer, as is the case with uploading into

Zhttp://animoto.com

R’ Vi R T R’ T
A| B B|C A| B B|C A| B B|C
a | 1 1 |e (a) ay | 1 1 e (b) a | 1 1 e
a |1 2 ¢ a | 1 2 ¢ a | 1 2 ¢
az | 2 2 |c3 ay | 2 2 |c3 az | 2 2 |c3
ay| 3]]3|} ay| 1]]1]
ay| 3 4 |ch ay| 1 2 |ch
as| 4 4 |ch ay| 2 2 |ch
Figure 1: D = {R,T}, D = {R,T'}, s = 2. Naive

copying does not work: For (a), creating new values
may violate constraints on B (e.g. value range or
number of distinct values); for (b), without creating
new values, the scale up in join sizes may be wrong.

a cloud), and the vendor needs to scale up the sample to an
appropriate size.

Taking a small sample of a large dataset is itself nontrivial.
For example, if a dataset contains 2000000 buyers, and we
want to extract a sample with 1000 buyers, it does not suffice
to randomly pick 1000 buyers; e.g. we may need to add their
suppliers’ other buyers, and this recursive adding can grow
the sample to an indeterminate size.

An enterprise may want to downsize its dataset, not just
for a vendor, but for itself. For example, rather than debug a
new application by running it on a production dataset, one
may want to downsize it (s < 1) to get a small synthetic
copy for testing.

In providing a vendor with just a small sample of its
dataset, the dataset owner may be motivated by privacy
or proprietary considerations. A tool to make a synthetic
copy (s = 1) of a dataset can hence be viewed as a form of
anonymization.

Such anonymization can be useful for, say, exploring dif-
ferent system configurations or implementations in the cloud
(leveraging on its elasticity, and before investing in a partic-
ular configuration). Rather than expose their real dataset
(i.e. their crown jewels), an enterprise can reduce their risk
by uploading a synthetic copy.

One reason for the popularity of TPC benchmarks among
academic researchers is the dearth of real application data.
This scarcity may be alleviated by a tool for making syn-
thetic copies. Note, however, that some information leakage
is inevitable since D is, after all, similar to D.

4. ATTRIBUTE VALUE CORRELATION
PROBLEM

To see why scaling a dataset is nontrivial, consider the toy
relational D in Fig. 1. An obvious possibility for s = 2 is to
scale D to D by making a copy. However, if the copy uses
new values not in D (choice (a) in Fig. 1), this may violate
attribute constraints like value range or number of distinct
values; moreover, if D were a social network, such copying
will create two social networks that are disconnected from
each other. On the other hand, if the copy uses only values
in D (choice (b) in Fig. 1), the result of a join query may
scale by a wrong factor.

Besides, copying does not work for s < 1.

For a better understanding of the issues, suppose D is a
relational dataset (from a service like Flickr®) with four ta-
bles User, Photo, Comment and Tag that records photographs

Shttp://www.flickr.com

1471

PK = Primary Key

FK = Foreign Key Photo
pid|pUid| Pdate Purl‘ ‘
PK | FK

Tag

Tid| TPid TUid‘ ‘

PK| FK FK

User
uUid
PK

Uname|

Ulocatioﬁ . ‘

Comment

Cid| CPid
PK| FK

CUid Cdate| Ctext ...
FK

Figure 2: A small schema graph for a photograph
database D. Photo records the owners (PUid) who
uploaded the photographs, Comment records the com-
ments on photographs (CPid) and their authors
(Cuid), and Tag records the tags on photographs
(TPid) and the users who specified the tags (TUid).
User records these owners, authors and taggers.

Photo Comment
Pid PUid cid CPid cuid
Px X Px y
Py y Py X

Figure 3: Users z and y comment on each other’s
photographs. Such interactions induce inter-column
and inter-row correlations in the tables above.

uploaded by, commented upon and tagged by a community
of users. The foreign key constraints are as indicated by
the schema graph in Fig. 2. These constraints must hold in
13, and we can view such referential integrity as a form of
correlation between attributes.

Classical dependency theory is a form of attribute correla-
tion, and there is recent work on discovering, say, conditional
functional dependencies [10]. However, there are many other
forms of inter-attribute correlation. For example, the non-
key columns for age and gender in the table User may be
correlated; a user is more likely to comment on her own pho-
tographs, so there is correlation between foreign keys CUid
in table Comment and PUid in table Photo for CPid=Pid; a
gardener is more likely to comment on the photograph of
a flower, so the foreign keys CUid and CPid in Comment are
correlated; etc.

Aside from inter-column correlations, there are also inter-
row correlations. For instance, the dimensions for different
photographs uploaded by a user may be similar, and the
tags used by a gardener may be recognizably different from
those used by a bird watcher.

Some correlations are both inter-column and inter-row.
For example, two friends x and y may comment on each
other’s photographs, so the attribute values in Photo and
Comment have the correlation shown in Fig. 3. This illus-
trates a correlation that is induced by a social interaction.

In general, how can we scale a dataset D that is generated
by a social network G7 Intuitively, we would need to also
construct a synthetic social network G when generating D.
The graph G of edges between users may not be explicitly
stored in D, but one can extract G from D by some join
expression (like in the case of Fig. 3).

Scaling G to G is nontrivial: How should the number of
edges scale — by s, s2, or some other factor? How about

extract scale by § ~ inject ~
—_— D
empirical empirical synthetic synthetic
dataset social graph social graph dataset

Figure 4: The social graph G can be extracted from
D with some join expression and G can be scaled to
g by some graph-theoretic algorithm; but how to
create the dataset D for G?

the number of triangles (a friend of a friend is likely to be a
friend)? What about the path lengths (6 degrees of separa-
tion)? These issues are graph-theoretic.

From the database perspective, the real difficulty comes
after extracting G from D and scaling G to G: namely, how
to “inject” G into D (see Fig. 4). For example, in Fig. 3, the
same four attributes reflect correlation
(i) from G induced by x and y commenting on each other’s
photographs,

(ii) between gardeners and photographs of flowers and

(iii) between commentator and owner;

in what order should the scaling algorithm replicate these
correlations? How about correlation between these attributes
and other columns?

We see that, while the extraction of G from D can bg
done with a straightforward join query, the injection of G
into D requires an understanding of how attribute values
are correlated in social network data. We state this issue as
The Attribute Value Correlation Problem for Social
Networks (AVCsn)

Suppose a database D records data from a social
network. How do the social interactions affect
the correlation among attribute values in D?

For example, two persons with the same age, or use “sim-
ilar” tags, may be more likely to comment on each other’s
photographs; the Facebook® wall for a user x may receive
many comments on z’s birthday; etc. What correlation do
such social interactions induce in the database?

Dataset scaling aside, attribute value correlation is of in-
dependent interest since it is relevant to query optimization,
materialized views, index design and storage organization
(clustering, partitioning, sharding, etc.) — see Sec. 5.

The mushrooming of online social networks is as unstop-
pable as the spread of the Web, and many businesses and
services are angling to leverage on them. These networks
first appeared several years ago and, going forward, more
and more datasets will be generated by them.

We were therefore surprised that, when we encountered
the attribute value correlation issue and looked into the lit-
erature, we found no theory to guide us in scaling datasets
that are generated by social networks. This is why we high-
light the AVCgn problem here — we believe it points to a
rich, new area for database researchers reminiscent of de-
pendency theory.

5. BACKGROUND

The TPC approach is being adopted by a new genera-
tion of benchmarks [1, 6]. However, Seltzer et al. [16] have

“http://www.facebook.com/

1472

observed how standard benchmarks can be irrelevant for
particular applications, and argued for application-specific
benchmarking. For database systems, this alternative ap-
proach must start with application-specific datasets.

The TPC way of generating a completely synthetic dataset
can be traced back to the Wisconsin benchmark [7]. Its de-
signers had considered the possibility of using real data to
construct a benchmark for database systems. However, they
decided against that for three reasons: (i) They would need
the dataset to be large, so that it reflects their underlying
probability distributions; these days, this is not an issue for
many databases, some of which are huge. (ii) Query de-
sign is easier if the data is synthetic, so one can adjust the
table sizes, join selectivity, etc.; this is also not an issue
for application-specific benchmarking, since the application
would already have a set of queries on hand. (iii) Empirical
datasets are hard to scale. This third reason remains true;
however, 28 years have passed, and a relook at the problem
is long overdue.

So far, the use of empirical data in dataset generation is
very limited. For example, MUDD [17] only extracts names
and addresses from a real dataset; TEXTURE [9] extracts
word distribution, document lengths, etc. from “seed” doc-
uments and use them to independently generate synthetic
documents (like how TPC generates tuples); and Duan et
al. samples from a given RDF dataset (i.e. s < 1 and no
synthetic table generation) [8].

Similarly, the data generating tool by Houkjeer et al. [12]
only uses cardinalities and value distributions extracted from
real data and, other than referential integrity, does not repli-
cate their correlation. This is also current practice in the in-
dustry; e.g. Teradata and SQL Server both use only column
statistics (maximum, mode, number of rows and distinct
values, etc.) for data generation. IBM’s Optim® and HP’s
Desensitizer [5] are focused on data extraction and obfusca-
tion, not synthetic data generation.

Bruno and Chaudhuri’s Data Generation Language [4]
can specify value distributions and generate data tuples,
while Hoag and Thompson’s Synthetic Data Description
Language [11] has a construct for specifying foreign keys,
but data generation by both languages do not replicate cor-
relation between foreign keys, nor between rows, etc.

A couple of tools use the queries to guide data genera-
tion: Binnig et al.’s reverse query processing [2] uses query
results to generate a smallest dataset to test the applica-
tion, whereas QAGen uses a given query plan with size con-
straints to generate a corresponding dataset [3], without re-
quiring similarity to real data. Thus, neither tool addresses
the Dataset Scaling Problem.

Even so, queries can help the discovery of inter-attribute
correlations. CORDS [13] is a tool that uses the application
queries to select columns whose correlations are important
for query optimization; it also uses the correlation to gener-
ate synthetic data, but this purely valued-based generation
(e.g. humidity and temperature) cannot replicate the entity-
based correlation (e.g. gardeners and flowers) described in
Sec. 4. CORADD [14] is another tool that discovers at-
tribute correlations that are important to the queries, and
use them to design materialized views and indexes.

We see CORDS and CORADD as early signs of a grow-
ing interest in the Attribute Value Correlation problem.

Shttp://www-01.ibm.com/software/data/data-management
/optim-solutions/

Progress in understanding this problem would help database
research on social networks. This is because much of the ac-
tivity in these networks may have little to do with explicitly
declared lists of friends and contacts, etc.; rather, they are
social interactions (e.g. writing on Facebook walls [19]) that
are implicitly captured by values in several columns. Online
social networks are major users of data-centric systems, and
a better understanding of such data is necessary if one is to
extract value from these systems. This is why we highlight
the AVCgsn problem here.

Incidentally, current techniques for growing social network
graphs by adding one node at a time (e.g. the Forest Fire
Model [15]) are too slow and will likely accumulate signifi-
cant inaccuracies (consider, say, s = 2 in Fig. 4).

6. CONCLUSION

We believe that the TPC benchmarking paradigm can-
not sufficiently cover, in timely fashion, the diverse applica-
tions in the ballooning number of data-centric systems. We
therefore propose here a paradigm shift to a collaborative
program to develop tools and techniques for application-
specific benchmarking.

Our contribution to such a community effort is UpSizeR?,
an open-source software that addresses the Dataset Scaling
Problem for relational databases. UpSizeR is currently a
first-cut tool — while it replicates correlation among key
values, similar replication involving non-key values is rudi-
mentary, since that is application-specific.

The current UpSizeR’s generation of key values may be
adequate for classical datasets (in finance, retail, etc.), but
not for social networks. It has a swap technique for replicat-
ing the correlation in Fig. 3, but the technique is not suffi-
ciently general for the graph injection in Fig. 4. The latter
calls for a database-theoretic understanding of AVCgn.

We have highlighted two issues in our program proposal on
application-specific benchmarking: (1) the Dataset Scaling
Problem, for its fundamental importance to such a program;
and (2) AVCgn, for its growing relevance to web-generated
datasets. However, there are other related issues.

For example, applications grow with datasets; an insert
transaction may generate more tuples, where the values in-
serted follow the correlation in the database. For a scalabil-
ity study to exercise the indexes, locks, etc., the applications
must also be scaled to match the dataset.

Similarly, the query log will also scale with a database. In
fact, for Internet services, much of the value may lie in their
click logs. One particular difficulty in log scaling lies in the
correlation among the clicks. For example, a log records an
interleaving of multiple click streams, so the data returned
by one click is correlated with those for concurrent clicks
in other streams, and probabilistically determines the next
click in its own stream.

We therefore see a program to develop application-specific
benchmarking as not only of considerable commercial inter-
est, but also a rich trove of challenging problems for database
research.

7. ACKNOWLEDGMENTS

Many thanks to Bing Tian Dai, Daniel T. Wang and El-
dora Y. Sun for their work on UpSizeR.

Shttp://www.comp.nus.edu.sg/~upsizer

1473

8. REFERENCES

[1] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing.
How is the weather tomorrow?: Towards a benchmark
for the cloud. In DBTest, pages 1-6, 2009.

C. Binnig, D. Kossmann, and E. Lo. Reverse query
processing. In ICDFE, pages 506-515, 2007.

C. Binnig, D. Kossmann, E. Lo, and M. T. Ozsu.
QAGen: Generating query-aware test databases. In
SIGMOD, pages 341-352, 2007.

N. Bruno and S. Chaudhuri. Flexible database
generators. In VLDB, pages 1097-1107, 2005.

M. Castellanos, B. Zhang, I. Jimenez, P. Ruiz,

M. Durazo, U. Dayal, and L. Jow. Data desensitization
of customer data for use in optimizer performance
experiments. In ICDE, pages 1081-1092, 2010.

B. F. Cooper, A. Silberstein, E. Tam,

R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. In SoCC, pages 143-154,
2010.

D. J. DeWitt. The Wisconsin Benchmark: Past,
present, and future. In The Benchmark Handbook.
Morgan Kaufmann Publishers Inc., 1993.

S. Duan, A. Kementsietsidis, K. Srinivas, and

O. Udrea. Apples and oranges: A comparison of RDF
benchmarks and real RDF datasets. In SIGMOD,
2011.

V. Ercegovac, D. J. DeWitt, and R. Ramakrishnan.
The TEXTURE benchmark: Measuring performance
of text queries on a relational DBMS. In VLDB, pages
313-324, 2005.

W. Fan, F. Geerts, L. V. S. Lakshmanan, and

M. Xiong. Discovering conditional functional
dependencies. In ICDE, pages 1231-1234, 2009.

J. E. Hoag and C. W. Thompson. A parallel
general-purpose synthetic data generator. SIGMOD
Rec., 36(1):19-24, 2007.

K. Houkjeer, K. Torp, and R. Wind. Simple and
realistic data generation. In VLDB, pages 1243-1246,
2006.

I. F. Ilyas, V. Markl, P. Haas, P. Brown, and

A. Aboulnaga. CORDS: Automatic discovery of
correlations and soft functional dependencies. In
SIGMOD, pages 647-658, 2004.

H. Kimura, G. Huo, A. Rasin, S. Madden, and

S. Zdonik. CORADD: Correlation aware database
designer for materialized views and indexes. In Proc.
VLDB Endow., volume 3, pages 1103-1113, 2010.

J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph
evolution: Densification and shrinking diameters.
ACM Trans. Knowl. Discov. Data, 1, March 2007.
M. Seltzer, D. Krinsky, K. Smith, and X. Zhang. The
case for application-specific benchmarking. In
HOTOS, pages 102-109, 1999.

J. M. Stephens and M. Poess. MUDD: A
multi-dimensional data generator. In WOSP, pages
104-109, 2004.

M. Stonebraker. A new direction for TPC? In
TPCTC, pages 11-17, 2009.

C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and
B. Y. Zhao. User interactions in social networks and
their implications. In Eurosys, pages 205-218, 2009.

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

