Human-Assisted Graph Search: It’'s Okay to Ask Questions

Aditya Parameswaran
Stanford University
adityagp@cs.stanford.edu

Neoklis Polyzotis
UC Santa Cruz
alkis@cs.ucsc.edu

ABSTRACT

We consider the problem of human-assisted graph search: given
a directed acyclic graph with some (unknown) target node(s), we
consider the problem of finding the target node(s) by asking an om-
niscient human questions of the form “Is there a target node that is
reachable from the current node?”. This general problem has ap-
plications in many domains that can utilize human intelligence, in-
cluding curation of hierarchies, debugging workflows, image seg-
mentation and categorization, interactive search and filter synthe-
sis. To our knowledge, this work provides the first formal algorith-
mic study of the optimization of human computation for this prob-
lem. We study various dimensions of the problem space, providing
algorithms and complexity results. We also compare the perfor-
mance of our algorithm against other algorithms, for the problem
of webpage categorization on a real taxonomy. Our framework and
algorithms can be used in the design of an optimizer for crowd-
sourcing platforms such as Mechanical Turk.

1. INTRODUCTION

Crowd-sourcing services, such as Amazon’s Mechanical Turk
(mturk. com) and CrowdFlower (crowdflower.com) allow orga-
nizations to set up tasks that humans can perform for a certain
reward. The goal is to harness “human computation” in order to
solve problems that are very difficult to tackle completely algo-
rithmically. Examples of such problems in practice include object
recognition, language understanding, text summarization, ranking,
and labeling [9].

In a typical crowd-sourcing setting, the tasks are broken down to
simple questions (often with a YES/NO answer) that can be eas-
ily tackled by humans. Since each question comes at a price, be
it money, effort, or time, it is desirable to minimize the number of
questions that need to be answered in order to achieve the overall
objective. Thus, we would like a general-purpose human compu-
tation optimizer that selects the specific questions to be asked so
as to minimize some cost metric. (The vision for such an opti-
mizer, leveraging human and algorithmic computation along with
relational data was laid out recently [3].) We develop core algo-
rithms for such an optimizer, considering a class of human-assisted
graph search problems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.

Proceedings of the VLDB Endowment, Vol. 4, No. 5

Copyright 2011 VLDB Endowment 2150-8097/11/02... $ 10.00.

Anish Das Sarma
Yahoo! Research
anishdas@yahoo-inc.com

267

Hector Garcia-Molina
Stanford University
hector@cs.stanford.edu

Jennifer Widom
Stanford University
widom@cs.stanford.edu

In human-assisted graph search, or HumanGS for short, we are
given as input a directed acyclic graph that contains a set of un-
known rarget nodes (collectively called the target set), and the goal
is to discover the identities of these target nodes solely by asking
search questions to humans. A search question is a question of the
form “Given a node x in the graph, is there a target node reach-
able from node = via a directed path?”. (Note that, by definition,
each search question corresponds to a node in the graph, and we
can ask a search question at any node.) The objective is to select
the optimal set of nodes at which to ask search questions in order
to ascertain the identities of the target nodes. Later, we examine
different notions of optimality, including minimizing the total num-
ber of questions, or minimizing the set of resulting possible target
nodes after a fixed number of questions.

EXAMPLE 1.1. Suppose our goal is to categorize an image into
one of the classes of the hierarchical taxonomy shown in Figure 1(a).
If the image is that of a Nissan car, but the model is not identifiable,
the most suitable category is “Nissan”. If the model is identifi-
able as well, say, Sentra, then the most suitable category would
be “Sentra”. Since categorization of images is a task that can be
performed better by humans than by computers, we would like to
utilize human intelligence. We wish to ascertain the most suitable
category (which could be anywhere in the taxonomy) by asking the
minimum number of questions to humans.

This task is an instance of the HumanGS problem. The taxonomy
is the DAG, with each category corresponding to a node. The tar-
get node is the most suitable category of the image. Asking a search
question at a node/category X is equivalent to asking a question of
the form “Is this an X?”. For instance, in the Nissan car example
above, receiving a YES answer to “Is this a Car?” says that the
most suitable category, in this case Nissan, is reachable from the
category Car. Also, asking a question at the root, Vehicle, (a gen-
eral question) gives a YES answer while asking a question at a leaf,
Maxima (a specific question), gives a NO answer. If the image is
that of a car, but the model is not identifiable, then asking a ques-
tion at Vehicle and Car will yield YES, while all other questions
will receive a NO answer. m|

There are several interesting properties that make HumanGS a
nontrivial problem. First, the answers to different search questions
may be correlated, e.g., if the answer to the search question at a
node is YES, then the answer to a search question at an ancestor
of that node will be YES as well. Therefore, it is possible to iden-
tify the target nodes without asking search questions at all nodes in
the graph. Second, the location of a node affects the amount of in-
formation that can be obtained from the corresponding search ques-
tion. Asking search questions at nodes close to leaves (very specific
questions) are more likely to receive a negative answer, while ask-
ing questions at nodes close to roots (very general questions) are

Web-data CustList

vehicle

|

car

Extract Dedup

“shoes”
Canonicalize in title
Join

nissan honda mercedes Postprocess

“shoes” in title

A “price” in

maxima sentra Output contents

(a) Category Identification (b) Workflow Provenance

no filter
“price” in title =“buy b .
= vehicle animal
contents footwear”
. . ar cat family dog family
title ="“buy Y & ;
footwear” A “price”
in contents honda jaguar lions panthers jaguars

(c) Filter Synthesis

(d) Interactive Search

Figure 1: Examples of HumanGS

more likely to receive positive answers. Asking search questions
at the “middle” nodes may give more information. In this sense,
the HumanGS problem is similar to the 20 questions game', where
very specific or very general questions do not help.

An additional challenge stems from the usage model of crowd-
sourcing services in practice. Ideally, we would like to issue one
question at a time, selecting the next search question based on the
answers to previous questions. However, typical crowd-sourcing
services incur a high latency for obtaining the answer to a single
question: the question first has to be posted to the service, then a
human worker has to find the question and decide to answer it, and
finally the answer is sent back to the requester. This characteristic
leads one away from the sequential one-question-at-a-time model.
A more common model is to issue several questions in parallel,
whose answers are then combined to solve the task at hand. The
challenge, therefore, is to reason about the possible answers for
search questions at different nodes in the graph, and to select the set
of questions in order to infer as much information as possible about
the target nodes across all possibilities. In this paper we study this
“offline” model analytically. However, in Section 6 (Experiments)
we briefly look at a hybrid approach, where we ask some questions,
examine the results, and then ask additional questions, but a full
theoretical study of a hybrid model is left for future work.

In this paper, we develop algorithms that compute the optimal set
of questions for different variants of the HumanGS problem. Our
primary contributions can be summarized as follows:

e We identify a number of real-world instances of the Hu-
manGS problem, which lead to the delineation of three or-
thogonal problem dimensions. (Section 2)

We formally define the HumanGS problem. (Section 3)

We present algorithms and complexity results for the prob-
lem for the three dimensions identified in Section 2. We show
that while the general problem is computationally hard, the
more constrained variants are tractable. (Sections 4 and 5)

We study the performance of our algorithms versus others for
an instance of HumanGS on real-world data. (Section 6)

To the best of our knowledge, ours is one of the first papers to ad-
dress the problem of optimizing a computation that harnesses hu-
man “processors” through a crowd-sourcing service. Requesting
input from humans as a component of a computer algorithm is not
new; the field of active learning [6] also considers the problem of
optimally requesting input from experts. However, this input is typ-
ically for generating test datasets for machine learning problems.

Other studies examine different aspects of human computation
technologies, such as social issues and application usage. HumanGS
bears some resemblance to classification tasks solved by decision
trees, but in our case no training set, statistics, or attributes are pro-
vided, and the only questions that can be asked involve reachability.
We discuss related work in more detail in Section 7.

120 questions is a two player game, where one player thinks of an
object, person or place and the other player has to guess the identity
of that item by asking the first player up to 20 YES/NO questions.

268

2. APPLICATIONS AND DIMENSIONS

We will study variants of the HumanGS problem along three or-
thogonal dimensions. The choice of these dimensions is driven by
applications that represent instantiations of HumanGS in practice.
We discuss the applications first and then formally define the de-
rived dimensions.

o Image Categorization: Described in Example 1.1.

e Manual Curation: (Isomorphic to image categorization.) In an
existing taxonomy (such as Wikipedia, phylogenetic trees, web of
concepts [13]), we wish to manually insert new concepts, topics
and items to their most suitable location in the hierarchy. Man-
ual curation of each new item can be reduced to an instance of
HumanGS in a manner similar to image categorization. A search
question at & corresponds to the question “Is the item a kind of 2?7,
while the target node is the most suitable parent of the new item.

e Debugging of Workflows: Suppose that we detect an erroneous
result in the output of a workflow. Naturally, we would like to de-
tect the earliest workflow steps that introduced the error. Assume
that we maintain provenance information for the workflow [17, 21],
so that we can identify the fragment of the output of each workflow
step that is linked to the erroneous result. If we view the work-
flow as a DAG (with the direction of the edges reversed), as in
Figure 1(b), then isolating the earliest incorrect workflow steps can
be reduced to an instance of HumanGS. A search question at z
corresponds to asking the user “Is the output fragment at point x
wrong?”, and the target nodes are the earliest steps in the workflow
that introduced errors into the resulting output.

o Filter Synthesis: Suppose that a user wishes to apply a filter on a
data set as part of some ad-hoc analysis. We can help the user for-
mulate the filter by asking them a few questions. If we arrange the
candidate filters in a DAG as in Figure 1(c), (Candidate filters can
be extracted by analyzing the data set [1]) then filter synthesis can
be reduced to an instance of HumanGS. Edges in the DAG indicate
logical implication between filter fragments. A search question at
corresponds to asking the user “Do you want all data items satisfy-
ing condition x to be part of the result?”. The target set comprises
all filters whose disjunction yields the intended filter.

o Interactive Search: In interactive search [8, 15], the search en-
gine asks the user a few questions that help isolate the concepts that
best encompass his/her information need. The questions are based
on a backend hierarchy of concepts that cover the crawled web-
data. Figure 1(d) shows an example hierarchy. (Note that the edges
in the hierarchy go from more specific to more general concepts.)
After presenting the user with initial results, the search engine can
pose questions of the form Do you want more results like concept
X?”. The target nodes are the most general concepts that the user
is interested in (i.e., those that encompass his information need).

Inspired by these applications, we derive three dimensions that
characterize the different instances of the HumanGS problem.

Dimension 1: Single/Multi.
The first dimension controls the characteristics of the target set.
In the Single variant, the target set contains a single node. The

Multi variant does not constrain the size of the target set.

While Single is relevant for Image Categorization and Manual
Curation, the Multi variant is relevant for the other three applica-
tions listed above. As a concrete example, for a given incorrect
result at the output in Figure 1(b), both the canonicalization step
on web-data as well as the deduping of the customer list could be
introducing errors. As another example, consider creating a filter
for web-pages relating to shoe shopping, as in Figure 1(c). Here,
a user might be interested in pages that contain “shoes” in the ti-
tle and “price” in the contents, or pages that have as a title “buy
footwear”.

Dimension 2: Bounded/Unlimited.

The second dimension controls the number of questions that can
be asked. In the Bounded case, we are given a budget k& for the
total number of questions that can be asked and we want to com-
pute a node set N, |N|<k, at which to ask search questions such
that we narrow down the candidates for the target set as much as
possible. The Unlimited case does not put a bound on the number
of questions. In this case, we want to compute the minimal set of
nodes to ask questions such that we precisely identify the target set.

The Bounded case is relevant when asking questions is poten-
tially costly, e.g., on Mechanical Turk, and we wish to bound the to-
tal cost while narrowing down the possibilities for the target nodes.
The Bounded case is also relevant in Interactive Search, where it
is not practical to ask an unlimited number of questions (since the
user may not be willing to answer too many questions). Once we
receive the answers to the questions, we can display results related
to the concepts that may correspond to target nodes. The results
can still be useful for the user, even if we do not identify the tar-
get set precisely. The Unlimited case is relevant whenever an exact
answer is required, such as Manual Curation of hierarchies.

Dimension 3: DAG/Downward-Forest/Upward-Forest.

The third dimension controls the type of DAG on which we per-
form the search. Besides a general DAG, which is relevant for Fil-
ter Synthesis (as in Figure 1(c)) and Debugging of Workflows, we
consider two restricted structures. The first is a “downward forest”
structure, where there are several trees with edges directed from
parents to children, as in Figure 1(a). This structure is relevant in
Image Categorization and Manual Curation. The second structure
is an “upward forest”, which is the same as a downward-forest ex-
cept that the edges are reversed, as in Figure 1(d). This structure is
relevant in Interactive Search.

3. THE HumanGS PROBLEM

Informally, our approach can be summarized by Figure 2 (which
illustrates HumanGS for the Single case of Dimension 1.) We first
select a set of questions to ask via HumanGS procedure C'. Sub-
sequently, via an evaluation procedure E, we obtain answers from
humans to the selected questions, using which we compute the pos-
sible candidates for the target node, which can be either the target
node or a superset. We now attempt to formalize these intuitions.

We are given a directed acyclic graph G = (V, E) that reflects
the semantics of a specific instance of HumanGS. We use n = |V/|
to denote the number of nodes in the graph. A node v € V is
reachable from another node u € V if there exists a directed path
from w to v. The reachable set of u, denoted rset(u), contains
all nodes that are reachable from wu, including u. For instance, the
reachable set of nissan in Figure 1(a) is {nissan, maxima, sentra}.
The preceding set of u, denoted pset(u), contains all v # w such
that u € rset(v). For instance, the preceding set of nissan in Fig-
ure 1(a) is {vehicle, car}. We say that u and v are unrelated if there
is no directed path between them, i.e., u ¢ pset(v) U rset(v).

269

Humans

©

Figure 2: The HumanGS procedure C selects a set of nodes to ask
questions. Once Humans answer the questions via the evaluator proce-
dure E, we may be able to isolate the target node, or a set of nodes one
of which is the target node, depending on the answers.

(]

We assume that the HumanGS instance involves a node-set U™ C
V, termed the farget set, that comprises the rarget nodes. The target
set must satisfy the following property:

Independence Property: No two nodes in U™ are related.

This property holds in all motivating applications in Section 2. In-
tuitively, if there are two nodes u and v € U™ such that u # v
and u € rset(v), then v can be discarded because u “subsumes” v.
For instance, in Figure 1(d), if the user is interested in ‘cat family’
as well as ‘lions’, then we would prefer to retain ‘cat family’ in
U™ instead of ‘lions’ because ‘cat family’ subsumes ‘lions’. (Note
that the independence property holds even in the workflow debug-
ging application: if there are multiple related error-causing steps,
we identify the earliest ones.)

We can informally describe the HumanGS problem as comput-
ing a set of nodes {u1, ..., ur} such that the answers to the corre-
sponding search questions at the set of nodes lead to the identifica-
tion of U*. Note that each search question corresponds to a node
in the graph, and hence we interchangeably use “asking a ques-
tion”, “asking a question at a node” and “asking a node”. Asking a
question is defined formally as follows.

DEFINITION 3.1 (ASKING A QUESTION q(u, U")). Askinga
question at node v € V, denoted as q(u,U”), returns YES if
rset(u) N U* # 0, and NO otherwise.

In other words, q(u, U*) returns YES iff a directed path starting
at u reaches at least one node in U”*. Note that v may itself be in
the target set. Also note that for any U7 and Us, Uy # Us, both
of which satisfy the independence property, there is some node at
which asking a question would give different answers. (Consider
w such that u € U7 and u ¢ Us. Either there is no v € rset(u)
present in U3, in which case asking a question at u would give
different answers. Or, there is such a v # w, in which case asking
a question at v would give different answers.)

A solution to HumanGS is always feasible, as we can identify
U™ by asking questions at every node in V. However, it is not
necessary to ask questions at every node, as the following trivial
lemma illustrates.

LEMMA 3.2 (DAG PROPERTY). If q(u,U") is YES, then
q(v,U™) is YES for every v in pset(u). Conversely, if q(u,U™) is
NO then q(v,U™) is NO for every node v in rset(u).

Let N C V be some set of nodes at which we ask questions.
In general, the answers to these questions may not be sufficient
to precisely identify U™, since there may be other nodes (not in
U™) for which the current answers would be the same even if those
nodes were in U*. We introduce the notion of a candidate set to
capture the possibilities for U™ based on questions on a node-set
N. The candidate set, denoted as cand(N, U™), is the maximal set
of nodes that we cannot distinguish from U™ based solely on the
answers to questions at the nodes in N. For |[N| = 0, we have the
trivial result that cand(V, U™) = V. We first consider how asking

DAG Downward-Forest | Upward-Forest | Downward Bal. | Upward Bal.
Single Bounded NP-Complete(n, k), O((2n)Fn?k) O(nlogn) O(mk?n5) O(1) O(1)
Unlimited | min{log? o, logn} x Single-Bounded O(1) O(n) O(1) O(n)
Multi |_Bounded NP-Hard(n, k), 5 (n, k) O(mk?nb) 0o(1)
Unlimited O(1)

Table 1: Summary of Results. (Bal. stands for Balanced Trees): & is the budget of questions, n = |V|, m is the arity of the tree or

forest, and o is the size of the optimal V.

a single question (i.e., |[N| = 1) allows us to restrict the contents of
the candidate set beyond V.

THEOREM 3.3 (ONE QUESTION PRUNING). Assume that we
ask a single question at node u. The candidate set is computed as
follows, based on the answer and the variant of Single/Multi that
the HumanGS instance falls under.

V —rset(u) q({u},U*) =NO
cand({u},U") = { V — pset(u) q({u},U") = YES A Multi
rset(u) q({u},U") = YES A Single

The proof can be found in [4]. Given this base case of one question,
we can compute cand (N, U™) for a general node-set N as the in-
tersection of the candidate sets resulting from individual questions.

THEOREM 3.4. After asking questions at all nodes in a node-
set N, we have: cand(N,U*) = (| cand({u},U").
N

u
The proof can be found in [4]. Tlelus, each question may enable
some additional pruning of the candidate set, and the order in which
questions are asked does not affect the final result. As an exam-
ple, let us consider again the HumanGS problem illustrated in Fig-
ure 1(a). Suppose that the single target node is maxima (recall
that [U*| = 1 for this search task), and assume that we ask ques-
tions at N = {car, nissan, mercedes}. Clearly, the questions at
car and nissan yield YES, whereas the question at mercedes yields
NO. Based on these answers, we can assert that cand(V,U™) =
{nissan, maxima, sentra}. The candidate set contains the target
node as well as two “false positives” (nissan and sentra). Pick-
ing N so as to minimize the number of false positives is the goal of
the algorithms that we present later.

Since we are operating in an “offline” setting where the answers
to previous questions are not provided to us, we are interested in
minimizing the size of the candidate set in the worst case. Given
that U™ is unknown, we may use the maximum size of cand(N, U™)
(under all admissible possibilities for U™) as an indication of the
worst-case uncertainty that remains after asking the questions in
N. We use wcase(N) to denote this worst-case size. A natural ob-
jective is to select IV so that wcase(NV) is minimized. We define
wcase formally in Section 4 for Single and in Section 5 for Multi.

3.1 Summary of Results and Outline

Table 1 summarizes our results on the complexity of the exam-
ined variants. The details of the analysis and the corresponding
algorithms are given in the following sections. The presentation is
organized in two sections based on Dimension 1: Single is covered
in Section 4, and Multi is covered in Section 5. Each row in the
table corresponds to a subsection in the corresponding section. In
each case, we first provide a formal definition of the correspond-
ing HumanGS problem, followed by the complexity analysis for
the different graph structures. In addition to the structures listed in
Dimension 3, we also consider the special case of balanced trees
in Appendices A.8, A.11, C.4 and C.5, which admit very efficient
solutions.

We omit some proofs due to space constraints. Some of the omit-
ted proofs can be found in the Appendix, while all the proofs can
be found in the extended technical report [4].

270

4. SINGLE TARGET NODE

In the Single problem, we have the constraint that there is a sin-
gle target node, i.e., |[U™| = 1. Let this node be u*. To simplify no-
tation for Single, we use cand(N, u™), instead of cand(V, {u*}),
to denote the candidate set after questions have been asked at the
node set N, and we use q(u, u*), instead of q(u, {u"}), to denote
the answer to asking a question at u. Recall that as in Theorem 3.3,
asking a question at u for the Single problem tells us whether the
candidate set cand({u}, u") is rset(u) (if the answer is YES) or
V — rset(u) (if the answer is NO).

Given a node set /N at which we ask questions, we define the
worst-case candidate set size as

wecase(N) = max |cand(N, u;)| (1)
u; €

In other words, wcase computes the size of the largest candidate set

when the target node could be any node in V.

4.1 Single-Bounded

In the Single-Bounded variant we have a fixed budget k& on the
number of questions that may be asked, i.e., the size of N cannot
exceed k. The goal is to pick the set of nodes IV such that the
worst-case candidate set size is minimized.

DEFINITION 4.1 (SINGLE-BOUNDED). (Bounded Search for
a Single target node.) Given a parameter k and the restriction that
|U*| =1, find a set N of nodes N C V to ask questions such that
|N| = k and wcase(N) is minimized.

The following subsections examine the complexity of the prob-
lem under the different possibilities for the structure of G, i.e., gen-
eral DAG, downward-forest and upward-forest.

4.1.1 Single-Bounded: DAG

We begin with the auxiliary result that wcase(N) can be com-
puted in time polynomial in the number of nodes in the graph. This
result is used later to bound the complexity of Single-Bounded.

THEOREM 4.2 (COMPUTATION OF WORST CASE). Given a
node set N at which questions are asked, wcase(N) can be com-
puted in O(n? - k), where n = |V|.

A formal proof can be found in Appendix A.1. The main idea is to
first compute all pairs (a,b) in V' x V such that b € rset(a) and
then use this information to compute cand(N, v*) for every pos-
sibility of w*. Using the result above, we can define a brute-force
approach to solving Single-Bounded, by considering all possible
combinations of /N with size at most k.

LEMMA 4.3 (BRUTE-FORCE SOLUTION). The optimal solu-
tion of Single-Bounded for any DAG can be found in O(n* -n?-k),
where n is the number of nodes in V.

Clearly, we can solve Single-Bounded optimally in PTIME if & is
bounded by a constant. However, the appearance of k in the ex-
ponent hints at the hardness of the problem in the general case.
Indeed, the following result shows that Single-Bounded is com-
putationally hard. The proof of the following theorem, presented
formally in Appendix A.3, shows a reduction to Single-Bounded
from the NP-hard max-cover problem [12].

O \O
o O

Figure 3: Partition Example

THEOREM 4.4. Single-Bounded cannot be solved in polyno-
mial time unless P = N P.

Even though the general problem is intractable, it may be possi-
ble to find efficient solutions by leveraging specific characteristics
of the input, and in particular of the DAG G. The following sub-
sections examine this hypothesis for the two cases identified in the
problem dimensions: downward-forests and upward-forests.

4.1.2 Single-Bounded: Downward-Forest

In the downward-forest case, G is a forest of directed trees with
edges from parents to children nodes (see also Section 2.)

We begin by showing that Single-Bounded on a downward-forest
can be reduced to Single-Bounded on a downward-tree (a tree with
edges from parents to children), by attaching a virtual root node that
links all the trees in the forest. The following theorem is proved by
showing that the optimal solution for the resulting tree gives a so-
lution to the forest with wcase at most one more than optimal.

THEOREM 4.5 (DOWNWARD-FOREST = TREE). Given a
downward-forest G, there exists a downward-tree G, such that
a solution N to HumanGS on G gives a node set Ny of Gr
such that wease(N7) < wecase(N) + 1, for any node set N of G
where |N|, |N7| < k.

We can therefore focus on solving the Single-Bounded problem for
a single downward-tree, instead of a downward-forest, ignoring the
additive constant of < 1. We show that this problem is equivalent
to the partition problem [19], which admits efficient solutions.

DEFINITION 4.6 (PARTITION PROBLEM). Given an undirect-
ed tree, find k edges such that their deletion minimizes the size of
the largest connected component.

To show the equivalence, we first define how a chosen set N in-
duces a partition of the tree into connected components.

DEFINITION 4.7 (PARTITION ON A NODE SET). Ina
downward-tree, we recursively define the partitions on a node set
N, denoted P(N), as the following:

e [fx € N and none of x’s descendants are in N, then the
subtree under x (including x) is a partition. (We call this
partition the partition of x.)

e [fx € N and some of x’s descendants are in N, then the
subtree under x (including x) excluding all of the partitions
of x’s descendants is a partition. (We call this partition the
partition of x.)

o Whatever is left after all the partitions are formed is a par-
tition. (If x is the root of the remainder of the tree, then the
partition is called the partition of x.)

Note that we have exactly | N| or | N|+1 partitions. As an example,
consider Figure 3. Here there are three partitions corresponding the
node set N = {y, z}, i.e., the partition of z, y and z.

LEMMA 4.8 (CANDIDATE SET PARTITION). Given questions
asked at a node set N, the candidate set cand(N,u") for any u*
corresponds to one of the partitions from P(N).

The proof of the lemma is given in Appendix A.5. The previous
result essentially establishes the equivalence between the two prob-
lems, as our goal is to minimize wcase(N), which is equivalent to
the size of the largest partition that can be induced by N. Since
the partition problem can be solved in PTIME, it follows directly
that the same holds for Single-Bounded on a downward-tree. The
following theorems formalize these observations.

THEOREM 4.9 (PARTITION PROBLEM EQUIVALENCE). The
problem of Single-Bounded on downward-trees is equivalent to the
partition problem.

Using a dynamic programming algorithm from [19] for the parti-
tion problem, we obtain the following result for Single-Bounded:
(The proof of both these theorems is in the appendix.)

THEOREM 4.10 (SINGLE-BOUNDED). There exists an algo-
rithm with complexity O(nlogn) that solves Single-Bounded on
a downward-forest.

4.1.3 Single-Bounded: Upward-Forest

Next, we assume that GG is an upward-forest. An upward-forest
is a collection of upward-trees, where an upward-tree is a directed
tree with directed edges from the children nodes to the parent.

We begin with a theorem that shows that it is sufficient to study
upward-trees instead of upward-forests, by augmenting the forest
with a new virtual root node such that there is an edge from each
root node of each of the upward-trees to the new root node. The
proof of the following result, sketched in Appendix A.9, is similar
to that of Theorem 4.5.

THEOREM 4.11 (UPWARD-FOREST = TREE). Given an up-
ward-forest G, there exists a upward-tree G, such that a solu-
tion Nt to HumanGS on Gt gives a node set N of G such that
wcase(N7) < wcase(N) + 2, for any node set N of G r where
I[Nz |, IN| < k.

Therefore, instead of upward-forests, we consider upward-trees.
We visualize the tree with the root node at the top (with all edges
going upward). This way, if we say a node x has two children y
and z, we are disregarding the direction of the edges, which go
from nodes y and z to x.

We use a dynamic programming algorithm, listed in Algorithm 2
in the appendix. Intuitively, the algorithm collects all possible
worst-case contributions to the candidate set for the subtree un-
der a certain node, and then combines the worst-cases when going
from children to parent. For instance, the contribution to the over-
all candidate set when z’s subtree does not contain the target node
is nothing but the sum of the contributions from the children of x,
when neither of them have the target node in their subtree.

The following theorem establishes the correctness and complex-
ity of the algorithm. The detailed proof of the theorem can be found
in the Appendix A.10.

THEOREM 4.12 (UPWARD-FOREST). There exists an algo-
rithm that solves the Single-Bounded problem for k questions in
O(m - k* - n®) on an m-ary upward-forest with n nodes.

4.2 Single-Unlimited

In the Single-Unlimited problem, we do not have a strict budget
on the number of questions that can be asked; instead, we want
to find the smallest set of questions N such that the target node is
uniquely determined in the every case.

DEFINITION 4.13 (SINGLE-UNLIMITED). (Unlimited Search
for a single target node) Given that the target set U™ | = 1, find the
smallest set N C 'V to ask questions such that wcase(N) = 1.

Note that there are cases where the number of questions that are re-
quired to ensure that wcase(/N) = 1 can vary widely from O (logn)
to O(n). Additionally, we can repeat Single-Bounded with various
values of k to obtain a solution for Single-Unlimited for any graph.
Both these results may be found in [4].

4.2.1 Single-Unlimited: Downward-Forest

On a downward-forest, Single-Unlimited can be solved in O(n):

THEOREM 4.14 (DOWNWARD-FOREST). On a downward--
forest, we need to ask almost all nodes (except at most one) in order
to solve Single-Unlimited.

The proof may be found in Appendix B.1. The main insight in the
proof is that if we leave a node unasked, then on getting a NO an-
swer from all the children of the node and a YES answer from the
parent of the node, we have wcase > 1 because we cannot distin-
guish between the node and its parent. However, in the general case
of several trees in the forest, one of the roots need not be asked.

4.2.2 Single-Unlimited: Upward-Forest

The following theorem presents our result on Single-Unlimited
on an upward-forest. The formal proof is in the extended techni-
cal report [4], but the main intuition is that we do not need to ask
questions at any internal node with degree > 1, once all leaves have
been asked. Note that the answer returned by every such internal
node can be inferred from the answers of the children, bottom up.
(If all the children return YES, then the node returns YES, else it re-
turns NO.) Also, if we leave more than one leaf unasked, then there
could be ambiguity regarding which of them is the target node.

THEOREM 4.15
Unlimited on an upward-forest, we need to ask questions at all the
leaves (except at most one), and all internal nodes with indegree 1,
as in Algorithm 4 in the appendix.

From the theorem we see that unlike the downward-forest case, we
now do not need to ask questions at almost all nodes.

S. MULTIPLE TARGET NODES

In the Multi version of the problem, there exists a target set
U™ C V, which denotes the unknown set of nodes we wish to dis-
cover by asking questions. Unlike the Single case, the size of the
target set can be any |[U*| > 1 and is unknown. The only constraint
we are given is that the target nodes satisfy the independence prop-
erty, i.e., no two nodes in U™ are related. We impose this constraint
based on our motivating applications. (See Section 2.)

Computation of the candidate set for the Multi problem can be
found in Section 3. To recap, a single question at u lets us ex-
clude from the candidate set either pset(u) (if the answer is YES)
or rset(u) (if the answer is NO).

To incorporate the independence property in defining a worst-
case candidate set, we define the function ¢p on a set of nodes to
return true if and only if the set of nodes satisfy the independence
property. Given a set N of nodes, we redefine the Worst-Case Can-
didate Set to be:

wecase(N)

max
UCV, ip(U)=true

|cand(V, U)|

Next, we study the Bounded version for the Multi case. The
Unlimited version has a trivial solution (namely, N = V') and can
be found in Appendix D.

5.1 Multi-Bounded

In this section we consider the bounded search problem for a
target set of nodes, formally stated below.

(UPWARD-FOREST). In order to solve Single-

272

DEFINITION 5.1 (MULTI-BOUNDED). (Bounded Search for
a target set.) Given a parameter k, find a set N of nodes N C
V,|N| = k to ask questions such that wcase(N) is minimized.

We present algorithms and complexity results for Multi-Bounded,
examining various properties of the structure of the graph G. Sec-
tion 5.1.1 considers arbitrary DAGs, Section 5.1.2 considers down-
ward and upward-forests.

5.1.1 Multi-Bounded: DAG

In this section, we establish the overall complexity of Multi-
Bounded for an arbitrary DAG. We first show an NP-hard lower
bound, and follow it with an upper bound of X%’. Bridging the gap
between our lower and upper bounds is an open problem.

The following theorem establishes the NP-hardness of Multi-
Bounded. As in Single-Bounded, we use the max-cover problem
to prove NP-hardness, although the details of our reduction need to
be modified for the Multi-Bounded problem. The proof of hard-
ness can be found in Appendix C.1.

THEOREM 5.2 (LOWERBOUND). The Multi-Bounded prob-
lem is NP-Hard inn and k.

The following theorem whose proof can be found in Appendix C.2
establishes the upperbound on the complexity of Multi-Bounded.

THEOREM 5.3 (UPPERBOUND). The decision version of
Multi-Bounded is in 5.

5.1.2 Multi-Bounded: Downward /Upward-Forest

Next we consider Multi-Bounded for forests of arbitrary trees.
‘We can extend Theorems 4.5 & 4.11 to the case of Multi-Bounded,
which enables us to focus our attention on trees instead of forests.
Our first result shows that we do not need to consider upward and
downward-trees separately. We then present the main result of this
section, providing a PTIME dynamic programming algorithm that
solves Multi-Bounded for downward-trees (and thereby downward
and upward-forests).

THEOREM 5.4 (EQUIVALENCE). Multi-Bounded on a down-
ward-tree is equivalent to Multi-Bounded on an upward-tree.

The proof can be found in Appendix C.3. Intuitively, if we reverse
all the arrows, and we complement all the answers (replace YES
with NO and NO with YES), we can transform Multi-Bounded on
a downward-tree to that on an upward-tree and vice versa.

We use a dynamic programming algorithm for solving Multi-
Bounded on a upward/downward-forest (Algorithm 5 in the ap-
pendix). This algorithm is similar to the one used to solve the
Single-Bounded on an upward-forest.

THEOREM 5.5 (DP ALGORITHM). There exists an algorithm
that solves the Multi-Bounded problem for forests in O(k* - n®).

The details and proof of correctness of the theorem above can be
found in the extended technical report [4].

6. EXPERIMENTAL STUDY

We conducted an experimental study of our HumanGS algo-
rithms using a webpage categorization task on the real-world DMOZ
concept hierarchy (http://dmoz.org). DMOZ is a human-curated
internet directory based on a downward tree of categories. The goal
is to assign websites of interest to nodes in this downward tree. In
general, human judgement is needed for this assignment.

To expedite the process of assigning new web-pages to cate-
gories, we use the algorithms developed for HumanGS to select
which questions to ask humans. A question at the node correspond-
ing to category X would be of the form: does this new webpage fall

e

1000 ==humanGS (100)

~#-random (100)
100 -
general-first (100)

~#—humanGS
=—-random

10 =>&=humanGS (50)

general-first

10000 | Rl mlOOOO .
4)
Q. -
B o
- %1000
k1 -
g g /
T 1000 T
] 5
:.: =4—humanGs % 100
@ —@-random 5
'g I-first 'E M
eneral-
3 100 g 5 10
3

0 10 20 30 40 50 60 70 80 90 100 4 5

Number of Questions

6 7
Depth

Number of Candidate Nodes

NN

8 9 10

z 2 3 4 5 6

Phase Number

7 8 9 10

Figure 4: Experiments on (a) varying number of questions asked (b) varying the size of the tree (c) varying the number of phases

under X? Note that questions for a given web-page can be asked
concurrently to independent humans, and the answers can then be
combined to determine the candidate set of categories.

Experimental Objectives. Our experimental study has two impor-
tant features that complement the analysis presented in previous
sections. First, we study how our algorithms behave on average
(rather than worst case) for a specific problem over real data. Sec-
ond, since the algorithm for the Single-Unlimited problem for a
downward tree is impractical, we study the performance when we
use many iterations of the Single-Bounded algorithm. We now
describe these features in more detail.

Recall that our algorithms are provably optimal in terms of mini-
mizing the worst-case size of the candidate set. In our experiments,
we would like to complement that theoretical analysis with mea-
surements of the actual size of the candidate set after obtaining an-
swers to the questions selected by the algorithm. By measuring the
actual size, our goal is to examine whether the worst-case objective
function also corresponds to good average-case performance.

One algorithm we could use for the webpage categorization task
is Single-Unlimited. This algorithm selects questions offline to
guarantee a wcase of size 1, but requires asking questions at almost
every node, which is clearly impractical. Instead, since the average
case may not correspond to the worst case, we would like to see
how much the candidate set can be reduced by asking a bounded

number of questions (i.e., using the algorithms for Single-Bounded).

Using the answers to these questions, we may be able to precisely
determine the target node. However, if the target node is not pre-
cisely determined, we may need to invoke the algorithm once again
to issue another bounded set of questions to the crowdsourcing ser-
vice. Thus, a practical method of using our algorithm is in phases
where in each phase we invoke the Single-Bounded algorithm in
order to select k additional questions by taking the current can-
didate set as the input downward tree. The net effect is that each
phase shrinks the candidate set further, until the target node is iden-
tified or the candidate set is small enough to assign to a human
worker for the final solution. Note that this approach is a hybrid
approach between a completely offline approach and a completely
online approach (when we issue a single question at a time).

We present experiments to evaluate the average-case performance
of our algorithms, focusing on the following questions:

e How does the candidate set shrink
e as we vary the number of questions asked?
e as we vary the size of the input downward tree?
e when multiple phases are used?

e What is the relationship between the number of questions
per phase and the total number of phases in order to solve
the HumanGS task?

6.1 Methodology

Task Specifics. We evaluate our algorithms with a webpage cat-
egorization task on the science sub-tree of the DMOZ hierarchy
(containing over 11,600 nodes). Each task is the placement of a
web page into the hierarchy. We simulate each task by picking a

273

node in the hierarchy where the web page would go. Then we sim-
ulate the crowd-sourcing service by answering the questions asked
by our algorithms truthfully.

Tested Algorithms. We implemented our algorithm for Single-
Bounded for a downward tree. We henceforth refer to this algo-
rithm as humanGS. We compare humanGS against two baseline
algorithms. The first algorithm, random, simply picks k random
nodes from the downward tree. The second algorithm, termed
general-first, asks questions at the first £ nodes encountered in a
breadth-first traversal starting from (but excluding) the root.

Recall that each algorithm is executed in phases, where each
phase receives as input the graph formed from the candidate set
computed using all previous phases.

Metrics. We measure the performance of an algorithm as the actual
size of the candidate set after asking the questions selected by the
algorithm. To ensure statistical robustness, we test each algorithm
on a set of 100 random tasks, each generated by sampling the target
node uniformly at random from the nodes of the input tree, and we
report the average size of the candidate set over all tasks in the test
set. For algorithm random, we perform an additional averaging
step over 10 runs of the algorithm per test task, in order to mitigate
the effects of random question sampling.

6.2 Results

Effect of Number of Questions. This experiment examines how
the candidate set shrinks on increasing the number of asked ques-
tions in one phase. We use k to denote the number of questions, and
focus on the first phase where the input is the complete hierarchy.

Figure 4(a) shows the average number of candidate nodes as we
vary k. Note that the y-axis is in log scale. As shown, our hu-
manGS algorithm outperforms the baseline algorithms by an order
of magnitude for all tested values of k. In particular, humanGS re-
duces the candidate set to around 1000 nodes with just 10 questions
(a 10-fold decrease), whereas random and general-first flatten out
well above 1000 nodes even after 100 questions.

Effect of Tree Size. The second experiment examines the perfor-
mance of the three algorithms as we vary the size of the input tree.
We varied the size of the downward tree by restricting the depth of
the tree, i.e., any node at a greater depth is removed. The target
node is sampled from the remaining nodes. We set k = 50 and
focus again on a single phase.

Figure 4(b) depicts the average candidate size (again in log scale
on the y-axis) against the depth of the tree. Algorithm humanGS
continues to outperform its competitors, with an increasing margin
as we approach the actual size of the tree.

Phase-based Operation. The final experiment evaluates the over-
all performance of the phase-based approach. Our goal is to exam-
ine how fast each algorithm identifies the single target node of the
specific HumanGS task.

Figure 4(c) depicts the average candidate-set size for the three
algorithms as we increase the number of phases, when £ = 100
for each phase, once again with the y-axis on a log scale. The
three plots corresponding to 100 questions per phase are denoted

humanGS (100), random (100) and general-first (100) in the figure.
(We also plot the curve for humanGS when k = 50 and we discuss
it in the next paragraph — depicted as humanGS (50) in the figure.)
We observe that humanGS yields the fastest decrease among the
three algorithms. For instance, humanGS is able to identify the
target node after 5 phases on average. This compares favorably to
the eight phases required by general-first, whereas random was not
able to decrease the candidate set below 10000 nodes for the whole
experiment. Additionally, the candidate-set size of humanGS is
below 20 after only two phases.

Focusing on the two curves for humanGS, we observe a small
degradation in performance from k = 100 to k = 50 for the same
number of phases. However, & = 50 yields much better overall
performance if we consider the total number of questions asked.
For instance, with two phases and k = 50 (a total of 100 ques-
tions), humanGS performs an order of magnitude better than hav-
ing a single phase with £ = 100. Furthermore, humanGS requires
6 phases to discover the single target node with & = 50 (a total
of 300 questions), compared to 5 phases for £ = 100 (a total of
500 questions). These results indicate that increasing the number
of phases is more beneficial compared to increasing the number of
questions per phase. The trade-off of course is in latency, since
the extra phases mean additional round-trips to the crowd-sourcing
service, and reduced parallelism. Examining this trade-off in more
detail is an interesting direction for future work.

7. RELATED WORK

There have been several studies of the social aspects of crowd-
sourcing technologies and on how to design social games (e.g.,
captchas and GWAP — Games With A Purpose) in order to ac-
complish tasks [2, 11]. Previous works have also examined the
use of crowd-sourcing technologies to accomplish specific tasks,
such as natural language annotations [16], video and image anno-
tations [10, 5], and search relevance [14]. However, none of these
studies consider the problem of minimizing the set of questions to
ask users; additionally, the tasks studied are fairly simple and un-
structured, unlike HumanGS which (a) utilizes the inherent struc-
ture of a DAG to ask questions, and (b) requires asking multiple
questions in order to be “solved” correctly.

The field of active learning [6] also studies the problem of re-
questing human input. The goal is to request input from experts
with the maximal “information content”, similar in spirit to our
problem. However, this input is only used to generate training data
for machine learning tasks (especially when the current data is in-
sufficient or not informative). Additionally, most work in active
learning does not ask questions to humans in parallel, and thus does
not leverage the inherent parallelism in crowd-sourcing systems.

There has been some work on the utilization of human input in
data integration and exploration [18, 22, 20]. Similar to HumanGS,
the aim is to minimize the number of posed questions in order to
minimize the total cost. However, the models and applications stud-
ied are very different from ours, and not as generally applicable. In
addition, the tasks are such that the human inputs “assist” the com-
puter program. In our case, the tasks are fairly complex, as a result
of which they require primarily human input to solve them.

Our problem is similar to that of decision trees [7]. In decision
trees, we wish to classify a target item as belonging to one of many
classes (in our case, classify a target item as being one of the nodes
in the DAG). However, unlike decision trees, we do not have a train-
ing set (or statistics of various classes) and there are no attributes
on which a classifier can be built. The only questions that we can
ask are those that involve reachability, and the optimization issues
that arise are very different in our case.

274

8. CONCLUSIONS AND FUTURE WORK

In this work, we presented HumanGS, a general problem that
arises in many problems of human computation. We explored the
problem space via three orthogonal axes: Single / Multi, Bounded
/ Unlimited and DAG / Downward-Forest / Upward-Forest, and
developed algorithms for all combinations. Our algorithms gener-
ate the optimal set of questions that can be asked to humans. These
questions do not rely on the answers received for prior questions,
and can be issued in parallel in a crowd-sourcing system.

Since optimization of human computation is an unexplored area,
there are many interesting avenues of future work. (See [3] for ad-
ditional open problems.) Within HumanGS itself, one interesting
direction is to assume that we are given a probability distribution
on the selection of target nodes, which we can use to pick questions
in order to minimize the expected size of the candidate set. Addi-
tionally, some questions asked to humans may be answered incor-
rectly, and in such a case we would like to perform error-resilient
HumanGS. Last, but not the least, we would like to explore other
problems in the human computation space that require optimization
by way of picking the optimal questions to ask humans.

9. REFERENCES
(1]

A. Das Sarma et. al. Synthesizing view definitions from data. In
ICDT ’10, pages 89-103, 2010.

A. Kittur et. al. Crowdsourcing user studies with mechanical turk. In
CHI ’08, pages 453-456, 2008.

A. Parameswaran et. al. Answering queries using humans, algorithms
and databases. In CIDR ’11.

A. Parameswaran et. al. Human-assisted graph search: It’s okay to
ask questions. Stanford Infolab, http://ilpubs.stanford.edu:8090/970/.
A. Sorokin et. al. Utility data annotation with amazon mechanical
turk. Computer Vision and Pattern Recognition Workshops, 2008.

B. Settles. Active learning literature survey. Computer Sciences
Technical Report 1648, University of Wisconsin—-Madison, 2009.

C. Bishop. Pattern Recognition and Machine Learning. 2006 edition.
E. N. Efthimiadis. Interactive query expansion: a user-based
evaluation in a relevance feedback environment. J. Am. Soc. Inf. Sci.,
51(11):989-1003, 2000.

J. Barr et. al. Ai gets a brain. Queue, 4(4):24-29, 2006.

K. Chen et. al. A crowdsourceable qoe evaluation framework for
multimedia content. In MM '09, pages 491-500, 2009.

L. von Ahn et. al. Designing games with a purpose. CACM,
51(8):58-67, 2008.

M. Garey et. al. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., 1990.

N. Dalvi et. al. A web of concepts. In PODS ’09, pages 1-12, 2009.
O. Alonso et. al. Crowdsourcing for relevance evaluation. SIGIR
Forum, 42:9-15, 2008.

P. Anick et. al. The paraphrase search assistant: terminological
feedback for iterative information seeking. In SIGIR 99, pages
153-159, 1999.

R. Snow et. al. Cheap and fast—but is it good?: evaluating
non-expert annotations for natural language tasks. In EMNLP ’08,
pages 254-263, 2008.

S. Cohen et. al. Towards a model of provenance and user views in
scientific workflows. In DILS "06, pages 264-279, 2006.

S. Jeffery et. al. Pay-as-you-go user feedback for dataspace systems.
In SIGMOD °08, pages 847-860, 2008.

S. Kundu et. al. A linear tree partitioning algorithm. SIAM Journal on
Computing, 6:151-154, 1977.

S. Sarawagi et. al. Interactive deduplication using active learning. In
KDD 02, pages 269-278, 2002.

T. Heinis et. al. Efficient lineage tracking for scientific workflows. In
SIGMOD 08, pages 1007-1018, 2008.

W. Wu et. al. An interactive clustering-based approach to integrating
source query interfaces on the deep web. In SIGMOD 04, pages
95-106, 2004.

(2]
(3]
(4]
(5]
(6]
(7]
(8]
[91
[10]
[11]
[12]

[13]
[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]

[22]

m + n singletons

m, items

Figure 5: Hardness Proof for Single-Bounded

APPENDIX
Outline

We cover the details of Single-Bounded in Appendix A, Single-
Unlimited in B, Multi-Bounded in C and Multi-Unlimited in D.

In the appendix, we provide

o the complete analysis of Multi-Unlimited, and

e the analysis of balanced trees for Single and Multi-Bounded
as well as:

e proofs for some theorems and

e pseudocode for the algorithms
from the main body of the paper.

A. Single-Bounded
A.1 Proof of Theorem 4.2

PROOF. In time O(n?), for all pairs of nodes a and b in G,
we can compute and maintain whether or not a € rset(b). Let
u” be the target node in the graph. In time O(|N|), we can com-
pute the answers to each of the questions asked at the nodes in
N. Subsequently, we can compute cand(N,u") in O(n - |N|)
by checking the following for every node u: if there is a node in
u’ € rset(u),u # u' such that v’ € N and ' returned YES, or
if there is a node u € pset(u), such that uw € N and v’ returned
NO, then u ¢ cand(NV,u"), else u € cand(N,u"). We can com-
pute wcase by repeating the above procedure for every possible v,
taking a total of O(n? - |N|) time. [

A.2 Proof of Lemma 4.3

PROOF. We find wcase for each choice of (}) nodes at which
questions are asked. The choice for which the worst-case candidate
set is the smallest is the optimal solution. [

A.3 Proof of Theorem 4.4

PROOF. We prove that the decision version of the problem is
NP-complete, stated as follows: Given a budget k£ and a positive in-
teger m, is there a node-set IV to ask questions such that wcase(NV)
< m? We refer to this problem as Single-Bounded-DECISION.

We use a reduction from the NP-complete max-cover problem
[12]. In this problem, the objective is to pick a certain number of
sets such that they cover as many items as possible. (A set contain-
ing a given item is said to cover that item.) Let there be m items
and n sets in the max cover problem. We need to select & sets such
that the maximum number of items are covered.

We reduce the max-cover problem to Single-Bounded-DECISION
with the following directed acyclic graph. (An instance of the graph
is shown in Figure 5.) Consider nodes arranged in two layers. In the
first layer, we have one node corresponding to each set s; in the max
cover problem. In the second layer, we have a node corresponding
to each item ¢; in the max-cover problem. There is a directed edge
from the node corresponding to set s; to the node corresponding to
the item ¢; iff item ¢; is present in set s;. In addition, we include
n+m singleton nodes (nodes with no incoming or outgoing edges)
in the DAG. Subsequently, we call Single-Bounded on this DAG

275

with a budget of k questions. The worst-case candidate set corre-
sponds to each of the questions in N receiving NO answers. To see
this, note that if we get a YES answer to a question asked at any of
the nodes corresponding to sets, the candidate set is < m. Receiv-
ing a YES answer to any question asked at the nodes corresponding
to items or singletons will give a candidate set of 1. However, if we
get all NO answers, the number of nodes remaining in the worst-
case candidate set is at least m+n, even if all the nodes correspond-
ing to items as well as k from the nodes corresponding to sets and
singletons are eliminated from the candidate set. Additionally, the
solution of the Single-Bounded problem, i.e., N, will only contain
nodes corresponding to sets, because those nodes exclude the max-
imum number of nodes from the candidate set, in the worst case.
Thus, Single-Bounded picks nodes corresponding to sets such that
the maximum number of nodes corresponding to items are covered.
Therefore, the solution to Single-Bounded corresponds to a max-
cover. Conversely, every solution of the max-cover problem can be
written as a solution for Single-Bounded.

In addition, given that we can compute wcase(N) in PTIME (see
Theorem 4.2), a solution for Single-Bounded-DECISION can be
verified in PTIME. Thus, Single-Bounded-DECISION on DAGs is
in NP and is NP-Complete. [

A.4 Proof of Theorem 4.5

PROOF. We augment the downward-forest with a single root
node such that there exists an edge from the new root node to the
root of each of the trees in the directed forest. Let the original forest
be F' and the new augmented tree (a downward-tree) be 7.

Let Nt be an optimal selection of k nodes from 7" at which ques-
tions are asked. We first convert N7 into N/ such that there is no
question asked at the root. (We delete the root from N, if present.)
Since a question at the root has to return a YES answer, the worst-
case candidate set at 7', denoted by wcaser, will be unchanged.
We therefore have wcaser (N7) = weaser (Nr).

Let N be the optimal solution on F'. If we select set N as the
questions to be asked at T, we get wcaser (Nr) < wcaser (Nr),
since Nt gives the optimal worst-case candidate set for 7. Also,
since there is an addition of at most one node to the worst-case
candidate set when N is used on T instead of F', wcaser (Nr) <
wcasep (N p) + 1, where wcaser is the worst case candidate set
when the questions are asked at the nodes in F'. Now, apply N7 on
F. We then have wecaser (N7) < weaser(N5) = wecaser (Nt) <
wcaser (Ng)+1. Thus, choosing the questions to minimize worst-
case candidate set in the tree gives the optimal worst-case candidate
set for the forest plus at most one more node. We ignore the addi-
tive factor of 1 in our calculations. [

A.5 Proof of Lemma 4.8

PROOF. Ifu™ € partition p of x, then we prove that cand (N, u™)
= p. First, we consider the case when z € N. In this case, notice
that the question at x returns a YES answer. Using Theorem 3.3,
the candidate set can be restricted to the subtree under z. The only
nodes € NN at which the answer is YES are those that are ancestors
of x, but they do not change the candidate set. Those nodes € N
that are descendants of = or unrelated to x all return NO, since there
is no path from those nodes to the target node u*. Since all those
nodes return NO, the subtrees under those nodes can be removed
from the candidate set. Thus, the candidate set is precisely p.

If x ¢ N, then z is the root of the directed tree. Here, once again,
if we asked a question at x, we would obtain a YES answer. Those
nodes € N that are descendants of x all return NO, since there is no
path from those nodes to the target node u™*. Since all those nodes
return NO, the subtrees under those nodes can be removed from the
candidate set. Thus, the candidate set is once again p. []

A.6 Proof of Theorem 4.9

PROOF. As seen in Lemma 4.8, the candidate set on asking a
question at any node corresponds to one of the partitions induced by
asking questions. Thus, in order to minimize wcase, it is sufficient
to solve the partition problem on the downward-tree. The size of
the largest partition is the size of the worst possible candidate set.
Conversely, every instance of the partition problem can be cast as
an instance of the Single-Bounded problem for a downward-tree.
Thus, the two problems are equivalent. []

A.7 Proof of Theorem 4.10

PROOF. The algorithm solves the equivalent partition problem
on the downward-tree formed from the downward-forest augmented
with a root node. Reference [19] gives a dynamic programming al-
gorithm that finds the minimal number of edges that need to be cut
in order to achieve a certain partition size in O(n). We run binary
search over partition sizes in order to find the smallest partition size
for which the minimal number of edges to be cutis < k. [

A.8 Balanced Downward-Trees

Algorithm 1: Single-Bounded Balanced Downward-Tree

Data: G = me-ary balanced downward-tree with depth d, k
Result: optimal set of k nodes to ask questions to

l:= [log,, k|;
N := all nodes at depth [;
if k # m! then

for all nodes x at depth [do
| N := NUfirst | (k — m!)/m!] children of x;

L

return N;

For a single balanced tree, the algorithm is listed in Algorithm 1
when k < m%/2, Intuitively, the algorithm first picks all nodes at
depth I, where [is the maximum such depth that can be “blanketed”
with questions. Once all nodes at this depth is added to IV, the al-
gorithm then proceeds to sub-divide each of the subtrees at depth [
(i.e., those whose roots are at depth [) by asking further questions,
which are equally distributed among the subtrees at depth [. The
detailed discussion and proof of optimality of the following theo-
rem can be found in the extended technical report [4].

THEOREM A.1 (BALANCED DOWNWARD-TREE). Fora bal-
anced downward m-ary tree of depth d, Single-Bounded can be
solved optimally using Algorithm I in O(1) if k < m?/2,

A.9 Proof of Theorem 4.11

PROOF. We augment the upward-forest with a single root node
such that there exists an edge to the new root node from the root
of each of the trees in the directed forest. Let the original for-
est be F' and the new augmented tree (a upward-tree) be 7. The
proof is similar to that of Theorem 4.5, except that instead of be-
ing equal, wecaser (N7) < wecaser(Nr) + 1, due to which we
have wcaser (N7) <wcaser (N;)<wcaser (Nr) + 2. Additional
details may be found in the extended technical report [4]. [

A.10 Upward-Forests

First, we define the subtree of x to be x along with all nodes
below z, i.e., all ' such that = € rset(z’).

We use a dynamic programming algorithm?, listed in Algorithm 2,
but the steps are explained next. The algorithm builds an array

*While the algorithm is only described for 2-ary trees, it can be
easily generalized to handle m-ary trees.

276

Algorithm 2: Single-Bounded Upward-Forest
Data: G =upward-tree, k = budget
Result: optimal set of k nodes to ask questions to
for all nodes x in G, bottom-up do
Ty = 0;
T,[0] == {((0,0), (size(x), 0), 0, size(x)) }:
if « has 1 or 2 children then
y := left sub-child of z;
z := right sub-child of x;
fori:0...kdo
for all k1,ko : k1 + ko = i do
for all ((*, %), (p1,p2),n,7) € Ty[k1] and all
((*7 *)7 (pl17p/2)7 TLI, 7”/) € TZ [kQ] do
Py = max{p1,p2 + 1/, p}, p5 +n};
Ng :=n+n';
Tq = Pq ‘= 1;
if k&1 == 0 A k2 # 0 then
Pa = max(p) + 1,7 +1);
pp = max{n’, p,} + size(y);
re =1 +1;
ko == 0 A k1 # 0 then
Pa :=max(p1 + 1,r + 1);
pp := max{n, p)} + size(z);
L rea i =7r+1;
if = has one child y then
Teli+ 1] :=Tei +1]U
{((Zv 0)7 (1’ max{]ﬂa]’?})) Na, 1)}’
if ¢ # O then
Tp[i] :=
Ty [Z] U {((11 0)1 (pa,p2), Na, Ta)};

Se
Teli+1] :=
Teli + 1] U {((k1, k2), (1, pp), na, 1)};
if ¢ # 0 then
Toli] = Tali] U
{((k1,k2), (Pa, Pb), MasTa) }3

| compress T7[4];

se
fori:1...kdo

L TT[Z] = {((kvo)v (170)’0’ 1)};

r :=root of tree;

t := tuple in T-[k] that has smallest p ;

trace the origin of ¢ until the leaves of the tree;
output the questions;

T.[i], for eachnode z € V', and ¢ € {0, ..., k}, bottom-up. Intu-
itively, in 7% [¢], we maintain a set of options for asking questions at
the children y and z of x, by recording the worst-case contributions
to the candidate set for various locations of the target node for each
option, as described below:

Formally, we define array 7 [¢] to contain a set of 4-tuples of the
following form (K, P, N, R), where P and K are pairs of values
while N, R are singleton values. Consider a 4-tuple ((k1, k2), (p1,
p2),n,7): This 4-tuple indicates that when i questions are allo-
cated to node z, there is a configuration of asking questions in x’s
subtree, along with k; questions in y’s subtree, and k2 questions in
z’s subtree, such that no matter where the target node is, the worst
possible contribution to the overall worst-case candidate set coming
from z’s subtree corresponds to one of p1,p2,n,r. That is, if we
were to ask questions at a node set /V in z’s subtree, the worst con-
tribution from z’s subtree to the overall candidate set would be one
of these numbers. Value p; corresponds to the worst contribution
such that (a) it contains the root « and (b) the target node is present

Algorithm 3: Single-Bounded Balanced Upward-Tree

Algorithm 4: Single-Unlimited Upward-Tree

Data: G = me-ary balanced upward-tree with depth d, k
Result: optimal set of k£ nodes to ask questions to

a:= |log,, k|;

if & # m® then

L a=a+1;

N :=0;

while |N| < k do

L pick a new node n at depth «;

pick a leaf [in n’s subtree;
N := NU{l}
return NV;

in x’s subtree, p2 corresponds to the worst contribution such that
(a) it does not contain = and (b) the target node is present in z’s
subtree, n corresponds to the contribution when the target node is
neither present in x’s subtree nor is in rset(z), (There is only one
number as against two for P, since the contribution to the candidate
set will never contain the root.) while r corresponds to the con-
tribution when the target node is not present in x’s subtree but is
reachable from z. (There is only one number since the contribution
to the candidate set will always contain the root.)

The array T3 [i] is thus a collection of worst-case tuples. In the
worst case, we might need to maintain upto O(n?) tuples (cor-
responding to all combinations of the last 3 entries in the tuple).
However, we can also use the following rule to discard tuples: If
all values in the last three entries in the first tuple are greater than
or equal to the corresponding values in the second tuple, we can
discard the first tuple in favor of the second because the second al-
location is better overall than the first. This approach corresponds
to maintaining the minimum-skyline of these tuples. However, this
procedure is not necessary for correctness.

The detailed proof, including consideration of all cases can be
found in [4].

A.11 Balanced Upward-Trees

We now present an efficient algorithm for an balanced upward-
tree. The following theorem formalizes our results.

THEOREM A.2

upward m-ary tree of large depth d, Algorithm 3 finds the optimal
solution for the Single-Bounded problem in O(1).
The proof of the theorem can be found in the extended technical
report. Essentially, the theorem tells us that in order to pick ques-
tions in balanced upward-trees, we should pick “leaf” questions.
Intuitively, asking a question at a leaf node gives us the maximum
amount of information about the location of the target node. (In
particular it lets us eliminate the entire path to the root from the
worst-case candidate set.) However, we must pick leaf nodes that
are as “spread out” as possible, and share as little of their path to
the root as possible. For more details, refer Algorithm 3.

B. Single-Unlimited
B.1 Proof of Theorem 4.14

PROOF. Consider all leaf nodes across all trees in the forest.
Note that each leaf node has a single parent. Firstly, it is easy to
see that we need to ask all leaves. If not, consider a leaf node a.
Let its parent be b. If we do not ask a, but b returns YES, (but no
other child of b returns YES) then it is not clear if the target node
is a or b. Therefore, we need to ask a. The same argument can
be used for all leaves. Now assume all questions at leaves return
a NO answer (effectively, leaves can be removed from the tree.)
The argument can be repeated for each parent of the leaves as well.

(BALANCED UPWARD-TREE). Fora balanced

277

Data: G = m-ary upward-tree, k
Result: optimal set of k£ nodes to ask questions to
if 3 a leaf f such that f’s parent has degree # 2 then
| N =allleaves except f;
for all internal nodes = do
if = has indegree 1 then
| N=Nu{z}
return N;

@ m items

Figure 6: Hardness Proof for Multi-Bounded

We then arrive at the roots of each of the trees in the forest and
their children. We cannot leave two of the roots unasked because
we cannot distinguish between them without asking a question at
both of them. However, we can avoid asking a question at one of
the roots because if we get a NO response from all other trees as
well as children of that node, then that node has to be the target
node. [

C. Multi-Bounded
C.1 Proof of Theorem 5.2

PROOF. We give a reduction from the NP-hard max-cover prob-
lem: Given m items, n sets, and an integer k, the goal is to choose
k sets that cover the most number of items.

We only describe the construction here. The proof that the con-
struction is a reduction can be found in the extended technical re-
port [4]. Given an instance of the max-cover problem, we construct
an instance of Multi-Bounded with the following DAG containing
three layers of nodes, as depicted in Figure 6. The second and third
layers of nodes are identical to the first and second layers in the
proof for Theorem 4.4: The second layer has one node correspond-
ing to each set and the third layer has a node corresponding to each
item. There is an edge from node s; to the node ¢; iff item ¢; € s;
in the max-cover instance. For each node s; in the second layer, we
add m + n unique parents in the first layer, r%, 73, . . ., rﬁn_m, with
an edge to s;. We want to solve Multi-Bounded on this constructed
DAG for k questions. Note that to solve the Multi-Bounded prob-
lem, we will always pick nodes corresponding to sets, because they
let us eliminate the maximum number of nodes corresponding to
items, in the worst case. Thus the nodes corresponding to sets that
are picked in Multi-Bounded precisely correspond to the sets that
are picked in the max cover problem. []

C.2 Proof of Theorem 5.3

PROOF. Given an instance of the decision version of the Multi-
Bounded problem, we can express it as an instance of X3 in the
following way:

Fy1Vy2[L(y2) V (R(y1, y2) < X)),

where y;1 corresponds to a set of nodes at which questions are
asked, y2 corresponds to all possible instances of the target set.
L(y2) checks in PTIME whether y» contains two nodes with a path
from one to the other: If so, it returns YES. R(y1, y2) evaluates the
candidate set given y; and y2. [

Algorithm 5: Multi-Bounded Downward/Upward-Forest

Algorithm 6: Multi-Bounded Balanced Trees

Data: G =upward-tree, k = budget
Result: optimal set of k nodes to ask questions to
for all nodes x in G, bottom-up do
Ty =0
T, [0] = {((0,0), size(x), 0, size(2))}:
if 2 has 1 or 2 children then
y := left sub-child of z;
z = right sub-child of x;
fori:0...kdo
for all k1,ko : k1 + ko = i do
for all ((*, x), p1,p2,n) in Ty[k1] and all
((*7 *)7p/17p,27 TL/) in TZ[kQ} do
Pa =
max{p1 +n',p} +n,p1 +pl,n+n'}+1;
Py := max{ps + ph, p2 + P}, phH +
p1,p2 +n',ph +n};
ng :=n-+n'+1;
if k&1 == 0 A k2 # O then
‘ Py = ph +1;
if k2 == 0 A k1 # O then
L ppi=p2+n';
Toli+1] :=
TT[’L +]'] u {((k17 k2)7pﬂ7pb7 0)}’
if ¢ # 0 then
Tx[d] :=
T[] U {((k1, k2), Pas oy na) }:

| compress T7[4];

else
fori:1...kdo

L TZ[Z] = {((k7 0)7 17070)};

r :=root of tree;

t := tuple in T7-[k] that has smallest p ;

trace the origin of ¢ until the leaves of the tree;
output the questions;

C.3 Proof of Theorem 5.4

PROOF. Consider the answers to a set of questions asked at
nodes in a downward-tree. If we were to complement each answer
(YES — NO and NO — YES), we would obtain the answers to the
questions asked at nodes in the same tree if the direction of each
edge was reversed (i.e., the upward-tree) for the same target set.
(Recall from Theorem 3.3 that each question either rules out the
ancestors or the descendants from the candidate set.) Thus, we can
solve Multi-Bounded on a downward-tree by reversing all edges
and solving it on the upward-tree. The converse is also true. Hence
the problems are equivalent. []

C.4 Balanced Trees

We now consider solving Multi-Bounded for the special case
of balanced trees. (Recall we don’t need to consider upward and
downward-trees separately.) The following theorem shows that for
small k& (compared to the number of nodes in the tree), there is a
constant-time solution for a balanced m-ary tree.

THEOREM C.1 (BALANCED TREES). Multi-Bounded on a
balanced m-ary tree of height d is solvable in O(1) when k < me.

The proof may be found in the extended technical report [4], while
the algorithm is listed in Algorithm 6. Informally, the approach is
to pick nodes at a depth such that the path to the root is equal to the
size of the sub-tree underneath (such that a YES answer or a NO
answer would eliminate roughly the same number of nodes from
candidate set), in order to minimize wcase.

278

Data: G = me-ary balanced tree with depth d, k
Result: optimal set of k£ nodes to ask questions to

l:= |log,, k];
N :=0;

while |[N| < k do
pick a new node n at depth [;
pick a node x at level o in subtree under n;
N := NU{z}
return N;

Q=

Figure 7: Triviality of Multi-Unlimited

C.5 Balanced Forest

We can generalize the results for balanced trees to obtain a bet-
ter solution for balanced forests, i.e., a collection of balanced trees.
The generalization to forests employs a dynamic programming al-
gorithm operating over the balanced trees constituting the forest.

THEOREM C.2 (BALANCED FOREST). Multi-Bounded for a
balanced forest can be solved in O(k*r) where r is the number of
trees.

The proof of this theorem can be found in the extended technical
report [4]. The algorithm iteratively (for each 7) computes the best
allocation of questions to each of the balanced trees, by using the
optimal allocation of k1 questions to the first ¢ balanced trees, and
k2 questions to the (¢ + 1)th tree, and combining the worst-case
candidate sets (The candidate sets for each balanced tree are inde-
pendent and can be combined.) to give one candidate allocation of
k1 + k2 questions to the first ¢ 4+ 1 trees. We compute this value for
all possible k1 and k2 such that k1 + k2 < k, and all ¢, recursively,
and return the best possible allocation when ¢ = 7.

D. Multi-Unlimited

In this section, we address the problem of Multi-Unlimited.

DEFINITION D.1 (MULTI-UNLIMITED). (Unlimited Search in
a DAG for a target set) Find the smallest set of nodes N C V to
ask questions such that VU™ C 'V satisfying ip(U™) = 1, we have
|cand(N,U™)| = |U"|.

The following theorem shows an interesting result that the Multi-
Unlimited problem is “trivialized” by the fact that questions need
to be asked at all nodes to ensure that no extraneous nodes remain
in the candidate set.

THEOREM D.2 (TRIVIALITY). The optimal solution to an in-
stance of Multi-Unlimited is N =V, i.e., we need to ask a ques-
tion at every node in the graph.

PROOF. Consider Figure 7, abstractly representing a connected
component of the input graph, focusing on any node n. We prove
that we need to ask a question at n in order to ascertain if n € U™.
Suppose we don’t ask a question at n. Let the questions asked at all
of the ancestors of n, i.e., A, return YES, while questions at all of
the descendants of n, i.e., D, return NO. In this case, it is not clear
if nis in U™ or not. It is possible that n is in U*, in which case
none of the nodes in A form part of U*. Otherwise, if n ¢ U™,
then there may be many nodes from A which are part of U*. [

