
Distributed Inference and Query Processing for
RFID Tracking and Monitoring ∗

Zhao Cao, Charles Sutton†, Yanlei Diao, Prashant Shenoy
Department of Computer Science †School of Informatics

University of Massachusetts, Amherst University of Edinburgh

caozhao, yanlei, shenoy@cs.umass.edu, †csutton@inf.ed.ac.uk

ABSTRACT
In this paper, we present the design of a scalable, distributed stream
processing system for RFID tracking and monitoring. Since RFID
data lacks containment and location information that is key to query
processing, we propose to combine location and containment infer-
ence with stream query processing in a single architecture, with
inference as an enabling mechanism for high-level query process-
ing. We further consider challenges in instantiating such a system
in large distributed settings and design techniques for distributed
inference and query processing. Our experimental results, using
both real-world data and large synthetic traces, demonstrate the ac-
curacy, efficiency, and scalability of our proposed techniques.

1. INTRODUCTION
RFID is a promising electronic identification technology that en-

ables a real-time information infrastructure to provide timely, high-
value content to monitoring and tracking applications. An RFID-
enabled information infrastructure is likely to revolutionize areas
such as supply chain management, healthcare, and pharmaceuti-
cals [9]. Consider, for example, a healthcare environment such
as a large hospital that tags all pieces of medical equipment (e.g.,
scalpels, thermometers) and drug products for inventory manage-
ment. Each storage area or patient room is equipped with RFID
readers that scan medical devices, drug products, and their associ-
ated cases. Such an RFID-based infrastructure offers a hospital un-
precedented near real-time ability to track and monitor objects and
detect anomalies (e.g., misplaced objects) as they occur. The use
of RFID tags provide similar benefits in distributed supply chains
where objects, cases and pallets must be tracked, and in pharma-
ceutical environments that require combating counterfeit drugs and
preventing pilfering. To illustrate, consider the following types of
continuous queries that may be posed on the RFID streams:
• Tracking queries, which include queries such as “report any

pallet that has deviated from its intended path,” or “list the
path taken by a medical device equipment through the hospi-

∗This work has been supported in part by NSF grants IIS-0746939,
IIS-0812347, and CNS-0923313.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 5
Copyright 2011 VLDB Endowment 2150-8097/11/02... $ 10.00.

tal before it was misplaced.” Such tracking queries are loca-
tion queries that require object locations or location histories.

• Containment queries, which include queries such as “raise an
alert if a flammable item is not packed in a fireproof case,”
or “verify that food containing peanuts is never exposed to
other food cases for more than an hour.” This class of queries
involve inter-object relationships, e.g., containment between
objects, cases, and pallets, and are useful for enforcing pack-
aging and shipping regulations.

• Hybrid queries, which include “for any temperature sensitive
drug product, raise an alert if it has been placed outside a
freezer and exposed to room temperature for 6 hours.” This
class of queries combine sensors streams (e.g., temperature)
and RFID streams (e.g., object location and containment) to
detect various conditions.

Unfortunately, the nature of RFID data makes these queries dif-
ficult to answer. The key challenge is that although such anomaly
detection queries typically involve object locations and inter-object
relationships such as containment, the RFID data does not directly
contain this information. Rather, the data contains only the ob-
served tag id and the reader id; this is a fundamental limitation of
RFID technology. To enable queries on the data that is not actu-
ally available, the key is to exploit statistical regularities in the tag
id and reader information so that one can estimate object locations
and object relationships. The estimation problem is complex, how-
ever, because RFID readings are inherently noisy due to the sensi-
tivity of radio frequency to occluding metal objects and interference
[7]. For example, in our lab setup (Section 5.2), we observed read
rates of 70%-85% even with state-of-the-art readers and tags. Real
deployments in complex environments such as hospitals would be
expected to experience similar issues.

A second key challenge is that environments such as large hos-
pitals or supply chains are distributed in scope, for which a central-
ized approach may be limiting. In a centralized approach, RFID
streams from various readers are sent to a central location for query
processing. This approach can fail to scale because of the band-
width overheads incurred due to high data volume and can also
potentially increase the latency of detecting anomalous events, es-
pecially in geographically distributed settings. In contrast, a dis-
tributed approach processes data streams as they emerge, thereby
reducing the delay of answering queries. However, as objects move
from one location to another, tracking and monitoring queries must
also “move” with these objects. To do so, both the state of objects
and the state of monitoring queries relevant to these objects must
be transferred to the new location to seed the computation there.

Research contributions: In this paper, we present the design of
a scalable, distributed stream processing system for RFID tracking
and monitoring. Our system combines location and containment

326

inference with stream query processing into a single architecture,
with inference as an enabling mechanism for high-level query pro-
cessing for tracking, monitoring, and anomaly detection. We fur-
ther scale such inference and thus enable query processing in large
distributed environments that span multiple sites and numerous ob-
jects. More specifically, our contributions include the following:

Novel statistical framework (Section 3). The key novelty in
our approach to location and containment inference is to introduce
the notion of smoothing over object relations, whereas all existing
work on RFID data cleaning [8, 11] and location inference [14, 16]
is limited to the traditional approach of smoothing over time. In
contrast to temporal smoothing approaches, smoothing over con-
tainment in our work leads to a much simpler graphical model,
thereby allowing more efficient inference. At the same time, our
model and inference techniques can still accurately estimate loca-
tion and containment information, so that high-level query process-
ing can return high-quality answers.

Our general approach is as follows: (i) Our probabilistic model
describes a physical world comprising object locations, contain-
ment relationships, and noisy RFID readings. (ii) We devise an in-
ference algorithm, called RFINFER, for our model, working within
an expectation maximization (EM) framework. The design of our
model allows us to derive a simple customized M-step, which is
essential for working at scale but still offers provable optimality.
Furthermore, our algorithm is developed in an unsupervised learn-
ing framework; that is, it does not use machine learning techniques
that require access to any specially-generated training data. (iii)
We finally extend our algorithm to also detect changes of contain-
ment using a statistical method called change point detection.

Distributed inference and query processing (Section 4). To suit
the increasing scale of RFID tracking and monitoring, we develop
a distributed approach that performs inference and query process-
ing locally at each location, but transfers the state of inference and
state of query processing as objects move across sites. A naive in-
ference algorithm would incur high transfer overhead by requiring
the entire history of observations collected from multiple sites over
a long period of time. Instead, we propose to truncate history by
sifting out the observations most informative about the true con-
tainment, and further distill such useful history into a few numbers
for each object to minimize the inference state transferred. In dis-
tributed processing of tracking and monitoring queries, the main
issue is that we need to transfer one copy of query state for each
object. Our work exploits the inference results, in particular, stable
containment to share query state among objects.

Performance evaluation (Section 5). Our evaluation, using both
real-world data and large synthetic traces, shows the following: (i)
Our inference algorithm is highly accurate, with less than 7% er-
ror on containment and 0.5% error on location, for noisy traces
with stable containment. (ii) With containment changes, our algo-
rithm can achieve 85% accuracy when read rates reach 0.7 while
keeping up with stream speed, as shown using real lab traces and
simulations. (iii) Our distributed inference method offers 3 orders
of magnitude reduction in communication cost over a centralized
method without compromising accuracy, and scales to millions of
objects over multiple sites. (iv) Our highly accurate inference al-
lows a query processor to produce high-quality answers and further
exploit sharing of query state across objects for state migration.

2. BACKGROUND
In this section, we provide background on RFID technology and

RFID tracking and monitoring applications. Our system targets
any distributed environment with multiple locations such as hospi-
tals with multiple storage areas, supply chains with multiple ware-

houses, etc. For ease of exposition, the rest of this paper assumes
that the environment is a distributed supply chain; however, our
techniques are general and can be applied to other domains as well.
Each item in the supply chain is assumed to be packed into a case,
and multiple cases packed onto a pallet, which yields a containment
relationship between items, cases and pallets. Items, cases, and pal-
lets are assumed to be tagged. Each tag has a unique identity; the
tag id can also indicate the level of packaging, e.g., a pallet, a case,
or an item. We focus on passive RFID tags, which are battery-
less and have a small amount of on-board memory, e.g., 4-64 KB.
This memory is writable and can be exploited to store supply-chain-
specific object state and enable “querying anytime anywhere”.1 We
assume that each distribution center employs multiple RFID read-
ers, for example, at the entry and exit points as well as at the belt
and shelves to scan resident objects. Each such reader periodically
interrogate tags in its read range and immediately returns the sensed
data in the form of (time, tag id, reader id). The local servers of
a distribution center collect raw RFID data streams from all readers
and process these streams. The data streams from different centers
are further aggregated to support global tracking and monitoring.

We next illustrate the tracking and monitoring queries that our
work aims to support. Such queries assume an event stream with
rich information including (time, tag id, location, container)
and optional attributes describing object properties, such as the type
of food or type of container (which can be obtained from the man-
ufacturer’s database). Note the different schemas for raw RFID
readings and events used in query processing—events in the latter
schema are produced by an inference module as we discuss shortly.

Query 1 is an example of a hybrid query that combines object
locations, containment relationships, and temperature sensor read-
ings. This query raises an alert if a frozen food or drug product has
been placed outside a freezer and exposed to room temperature for
6 hours. The query is written using the CQL Language [2] with an
extension for pattern matching [1]. The inner (nested) query checks
for each product if its container is not a freezer or does not exist,
and if so retrieves the temperature based on the product’s location.
The outer query aggregates the retrieved temperatures for the prod-
uct and checks if it has been exposed to room temperature for 6
hours. The query finally returns all the temperature readings in the
6 hour period and the tag id of the object.

Q1:Select tag id, A[].temp
From (Select Rstream(R.tag id, R.loc, T.temp)

From Products [Now] as R, Temperature
[Partition By sensor Rows 1] as T

Where (!(R.container IsA ‘freezer’)
or R.container = NULL) and

R.loc = T.loc and T.temp > 0 °C
) As Global Stream S
[Pattern SEQ(A+)
Where A[i].tag id = A[1].tag id and

A[A.len].time > A[1].time + 6 hrs
]

3. INFERENCE ALGORITHM
In this section, we present our inference module that translates

raw noisy RFID readings, (time, tag id, reader id), into high-
level events with rich attributes (time, tag id, location, containe-
r) and optionally other attributes about object properties from the
manufacturer. Our solution to this problem makes use of techniques
from probabilistic reasoning, statistics, and machine learning.

1This technology trend motivated us to minimize the computation state as-
sociated with a tag, as discussed in Section 4, so it can be held in a tag’s
local memory to enable querying anytime anywhere in the future.

327

Locations:

Time
Containers

Objects
A

t = 1
1

3 4

2

5 6

B

t = 2
1

3 4

2

5 6
C D

t = 3
1

3 4

2

5 6
CE F

t = 4
1

3 4

2

5 6
DE

Figure 1: Example of noisy RFID readings and containment changes

Intuitively, the idea is that whenever an object is read, its con-
tainer is likely to be read as well. Over time, we can use the co-
location history of containers and objects to derive the containment
relationships. To develop this intuition into a robust system, how-
ever, several design considerations must be addressed to effectively
handle the noisy and incomplete input. To explain these considera-
tions, we use the example in Figure 1: Each node represents a tag,
and each edge a containment relation. The shaded nodes represent
tags that were read (by the reader specified in the bottom row), and
the unshaded nodes are tags that were missed by all readers.

A main design consideration is how to handle missed readings.
If some objects are not observed, it is difficult to accurately de-
termine their locations, which makes it also difficult to tell when
objects are co-located. If the containment relations were known for
certain, then a powerful way to determine object locations would
be to smooth over containment relations, meaning that whenever
we read one object in a container, we know that all of the other ob-
jects must be in the same place. For example, in Figure 1, at time
t = 3, we miss reading container 2, but we do read object 5. If we
knew that container 2 contained object 5, then we could correctly
infer that container 2 is also present at location C.

Unfortunately, the containment relationships are not known in
advance, so instead we use an iterative approach. First, we start
with the best available information about object locations and have
a guess about containment relationships based on co-location. Then
we can improve our understanding of object locations via smooth-
ing over containment relationships. For example, in Figure 1, con-
tainer 2 and object 5 are repeatedly co-located in the raw readings,
so we can infer a containment relationship right away. Given the
containment relationship, we can infer the location of container 2
at t = 3. The resulting better understanding of locations allows
us to further improve our understanding of containment relation-
ships. Revisit Figure 1. We did not have strong evidence about the
container for object 6, but with the new location information about
container 2, we see that it is consistently co-located with object 6.

A second main design consideration is how to detect changes in
containment relationships. Consider an object and a container that
have been consistently co-located, such as container 1 and object
4 in the first two time steps of Figure 1. If later on (t = 3 in
the example), we fail to read the object, then following the idea of
smoothing over containment, it is reasonable to infer than object 4
is still co-located with container 1. But at some point, if we repeat-
edly fail to read the object (as at t = 4), we may suspect that the
object has actually been moved. To distinguish between these two
competing explanations—either the object has been removed from
the container, or it has not moved but its tag has been missed—we
need a way to decide when there is enough recent evidence to con-
clude that the containment relationship has actually changed. How
much evidence is enough should depend on the read rate: if the
readers are less accurate, then we ought to demand more evidence.

We resolve all of these difficulties in a principled way using
a general methodology based on graphical modeling. We design
a graphical model that represents the probabilistic dependencies
between the observed RFID readings and the latent object loca-
tions and containment relationships. Inference algorithms infer
containment and locations in a unified way, naturally smoothing
over the dependencies between them. In the following, we propose

...

1
2

R

Container 1

Reader

�t,c=2

...

1
2

R

Container 2

Reader

�t,c=1

�t,o=1

�t,o=2

�t,o=3

�t,o=4

xt,c=1 xt,c=2yt,o=1 yt,o=2 yt,o=3 yt,o=4

Figure 2: Graphical model of locations and RFID readings.

a graphical model (Section 3.1) and a new algorithm RFINFER
(Section 3.2) for inferring containment and location from RFID
readings. Containment changes can be further detected using a
change point detection algorithm (Section 3.3). Moreover, infer-
ence must run at stream speed, which poses a challenge to existing
machine learning methods. The techniques we employ include op-
timizations (Appendix A.3) and history truncation (Section 4).

3.1 Graphical Model
In this section we describe a probabilistic model of container

locations, object locations, and RFID readings. The model is a
probability distribution over random variables that represent both
the true state of the world, which we do not observe, and the RFID
readings, which we do. For the purposes of describing the model,
we assume that we know the containment relationships exactly; in
fact, we infer them from RFID data, as explained in Section 3.2.

We discretize both time and space: We divide time into a set
of discrete epochs of, for example, one second in duration. All
RFID readings that occur in the same epoch are treated as simulta-
neous. As for locations, given the set of tracking and monitoring
queries we aim to support, it suffices to localize objects to the near-
est reader. Therefore, we model locations as a discrete setR, which
is the set of locations of all of the static readers. Finally, we assume
that there are C containers, denoted by integers c ∈ [1, C], and
there are O objects, denoted by integers o ∈ [1, O].

The random variables in the model are as follows. For each
epoch t, and each container c, let `tc be the true location of the
container. This is a random variable which takes values from the
set of locationsR. Similarly, let `to be the true location of each ob-
ject o. As for the readings, let xtrc be a binary random variable that
indicates whether the reader at location r ∈ R received a reading
of the container c. Define ytro similarly for each object o. To make
the notation more compact, let ` = {`tc|∀t, c} ∪ {`to|∀t, o} be the
vector of all the true object and container locations over all time,
and similarly define x = {xtrc|∀t, r, c} for the container readings
and y = {ytro|∀t, r, o} for the object readings. The model is a
joint distribution p(`,x,y) over all of these random variables.

Our model is depicted graphically in Figure 2 for a single epoch.
To describe the model, we explain how to sample from the proba-
bility distribution that describes the world, assuming that the world
behaves exactly according to our model. At every epoch t, first the
true location `tc is sampled for each container c. Because we do
not assume any prior knowledge about the layout of the factory, we
model this distribution as uniform over the set of all possible loca-
tions R. Now there is no need to sample object locations, because
each object must be in the same place as its container.

Now we can generate the RFID readings. Each reader has a read
rate, which we denote π(r, r̄), which is the chance of the reader at
location r reading an object which is actually at location r̄. Typ-
ically, a reader detects an object if both are at the same location.

328

However, with a small chance a reader can detect an object that is
closer to a nearby reader. In an actual deployment, one can measure
the read rates periodically by using reference tags fixed to known
locations and listening for these tags’ responses to a given number
of interrogations [11, 16]. To create readings, each reader indepen-
dently interrogates the tag on every container and the tag on every
object. Formally, each binary observation variable xtrc is sampled
independently with probability according to the read rate; that is,
xtrc is true with probability π(r, `tc). We write this probability as

p(xtrc|`tc) =

(
π(r, `tc) if xtrc = 1 (tag read)

1− π(r, `tc) if xtrc = 0 (otherwise),
(1)

and similarly for ytro.
Putting it together, this defines a joint probability distribution as

p(`,x,y) =

TY
t=1

CY
c=1

p(`tc)
Y
r∈R

p(xtrc|`tc)
Y

o|(o,c)∈C

p(ytro|`to)

(2)
It can be seen that this model treats all time steps as independent
and all containers as independent. For each epoch and container,
it iterates over all readers and considers the probabilities of each
reader observing the container as well as its contained objects. Be-
cause the model treats all epochs as independent, it does not per-
form any temporal smoothing over readings; however, it compen-
sates for this by smoothing over containment relations instead. To
smooth the readings over time as well would add significant com-
plexity to the model, and significant computational cost to the in-
ference procedure. In Section 5, we verify experimentally that
smoothing over containment relations is effective at inferring ob-
ject locations.

An important quantity is the probability that the model assigns to
the observed data, that is, p(x,y) =

P
` p(`,x,y). This quantity

is called the likelihood of the data. Note that the likelihood is a
function of the containment relationships C. To emphasize this, we
define L(C) = log p(x,y). According to our model, this is

L(C) =

TX
t=1

CX
c=1

log
X
a∈R

p(`tc)
Y
r∈R

p(xtrc|`tc)
Y

o|(o,c)∈C

p(ytro|`to)

(3)
The log likelihood measures how probable the RFID readings are
under the current set of containment relationships. It will be an
important quantity for inferring the containment relationships.

3.2 Inferring Containment Relationships
To infer containment relationships from RFID readings, we use a

maximum likelihood framework, that is, we determine the contain-
ment relationships such that, according to the model, the observed
readings are most likely. Formally, this amounts to maximizing the
log likelihood L(C) with respect to the set of containment relation-
ships C. In this section, we describe the algorithm that performs
this maximization, which we call RFINFER.

The idea is that determining containment relationships would be
simple if, besides the RFID data, we also observed the true loca-
tions of all containers. However, the true container locations are
in fact unknown. To handle this, we develop RFINFER in the EM
framework, which offers a general approach for maximizing like-
lihood functions in the presence of missing data, in our case the
container locations. The algorithm alternates between two steps.
In the first step, the expectation step (or E-step), we infer a dis-
tribution over the locations of each container, given some current
guess about the containment relations. In the second step, the maxi-
mization step (or M-step), we choose the best containment relations

given our current guess of the container locations. We iterate these
two steps until the containment relations do not change.

In the E-step, the distribution that we want to compute is the
conditional distribution p(`|x,y) over the location of each con-
tainer that results from the joint distribution of Eq (3)—this distri-
bution is called the posterior distribution of the container location
and sometimes denoted as qtc(·) for simplicity. From the definition
of conditional probability, it can be shown that

p(`tc|x,y) = S
Y
r∈R

p(xtrc|`tc)
Y

o|(o,c)∈C

p(ytro|`to), (4)

where S is a constant that does not depend on `tc.
In the M-step, we update the current estimates of containment

relationships based on the current belief about locations. We do
so by defining a score wco to measure the strength of co-location
between object o and container c:

wco =

TX
t=1

X
a∈R

p(`tc = a|x,y)
X
r∈R

log p(ytro|`to = a). (5)

This score measures how likely are the readings of object o if it
were always co-located with container c. To estimate the container
for o, we simply pick the best container C(o) = arg maxwco.

Note that RFINFER also computes location information. When
the algorithm has converged, the final values of p(`tc|x,y) are our
best estimates of the location of each container at each time step
and the locations of objects believed to be in the container.

Finally, the following theorem states that our algorithm is guar-
anteed to converge to an optimum of the likelihood:

Theorem 1. The RFINFER algorithm converges, and the resulting
values C∗ are a local maximum of the likelihood defined in Eq (3).

The proof is given in the Appendix A. The key step is to show that
our simple, custom M-step indeed maximizes the likelihood.

Complexity, Optimizations, and Extensions. We refer the rea-
der to the Appendix A for the complexity analysis, implementation,
optimizations, and extensions of our algorithm. After a series of
optimizations, our algorithm achieves a linear complexity, O(C +
O), in each iteration, and usually converges in just a few iterations.

3.3 Change Point Detection
In this section, we describe how we infer changes in contain-

ment relationships. This type of problem, called change-point de-
tection, is the subject of a large literature in statistics (see [3] for
an overview). A change point is a time t at which the contain-
ment relationships change, that is, some object has either changed
containers or been removed altogether. Finding change points is
challenging because of the noise in RFID readings. For example,
in Figure 1 at t = 4, it may be unclear if object 4 has actually been
removed from container 1, or it has simply been “unlucky” enough
to be missed twice in a row. To distinguish these two possibilities,
we need a way to quantify the unluckiness of a set of readings.

We propose a statistical approach based on hypothesis testing.
Suppose that we have received readings from epochs [0, T]. Then
we define a null hypothesis, which is that the containment relation-
ships have not changed at all during epochs [0, T]. Then, if under
the null hypothesis, it turns out that the observed RFID readings
are highly unlikely, we reject the null hypothesis, concluding that
a change point has in fact occurred. To measure whether the ob-
served readings are unlikely, we again use the likelihood Eq (3).
Consider a single object o. Let C0:T be the maximum likelihood
containment relations based on the full data, so that L(C0:T) is

329

State
migration

Objects (Tags)

Inference

Query Processing

RFID readings
(tag, reader, time)

Global Proc.

Local Proc.

Object events
(tag, loc, cont, ...)

Site 2

Site 1 Site 3

Sensor
readings

State
migration

Figure 3: A distributed RFID data management system.

the best possible likelihood if there is no change point. Alterna-
tively, suppose there is a change point at some time t′. Then let
C0:t′ and Ct′:T be the best containment relations that allow object
o to change locations at time t′. Maximizing over possible change
points, the best possible likelihood if there is any change point for o
is maxt′ L(C0:t′) + L(Ct′:T). We perform change point detection
using the difference of these two log likelihoods, that is,

∆o(T) = L(C0:T)− max
t′∈[0,T]

[L(C0:t′) + L(Ct′:T)] (6)

Essentially, this measures how much better we can explain the data
if we use two different sets of containment relationships instead of
one. This is a type of generalized likelihood ratio statistic, which
is a fundamental tool in statistics. The change point detection pro-
cedure will signal that there has been a change point whenever the
value of ∆o(T) is greater than a threshold δ.

Intuitively, to choose the threshold we would like to know what
values of ∆o(T) would be typical if there were no change point.
Fortunately, we can obtain as much of this data as we want, simply
by sampling hypothetical observation sequences from the model,
exactly as described in Section 3.1. Since none of the hypothetical
sequences actually contain a change point, if our procedure signals
a change point on one of them, it must be a false positive. In prac-
tice, all of the hypothetical ∆o(T) values are quite small, so we
choose δ to be their maximum. Furthermore, all of this compu-
tation can be done in advance before any RFID data is observed.
The details of the change point detection procedure are given in
Appendix A.2.

4. DISTRIBUTED PROCESSING
As object tracking and monitoring systems grow into many geo-

graphically separate sites and millions of objects, the sheer volume
of data poses a scalability challenge. A centralized approach, like
centralized warehousing, requires all the data to be transferred to a
single location for processing. This approach incurs both delay of
answering queries and high communication costs.

In this work, we propose a distributed approach natural for ob-
ject tracking and monitoring, which performs “querying where an
object (and data) is located”. The architecture of such a distributed
system is illustrated in Figure 3. As can be seen, each site performs
inference and query processing on local RFID streams as objects
are observed. Inference runs on raw RFID streams and produces an
object event stream describing the location and container of each
object. Query processing runs continuously on the object event
stream and other sensor streams to return all answers. Inference
and query processing, however, often require information from the
previous sites that an object has passed. To solve this problem, we
perform state migration, which transfers the state of inference and
query processing for an object when it moves across sites.

-160

-140

-120

-100

-80

-60

-40

-20

 0

 20

 40 60 80 100 120 140 160 180 200

C
u
m

u
la

ti
v
e

E
v
id

en
ce

 (
lo

g
)

Time t

R
NRC

NRNC

-160

-140

-120

-100

-80

-60

-40

-20

 0

 20

 40 60 80 100 120 140 160 180 200

C
u
m

u
la

ti
v
e

E
v
id

en
ce

 (
lo

g
)

Time t

R
NRC

NRNC

(a) Cumulative evidence

-4

-3

-2

-1

 0

 40 60 80 100 120 140 160 180 200

P
o
in

t
E

v
id

en
ce

 (
lo

g
)

Time t

R
NRC

NRNC
-4

-3

-2

-1

 0

 40 60 80 100 120 140 160 180 200

P
o
in

t
E

v
id

en
ce

 (
lo

g
)

Time t

R
NRC

NRNC

(b) Point evidence

Figure 4: Evidence of co-location of three candidate containers.

State migration can be realized in several ways: (i) When an ob-
ject is scanned at the exit of a site, if domain knowledge about its
next location is available, its inference and query processing state
can be transferred directly to that site. (ii) Alternatively, when an
object reaches a new site, the server there can locate the object’s
previous place using the Object Naming Service (ONS) and re-
trieves its state from that place. (iii) Finally, it is desirable to write
the object’s state to the local storage of the RFID tag (once the tech-
nology of writable tags matures for large deployments), while leav-
ing a copy of the state at the current site as backup. This method
will enable querying instantly when a tag is in sight, with minimum
delay of answering queries and minimum communication costs.

To reduce communication costs or cope with limited local tag
storage, it is important to minimize inference and query processing
state while ensuring accuracy of query answers. We address this
issue in both inference and query processing as described below.

4.1 State Migration for Inference
Our inference algorithm presented in the previous section re-

quires the entire history of readings associated with each object
produced from all the sites that this object has passed. When an
object leaves one site for another, the history of this object and the
history of all of its possible containers, collectively called the infer-
ence state of the object, need to be transferred to the new location
for subsequent inference. Evidently, transferring the complete his-
tory of objects and containers would incur both a high communica-
tion cost across sites and a high processing cost at the new location.
Below, we describe two techniques to address these problems.

Truncating History. The goal of history truncation is to sift
out the observations that are most informative about true contain-
ment relationships from history, and retain only those for future
processing. This can be accomplished by monitoring the strength
of co-location computed in our containment inference algorithm
RFINFER. Recall from Eq (5) for the M-step of the RFINFER algo-
rithm, the co-location strength wco for each object o and container
c is a sum over all time steps of a quantity which we call the point
evidence of co-location. We denote this quantity by:

eco(t) =
X
a∈R

qtc(a)
X
r∈R

log p(ytro|`to = a). (7)

Then the cumulative evidence of co-location can be computed as
Eco(t) =

Pt
t′=1 eco(t′).

To see how these quantities are used, suppose that in a warehouse
an object started at the entry door at time 0, was scanned on the con-
veyor belt around time 100, and then placed on a shelf at time 150.
Consider three candidate containers that were co-located with this
object at the entry door: the real container (denoted by R) always
traveled with the object; a second container (NRC) was co-located
at the door and at the shelf, but not at the belt; a third container
(NRNC) was not co-located after the door. Figure 4(a) shows the
cumulative evidence of co-location of three candidate containers
with the object. Around time 100, the belt reader scanned the real
container alone with the object, causing the cumulative evidence of

330

the other two containers to drop fast. This is exactly the informa-
tive region we want to find in history truncation. The information
afterwards is less useful, because the false container NRC is co-
located with the object again on the shelf, while the false container
NRNC was already eliminated from contention by the belt reader.

Our history truncation algorithm aims to find a time period, called
the critical region, whose observations are most informative for de-
termining containment. While our intuition was explained using
the cumulative evidence of co-location, our algorithm actually uses
the point evidence of co-location, as shown in Figure 4(b) (in log
space). During the critical region around time 100, the real con-
tainer has much higher point evidence than the two false containers;
this is not true either before or after the region.

After containment inference completes, our history truncation
algorithm runs as follows: It searches through time by applying a
small sliding window [t−w, t]. Given the current window, for each
object o, it computes the sum of point evidence

Pt
t′=t−w eco(t′)

for each possible container of o. If the difference in sum between
the best container and the second best is large enough (using a
heuristic-based threshold), the current window is considered a crit-
ical region CR of the object, overwriting the previous CR if exis-
tent. When the search reaches the end, the most recent CR is the
final critical region of the object. Readings of the object and its
possible containers outside the critical region will be all ignored.

After running the algorithm, we have compressed the entire his-
tory from [0, T] to a small region CR. When the new readings
arrive in the time period [T, T ′], rather than running inference over
the entire period [0, T ′], we run inference only over the data in the
the critical region CR and in recent history denoted by H̄ . If con-
tainment is stable, it suffices to have H̄ = [T , T ′], i.e., including
all new readings obtained since last inference. To support change
point detection, however, we may need a somewhat larger recent
history H̄ . According to Eq (6), the change point can be any point
in the entire history. In practice, it is more likely to be in the recent
history since it was not detected last time. However, it may be im-
prudent to restrict the change point only to the most recent period
[T , T ′] because a change point before the time T might not get
sufficient evidence in the previous change point detection. Our ex-
perimental results in Section 5.1 show that the sufficient size of H̄
is within a factor of 2 of T ′-T . As time elapses, the recent history
H̄ moves forwards and we can truncate the readings falling behind
H̄ by applying the critical region algorithm again.

Collapsing Inference State. When an object leaves a site for
the next, the inference state for the object includes the readings
of the object and the readings of its candidate containers in both
the critical region CR and the recent history H̄ . One solution is
simply shipping the inference state to the next site to seed inference
there. However, the inference state for an object may not be small
since each object can have dozens of candidate containers, and each
container or object can have hundreds of readings in CR and H̄ .

In our work we employ a technique to collapse the inference
state to a single number for each container-object pair, i.e., the
co-location weight wco, hence avoiding the overhead of transfer-
ring readings entirely. This dramatically reduces the inference state
transferred between sites. Then the inference algorithm at a new lo-
cation simply adds the old transferred weights to the new weights
that are computed from the readings at the new site. This technique,
however, can affect accuracy: if later evidence shows that the con-
tainment inference results from the old location were incorrect, we
can no longer revise the old estimates as the corresponding read-
ings have been discarded. Even in this case, however, inference in
the new place still has a chance to correct the old estimates because
readings obtained there will eventually overrule the old weights.

4.2 State Migration for Querying
Given an event stream with object location and containment in-

formation, the query processor processes this stream and other sen-
sor streams to answer monitoring queries. Our discussion below
assumes CQL-based relational stream processing [2] extended with
the pattern matching functionality [1].

Under our approach “querying where an object is located”, a
monitoring query is registered with every site. It is split into local
processing and global processing parts based on the labels of in-
put streams specified in the query. For each query block, if any of
the input streams is labeled as “global”, then this block uses global
processing across sites; otherwise, it is processed only on the lo-
cal streams. While local processing can be performed by existing
stream systems [1, 2], global query processing requires additional
mechanisms. First, global query processing needs to maintain com-
putation state for each object. Since all stream systems maintain
computation state (a.k.a. synopsis [2]) and update it with each ar-
riving tuple, our work further partitions the state according to in-
dividual objects. Then as an object leaves one site for another, we
perform state migration using one of the three strategies mentioned
at the beginning of the section. See Appendix B for illustration of
the above approach using Query 1 in Section 2.

A main issue in state migration is that the total amount of state
to be transferred can be enormous given a large number of objects.
To reduce communication costs, we exploit stable containment to
share query states across objects. At the exit point of a storage area,
we consider the objects in each container, e.g., frozen food prod-
ucts considered in Query 1. These objects have the same container
and location at present (but possibly different histories). The query
states for these objects are likely to have commonalities. Hence, we
propose a centroid-based sharing technique that finds the most rep-
resentative query state and compresses other similar query states by
storing only the differences. Details are available in Appendix B.

5. PERFORMANCE EVALUATION
We have implemented a prototype of our inference approach, (in-

cluding the optimizations in Appendix A), connected it to a stream
query processor [1], and extended both to distributed processing.
We evaluate our system using both synthetic traces emulating RFID-
based supply chains and real traces from a laboratory setup.

5.1 Single-Site Inference
We first evaluate our inference algorithm on synthetic RFID stre-

ams from a single warehouse. The detailed experimental setup, per-
formance metrics, and additional results are given in the Appendix
C. By default, we run inference every 300 seconds.

Inference with stable containment. We evaluate our inference
algorithm first using traces with stable containment. To deal with
traces of various lengths, we consider the Critical Region (CR)
method that we proposed for history truncation in distributed pro-
cessing (Section 4.1) as an optimization also for traces produced
at a single warehouse. This method results in the use of the criti-
cal region and a short recent history H̄ (by default, the most recent
600 seconds) for inference. For comparison, we also include a sim-
ple window-based truncation method that keeps the most recent W
readings for inference (W=1200 seconds here).

We first test the sensitivity of these methods to the read rate RR.
As Figure 5(a) shows, while all three methods offer high accuracy
for location inference (all three lines for location inference are very
close, so we show only the line for Location(CR) for readability),
they differ widely for containment inference: The window method
has the worse accuracy because when the useful observations, such

331

 0

 2

 4

 6

 8

 10

0.6 0.7 0.8 0.9 1.0

E
rr

o
r

R
a
te

 (
%

)

Read Rate

Containment(W1200)
Containment(All)
Containment(CR)

Location(CR)

 0

 2

 4

 6

 8

 10

0.6 0.7 0.8 0.9 1.0

E
rr

o
r

R
a
te

 (
%

)

Read Rate

Containment(W1200)
Containment(All)
Containment(CR)

Location(CR)

(a) Basic (all history), fixed window, and history
truncation methods with varied read rates

 0

 200

 400

 600

 800

 1000

 1200

600 1200 1800 2400 3000 3600

T
im

e
co

st
 (

s)

Trace length

Inference(W1200)
Inference(All)
Inference(CR)

 0

 200

 400

 600

 800

 1000

 1200

600 1200 1800 2400 3000 3600

T
im

e
co

st
 (

s)

Trace length

Inference(W1200)
Inference(All)
Inference(CR)

(b) Basic (all history), fixed window, and history
truncation methods with varied trace lengths

20

40

60

80

100

 0 20 40 60 80 100 120

F
-m

ea
su

re
 (

%
)

Containment change interval

RR=0.8 H=500
RR=0.7 H=500

RR=0.8 SMURF
RR=0.7 SMURF

(c) Change point detection with varied anomaly
frequencies (against SMURF∗)

 0

 5

 10

 15

 20

 25

 30

T1 T2 T3 T4 T5 T6 T7 T8

E
rr

o
r

ra
te

 (
%

)

SMURF Cont.
SMURF Loc.

RFINFER Cont.
RFINFER Loc.

 0

 5

 10

 15

 20

 25

 30

T1 T2 T3 T4 T5 T6 T7 T8

E
rr

o
r

ra
te

 (
%

)

SMURF Cont.
SMURF Loc.

RFINFER Cont.
RFINFER Loc.

(d) RFINFER vs. SMURF∗ using real lab traces

 0

 5

 10

 15

 20

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

E
rr

o
r

ra
te

 (
%

)

Read rate

None
CR

Centralized

 0

 5

 10

 15

 20

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

E
rr

o
r

ra
te

 (
%

)

Read rate

None
CR

Centralized

(e) Distributed inference with varied read rates

 0

 5

 10

 15

 20

 20 40 60 80 100 120

E
rr

o
r

ra
te

 (
%

)

Containment change interval

None
CR

Centralized

 0

 5

 10

 15

 20

 20 40 60 80 100 120

E
rr

o
r

ra
te

 (
%

)

Containment change interval

None
CR

Centralized

(f) Varied containment change intervals

Figure 5: Experimental results for single-site inference (a-c), our lab warehouse deployment (d), and distributed inference (e and f).

as the belt readings, fall outside the window, the inference algo-
rithm can no longer use them to infer containment. Using the entire
history or the CR method gives better accuracy as expected. Inter-
estingly, while the CR method was initially proposed for improving
performance, it also improves over the basic algorithm in accuracy
due to the removal of noise (e.g., co-location of a false container
and an object on a shelf) from inference. Moreover, its sensitivity
to the read rate is comparable to that using the full history, which is
the best that one can expect.

We next vary the trace length from 600 to 3600 seconds and
compute the total inference time when using the entire history, the
window, and the CR methods in Figure 5(b). Here we see that using
the entire history severely penalizes the performance, the window
based truncation stays in the middle, and the CR method performs
the best with its running time insensitive to the trace length.

Containment change detection. We next employ the change
point detection algorithm from Section 3.3 to detect containment
changes. We use a recent history size of H̄ (600 seconds by default)
in addition to the detected critical region for inference with change
point detection. To generate events of interest, we inject anomalies
that randomly choose an item and move it to a different case in the
warehouse. The frequency of such anomalies is every 20 seconds
by default but also varied over a wide range. Each run simulates a
warehouse with 32,000 items in steady state over 4 hours.

Choice of threshold. We first examine the effect of the threshold
δ for change point detection. We consider fixed values in a range as
well as our offline method as described in Section 3.3. Due to space
constraints, the details of this study are left to Appendix C.4 (see
Table 3). In summary, our chosen threshold always approximates
the optimal value within 2% across all read rates.

Tradeoff between accuracy and efficiency. We further study the
tradeoff between accuracy and efficiency. The change point detec-
tion algorithm requires a recent history (whose size is H̄), besides
the critical region in the past, to detect containment changes. Re-
sults of our study show that a longer recent history helps improve
accuracy especially when read rates are low, while it may increase
inference cost. Overall, our algorithm can achieve 85% accuracy

given read rates ≥ 0.7 while keeping up with stream speed (by us-
ing a relatively small H̄). The details are shown in Appendix C.4.

Frequency of unexpected containment changes. We next test the
sensitivity of our algorithm to the frequency of unexpected con-
tainment changes, i.e., without using special readers to scan con-
tainers separately. We varied the interval between two containment
changes, from 10 to 120 seconds. For comparison, we include an
alternative method, called SMURF∗, that extends the state-of-the-
art SMURF[11] method for RFID data cleaning with heuristics for
containment inference (see Appendix C.3 for details). For our al-
gorithm, we chose the H̄ size to keep up with stream speed based
on Table 4 in Appendix C.4, i.e., H̄=500 for both RR=0.7 and
RR=0.8. As Figure 5(c) shows, our algorithm is much more ac-
curate than SMURF∗ and is not very sensitive to the containment
change interval. SMURF∗ is much worse because it lacks a princi-
pled approach to exploiting the iterative feedback between location
and containment estimates.

5.2 Evaluation of Lab RFID Deployment
To evaluate our system in real-world settings, we developed an

RFID lab with 7 readers and 20 cases containing 5 items each to
simulate a small warehouse. We created 8 traces, labeled T1, . . .,
T8, with different characteristics regarding the environmental noise
and overlap among readers (for details see Appendix C.2). We ran
inference every 5 minutes using a 10-minute history (or all the data
available if the history is less than 10 minutes). For comparison,
we include the SMURF∗ algorithm described in Appendix C.3.

Figure 5(d) shows the inference error rates for RFINFER and
SMURF∗. As can be seen, RFINFER is much more accurate than
SMURF∗ across all traces although they both use intuitions such as
smoothing and co-location. Again, this is because RFINFER uses
smoothing over containment relations and a principled approach
for the iterative feedback between location and containment esti-
mates. This is shown to be more effective than smoothing over
time for individual objects and then combining such location evi-
dence in a heuristic way to infer containment as in SMURF∗. For
RFINFER, the location error rates are low across all traces. In the
absence of containment changes, the containment error rates are

332

within 5% in traces T1 to T4 despite the heterogeneous read rates,
added environmental noise, and significant overlap between read-
ers. Containment changes cause containment error rates to rise,
especially given lower read rates or higher overlap rates, but with a
maximum of 13% with all the noise factors combined in T8.

5.3 Distributed Inference
Accuracy and Communication Cost. We next compare cen-

tralized and distributed approaches to inference by simulating 10
warehouses for 4 hours. Each warehouse has 32,000 items in steady
state, totally 0.32 million items. Our system runs inference at stream
speed for each warehouse. Figure 5(e) shows the error rates for var-
ied read rates. The naive no state-transfer method (labeled “None”)
has a high error rate, while our critical region (CR) method perform
close to the centralized method. Figure 5(f) shows similar results
when the containment change frequency varies. The communica-
tion costs (shown in Appendix C.5) show that our CR methods of-
fer 3 orders of magnitude reduction in communication cost over a
centralized approach while approximating its accuracy.

Scalability. We further test the scalability of our inference sys-
tem by using larger numbers of objects in simulation. Our inference
system can scale to 150,000 items per warehouse while keeping up
with stream speed, totaling 1.5 million objects over 10 warehouses.
The above reported results on accuracy and communication costs
stay true. One way to support more objects is to use mobile readers
for scanning objects on shelves (which is a more cost-effective de-
ployment than static readers). In another simulation, we use a mo-
bile reader to scan each isle of 90 shelves. The mobile reader reads
every second and spends 10 seconds scanning each shelf. Given
such reduced shelf readings, our inference system can scale to 1.21
million items per warehouse while running at stream speed, total-
ing 12.1 million objects over 10 warehouses.

5.4 Distributed Inference and Querying
We finally extend our distributed inference experiment with query

processing. We report results using two representative queries: Q1
from Section 2, and Q2 that reports the frozen food that has been
exposed to temperature over 10 degrees for 10 hours. The table
below reports the F-measure of query results and the total size of
query state with and without the containment-based sharing method
(Section 4.2). We see that the overall accuracy of query results is
high (> 89%). Also, state sharing yields up to 10x reduction in
query state size. Finally, the accuracy and query state reduction ra-
tio of Q1 are lower than those of Q2. This is because Q1 combines
inferred location and containment, but Q2 only uses the inferred
location which is more accurate than the inferred containment.

RR=0.6 RR=0.7 RR=0.8 RR=0.9

Q1
F-m.(%) 89.2 94 95.1 96
State w/o share(bytes) 65,500 66,000 67037 67,000
State w. share(bytes) 6,986 5,737 5,589 5,156

Q2
F-m.(%) 93.5 96.1 97.3 97.5
State w/o share(bytes) 80,248 85,510 87,029 87,000
State w. share(bytes) 7,296 6,108 5,341 5,273

6. RELATED WORK
RFID stream processing. Recent research has addressed RFID

data cleaning [8] and location inference for static readers [11, 14, 4]
and mobile readers [16]. However, containment inference is more
challenging since inter-object relationships cannot be directly ob-
served. Our work is the first to employ smoothing over object re-
lations in RFID inference, with demonstrated performance. Our
work further supports distributed inference and querying.

RFID databases. Existing work has addressed RFID data archival
[17], event specification and extraction [18], integrating data cleans-

ing with query processing [13], and exploiting known constraints to
derive high-level information [19]. Our system addresses a differ-
ent problem: it processes raw data streams to infer object location
and containment, thereby enabling stream query processing, and
scales inference and query processing to distributed environments.

Inference in sensor networks. Various techniques [12, 6, 15, 10]
have been used to infer true values of temperature, light, object po-
sitions, etc., that a sensor network is deployed to measure. Our in-
ference problem differs because the inter-object relationships, such
as containment, cannot be directly measured, hence requiring dif-
ferent statistical models and inference techniques. We further ad-
dress distributed inference and query processing for scalability.

7. CONCLUSIONS
In this paper, we presented the design of a scalable, distributed

stream processing system for RFID tracking and monitoring. Our
technical contributions include (i) novel inference techniques that
provide accurate estimates of object locations and containment re-
lationships in noisy, dynamic environments, and (ii) distributed in-
ference and query processing techniques that minimize the com-
putation state transferred across warehouses while approximating
the accuracy of centralized processing. Our experimental results
demonstrated the accuracy, efficiency, and scalability of our tech-
niques. In future work, we plan to extend our work to include prob-
abilistic query processing, exploit on-board tag memory to hold
object state and enable anytime anywhere querying, and explore
smoothing over object relations for other data cleaning problems.

8. REFERENCES
[1] J. Agrawal, Y. Diao, et al. Efficient pattern matching over event

streams. In SIGMOD, 147–160, 2008.
[2] A. Arasu, et al. The CQL continuous query language: semantic

foundations and query execution.. VLDB J. , 15(2): 121-142, 2006.
[3] M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes:

Theory and Application. Prentice-Hall, 1993.
[4] H. Chen, W.-S. Ku, et al. Leveraging spatio-temporal redundancy for

RFID data cleansing. In SIGMOD ’10, 51–62, 2010.
[5] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic

databases. VLDB J., 16(4):523–544, 2007.
[6] M. Cetin, L. Chen, et al. Distributed fusion in sensor networks. IEEE

Signal Processing Mag., 23:42–55, 2006.
[7] K. Finkenzeller. RFID handbook: radio frequency identification

fundamentals and applications. John Wiley and Sons, 1999.
[8] M. J. Franklin, S. R. Jeffery, et al. Design considerations for high

fan-in systems: The HiFi approach. In CIDR, 290–304, 2005.
[9] S. Garfinkel and B. Rosenberg, editors. RFID: Applications, Security,

and Privacy. Addison-Wesley, 2005.
[10] A. Ihler, J. Fisher, et al. Nonparametric belief propagation for

self-calibration in sensor networks. In IPSN, 225–233, 2004.
[11] S. R. Jeffery, et al. An adaptive RFID middleware for supporting

metaphysical data independence. VLDB Journal, 17(2):265–289,
2007.

[12] M. Paskin, C. Guestrin, et al. A robust architecture for distributed
inference in sensor networks. In IPSN, 55–62, 2005.

[13] J. Rao, S. Doraiswamy, et al. A deferred cleansing method for RFID
data analytics. In VLDB, 175–186, 2006.

[14] C. Ré, J. Letchner, et al. Event queries on correlated probabilistic
streams. In SIGMOD, 715–728, 2008.

[15] J. Schiff, D. Antonelli, et al. Robust message-passing for statistical
inference in sensor networks. In IPSN, 109–118, 2007.

[16] T. Tran, C. Sutton, et al. Probabilistic inference over RFID streams in
mobile environments. In ICDE, 1096-1107, 2009.

[17] F. Wang and P. Liu. Temporal management of RFID data. In VLDB,
1128–1139, 2005.

[18] E. Welbourne, et al. Cascadia: a system for specifying, detecting, and
managing RFID events. In MobiSys, 281–294, 2008.

[19] J. Xie, J. Yang, et al. A sampling-based approach to information
recovery. In ICDE, 476–485, 2008.

333

R Number of reader locations
C Number of containers
O Number of objects
o Index of a single object; o ∈ [1, O]
c Index of a single container; c ∈ [1, C]
t Index of time epoch (e.g., 1 second long)
R Set of possible reader locations
`tc True location of container c at time t.
`to True location of object o at time t
π(r, r̄) Read rate. Probability that reader at location r ∈ R

detects an object at location r̄ ∈ R
ytro Binary variable indicating whether object o was read by

reader at location r at time t
xtrc Binary variable indicating whether container c was read

by reader at location r at time t
x Binary vector of all container readings
y Binary vector of all object readings
wco Strength of co-location between container c and object o
C Containment relations; set of pairs (object id,

container id)
L(C) Likelihood of the observed readings, given containment

relations C
∆o(T) Change-point statistic for epoch T

Table 1: Notation used in this paper

APPENDIX
The notation used in this paper is summarized in Table 1.

A. ENHANCEMENTS OF RFINFER
Below we present additional details about our inference algo-

rithm, its implementation and optimizations, and two extensions.

A.1 Pseudocode and Proof of RFINFER

The pseudocode for RFINFER is shown in Algorithm 1. We next
prove Theorem 1 about the optimality of the RFINFER algorithm.

Proof. We show that RFINFER (Algorithm 1) is guaranteed to con-
verge to a local maximum of the likelihood L(C) in (3). Following
the EM theory, we can interpret both the E-step and the M-step as
maximizing a lower bound on the likelihood, which is

L(C) ≥
TX

t=1

CX
c=1

X
a∈R

qtc(a) log
p(`tc = a,x,y)

qtc(a)
= O(C)

The fact that this is a lower bound can be proven by Jensen’s in-
equality. The E-step maximizes this bound with respect to qtc, and
the M-step with respect to C. In RFINFER, the E-step is identical
to the standard E-step of EM, but we use a custom M-step that is
specific to our model. So it suffices to prove that the M-step in
RFINFER indeed maximizes O(C).

When maximizing with respect to C, we can ignore terms that
do not depend on C. Expanding O(C) using Eq (3) and removing
irrelevant terms yields

max
C
O(C) = max

C

TX
t=1

CX
c=1

X
a∈R

qtc(a)
X

o|(o,c)∈C

log p(ytc|`to = a)

= max
{c(o),∀o}

OX
o=1

wc(o),o,

where c(o) denotes the container of object o, and ytc = {ytrc|∀r}.
In this last equation, notice that each containment decision c(o) that
we are maximizing over appears in only one term of the summa-
tion. This means that we can find the global maximum by maximiz-
ing each term independently, i.e., maxC O(C) =

P
o maxc′ wc′,o.

This is exactly what is computed in lines 12–20 of RFINFER.

Algorithm 1 Pseudocode of RFINFER for inferring containment
while not converged do

// E step: compute new q
for t = 0 to T do // For each epoch

for c = 1 to C do // For each container
5 for all a ∈ R do // For all possible locations

qtc(a)←
Y

r∈R
p(xtrc|`tc = a)

Y
o|(o,c)∈C

p(ytro|`to = a)

// Now qtc(a) = S−1p(`tc = a|x,y)
S ←

P
a∈R qtc(a)

for all a ∈ R do // For all possible locations
10 qtc(a)← qtc(a)/S

// Now qtc(a) = p(`tc = a|x,y)
// M step: compute new w
for o = 1 to O do // For each object

for c = 1 to C do // For each container

15 wco ←
TX

t=1

X
a∈R

qtc(a)
X
r∈R

log p(ytro|`to = a)

// M step: compute new containment set
C ← ∅
for o = 1 to O do // For each object
c∗ ← arg maxc∈[1,C] wco

20 C ← C ∪ {(o, c∗)}

Computation Complexity. Each iteration of RFINFER requires
O(TCOR2) time, where by iteration we mean a single execution
of lines 2–20. This is due to two reasons. First, the computation
of qtc(a) in line 6 requiresO(OR) time, and is executedO(TCR)
times by the outer loops. Second, the computation ofwco in line 15
requires O(TR2) time, and is executed O(CO) times by its outer
loops. This is the running time of a naive implementation of the
algorithm; in Appendix A.3, we describe several optimizations that
improve the performance significantly. Also, note that this is the
computational complexity per iteration. In general, it is difficult to
characterize the number of iterations required for EM to converge,
because this depends strongly on characteristics of the unknown
true distribution. However, we observe empirically that our infer-
ence algorithm usually converges in just a few iterations.

A.2 Details of Change Point Detection
The change point detection procedure works as follows: First,

before any data arrives, choose the threshold δ as described in Sec-
tion 3.3. Then, the change point detection is run after each time the
RFINFER algorithm runs, which also provides the null hypothesis.
For each object o, we compute

∆o(T) = L(C0:T)− max
t′∈[0,T]

[L(C0:t′) + L(Ct′:T)]

If ∆o(T) < δ, then there is no change point for o. Otherwise, if
∆o(T) ≥ δ, then we flag a change point at the time t′ that achieved
the maximum in Eq (6). Moreover, we disregard the data from
0 . . . t′ in all subsequent calls to the change point algorithm, so we
do not flag the same change point more than once.

In implementation, this procedure incurs little extra cost beyond
the computation in the RFINFER algorithm. Recall that in the M-
step of the RFINFER algorithm, the co-location strength wco for
each object o and container c is a sum over all time steps of a quan-
tity that we call the point evidence of co-location, denoted

eco(t) =
X
a∈R

qtc(a)
X
r∈R

log p(ytro|`to = a).

The cumulative evidence of co-location isEco(t) =
Pt

t′=1 eco(t′).
The point evidence of object o and container c at each time t is

334

memorized so it can be re-used to calculate L(C0:t′) and L(Ct′:T):
L(C0:t′) = Eco(t′) and L(Ct′:T) =

PT
t=t′ eco(t). If the change

point is detected at time t′, we use the w′co =
PT

t=t′ eco(t) as
the new strength of co-location to get the new container for object
o. All the computation above is simply the sum of the point evi-
dence memorized from the computation of the RFINFER algorithm.
Hence change point detection incurs little extra overhead.

A.3 Implementation and Optimizations
In this section, we sketch the main data structures and optimiza-

tions that we use to implement the RFINFER algorithm including
the change point detection extension.

Data structures. We use a series of tables: (1) The read rate
table (size: R × R) stores the read rates π(r, r̄). (2) Two history
tables: one for container readings x (size: T ×R×C), and one for
object readings y (size: T ×R×O) (3) The posterior probability
table (T ×C×R) stores the posterior distribution qtc(a) over con-
tainer locations. (4) The weight table (C×O) stores the co-location
strengths wco. (5) Finally, the containment table (vector of length
O) stores the container inferred for each object. Although the his-
tory and posterior probability tables grow with time, in Section 4
we describe a history truncation method that reduces the memory
requirement without sacrificing accuracy. Finally, many of these
tables, especially the history tables, are sparse, i.e., most cells are
0, and so can be easily compressed to save memory.

Optimizations. We further employ several optimizations to im-
prove inference efficiency. Recall from Appendix A.1 that both the
E-step and M-step of our algorithm have the complexityO(TCOR2).
The E-step can be easily improved as each object is typically read
in only a small number of locations and each container contains a
small number of items. Since both of those are bounded indepen-
dently of R and O, the E-step can be improved by a factor of OR2

(according to Eq (4)). Then the E-step requires only O(TC) time.
Regarding the M-step, it can be easily improved by a factor of

R2 (according to Eq (5)) again because each object is typically
read in only a small number of locations. Next, we propose an op-
timization, called candidate pruning, to improve the M-step further
to O(TO), eliminating the factor of C. The idea is that in line 15,
when computing the container that is most strongly co-located with
a given object, it is probably safe to consider only containers that
have been observed frequently with the object. So as a heuristic,
we restrict the set of candidate containers to those that were most
frequently co-located during the first several epochs. When testing
for change points, we also include as candidates the most frequently
co-located containers from recent epochs. Our experimental results
show that candidate pruning is effective at reducing the time cost
without affecting the accuracy.

We further propose a memorization technique that avoids unnec-
essary computation: If the set of objects in a container did not
change in the previous EM iteration, then the location probabil-
ities and co-location strengths for that container cannot change at
the current iteration, so we can simply re-use the old values without
any extra work. This optimization does not introduce any error.

Moreover, we can also use the history truncation method, de-
scribed in Section 4 to truncate the history of size T , to a small
critical region whose size is independent of T . All of the above op-
timizations combined finally reduce the complexities of the E-step
and the M-step to O(C) and O(O), respectively.

A.4 Extensions to the RFINFER Algorithm
Missing container tags: We have assumed that we know a priori

which tags are container tags and which tags are object tags, which

is typically true according to the EPC tag data standard2. Relaxing
this assumption is possible. First, if the containers do not have tags,
we simply omit the nodes in the graphical model that correspond to
the readings from the container tags, along with the corresponding
terms in Eq (4) and in line 6 of Algorithm 1. Alternatively, if all
containers and objects have tags, but we do not know which are
which, we treat all tags (for containers and objects) as if they were
object tags; we use latent and evidence variables in the graphical
model to denote the true and observed locations of these objects,
respectively. Then, we use another copy of latent variables, `tc,
to represent real containers and use them to encode containment
relationships with objects. Eq (4) and Algorithm 1 are modified
the same as above. We do not further optimize these cases because
they are rare given the wide adoption of the EPC tag data standard.

Hierarchical containment: Just as objects are grouped into con-
tainers, containers may themselves be stored in larger containers,
such as pallets. We can extend our model and algorithms to arbitrar-
ily nested containment hierarchies, intuitively by adding latent vari-
ables for the pallet locations whose values are imputed using EM
in a similar way as the container locations. Since common types of
queries such as those listed in Section 1 rely mainly on the imme-
diate containers of items that are subject to shipping and packaging
regulations, we defer a detailed study of hierarchical containment
to future work when new applications requiring so emerge.

B. DISCUSSION OF QUERY PROCESSING
We next describe our distributed query processing approach more.
First, we illustrate our approach using Query Q1 in Section 2. A

monitoring query is split into local and global processing based on
the labels of input streams of each query block. For instance, for
Query 1, the inner query block takes two streamsR and T . Neither
of them is labeled as “global”, so this block is treated as local pro-
cessing only. However, the output stream S of the inner query block
is labeled as “global”, and hence the outer query block consuming
S is considered for global processing. For global query processing,
the computation state is recognized and partitioned for individual
objects. Revisit Q1. The outer query block employs pattern match-
ing on the stream produced by the inner block. An automaton-
based query processor [1] defines the query state to be: (i) the cur-
rent automaton state, (ii) the minimum set of values needed for
future automaton evaluation, e.g., the tag id and the time of its first
exposure to room temperature for Q1, and (iii) the values that the
query returns, e.g., the tag id and the sequence of temperature read-
ings for Q1. Partitioning the query state for objects is simply based
on the tag id. Then as an object leaves one site for another, we per-
form state migration by shipping the query state for this object to
the next site or writing the query state into the tag’s memory.

Second, we propose to exploit stable containment to share query
states across objects. Our centroid-based sharing technique works
as follows. Let Qo denote the query state for object o. We choose
the most representative query state (the centroid) of all Qo’s based
on a distance function that counts the number of bytes that differ in
the query state of two objects. The centroid selection problem has
a O(n2) complexity, but since each case contains a limited number
of objects, e.g., 20-50, this computation cost is modest on a mod-
ern computer. Given the centroid, we compress the query states of
other objects based on the distance to the centroid.

C. ADDITIONAL EXPERIMENTS
In this section, we describe additional experimental results be-

yond the key results presented in the main body of the paper.

2http://www.epcglobalinc.org/standards/tds/

335

Table 2: Parameters used for generating RFID streams.
Parameter Value(s) used
Number of warehouses (N) 1 - 10
Frequency of pallet injection (fixed) 1 every 60 seconds
Cases per pallet (fixed) 5
Items per case (fixed) 20
Main read rate of readers (RR) [0.6, 1], default 0.8
Overlap rate for shelf readers (OR) [0.2, 0.8], default 0.5
Non-shelf reader frequency (fixed) 1 every second
Shelf reader frequency (fixed) 1 every 10 seconds
Frequency of anomalies (FA) 1 every 10 - 120 seconds

C.1 Experimental Setup
We developed a simulator using CSIM to emulate an RFID-based

enterprise supply chain. The parameters are shown in Table 2. Each
supply chain arranges N warehouses in a single-source directed
acyclic graph (DAG). Pallets of cases are injected at the source,
and then move through a sequence of warehouses with a sched-
uled delay in each warehouse and scheduled transit time between
two warehouses, until they reach final destinations. Our simulator
guarantees that in a period of time, pallets arrive at a warehouse and
depart from it at the same rate (i.e., the system is in steady state).

Within a warehouse, pallets first arrive at the entry door and are
read by the reader there. They are then unpacked. By default, each
warehouse has a reader at the conveyor belt that scans the cases one
at a time. The cases are then placed onto shelves and scanned by
the shelf readers. After a period of stay, cases are removed from the
shelves and repackaged. The assembled pallets are finally read at
the exit door and dispatched to subsequent warehouses in a round-
robin fashion. In the simulation, all readers have a read rate RR
for its location, uniformly sampled from [0.6, 1] unless stated oth-
erwise. There is significant overlap between adjacent shelf readers:
a shelf reader can read objects in a nearby location with probability
OR uniformly sampled from [0.2, 0.8]. Finally, to stress test our
containment change detection algorithm, our simulator can inject
anomalies that randomly pick an item and place it in a different
case, with the frequency specified by the parameter FA.

Our evaluation uses the following metrics: Error rate (%): To
measure accuracy, we compare the inference results with the ground
truth and compute the error rate. F-measure: For change point
detection, we evaluate the accuracy of the reported changes. We
use precision to capture the percentage of reported changes that
are consistent with the ground truth, and recall to capture the per-
centage of changes in the ground truth that are reported by our al-
gorithm. We combine them into F -measure = 2 ∗ precision ∗
recall/(precision + recall). Running cost: We report the time
taken to evaluate a trace using a single-threaded implementation
running on a server with an Intel Xeon 3GHz CPU and running Java
HotSpot 64-bit server VM 1.6 with maximum heap size 1.5GB.

C.2 Lab RFID Deployment
To evaluate our system in real-world settings, we developed an

RFID lab with 2 ThingMagic Mercury5 readers connected to 7
circularly-polarized antennas, 20 cases containing 5 items each,
and Alien squiggle Gen 2 Class 1 tags attached to all cases and
items. We used the 7 antennas to implement 1 entry reader, 1 belt
reader, 4 shelf readers, and 1 exit reader. Cases with contained
items transitioned through the readers in that order, receiving 5
interrogations from each nonshelf reader and dozens from a shelf
reader. The shelf readers had overlapping read ranges as they were
placed close to each other. Using our lab setup, we created 8 traces
with distinct characteristics, by varying the environmental noise,
overlap among readers, and tag orientations:

 0

 2

 4

 6

 8

 10

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

E
rr

o
r

R
a
te

 (
%

)

Read Rate

Containment
Location

 0

 2

 4

 6

 8

 10

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

E
rr

o
r

R
a
te

 (
%

)

Read Rate

Containment
Location

(a) Basic algorithm

 0

 2

 4

 6

 8

 10

600 1200 1800 2400 3000 3600

E
rr

o
r

R
at

e
(%

)

Trace length

Containment(H)
Containment(CR)

Containment(W1200)

 0

 2

 4

 6

 8

 10

600 1200 1800 2400 3000 3600

E
rr

o
r

R
at

e
(%

)

Trace length

Containment(H)
Containment(CR)

Containment(W1200)

(b) History truncation

Figure 6: Experimental results for single-site inference

• T1 (RR=0.85, OR=0.25) represents the case of high read
rates, an average of 0.85 across readers, and limited overlap
rates, an average of 0.25 for shelf readers using low power.
• T2 (RR=0.85, OR=0.5) is case of high read rates and signif-

icant overlap rates (using high power), an average of 0.5.
• T3 (RR=0.7,OR=0.25) involves lower read rates due to added

environmental noise, i.e., a metal bar placed on each shelf that
is 1/3 the length of the shelf.
• T4 (RR=0.7, OR=0.5) further has higher overlap rates.
• T5 to T8 extend T1 to T4, respectively, with containment chang-

es. When all 20 cases were placed on shelves, 3 items were
moved from one case to another and 1 item was simply re-
moved, causing containment changes in 35% of the cases.

We also obtained traces with varied tag orientations but observed
little impact of this factor. This verifies that squiggle tags are orienta-
tion-insensitive when used with circularly-polarized antennas.

C.3 Alternative Method for Comparison
We describe the design of the SMURF∗ method used as a baseline

for comparison in both our lab experiment and simulations. This
method first uses SMURF [11] to smooth raw readings of objects
to estimate their locations individually. The adaptive window used
in SMURF is further stored for containment inference and change
detection: Within the adaptive window for each item, at a particular
time t, if the most frequently co-located case before time t is the
same as that after time t, then there is no containment change, and
the most frequently co-located case is chosen to be the true con-
tainer. Otherwise, we further check if none of the top-k co-located
cases before time t is in the set of top-k co-located cases after t. If
so, we report a containment change for this item at time t, and pick
the case that is most co-located with the item in the period from t
to the present. Note that the second check is needed because due
to the missing readings, the real container may not be the most fre-
quently co-located case, so the case that belongs to both top-k sets
between and after t could be the true container.

C.4 Single-Site Inference
We describe several additional results for our inference methods

when run on a single warehouse.
Basic inference algorithm. We first evaluate the basic algorithm

presented in Section 3.2 for its sensitivity to various noise factors.
Read rate. We began with short 1500-second traces and ran in-

ference with all the readings obtained thus far. We first varied the
read rate RR from 0.6 to 1. Figure 6(a) shows the inference error
rates: Location inference is highly accurate, with the error rate less
than 0.5% for all read rates. Containment inference is more sensi-
tive to the read rate but still achieves an error rate less than 7% for
the 0.6 read rate. The sensitivity of containment inference to the
read rate is due to its use of co-location information: the chance of
reading both an item and its container reduces quadratically with
the read rate. Fortunately, the use of history alleviates the problem

336

Table 3: F-measures (%) of containment change detection using dif-
ferent δ values and our offline method.

Threshold δ
10 20 30 40 50 60 70 80 90 100

RR=0.6 64 71 75 85 89 89 87 87 87 87
RR=0.7 85 88 90 92 94 96 94 93 91 90
RR=0.8 92 97 98 97 97 97 96 95 95 93
RR=0.9 83 98 97 97 97 97 97 96 96 95

and keeps the error rate low. The high accuracy of location infer-
ence is due to the effect of “smoothing over containment”: once we
understand containment correctly, the location of an object can be
revealed by the readings of any other object(s) in the container.

Overlap rate. We also varied the overlap rateOR from 0.2 to 0.8
while fixing the read rate at 0.7. Results show that neither location
nor containment inference is sensitive to the overlap rate: the error
rate of containment inference is flat at 2.3% and that of location
inference is flat at 0.08%. This is because overall an object is read
more by the reader closest to it than by other readers farther away.

Container capacity. We also varied the container capacity from
5 to 100 items while keeping the read rateRR and overlap rateOR
at default values. The inference accuracy remains the same as the
above with 20 items per container. This is mainly because for a
given item, we calculate the weight of this item with its candidate
container based on the co-location history; the weight calculation
remains the same regardless of other items in the container. Hence,
our inference algorithm is not sensitive to the container capacity.

History truncation method. In addition to the total inference
time that we presented in Figure 5(b), we also computed the error
rates of the three methods. Figure 6(b) shows the error rates of
containment inference using the above methods (the error rates of
location inference are always low in the 0.05% to 1% range, hence
omitted). Again, we observe the naive window-based truncation
to be inaccurate. Its error rate increases for longer traces because
our simulation generates the belt readings useful for containment
inference in the first half of the warehouse setup. In contrast, using
the full history or the CR method makes inference not very sensitive
to the trace length, with the CR method being somewhat better due
to the elimination of noisy data from inference.

Containment change detection. We first examine the effect of
the threshold δ for change point detection. We consider fixed val-
ues in a range as well as our offline method as described in Sec-
tion 3.3. We created traces with varied read rates. Table 3 shows
the F-measure for these traces as δ takes various fixed values. The
bold numbers indicate the F-measures of the δ chosen by our of-
fline sampling algorithm. As can be seen, the best fixed threshold
that gives the optimal F-measure varies across traces. Our chosen
threshold always approximates the optimal value within 2% across
all read rates.

We further study the tradeoff between accuracy and efficiency.
The change point detection algorithm requires a recent history (wh-
ose size is H̄), besides the critical region in the past, to detect
containment changes. Since we run inference with the default fre-
quency of once every 300 seconds, H̄ has to be at least 300 sec-
onds to include all new observations for inference. However, a
longer recent history may be needed to ensure accuracy of change
point detection while it may also increase inference cost. We next
vary H̄ to study such tradeoff between accuracy and efficiency. We
created traces with varied read rates and for each trace, measured
F-measures and time costs as different H̄ values were used.

Table 4 shows the results. The overall trend with all traces is
that as H̄ increases, the F-measure improves but the time cost also
increases. Among different read rates, we see that achieving high
accuracy for lower read rates such as 0.6 requires larger sizes of

Table 4: F-measures (%) and time costs (sec) of change point detection
with different recent history sizes (H̄) for different read rates (RR).

Recent history size H̄
300 400 500 600 700 800 900

RR=0.6 F-m. (%) 46 67 81 87 88 86 92
Time (s) 205 235 293 385 418 497 556

RR=0.7 F-m. (%) 72 91 90 90 93 93 94
Time (s) 182 229 288 344 403 469 523

RR=0.8 F-m. (%) 73 92 94 97 93 95 96
Time (s) 182 220 283 341 395 446 490

RR=0.9 F-m (%) 82 94 95 98 93 95 96
Time (s) 172 207 258 322 381 436 458

H̄ , while the time cost varies with H̄ consistently across all read
rates. This implies two ways to trade off accuracy and efficiency:
(1) If the application requirement is to achieve best accuracy while
keeping up with stream speed, we should use the H̄ sizes that yield
the time costs in bold in the table because they allow inference to
complete within 300 seconds, the interval before the next inference
starts. This way, our algorithm offers above 90% accuracy for read
rates≥ 0.7 and above 80% for the read rate = 0.6. (2) If the require-
ment is to optimize performance while satisfying certain accuracy,
say, 85%, we should use the H̄ sizes that yield the F-measures in
bold in the table. In particular, when the read rate is high, we can
use a smaller size of H̄ to reduce the time cost and enable more
frequent inference (e.g., for read rate=0.8, running inference every
212 seconds can keep up with the stream speed). Overall, for the
common read rates between 0.7 and 0.9, the H̄ size of 500 seconds
achieves over 90% accuracy while running at stream speed.
Summary: (i) Our inference algorithm is highly accurate for vari-
ous noisy traces with stable containment (≤7% error rate for con-
tainment inference and around 0.5% for location inference). The
critical region method can significantly reduce inference cost for
long traces while further improving accuracy. (ii) Our results are
stable for various read rates, overlap rates between readers, con-
tainer capacities, and history lengths. With change point detection,
our algorithm can achieve 85% accuracy given read rates ≥ 0.7
while keeping up with stream speed (by using a relatively small
recent history size). These results are confirmed using both real
lab traces with various noise factors and simulations with different
containment change frequencies.

C.5 Distributed Inference
We highlight the communication costs of the distributed and cen-

tralized approaches in the table below (while omitting other results
in the interest of space). For the centralized approach, we assume
that all raw data is shipped to a central location for inference with
simple gzip compression of data. As can be seen, our CR methods
offer 3 orders of magnitude reduction in communication costs.

Table 5: Communication costs (bytes) of a centralized approach and
three state migration methods for distributed inference.

Centralized None CR
RR=0.6 125,895,500 0 225,890
RR=0.7 145,858,950 0 223,790
RR=0.8 166,746,235 0 225,890
RR=0.9 187,589,810 0 225,890

Summary: Our results show that distributed inference using the
CR methods have accuracy that is close to the centralized approach,
while incurring significantly lower communication costs. Our scal-
ability results (in Section 5.3) show that our distributed inference
system can scale to millions of objects over multiple sites while
keeping up with the speed of RFID streams at each site.

337

