
Guided Data Repair ∗

Mohamed Yakout 1,2 Ahmed K. Elmagarmid 2 Jennifer Neville 1 Mourad Ouzzani 1 Ihab F. Ilyas 2,3

1Purdue University 2Qatar Computing Research Institute 3University of Waterloo
Qatar Foundation

1{myakout, neville, mourad}@cs.purdue.edu 2aelmagarmid@qf.org.qa 3ilyas@uwaterloo.ca

ABSTRACT
In this paper we present GDR, a Guided Data Repair frame-
work that incorporates user feedback in the cleaning process
to enhance and accelerate existing automatic repair tech-
niques while minimizing user involvement. GDR consults
the user on the updates that are most likely to be beneficial
in improving data quality. GDR also uses machine learning
methods to identify and apply the correct updates directly to
the database without the actual involvement of the user on
these specific updates. To rank potential updates for consul-
tation by the user, we first group these repairs and quantify
the utility of each group using the decision-theory concept of
value of information (VOI). We then apply active learning
to order updates within a group based on their ability to
improve the learned model. User feedback is used to repair
the database and to adaptively refine the training set for the
model. We empirically evaluate GDR on a real-world dataset
and show significant improvement in data quality using our
user guided repairing process. We also, assess the trade-off
between the user efforts and the resulting data quality.

1. INTRODUCTION
Poor data quality is a fact of life for most organizations

and can have serious implications on their effectiveness [1].
An example critical application domain is healthcare, where
incorrect information about patients in an Electronic Health
Record (EHR) may lead to wrong treatments and prescrip-
tions that may cause severe medical problems.

A recent approach for repairing dirty databases is to use
data quality rules in the form of database constraints to iden-
tify tuples with errors and inconsistencies and then use these
rules to derive updates to these tuples. Most of the exist-
ing data repair approaches (e.g., [2, 6, 7, 16]) focus on pro-
viding fully automated solutions using different heuristics
to select updates that would introduce minimal changes to
the data, which could be risky especially for critical data.
To guarantee that the best desired quality updates are ap-
plied to the database, users (domain experts) should be in-
volved to confirm updates. This highlights the increasing

∗This research was supported by QCRI, and by NSF Grant
Numbers IIS 0916614 and IIS 0811954, and by the Purdue
Cyber Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 5
Copyright 2011 VLDB Endowment 2150-8097/11/02... $ 10.00.

(a) Data

φ1 : (ZIP→ CT, STT, {46360 ‖ MichiganCity, IN})
φ2 : (ZIP→ CT, STT, {46774 ‖ NewHaven, IN})
φ3 : (ZIP→ CT, STT, {46825 ‖ FortWayne, IN})
φ4 : (ZIP→ CT, STT, {46391 ‖ Westville, IN})
φ5 : (STR, CT→ ZIP, { ,FortWayne ‖ })

(b) CFD Rules
Figure 1: Example data and rules

need for a framework that combines the best of both worlds.
The framework will automatically suggest updates while ef-
ficiently involve users to guide the cleaning process.

1.1 Motivation
Consider the following example. Let Relation

Customer(Name, SRC, STR, CT, STT, ZIP) specifies per-
sonal address information Street (STR), City (CT), State
(STT) and (ZIP), in addition to the source (SRC) of the data
or the data entry operator. An instance of this relation is
shown in Figure 1.

Data quality rules can be defined in the form of Condi-
tional Functional Dependencies (CFDs) as described in Fig-
ure 1(b). A CFD is a pair consisting of a standard Functional
Dependency (FD) and a pattern tableau that specifies the
applicability of the FD on parts of the data. For example,
φ1 − φ4 state that the FD ZIP → CT, STT (i.e., zip codes
uniquely identify city and state) holds in the context where
the ZIP is 46360, 46774, 46825 or 46391. Moreover, the pat-
tern tableau enforces bindings between the attribute values,
e.g., if ZIP= 46360, then CT= ‘Michigan City’. φ5 states
that the FD STR, CT → ZIP holds in the context where CT
= ‘Fort Wayne’, i.e., street names uniquely identify the zip
codes whenever the city is ‘Fort Wayne’. Note that all the
tuples in Figure 1 have violations.

Typically, a repairing algorithm will use the rules and the
current database instance to find the best possible repair
operations or updates. For example, t5 violates φ4 and a
possible update would be to either replace CT by ‘Westville’
or replace ZIP by 46825, which would make t5 fall in the
context of φ3 and φ5 but without violations. To decide which
update to apply, different heuristics can be used [2, 16].

However, automatic changes to data can be risky espe-

279

cially if the data is critical, e.g., choosing the wrong value
among the possible updates. On the other hand, involving
the user can be very expensive because of the large number
of possibilities to be verified. Since automated methods for
data repair produce far more updates than one can expect
the user to handle, techniques for selecting the most useful
updates for presentation to the user become very important.

Moreover, to efficiently involve the user in guiding the
cleaning process, it is helpful if the suggested updates are
presented in groups that share some contextual information.
This will make it easier for the user to provide feedback. For
example, the user can quickly inspect a group of tuples where
the value ‘Michigan City’ is suggested for the CT attribute.
Similar grouping ideas have been explored in [19].

In the example in Figure 1, let us assume that a clean-
ing algorithm suggested two groups of updates. In the first
group, the updates suggest replacing the attribute CT with
the value ‘Michigan City’ for t2, t3, and t4 while in the sec-
ond group they suggest replacing the attribute ZIP with the
value 46825 for t5 and t8. Let us assume further that we
were able to obtain the user feedback on the correct values
for these tuples; namely that the user has confirmed ‘Michi-
gan City’ as a correct value of CT for t2, t3, but as incorrect
for t4, and 46825 as the correct value of ZIP for t5, but as
incorrect for t8. In this case, consulting the user on the first
group, which has more correct updates, is better and would
allow for faster convergence to a cleaner database instance
as desired by the user. The second group will not lead for
such fast convergence.

Finally in our example, we could recognize correlations
between the attribute values in a tuple and the correct up-
dates. For example, when SRC = ‘H2’, the CT attribute is
incorrect most of the time, while the ZIP attribute is cor-
rect. This is an example of recurrent mistakes that exist
in real data. Patterns like that with correlations between
the original tuple and the correct updates, if captured by a
machine learning algorithm, can reduce user involvement.

The key challenge in involving users is to determine how
and in what order suggested updates should be presented to
them. This requires developing a set of principled measures
to estimate the improvement in quality to reason about the
selection process of possible updates as well as investigating
machine learning techniques to minimize user effort. The
goal is to achieve a good trade-off between high quality data
and minimal user involvement.

In this paper, we propose to tackle the problem of data
cleaning from a more realistic and pragmatic viewpoint. We
present GDR, a framework for guided data repair, that in-
teractively involves the user in guiding the cleaning process
alongside existing automatic cleaning techniques. The goal
is to effectively involve users in a way to achieve better data
quality as quickly as possible. The basic intuition is to con-
tinuously consult the user for updates that are most benefi-
cial in improving the data quality as we go.

We use CFDs [3] as the data quality rules to derive candi-
date updates. CFDs have proved to be very useful for data
quality and triggered several efforts e.g., [9, 13], for their au-
tomatic discovery as well as making them a practical choice
for data repair techniques.

1.2 Problem Definition
We consider a database instance D with a relational

schema S. Each relation R ∈ S is defined over a set of at-
tributes attr(R) and the domain of an attribute A ∈ attr(R)
is denoted by dom(A). We also consider a set of data qual-
ity rules Σ that represent data integrity semantics. In this
paper, we consider rules in the form of CFDs.

A CFD φ over R can be represented by φ : (X → Y, tp),

where {X ∪ Y } ⊆ attr(R), X → Y is a standard FD and tp
is a tuple pattern for all attributes in X and Y . For each
A ∈ (X ∪ Y), the value of the attribute A for the tuple
pattern tp, tp[A], is either a constant ’a’ ∈ dom(A), or ’−’
representing a variable value. We denote X as LHS(φ) (left
hand side) and Y as RHS(φ) (right hand side). Examples
of CFD rules are provided in Figure 1.

We assume that CFDs are provided in the normal form
[7]. If φ : (X → Y, tp) and Y = {A1, A2, . . . }, then the
normal form is to split φ into φ1 : (X → A1, tp), φ2 : (X →
A2, tp), A CFD φ : (X → A, tp) is said to be constant, if
tp[A] 6=’−’. Otherwise, φ is a variable CFD. Constant rule
can be violated by a single tuple, while variable ones (similar
to FDs) are violated by multiple tuples. For example in
Figure 1, φ1 is a constant CFD, while φ5 is a variable CFD.

We address the following problems:

• The use of the data quality rules Σ to generate candi-
date updates for the tuples that are violating Σ. The
rules can be either given or discovered by an automatic
discovery technique (e.g., [9, 13]). Usually, the auto-
matic discovery techniques employ thresholds on the
confidence of the discovered rules. In this setting, the
user is the one to guide the repairing process and we
assume that user decisions are consistent with Σ.

• Deciding upon the best groups of updates—as men-
tioned in Section 1.1— to be presented to the user
during an interactive process for faster convergence and
higher data quality.

• Applying active learning to learn user feedback and use
the learned models to decide upon the correctness of
the suggested updates without user’s involvement.

1.3 Summary of Contributions
We summarize our contributions as follows:

• We introduce GDR, a framework for data repair, that
selectively acquire user feedback on suggested updates.
User feedback is used to train the GDR machine learn-
ing component that can take over the task of deciding
the correctness of these updates. (Section 2)

• We propose a novel ranking mechanism for suggested
updates that applies a combination of decision theory
and active learning in the context of data quality to
reason about such task in a principled manner. (Sec-
tion 4)

• We use the concept of value-of-information (VOI) [18]
from decision theory to develop a mechanism to esti-
mate the update benefit from consulting the user on
a group of updates. We quantify the data quality loss
by the degree of violations to the rules. The benefit of
a group of updates can be then computed by the dif-
ference between the data quality loss before and after
user feedback. Since we do not know the user feedback
beforehand, we develop a set of approximations that
allow efficient estimations. (Section 4.1)

• We apply active learning to order the updates within
a group such that the updates that can strengthen the
prediction capabilities of the learned model the most
come first. To this end, we assign to each suggested
update an uncertainty score that quantifies the bene-
fit to the prediction model, learning benefit, when the
update is labeled. (Section 4.2)

We conduct an extensive experimental evaluation on real
datasets that shows the effectiveness of GDR in allowing fast
convergence to a better quality database with minimal user
intervention. (Section 5)

280

(a) GDR Framework..

Algorithm 1 GDR Process(D dirty database, Σ DQRs)

1: Identify dirty tuples in D using Σ and generate and store initial
suggested updates in PossibleUpdates list.

2: Group the candidate updates appropriately.
3: while User is available and dirty tuples exist do
4: Rank groups of updates such that the most beneficial come

first.
5: The user selects group c from the top.
6: updates in c are labeled by learner predictions and the user

interactively gives feedback on the suggested updates, until
the user is satisfied with the learner predictions or has verified
all the updates within c.

7: User feedback and learner decisions are applied to the
database.

8: Remove rejected updates from PossibleUpdates and replace
as needed.

9: Check for new dirty tuples and generate updates.
10: end while

(b) GDR Process.

Figure 2: GDR framework and process.

2. SOLUTION OVERVIEW
Figure 2(a) shows the GDR framework and the cleaning

process is outlined in Procedure 2(b).
GDR guides the user to focus her efforts on providing feed-

back on the updates that would improve quality faster, while
the user guides the system to automatically identify and ap-
ply updates on the data. This continuous feedback process,
illustrated in steps 3-10 (Procedure 1), runs while there are
dirty tuples and the user is available to give feedback.

In Step 1, all dirty tuples that violate the rules are identi-
fied and a repairing algorithm is used to generate candidate
updates. In step 2, we group the updates for the user in a
way that makes it easier for a batch inspection.

The interactive loop in steps 3-10 starts with ranking the
groups of updates such that groups that are more likely to
move the database to a cleaner state faster come first. The
user will then pick one of the top groups (c) in the list and
provide feedback through an interactive active learning ses-
sion (step 6). (The ranking mechanism and active learning
are discussed in Section 4.)

In step 7, all decisions on suggested updates, either made
by the user or the learner, are applied to the database. In
step 8, the list of candidate updates is modified by replacing
rejected updates and generating new ones for emerging dirty
tuples because of the applied updates.

After getting the user feedback, the violations are recom-
puted by the consistency manager and new updates may be
proposed. The assumption is that if the user verifies all the
database cells then the final database instance is consistent
with the rules. This guarantees that we are always making
progress toward the final consistent database and the process
will terminate.

3. GENERATING CANDIDATE UPDATES
In this section, we outline the different steps involved in

suggesting updates, maintaining their consistency when ap-
plied to the database, and grouping them for the user. More
details of this section are given in Appendix A.

Dirty tuples identification and updates discovery:
Once a set Σ of CFDs is defined, dirty tuples can be identified
through violations of Σ and stored in a DirtyTuples list. A
tuple t is considered dirty if ∃ φ ∈ Σ such that t 6|= φ, i.e., t
violates rule φ.

We implemented an on demand update discovery process
based on the mechanism described in [7] for resolving CFDs
violations and generating candidate updates. This process is
triggered to suggest an update for t[A], the value of attribute
A in tuple t. Initially, the process is called for all dirty
tuples and their attributes. Later during the interactions
with the user, it is triggered by the consistency manager as
a consequence of receiving user feedback.

The generated updates are tuples in the form rj =
〈t, A, v, sj〉 stored in the PossibleUpdates list, where v is the

suggested value in t[A] and sj is the update score. sj ∈ [0..1]
is assigned to each update rj by an update evaluation func-
tion to reflect the certainty of the repairing technique about
the suggested update. The evaluation function used in [2,
7] is the closeness in distance between the original and sug-
gested values using some domain distance function.

Updates Consistency Manager: Once an update r =
〈t, A, v, s〉 is confirmed to be correct, either by the user or
the learning component, it is immediately applied to the
database resulting into a new database instance. Conse-
quently, (i) new violations may arise and hence the on de-
mand update discovery process needs to be triggered for the
new dirty tuples, and (ii) some of the already suggested up-
dates that are not verified yet may become inconsistent since
they were generated according to a different database in-
stance. For example, in Figure 1, two updates are proposed:
r1 replaces t6[ZIP] = 46391 and r2 replaces t6[CT] = ”FT
Wayne”. If a feedback is received confirming r1, then r2

is not consistent with the new database instance and the
rules anymore since t6 will fall in the context of φ4. The on
demand process can then find a consistent update r′2 that
corresponds to replacing t6[CT] by ’Westville’, and r2 will be
discarded in favor of r′2.

Since GDR is meant for repairing online databases, the
consistency manager will need to be informed (e.g., through
database triggers) with any newly added or modified tuples
so it can maintain the consistency of the suggested updates.
In fact, GDR can be used in monitoring data entries and im-
mediately suggesting updates during the data entry process.
We do not discuss this issue further due to space limitation.

Grouping Updates: There are two reasons for the
grouping: (i) Providing a useful-looking set of updates with
some common contextual information will be easier for the
user to handle and process. (ii) Providing a machine learning
algorithm with a group of training examples that have some
correlations due to the grouping will increase the prediction
accuracy compared with just providing random, unrelated
examples. Similar grouping ideas have been explored in [19].
We use a grouping function where the tuples with the same
update value in a given attribute are grouped together.

4. RANKING AND DISPLAYING SUG-
GESTED UPDATES

In this section, we introduce the key concepts of GDR,
namely the ranking and learning components (Figure 2(a)),
which describe how GDR interacts with the user to get feed-
back on suggested updates. The task of these components
is to devise how to best present the updates to the user, in
a way that will provide the most benefit for improving the
quality of the data. To this end, we apply the concept of
value of information (VOI) [18] from decision theory, com-
bined with an active learning approach, to choose a ranking
in a principled manner.

281

4.1 VOI-based Ranking
At any iteration of the process outlined in Procedure 2(b),

there will be several possible suggested updates to forward to
the user. As discussed in the previous section, these updates
are grouped into groups {c1, c2 . . . }.

VOI is a mean of quantifying the potential benefit of de-
termining the true value of some unknown. At the core of
VOI is a loss (or utility) function that quantifies the desir-
ability of a given level of database quality. To make a deci-
sion on which group to forward first to the user, we compare
data quality loss before and after the user works on a group
of updates. More specifically, we devise a data quality loss
function, L, based on the quantified violations to the rules
Σ. Since the exact loss in quality cannot be measured, as we
do not know the correctness of the data, we develop a set
of approximations that allow for efficient estimation of this
quality loss. Before we proceed, we need first to introduce
the notion of database violations.

Definition 1. Given a database D and a CFD φ, we de-
fine the tuple t violation w.r.t φ, denoted vio(t, {φ}), as fol-
lows:

vio(t, {φ}) =

1 , if φ is a constant CFD.

Number of tuples t′

that violate φ with t , if φ is a variable CFD.

Consequently, the total violations for D with respect to Σ
is:

vio(D,Σ) =
∑
φ∈Σ

∑
t∈D

vio(t, {φ}).

The definition for the variable CFDs is equivalent to the
pairwise counting of violations discussed in [7]. The violation
can be scaled further using a weight attached to the tuple
denoting its importance for the business to be clean.

Update Benefit: Given a database instance D and a
group c = {r1, . . . , rJ}. If the system receives a feedback
from the user on rj , there are two possible cases: either the
user confirms rj to be applied or not. We denote the two cor-
responding database instances as Drj and Dr̄j , respectively.
Assuming that the user will confirm rj with a probability pj ,
then the expected data quality loss after consulting the user
on rj can be expressed by: pj L(Drj) + (1− pj) L(Dr̄j). If
we further assume that all the updates within the group c
are independent then the update benefit g (or data quality
gain) of acquiring user feedback for the entire group c can
be expressed as:

g(c) = L(D|c)−
∑
rj∈c

[pj L(Drj) + (1− pj) L(Dr̄j)] (1)

where L(D|c) is the current loss in data quality given that
c is suggested. To simplify our analysis, we assumed that
these updates are independent. Taking into account these
dependencies would require to model the full joint probabil-
ities of the updates, which will lead to a formulation that is
computationally infeasible due to the exponential number of
possibilities.

Data Quality Loss (L): We define quality loss as in-
versely proportional to the degree of satisfaction of the spec-
ified rules Σ. To compute L(D|c), we first need to measure
the quality loss with respect to φ ∈ Σ, namely ql(D|c, φ).
Assuming that Dopt is the clean database instance desired
by the user, we can express ql by:

ql(D|c, φ) = 1− |D |= φ|
|Dopt |= φ| =

|Dopt |= φ| − |D |= φ|
|Dopt |= φ| (2)

where |D |= φ| and |Dopt |= φ| are the numbers of tuples
satisfying the rule φ in the current database instance D and

Dopt, respectively. Consequently, the data quality loss, given
c, can be computed for Eq. 1 as follows:

L(D|c) =
∑
φi∈Σ

wi × ql(D|c, φi). (3)

where wi is a user defined weight for φi. These weights are
user defined parameters. In our experiments, we used the

values wi = |D(φi)|
|D| , where |D(φi)| is the number of tuples

that fall in the context of the rule φi. The intuition is that
the more tuples fall in the context of a rule, the more im-
portant it is to satisfy this rule. to express the business or
domain value of satisfying the rule φi.

To use this gain formulation, we are faced with two prac-
tical challenges: (1) we do not know the probabilities pj for
Eq. 1, since we do not know the correctness of the update
rj beforehand, and (2) we do not know the desired clean
database Dopt for computing Eq. 2, since that is the goal of
the cleaning process in the first place.

User Model: To approximate pj , we learn and model
the user as we obtain his/her feedback for the suggested
updates. pj is approximated by the prediction probability,
p̃j , of having rj correct (learning user feedback is discussed in
Section 4.2). Since initially there is no feedback, we assign sj
to p̃j , where sj ∈ [0, 1] is a score that represents the repairing
algorithm certainty about the suggested update rj .

Estimating Update Benefit: To compute the overall
quality loss L in Eq. 3, we need to first compute the qual-
ity loss with respect to a particular rule φ, i.e., ql(D|c, φ)
in Eq. 2. To this end, we approximate the numerator and
denominator separately. The numerator expression, which
represents the difference between the numbers of tuples sat-
isfying φ in Dopt and D, respectively, is approximated using
D’s violations with respect to φ. Thus, we use the expression
vio(D, {φ}) (cf. Definition 1) as the numerator in Eq. 2.

The main approximation we made is to assume that the
updates within a group c are independent. Hence to approx-
imate the denominator of Eq. 2, we assume further that
there is only one suggested update rj in c. The effect of this
last assumption is that we consider two possible clean de-
sired databases—one in which rj is correct, denoted by Drj ,
and another one in which rj is incorrect, denoted by Dr̄j .
Consequently, there are two possibilities for the denominator
of Eq. 2, each with a respective probability pj and (1− pj).
Our evaluations show that despite our approximations, our
approach produces a good ranking of the groups of updates.

We apply this approximation independently for each rj ∈ c
and estimate the quality loss ql as follows:

E[ql(D|c, φ)] =
∑
rj∈c

[p̃j ·
vio(D, {φ})
|Drj |= φ|

+ (1− p̃j)
vio(D, {φ})
|Dr̄j |= φ|

] (4)

where we approximate pj with p̃j .
The expected loss in data quality for the database D, given

the suggested group of updates c, can be then approximated
based on Eq. 3 by replacing ql with E[ql] obtained from
Eq. 4:

E[L(D|c)] =
∑
φi∈Σ

wi
∑
rj∈c

[
p̃j
vio(D, {φ})
|Drj |= φ|

+ (1− p̃j)
vio(D, {φ})
|Dr̄j |= φ|

]
(5)

We can also compute the expected loss for Drj and Dr̄j

using Eq. 3 and Eq. 5 as follows: E[L(Drj)] =
∑
φi∈Σ wi ·

vio(D
rj ,{φi})

|Drj |=φi|
where we use p̃j = 1 since in Drj we know that

rj is correct and E[L(Dr̄j)] =
∑
φi∈Σ wi ·

vio(D
r̄j ,{φi})

|Dr̄j |=φi|
where

we use p̃j = 0 since in Dr̄j we know that rj is incorrect.

282

Finally, using Eq. 1 and substituting L(D|c) with
E[L(D|c)] from Eq. 5, we compute an estimate for the data
quality gain of acquiring feedback for the group c as follows:

E[g(c)] = E[L(D|c)]−
∑
rj∈c

[
p̃j E[L(Drj)] + (1− p̃j)E[L(Dr̄j)]

]
=
∑
φi∈Σ

wi
∑
rj∈c

[
p̃j
vio(D, {φi})
|Drj |= φi|

+ (1− p̃j)
vio(D, {φi})
|Dr̄j |= φi|

]
−
∑
rj∈cp̃j ∑
φi∈Σ

wi
vio(Drj , {φi})
|Drj |= φi|

+ (1− p̃j)
∑
φi∈Σ

wi
vio(Dr̄j , {φi})
|Dr̄j |= φi|

Note that vio(D, {φi}) − vio(Dr̄j , {φi}) = 0 since Dr̄j is

the database resulting from rejecting the suggested update
rj which will not modify the database. Therefore, Dr̄j is
the same as D with the same violations. After a simple
rearrangement, we obtain the final formula to compute the
estimated gain for c:

E[g(c)] =
∑
φi∈Σ

wi ∑
rj∈c

p̃j
vio(D, {φi})− vio(Drj , {φi})

|Drj |= φi|

 (6)

The final formula in Eq. 6 is intuitive by itself and can be
justified by the following. The main objective to improve the
quality is to reduce the number of violations in the database.
Therefore, the difference in the amount of database viola-
tions as defined in Definition 1, before and after applying rj ,
is a major component to compute the update benefit. This
component is computed, under the first summation, for ev-
ery rule φi as a fraction of the number of tuples that would
be satisfying φi, if rj is applied. Since the correctness of
the repair rj is unkown, we cannot use the term under the
first summation as a final benefit score. Instead, we compute
the expected update benefit by approximating our certainty
about the benefit by the prediction probability p̃j .

Example: For the example in Figure 1, assume that
the repairing algorithm generated 3 updates to replace the
value of the CT attribute by ‘Michigan City’ in t2, t3 and t4.
Assume also that the probabilities, p̃j , for each of them are
0.9, 0.6, and 0.6, respectively. The weights wi for each φi,
i = 1, . . . , 5 are { 4

8
, 1

8
, 2

8
, 1

8
, 3

8
}. Due to this modifications

only φ1 will have their violations affected. Then for this
group of updates, the estimated benefit can be computed as
follow using Eq. 6: 4

8
× (0.9× 4−3

1
+0.6× 4−3

1
+0.6× 4−3

1
) =

1.05. �

4.2 Active Learning Ordering
One way to reduce the cost of acquiring user feedback

for verifying each update is to relegate the task of provid-
ing feedback to a machine learning algorithm. The use of a
learning component in GDR is motivated by the existence
of correlations between the original data and the correct up-
dates. If these correlations can be identified and represented
in a classification model, then the model can be trained to
predict the correctness of a suggested update and hence re-
place the user for similar (future) situations.

As stated earlier, GDR provides groups of updates to the
user for feedback. Here, we discuss how the updates within
a group will be ordered and displayed to the user, such that
user feedback for the top updates would strengthen the learn-
ing component’s capability to replace the user for predicting
the correctness for the rest of the updates.

Interactive Active Learning Session: After ranking
the groups of updates, the user will pick a group c that has
a high score E[g(c)]. The learner orders these updates such

that those that would most benefit, i.e., improve the model
prediction accuracy, from labeling come first. The updates
are displayed to the user along with their learner predic-
tions for the correctness of the update. The user will then
give feedback on the top ns updates, that she is sure about,
and inherently correct any mistakes made by the learner.
The newly labeled examples in ns are added to the learner
training dataset Tr and the active learner is retrained. The
learner then provides new predictions and reorder the cur-
rently displayed updates based on the training examples ob-
tained so far. If the user is not satisfied with the learner
predictions, the user will then give feedback on another ns
updates from c. This interactive process continues until the
user is either satisfied with the learner predictions, and thus
delegates the remaining decisions on the suggested updates
in c to the learned model, or the updates within c are all
labeled, i.e., verified, by the user.

Active Learning: In the learning component, there is a
machine learning algorithm that constructs a classification
model. Ideally, we would like to learn a model to automati-
cally identify correct updates without user intervention. Ac-
tive learning is an approach to learning models in such situ-
ations where unlabeled examples (i.e. suggested updates) is
plentiful but there is a cost to labeling examples (acquiring
user feedback) for training.

By delegating some decisions on suggested updates to the
learned models, GDR is allowing for “automatic” repairing.
However, there is a guarantee to correctly repair the data
that is inherently provided by the active learning process
to learn accurate classifiers to predict the correctness of the
updates. The user is the one to decide whether the classifiers
are accurate while inspecting the suggestions.

Learning User Feedback: The learning component
predicts for a suggested update r = 〈t, A, v, s〉 one of the fol-
lowing predictions, which corresponds to the expected user
feedback. (i) confirm, the value of t[A] should be v. (ii) re-
ject, v is not a valid value for t[A] and GDR needs to find
another update. (iii) retain, t[A] is a correct value and there
is no need to generate more updates for it. The user may
also suggest new value v′ for t[A] and GDR will consider it
as a confirm feedback for the repair r′ = 〈t, A, v′, 1〉.

In the learning component, we learn a set of classifica-
tion models {MA1 , . . . ,MAn}, one for each attribute Ai ∈
attr(R). Given a suggested update for t[Ai], model MAi is
consulted to predict user feedback. The models are trained
by examples acquired incrementally from the user. We
present here our choices for data representation (input to the
classifier), classification model, and learning benefit scores.

Data Representation: For a given update r =
〈t, Ai, v, s〉 and user feedback F ∈ {confirm, reject, retain},
we construct a training example for model MAi in the form
〈t[A1], . . . , t[An], v,R(t[Ai], v),F〉. Here, t[A1], . . . , t[An] are
the original attributes’ values of tuple t and R(t[Ai], v)1 is
a function that quantifies the relationship between t[Ai] and
its suggested value v.

Including the original dirty tuple along with the suggested
update value enables the classifier to model associations be-
tween original attribute values and suggested values. In-
cluding the relationship function, R, enables the classifier to
model associations based on similarities that do not depend
solely on the values in the original database instance and the
suggested updates.

Active Learning Using Model Uncertainty: Active
learning starts with a preliminary classifier learned from a
small set of labeled training examples. The classifier is ap-
plied to the unlabeled examples and a scoring mechanism
is used to estimate the most valuable example to label next

1We use a string similarity function.

283

and add to the training set. Many criteria have been pro-
posed to determine the most valuable examples for labeling
(e.g, [20, 23]) by focusing on selecting the examples whose
predictions have the largest uncertainty.

One way to derive the uncertainty of an example is by
measuring the disagreement amongst the predictions it gets
from a committee of k classifiers [19]. The committee is built
so that the k classifiers are slightly different from each other,
yet they all have similar accuracy on the training data. For
an update r to be classified by label F ∈ {confirm, reject, re-
tain}, it would get the same prediction F from all members.
The uncertain ones will get different labels from the commit-
tee and by adding them in the training set the disagreement
amongst the members will be lowered.

In our implementation, each model MAi is a random forest
which is an ensemble of decision trees [5] that are built in a
similar way to construct a committee of classifiers. Random
forest learns a set of k decision trees. Let the number of in-
stances in the training set be N and the number of attributes
in the examples be M . Each of the k trees are learned as
follows: randomly sample with replacement a set S of size
N ′ < N from the original data, then learn a decision tree
with the set S. The random forest algorithm uses a standard
decision-tree learning algorithm with the exception that at
each attribute split, the algorithm selects the best attribute
from a random subsample of M ′ < M attributes. We used
the WEKA2 random forest implementation with k = 10 and
default values for N ′ and M ′.

Computing Learning Benefit Score: To classify an
update r = 〈t, Ai, v, s〉 with the learned random forest MAi ,
each tree in the ensemble is applied separately to obtain the
predictions F1, . . . ,Fk for r, then the majority prediction
from the set of trees is used as the output classification for
r. The learning benefit or the uncertainty of predictions of a
committee can be quantified by the entropy on the fraction of
committee members that predicted each of the class labels.

Example. Assume that r1, r2 are two candidate updates
to change the CT attribute to ‘Michigan City’ in tuples t2, t3.
The model of the CT attribute, MCT, is a random forest with
k = 5. By consulting the forest MCT, we obtain for r1, the
predictions {confirm, confirm, confirm, reject, retain}, and
for r2, the predictions {confirm, reject, reject, reject, reject}.
In this case, the final prediction for r1 is ‘confirm’ with an
uncertainty score of 0.86 (= − 3

5
× log3

3
5
− 1

5
× log3

1
5
−

1
5
× log3

1
5
) and for r2 the final prediction is ’reject’ with an

uncertainty score of 0.45. In this case, r1 will appear to the
user before r2 because it has higher uncertainty. �

5. EXPERIMENTS
In this section, we present a thorough evaluation of the

GDR framework, which has already been demonstrated in
[22]. Specifically, we show that the proposed ranking mech-
anism converges quickly to a better data quality state. More-
over, we assess the trade-off between the user efforts and the
resulting data quality in Appendix B.

We used in the experiments two real-world datasets re-
ferred to as Dataset 1 and 2, each with about 20,000 records.
Appendix B provides details on the datasets, ground truth
and the quality rules.

User interaction simulation. We simulated user feed-
back to suggested updates by providing answers as deter-
mined by the ground truth.

Data quality state metric. We report the improvement
in data quality through computing the loss (Eq. 3). We
consider the ground truth as the desired clean databaseDopt.

2http://www.cs.waikato.ac.nz/ml/weka/

!

"!

#!

$!

%!

&!!

! "! #! $! %! &!!

!
"
#
"
$%
&
"
'
(
#
)
$
*
+
,
-
.
/
0
+
0
1
#

'(()*+*,-./01(2.(3342516

!"#$%&'()*+,+-

!*((./

#)+.&0

(a) Dataset 1.

!

"!

#!

$!

%!

&!!

! "! #! $! %! &!!

!
"
#
"
$%
&
"
'
(
#
)
$
*
+
,
-
.
/
0
+
0
1
#

'(()*+,-./01(2.(3342516

!"#$%&'()*+,+-

!*((./

#)+.&0

(b) Dataset 2.

Figure 3: Comparing VOI-based ranking in GDR
(GDR-NoLearning) to other strategies against the
amount of feedback. Feedback is reported as the
percentage of the maximum number of verified up-
dates required by an approach. Our application of
the VOI concept shows superior performance com-
pared to other näıve ranking strategies.

5.1 VOI Ranking Evaluation
The objective here is to evaluate the effectiveness and

quality of the VOI-based ranking mechanism described in
Section 4.1. In this experiment, we did not use the learning
component to replace the user; the user will need to evalu-
ate each suggested update. Recall that the grouping provides
the user with related tuples and their corresponding updates
that could help in a quick batch inspection by the user.

We compare in this experiment the following techniques:

• GDR-NoLearning : The GDR framework of Figure 2(a)
without the learning component.
• Greedy : Here, we rank the groups according to their

sizes. The rationale behind this strategy is that groups
that cover larger numbers of updates may have high
impact on the quality if most of the suggestions within
them are correct.
• Random: The näıve strategy where we randomly order

the groups; all update groups are equally important.

In Figure 3, we show the progress in improving the quality
against the number of verified updates (i.e., the amount of
feedback). The feedback is reported as a percentage of the
total number of suggested updates through the interaction
process to reach the desired clean database.

The ultimate objective of GDR is to minimize user ef-
fort while reaching better quality quickly. In Figure 3, the
slope of the curves in the first of iterations with the user
is the key component to the curve: the steeper the curve
the better the ranking. As illustrated for both datasets, the
GDR-NoLearning approach performs well compared to the
Greedy and Random approaches. This is because the GDR-
NoLearning approach perfectly identifies the most beneficial
groups that are more likely to have correct updates. While
the Greedy approach improves the quality, most of the con-
tent of the groups is sometimes incorrect updates leading to
wasted user efforts. The Random approach showed the worst
performance in Dataset 1, while for Dataset 2, it was compa-
rable with the Greedy approach especially in the beginning
of the curves. This is because in Dataset 2, most of the sizes
of the groups were close to each others making the Random
and Greedy approaches behave almost identically, while in
Dataset 1 the groups sizes varies widely making the random
choices ineffective. Finally, we notice that GDR-NoLearning
is much better for Dataset 1 than for Dataset 2, because of
two reasons related to the nature of the Dataset 2: (i) most
of the initially suggested updates for Dataset 2 are correct,
and (ii) the sizes of the groups in Dataset 2 are close to
each other. The consequence is that any ranking strategy
for Dataset 2 will not be far from the optimal.

284

The results reported above justify clearly the importance
and effectiveness of the GDR ranking component. The GDR-
NoLearning approach is well suited for repairing “very” crit-
ical data, where every suggested update has to be verified
before applying it to the database.

5.2 GDR Overall Evaluation
Here, we evaluate GDR’s performance when using the

learning component to reduce user efforts. More precisely,
we evaluate the VOI-based ranking when combined with the
active learning ordering. For this experiment, we evaluate
the following approaches:
• GDR: is the approach proposed in this paper. In each

interactive session, the user provides feedback for the top
ranked updates. The required amount of feedback per
group is inversely proportional to the benefit score of the
group (Eq. 6)—the higher the benefit the less effort from
the user is needed, since most likely the updates are correct
and there are very few uncertain updates for the learned
model that would require user involvement. As such, we
require that the user verifies di updates for a group ci,

di = E ×
(

1− g(ci)
gmax

)
, where E is the initial number of

dirty tuples and gmax = max∀cj{g(cj)}.
• GDR-S-Learning : Here, we eliminate the active learn-

ing from the system—the updates are grouped and then
ranked using VOI-based scoring alone. User is solicited for
a random selection of updates within each group, instead
of being ordered by uncertainty. However, all of the user
feedback is used to train the learning component, which
then replaces the user on deciding for the remaining up-
dates in the group. GDR-S-Learning is included to assess
the benefit of the active learning aspect of our framework,
compared with traditional passive learning.
• Active-Learning : In this approach, we eliminate the

grouping and their ranking from the GDR framework. In
other words, we neither group the updates nor use VOI-
based scores for ranking. We only solicit user feedback for
updates ordered with the learner uncertainty scores. The
user is required to provide feedback for the top update
and then the learning component is updated to reorder the
updates for the user in an iterative fashion. The resulting
learned model is applied for predicting the remaining sug-
gested updates and the database is updated accordingly.
We report the quality improvement for different amount of
feedbacks. This approach is included to assess the benefit
of the grouping and the VOI-based ranking mechanisms
compared with using only an active learning approach.
• GDR-NoLearning : This approach is the one described in

the previous experiment; It provides a baseline to assess
the utility of machine learning aspect for GDR.
• Automatic-Heuristic: The BatchRepair method described

in [7] for automatic data repair using CFDs.

In Figure 4, we report the improvement in data quality
as the amount of feedback increases. Assuming that the
user can afford verifying at most a number of updates equal
to the number of initially identified dirty tuples (6000 for
Dataset 1 and 3000 for Dataset 2), we report the amount of
feedbacks as a percentage of this number. The results show
that GDR achieves superior performance compared with the
other approaches; For Dataset 1, GDR gain about 90% im-
provement with 20% efforts or verifying about 1000 updates.
For Dataset 2, about 94% quality improvement was gained
with 30% efforts or verifying about 1000 updates.

In Dataset 1, Active Learning is comparable to GDR only
in the beginning of the curve until reaching about 70% qual-
ity improvement. GDR-S-Learning starts to outperform Ac-
tive Learning after about 45% user effort. The Heuristic

!

"!

#!

$!

%!

&!!

! "! #! $! %! &!!

!
"
#
"
$%
&
"
'
(
#
)
$
*
+
,
-
.
/
+
0
1
#

'(()*+,-./01(2.(3342516

!"#

!"#$%$&'()*+*,

!"#$-.&'()*+*,

/01+2'3&'()*+*,

4'5)+61+0

(a) Dataset 1.

!

"!

#!

$!

%!

&!!

! "! #! $! %! &!!

!
"
#
"
$%
&
"
'
(
#
)
$
*
+
,
-
.
/
+
0
1
#

'(()*+,-./01(2.(3342516

!"#

!"#$%$&'()*+*,

!"#$-.&'()*+*,

/01+2'3&'()*+*,

4'5)+61+0

(b) Dataset 2.

Figure 4: Overall evaluation of GDR compared with
other techniques. The combination of the VOI-based
ranking with the active learning was very successful
in efficiently involving the user. The user feedback
is reported as a percentage of the initial number of
the identified dirty tuples.

approach repairs the database without user feedback, there-
fore, it produces a constant result. Note that the quality
improvement achieved by the Heuristic approach is attained
by GDR with about 10% user effort, i.e., giving feedback for
updates numbering about 10% of the initial set of dirty tu-
ples in the database. The GDR-NoLearning approach does
improve the quality of the database, but not as quickly as
any of the approaches that use learning methods. In compar-
ison to Figure 3, the final performance of GDR-NoLearning
is 100%, assuming all required feedback were obtained. GDR
involves learning which allows for automatic updates to be
applied and hence opens the door for some mistakes to occur.
Thus, the 100% accuracy may not be reached.

For Dataset 2, similar results were achieved. However,
the Active Learning approach was not as successful as for
Dataset 1. This is due to the randomness nature of the
errors in this dataset, which resulted in fewer correlations
between these errors that could be learned by the model.
Due to the wider array of real-world dependencies in Dataset
1, the machine learning methods were more successful and
achieved better performance. For example, some hospitals
located on the boundary between two zip codes have their
zip attributes dirty; this is most likely due to a data entry
confusion on where they are really located.

The superior performance of GDR is justified by the fol-
lowing: for a single group of updates, using the learner
uncertainty to select updates can effectively strengthen the
learned model predictions as these “uncertain” updates are
more important for the model. In GDR-S-Learning, ran-
domly inspecting updates from the groups provided by the
VOI-based ranking does enhance the learned model. How-
ever, more user effort is wasted in verifying less important
updates according to the learning benefit. For the Active
Learning approach, it is apparent that having the user spend
more effort does not help the learned model due to the model
over fitting problem. This problem is avoided in both GDR
and GDR-S-Learning approaches because of the grouping
provided by the GDR framework. The grouping provides
the learned model a mechanism to adapt locally to the cur-
rent group, which in turn provides the necessary guidance
for the model to strongly learn the associations for a highly
beneficial group rather than just weakly learning the asso-
ciations for a wide variety of cases. This is also the reason
that the GDR-S-Learning eventually outperforms the Active
Learning with an increase in user effort.

This experiment demonstrates the importance of the
learning component for achieving a faster convergence to a
better quality. The results support our initial hypothesis
about the existence of correlations between the dirty and
correct versions of the tuples in real-world data. Also, the

285

combination of VOI-based ranking with active learning im-
proves over the traditional active learning mechanism.

6. RELATED WORK
Existing data repair techniques have mostly focused on

automatically repairing data by finding another database
that is consistent and minimally different from the original
database (e.g., [2, 7, 16]).

The updates generation in GDR is somehow similar to
the repair approach of [7], which consults the user to either
introduce a new CFD in the repairing algorithm or to man-
ually update the data, and no machine learning is included
to help in the cleaning process itself. GDR goes well beyond
that by interactively generating and then grouping updates
for the sake of efficiently involving the user.

The initial step to suggest updates for all dirty tuples is a
time consuming process. Therefore, we discuss and evaluate
in a workshop paper [21] a mechanism for ranking the rules
such that smaller subsets of the dirty tuples are processed to
find their suggested updates in each user interactive session.

A recent work to repair critical data with quality guarantee
was introduced in [11]. While addressing a similar problem
as GDR, the setting is different. In [11] it is assumed that a
reference correct data exists and the user is required to spec-
ify certain attributes to be correct across the entire dataset.
Moreover, the proposed solution relies on a pre-specified set
of editing rules. This is not the case for GDR. GDR requires
only a set of data quality rules.

Most existing systems for data cleaning provide tools for
data exploration and transformation without taking advan-
tage of recent efforts on automatic data repair. Usually, the
repair actions are “explicitly specified by the user”. For ex-
ample, AJAX [12] proposes a declarative language to elimi-
nate duplicates during data transformations. Potter’s Wheel
[17] combines data transformations with the detection of er-
rors in the form of irregularities. None of these systems effi-
ciently leverage user feedback, like GDR, by either ranking
or using learning mechanisms, and moreover, the user does
not necessarily have to explicitly specify updates.

Previous work on soliciting user feedback to improve data
quality focuses on identifying correctly matched references
in a large scale integrated data (e.g., [14, 19]). In [14], a de-
cision theoretic framework similar to ours has been proposed
to rank candidate reference matches to improve the quality
of query responses in dataspaces, but it cannot be applied
in a constrained repair framework for relational database.
[19] introduced an active-learning based approach to build a
generic matching function for identifying duplicate records.

Another closely related area is to solicit user feedback to
improve the prediction quality of a learning model by tak-
ing into account data acquisition costs, for example selective
supervision [15], which combines decision theory with active
learning for the learned model benefit.

The uniqueness of our work resides in combining (i) the
certainty of a update, which is derived from an automatic re-
pairing algorithm using the repair evaluation function, and
(ii) the uncertainty of a learner to accurately predict the
correctness of a update, in a ranking mechanism that uni-
formly and judiciously balances between them with the goal
of improving the data quality as quickly as possible.

7. CONCLUSION AND FUTURE WORK
We presented GDR, a framework that combines

constraint-based repair techniques with user feedback
through an interactive process. The main novelty of GDR
is to solicit user feedback for the most useful updates using
a novel decision-theoretic mechanism combined with active
learning. The aim is to move the quality of the database to
a better state as far as the data quality rules are concerned.

Our experiments show very promising results in moving the
data quality forward with minimal user involvement.

Our future work includes extending GDR to support more
types of data quality rules other than CFDs like CINDs
[4], Matching dependencies [8], and Matching Rules [10].
More research challenges may emerge from supporting var-
ious kinds of rules and their interactions to produce good
updates. Moreover, we are investigating approach for the
guided discovery of the rules from dirty data.

8. REFERENCES
[1] C. Batini and M. Scannapieco. Data Quality: Concepts,

Methodologies and Techniques. Addison-Wesley, 2006.
[2] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A

cost-based model and effective heuristic for repairing
constraints by value modification. In ACM SIGMOD, pages
143–154, 2005.

[3] P. Bohannon, W. Fan, F. Geerts, X. Jia, and
A. Kementsietsidis. Conditional functional dependencies for
data cleaning. In ICDE, pages 746–755, 2007.

[4] L. Bravo, W. Fan, and S. Ma. Extending dependencies with
conditions. In VLDB, pages 243–254, 2007.

[5] L. Breiman. Random forests. Mach. Learn., 45:5–32, 2001.
[6] J. Chomicki and J. Marcinkowski. Minimal-change integrity

maintenance using tuple deletions. In Information and
Computation, pages 90–121, 2005.

[7] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving
data quality: consistency and accuracy. In VLDB, pages
315–326, 2007.

[8] W. Fan. Dependencies revisited for improving data quality.
In PODS, 2008.

[9] W. Fan, F. Geerts, L. V. Lakshmanan, and M. Xiong.
Discovering conditional functional dependencies. In ICDE,
pages 1231 – 1234, 2009.

[10] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record
matching rules. In VLDB, pages 407–418, 2009.

[11] W. Fan, J. Li, S. Ma, and W. Yu. Towards certain fixes
with editing rules and master data. In VLDB, pages
173–184, 2010.

[12] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. Ajax:
an extensible data cleaning tool. In SIGMOD, page 590,
2001.

[13] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu. On
generating nearoptimal tableaux for conditional functional
dependencies. In VLDB, pages 376–390, 2008.

[14] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy.
Pay-as-you-go user feedback for dataspace systems. In ACM
SIGMOD, pages 847–860, 2008.

[15] A. Kapoor, E. Horvitz, and S. Basu. Selective supervision:
Guiding supervised learning with decision-theoretic active
learning. In IJCAI, pages 877–882, 2007.

[16] A. Lopatenko and L. Bravo. Efficient approximation
algorithms for repairing inconsistent databases. In ICDE,
pages 216 – 225, 2007.

[17] V. Raman and J. M. Hellerstein. Potter’s wheel: An
interactive data cleaning system. In VLDB, pages 381–390,
2001.

[18] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Addison-Wesley, 2003.

[19] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In ACM SIGKDD, pages 269–278,
2002.

[20] S. Tong and D. Koller. Support vector machine active
learning with applications to text classification. In The
Journal of Machine Learning Research, pages 45–66, 2002.

[21] M. Yakout, A. K. Elmagarmid, and J. Neville. Ranking for
data repairs. In In DBRank workshop of ICDE, pages 23 –
28, 2010.

[22] M. Yakout, A. K. Elmagarmid, J. Neville, and M. Ouzzani.
Gdr: a system for guided data repair. In SIGMOD system
demo, pages 1223–1226, 2010.

[23] B. Zadrozny and C. Elkan. Learning and making decisions
when costs and probabilities are both unknown. In
SIGKDD, pages 204–213, 2001.

286

APPENDIX
A. UPDATES GENERATION IMPLEMEN-

TATION
A.1 CFD: Overview

A CFD φ over R can be represented by φ : (X → Y, tp),
where X and Y ∈ attr(R), X → Y is a standard functional
dependency (FD), referred to as FD embedded in φ, and
tp is a tuple pattern containing all attributes in X and Y .
For each A ∈ (X ∪ Y), the value of the attribute A for the
tuple pattern tp, tp[A], is either a constant ’a’ ∈ dom(A),
or ’−’ which represents a variable value. We denote X as
LHS(φ) (left hand side) and Y as RHS(φ) (right hand side).
Examples for CFD rules are provided in Figure 1.

To denote that a tuple t ∈ D matches a particular pattern
tp, the symbol � is defined on data values and ’−’. We write
t[X] � tp[X] iff for each A ∈ X, either t[A] = tp[A] or tp[A]
= ’−’. For example, (Sherden RD, Fort Wayne, IN) � (−,
Fort Wayne, −). We assume that CFDs are provided in the
normal form [7], i.e., φ : (X → A, tp), A ∈ attr(R) and tp is
a single pattern tuple.

A CFD φ : (X → A, tp) is said to be constant, if
tp[A] 6=’−’. Otherwise, φ is a variable CFD. For example
in Figure 1, φ1 is a constant CFD, while φ5 is a variable
CFD.

A database instance D satisfies the constant CFD φ =
(X → A, tp), denoted by D |= φ, iff for each tuple t ∈ D,
if t[X] � tp[X] then t[A] = tp[A]. If φ is a variable
CFD, then D |= φ iff for each pair of tuples t1, t2 ∈ D,
if t1[X] = t2[X] � tp[X] then t1[A] = t2[A] � tp[A]. This
means that if t1[X] and t2[X] are equal and match the pat-
tern tp[X], then t1[A] and t2[A] must also be equal to each
other. CFDs address a single relation only. However, the
repairing algorithm that uses CFDs is applicable to general
relational schemas by simply repairing each relation in iso-
lation.

A.2 Resolving CFD Violations
A dirty tuple t may violate a CFD φ = (R : X → A, tp)

in Σ following two possible cases [7]:

• Case 1: φ is a constant CFD (i.e., tp[A] = a, where a is
a constant) and t[X] � tp[X] but t[A] 6= a.

• Case 2: φ is a variable CFD, t[X] � tp[X], and ∃t′ such
that t′[X] = t[X] � tp[X] but t[A] 6= t′[A].

The latter case is similar to the violation of a standard FD.
Accordingly, given a set Σ of CFDs, the dirty tuples can be
immediately identified and stored in the DirtyTuples list.

To resolve a violation of a CFD φ = (R : X → A, tp)
by a tuple t, we proceed as follows: For case 1, we either
modify the RHS(φ) attribute such that t[A] = tp[A] or we
change some of the attributes in LHS(φ) such that t[X] 6�
tp[X]. For case 2, we either modify t[A] (resp. t′[A]) such
that t[A] = t′[A] or we change some LHS(φ) attributes t[X]
(resp. t′[X]) such that t[X] 6= t′[X] or t[X] 6� tp[X] (resp.
t′[X] 6� tp[X]).

Example: In Figure 1, the normal form of φ1 : (ZIP →
CT, STT, {46360 ‖ MichiganCity, IN}) would be φ1,1 :
(ZIP → CT, {46360 ‖ MichiganCity}) and φ1,2 : (ZIP →
STT, {46360 ‖ IN}).
t2 violates φ1,1 : (ZIP → CT, {46360 ‖ MichiganCity})

following case 1. Thus, a suggested update by changing
RHS(φ1,1) is to replace ‘Westville’ by ‘Michigan City’ in
t2[CT], while another update by changing LHS(φ1,1) is to
replace ‘46360’ by ‘46391’ in t2[ZIP], for example. t5, t6
both violate φ5 following case 2. A possible update is to
change RHS(φ5) by modifying t5[ZIP] to be ’46825’ instead

of ’46391’. Yet, another possible update is to make a change
in LHS(φ5). For example, by changing t5[STR] or t5[CT] to
another value. �

A.3 Update Evaluation Function
Since there may be many possible ways to clean a dirty

tuple, we need an evaluation function to select the “best”
updates. We follow the same evaluation approach used in [2]
and [7]. Given an update r to modify t[A] = v such that
t[A] = v′, we compute the update evaluation score s as the
similarity between v and v′. This can be done based on the
edit distance function distA(v, v′) as follows

s(r) = sim(v, v′) = 1− distA(v, v′)

max(|v|, |v′|) . (7)

where |v|, |v′| denote the size of v, v′, respectively. The
intuition here is that, the more accurate v′, the more it is
close to v. s(r) is in the range [0..1] and any domain specific
similarity function can be used for this purpose. Finally, the
update can be composed in the tuple form r = 〈t, A, v′, s(r)〉.

A.4 Generating Updates
We now show how to use CFDs to generate updates for

each potentially dirty attribute B in t ∈ DirtyTuples. The
generated updates are tuples in the form 〈t, B, v, s〉, where
v is the suggested repair value for t[B] and s is the repair
evaluation score from Eq. 7.

The suggested updates correspond to attribute value mod-
ifications, which are enough for CFDs violations [7]. For
each dirty tuple t, we store the list of violated rules in
t.vioRuleList. Furthermore, for each pair 〈t, B〉, we keep
a list of values 〈t, B〉.preventedList, which contains values
for t[B] that are confirmed as wrong. Thus, when searching
a new suggestion for t[B], the values in 〈t, B〉.preventedList
are discarded. Also, we keep a flag 〈t, B〉.Changeable that
is set to False when the value in t[B] was confirmed to be
correct.

Initially, we assume that each attribute value is incor-
rect for all t ∈ DirtyTuples and proceed by searching for
the best update value that provides the best score accord-
ing to Eq. 7. This can be performed by calling Algorithm
1, UpdateAttributeTuple(t, B) for all t ∈ DirtyTuples and
B ∈ attr(R).
UpdateAttributeTuple described in Algorithm 1 finds the

best update value for t[B] by exploring three possible sce-
narios:

1. B = A for some violated CFD φ = (X → A, tp) and
tp[A] 6=’−’ (i.e., φ is a constant CFD): This corresponds
to case 1 of rule violations where t[X] � tp[X] and
t[A] 6� tp[A]. In this scenario, a value v = a is suggested
(lines 4-6).

2. B = A for some violated CFD φ = (X → A, tp) and
tp[A] =’−’ (i.e., φ is a variable CFD): This corresponds
to case 2 of rule violations where t[X] � tp[X] and
t[A] � tp[A] and there exists another tuple t′ that vi-
olates φ with t, i.e., t′[X] � t[X] but t′[A] 6� t[A]. In
this scenario, a value v = t′[A] is suggested (lines 7-9).

3. B ∈ LHS(φ) for some violated CFD φ = (X → A, tp):
This corresponds to either case 1 or case 2 of rule viola-
tions. In this scenario, we look for a value v that max-
imizes the repair evaluation score sim(t[B], v) (Eq. 7.)
The aim is to select semantically related values by first
using the values in the CFDs, then searching in the
tuples identified by the pattern t[X ∪ A − {B}] (lines
11-13).

287

In each of the above scenarios, the value v 6∈
〈t, B〉.preventedList. Finally, a repair tuple is composed
〈t, B, v, s〉 and inserted into PossibleUpdates in line 14

Example: In Figure 1, t5 violates φ4 and when repairing
the attribute CT ∈ RHS(φ4), a suggested update accord-
ing to Scenario 1 will be ‘Westville’. Also, t5 violates φ5

and when repairing the attribute ZIP ∈ RHS(φ5), a sug-
gested update will be 46825 according to Scenario 2. When
repairing the attribute STR ∈ LHS(φ5), a suggested value
from the domain dom(STR) can be ‘Sherden RD’ according
to Scenario 3. �

Analysis: We assume that a tuple is violating
|t.vioTupleList| rules. From Definition 1 , we know that
if a tuple t is violating a variable CFD φ, then vio(t, φ) is
the number of tuples that violate φ with t. Each of the sce-
narios in Algorithm 1 can be analyzed as follows: Scenario
1 requires O(1) operations to suggest updates from each
constant CFD violation. Scenario 2 requires O(vio(t, φ)) to
suggest a value from each set of tuples violating a variable
rule φ with t. Scenario 3 requires searching the values in
the rules and in the domain of attribute A, i.e., the worst
case is O(|dom(A)| + Σ). Then, the best case of running
UpdateAttributeTuple is O(|t.vioTupleList|) and the worst
case is O(|t.vioTupleList| × (|dom(A)|+ Σ)).

Algorithm 1 UpdateAttributeTuple (Tuple t, Attribute B)

1: if 〈t, B〉.Changeable = false then return;
2: best s = 0 ; v = null
3: for all φ = (X → A, tp) ∈ t.vioRuleList do
4: if B = A ∧ tp[A] 6=’−’ then
5: cur s = sim(t[A], tp[A]) {scenario 1}
6: if cur s > best s then { best s = cur s; v = tp[A]

}
7: else if B = A ∧ t[A] =’−’ then
8: 〈best s, v〉 = getValueForRHS(φ, A, t, best s)

{scenario 2}
9: end if

10: end for
11: if ∃ φ = (X → A, tp) ∈ t.vioRuleList s.t. B ∈ X then
12: 〈best s, v〉 = getValueForLHS(A, t, best s) {scenario

3}
13: end if
14: if v 6= null then
15: PossibleUpdates = PossibleUpdates ∪ {〈t, B, v, s =

sim(t[B], v)〉}
16: end if

A.5 Updates Consistency Manager
Once a repair r = 〈t, B, v, s〉 is confirmed to be correct,

either by the user or the learning component, it is applied
immediately to the database to get a new database instance.
Consequently, some of the already suggested updates may
become inconsistent since they were generated according to
a different database instance.

The consistency manager needs to maintain two invari-
ants: (i) There is no tuple t ∈ D such that t 6|= φ for
any φ ∈ Σ, and t 6∈ DirtyTuples. (ii) There is no update
r ∈ PossibleUpdates such that r depends on data values
that have been modified in the database. In the following,
we provide the detailed steps of the consistency manager
procedure that we implemented in GDR. Given an update
r = 〈t, B, v, s〉 along with the feedback ∈ {confirm, reject,
retain}:

1. If the feedback is to retain the current value t[B], then
we set 〈t, B〉.Changeable = false to stop looking for
updates for t[B].

2. If the feedback is to reject the update, i.e., t[B] can-
not be v, then v is added immediately to the list
〈t, B〉.P reventedList. This is followed by a call to
UpdateAttributeTuple(t, B) to find another update for
t[B].

3. If the feedback confirms that t[B] must be v, then
the update is applied to the database immediately
and we stop generating updates for t[B] by setting
〈t, B〉.Changeable = false. Afterward, we go through
the rules that involve the attribute B and update the
necessary data structures to reflect the removed viola-
tions as well as new emerging violations. Particularly,
for each φ : (X → A, tp) ∈ Σ where B ∈ (X ∪ A), we
do the following:

(a) If t 6|= φ, then we consider two cases:

i. φ is a constant CFD: If 〈t, C〉.Changeable =
false, ∀C ∈ X, i.e., all attributes in LHS(φ)
have been confirmed as correct and are not
changeable values, then RHS(φ) should be ap-
plied; we apply t[A] = tp[A] to the database
directly, set 〈t, A〉.Changeable = false, and re-
move φ from t.vioRuleList. If some of the
LHS(φ) attribute values are changeable in t,
then ∀ C ∈ ({X ∪ A} 6 B) we add 〈t, C〉 to
RevisitList. φ is added to t.vioRuleList, if
it is not already there, and t is added to the
DirtyTuples as well.

ii. φ is a variable CFD: We add φ to t.vioRuleList
and then identify the tuples t′ that violate
φ with t. Then for each t′, we add φ to
t′.vioRuleList and add t′ to the DirtyTyples.
Also, we add 〈t′, C〉 to the RevisitList, ∀ C ∈
{X ∪A} because this φ may be a new emerging
violation for t′ and all the attributes are candi-
dates to be wrong for t′.

(b) If t |= φ while φ ∈ t.vioRuleList, then φ origi-
nally was violated by t before applying this update.
Therefore, we remove φ from t.vioRuleList. If φ
is a constant CFD, no further action is required.
However, if φ is a variable CFD, we need to check
the other tuples t′, which were involved with t in vi-
olating φ, and eventually update their vioRuleList.
We remove φ from t′.vioRuleList as long as @ t′′

s.t. t′, t′′ 6|= φ, i.e., t′ is not involved in violating φ
with another tuple t′′.

4. Remove update r = 〈t, C, v, s〉 from the
PossibleUpdates, if 〈t, C〉 ∈ RevisitedList or
〈t, C〉.Changeable = false.

5. For every element 〈t, C〉 ∈ RevisitedList, we call
UpdateAttributeTuple(t, C) to find another repair for
t[C].

6. Remove t from DirtyTuples, if t.vioRuleList is empty.

Note that the first update consistency invariant is main-
tained because of the following: A tuple t may become dirty
if it is modified or another tuple t′ is modified so that t, t′

violates some variable CFD φ ∈ Σ. For a tuple t and a CFD
rule φ, assuming that due to a database update t 6|= φ, then
t must be in DirtyTuples after applying Step 3a.

If φ is a constant CFD, then step 3(a)i should have
been applied. If t continues to violate φ it should be in
DirtyTuples. If φ is a variable CFD, then step 3(a)ii should
have been applied. There are two cases to consider: First,
if t is the tuple being repaired and t 6|= φ, then it is added
to DirtyTuples, if not already there. Second, if t 6|= φ be-
cause another tuple t′ was repaired (or modified), then step

288

!"#

!"$

!"%

!"&

!"'

(

!)! *! $! &! (!!

!
"
#
$
%
&
%
'
(
)
*
(
+
)
,
#
$
*
-
-

+,,-./012345,62,778695:

;6,0<5<8=

>,0/??

(a) Dataset 1.

!"#

!"$

!"%

!"&

!"'

(

!)! *! $! &! (!!

!
"
#
$
%
&
%
'
(
)
*
(
+
)
,
#
$
*
-
-

+,,-./012345,62,778695:

;6,0<5<8=

>,0/??

(b) Dataset 2.

Figure 5: Accuracy vs. user efforts. As the user
spends more effort with GDR, the overall accuracy
is improved. The user feedback is reported as a per-
centage of the initial number of the identified dirty
tuples.

3(a)ii should have been applied on t′. Thus all tuples in-
volved with t′ in violating φ, including t will be added to
DirtyTuples. Following the same rationale, step 3b main-
tains that t.vioRuleList contains only rules that are being
violated by t. Thus, Step 6 guarantees that the content of
DirtyTuples corresponds to tuples involved in rules viola-
tion.

The second update consistency invariant is maintained as
well because of Steps 3(a)i, 4, and 5. These steps maintain a
local list, RevisitedList, to hold tuple-attribute pairs, where
their generated updates may depend on the applied update.
In Step 3(a)i, changing the value of t[B] may affect the up-
date choice for the other attributes of φ. For a variable CFD,
Step 3(a)ii, all the tuples involved in the violations due to
the modified value will need their attributes values to be re-
visited to find updates. Step 4 removes the corresponding
updates from the PossibleUpdates and we proceed in Step
5 to get potentially new updates.

Note that Step 3 loops on the set of rules for the particular
tuple t that was updated. In Steps 3(a) and 3(b), we consider
the immediate dependencies (consequences) of updating t
with respect to a single rule φ. Particularly in Step 3(a),
we check for new violations for φ that involve t, because it
is the only change to the database. In Step 3(b), we check
for already resolved violations for φ due to updating t. This
local process to tuple t that considers only a single rule φ at a
time guarantees that the consistency manager will terminate
and will not get into an infinite loop.

Since GDR is meant for repairing online databases, the
consistency manager will need to be informed (e.g., through
database triggers) with any new added or modified tuples.
Every new tuple or modified values can be considered as an
update and the above steps will proceed naturally.

B. EXPERIMENTS SETTINGS
Datasets. In our experiments, we used two datasets, de-

noted as Dataset 1 and 2 respectively. Dataset 1 is a real
world dataset obtained by integrating (anonymized) emer-
gency room visits from 74 hospitals. Such patient data is
used to monitor naturally occurring disease outbreaks, bi-
ological attacks, and chemical attacks. Since such data is

coming from several sources, a myriad of data quality is-
sues arise due to the different information systems used by
these hospitals and the different data entry operators re-
sponsible for entering this data. For our experiments, we
selected a subset of the available patient attributes, namely
Patient ID, Age, Sex, Classification, Complaint, Hospital-
Name, StreetAddress, City, Zip, State, and VisitDate. For
Dataset 2, we used the adult dataset from the UCI reposi-
tory (http://archive.ics.uci.edu/ml/). For our experiments,
we used the attributes education, hours per week, income,
marital status, native country, occupation, race, relation-
ship, sex, and workclass.

Ground truth. To evaluate our technique against a
ground-truth, we manually repaired 20,000 patient records
in Dataset 1. We used address and zip code lookup web
sites for this purpose. We assumed that Dataset 2, which is
about 23,000 records, is already clean and hence can be used
as our ground truth. We synthetically introduced errors in
the attribute values as follows. We randomly picked a set of
tuples, and then for each tuple, we randomly picked a subset
of the attributes to perturb by either changing characters or
replacing the attribute value with another value from the
domain attribute values. All experiments are reported when
30% of the tuples are dirty.

Data Quality Rules. For Dataset 1, we used CFDs
similar to what was illustrated in Figure 1. The rules were
identified while manually repairing the tuples. For Dataset
2, we implemented the technique described in [9] to discover
CFDs and we used a support threshold of 5%.

Settings. All the experiments were conducted on a
server with a 3 GHz processor and 32 GB RAM running on
Linux. We used Java to implement the proposed techniques
and MySQL to store and query the records.

B.1 Additional Experiments: User Efforts vs.
Repair Accuracy

We evaluate GDR’s ability to provide a trade-off between
user effort and accurate updates. We use the precision and
recall, where precision is defined as the ratio of the num-
ber of values that have been correctly updated to the total
number of values that were updated, while recall is defined
as the ratio of the number of values that have been cor-
rectly updated to the number of incorrect values in the entire
database. Since we know the correct data, we can compute
these values.

The user in this experiment affords only verifying F up-
dates, then GDR decide about the rest of the updates auto-
matically. GDR asks the user to verify di of the suggested
updates in a group of repairs ci, until we reach F .

In Figure 5, we report the precision and recall values re-
sulting from repairing the database as we increase F (re-
ported as % of dirty tuples). For both datasets the precision
and recall generally improve as F increases. However, for
Dataset 1, the precision is always higher than for Dataset 2.
This is due to the lower accuracy of the learning component
for Dataset 2, which stems from the random nature of the
errors in Dataset 2. Overall, these results illustrate the ben-
efit of user feedback—as the user effort increases, the repair
accuracy increases.

289

