
Albatross: Lightweight Elasticity in Shared Storage
Databases for the Cloud using Live Data Migration

Sudipto Das‡ Shoji Nishimura§∗ Divyakant Agrawal‡ Amr El Abbadi‡

‡University of California, Santa Barbara §NEC Corporation
Santa Barbara, CA 93106­5110, USA Kawasaki, Kanagawa 211­8666, Japan

{sudipto, agrawal, amr}@cs.ucsb.edu s­nishimura@bk.jp.nec.com

ABSTRACT

Database systems serving cloud platforms must serve large num-
bers of applications (or tenants). In addition to managing tenants
with small data footprints, different schemas, and variable load pat-
terns, such multitenant data platforms must minimize their oper-
ating costs by efficient resource sharing. When deployed over a
pay-per-use infrastructure, elastic scaling and load balancing, en-
abled by low cost live migration of tenant databases, is critical
to tolerate load variations while minimizing operating cost. How-
ever, existing databases—relational databases and Key-Value stores
alike—lack low cost live migration techniques, thus resulting in
heavy performance impact during elastic scaling. We present Al-

batross, a technique for live migration in a multitenant database
serving OLTP style workloads where the persistent database im-
age is stored in a network attached storage. Albatross migrates the
database cache and the state of active transactions to ensure min-
imal impact on transaction execution while allowing transactions
active during migration to continue execution. It also guarantees
serializability while ensuring correctness during failures. Our eval-
uation using two OLTP benchmarks shows that Albatross can mi-
grate a live tenant database with no aborted transactions, negligible
impact on transaction latency and throughput both during and after
migration, and an unavailability window as low as 300 ms.

1. INTRODUCTION
Cloud platforms hosting hundreds of thousands of applications

pose novel challenges for the database management systems (DB-
MS) serving these platforms. A large fraction of these applications
(called tenants) are characterized by small data footprints with un-
predictable and erratic load patterns [14,23]. Multitenancy allows
effective resource sharing amongst these tenants, thus minimizing
operating cost. For a database built on a pay-per-use cloud infras-
tructure, elastic scaling and load balancing—i.e. scaling up and
down the size of a live system based on the load—are critical to
ensure good performance while minimizing operating cost.

A multitenant database consolidates multiple tenant databases to
a single node to improve resource utilization [1, 8]. Tenants are of-

∗The author conducted this work as a visiting researcher at UCSB.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th ­ September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 8
Copyright 2011 VLDB Endowment 2150­8097/11/05... $ 10.00.

ten consolidated to nodes (or servers) with capacity less than the
combined peak resource requirements of the tenants co-located at a
node. Such consolidation relies on the fact that peak resource usage
is not frequent and peaks for different tenants are often temporally
separated. However, to deal with unpredicted load patterns, migrat-
ing tenant databases is critical to ensure that the tenants’ service
level agreements (SLA) are met. When the resource requirements
of a tenant changes, migration allows allocating more resources to
the heavily loaded tenant while isolating other tenants from being
impacted by the sudden increase in load of a co-located tenant.

To be effectively used for elasticity, database migration must be
lightweight, i.e. with minimal service interruption and negligible
performance impact. This feature is called Live Migration in the
virtualization literature [5]. Due to static provisioning in enter-
prise infrastructures, elasticity and live migration were not critical
for traditional relational database (RDBMSs). Even though most
Key-Value stores [4, 6] support data migration for fault-tolerance
or load balancing, they use heavyweight techniques such as stop-
ping part of the database, migrating it to a new node, and restarting
it at the destination. Such stop and migrate techniques (or sim-
ple optimizations) have a high performance penalty resulting from
aborted transactions (due to the source node stopping the tenant)
and high impact on transaction latency and throughput (due to the
destination node starting with a cold cache). Existing DBMSs are
therefore not amenable to elastic scaling.

We focus on designing an efficient and low cost technique for live

migration of a tenant database in a multitenant DBMS. Live migra-
tion enables elasticity as a first class notion and eases database ad-
ministration by decoupling a tenant’s database from the node host-
ing it, thus allowing virtualization in the database tier. We pro-
pose Albatross,1 the first end-to-end technique for live migration in
shared storage database architectures executing OLTP workloads.
In a shared storage DBMS, the persistent database image is stored
in network attached storage (NAS) servers. This decoupled stor-
age abstraction allows independent scaling and fault-tolerance of
the storage layer [4, 9, 11, 18]. We assume a multitenancy model
where multiple tenants share the same database process (shown to
result in more effective resource sharing [8]) where live virtual ma-
chine (VM) migration techniques [5] cannot be used to migrate the
individual tenant databases.

Albatross leverages the semantics of database systems to migrate
the database cache and the state of transactions active during mi-
gration. In shared storage architectures, the persistent data of a
tenant’s database is stored in the NAS and therefore does not need
migration. Migrating the database cache allows the tenant to start
“warm” at the destination, thus minimizing the impact on transac-

1The name Albatross is symbolic of the lightweight nature and ef-
ficiency of the technique that is typically attributed to Albatrosses.

494



tion latency. To minimize the unavailability window, this copying
of the state is performed iteratively while the source continues to
serve transactions on the tenant database being migrated. Copying
the state of transactions active during migration allows them to re-
sume execution at the destination. Albatross, therefore, results in
negligible impact from the tenants’ perspective, thus allowing the
system to effectively use migration while guaranteeing that (i) the
tenants’ SLAs are not violated, (ii) transaction execution is seri-
alizable, and (iii) migration is safe in spite of failures. Moreover,
in Albatross, the destination node performs most of the work of
copying the state, thus effectively relieving load on the overloaded
source node.

We implemented Albatross in ElasTraS [9, 10], a scalable multi-
tenant DBMS for the cloud. Our evaluation of Albatross using two
OLTP benchmarks, YCSB [7] and TPC-C [20], shows that a live
tenant database can be migrated with only 5−15% average transac-
tion latency increase immediately after migration, no transactions
aborted in most cases, and an unavailability window as low as 300
ms. Moreover, Albatross has negligible impact on other tenants co-
located at the source and destination of migration. Albatross’s ef-
fectiveness is evident when compared to the tens of seconds to min-
utes of disruption when migrating a tenant in a traditional RDBMS
such as MySQL and about 3− 5 second unavailability window for
the stop and migrate technique implemented in ElasTraS. In addi-
tion, such heavy weight techniques result in a 300−400% increase
in latency of transactions executing immediately after migration.

The major contributions of this paper are as follows:
• We propose Albatross, the first lightweight live database migra-

tion technique for shared storage architectures.
• We propose four different metrics to evaluate the cost of live

database migration techniques.
• We provide arguments justifying correctness of Albatross and

characterize its behavior under different failure scenarios.
• We provide a thorough evaluation using a wide variety of trans-

actional workloads and four different migration cost metrics.
Organization. Section 2 surveys different database multitenancy
models, proposes migration cost measures, and reviews some known
database migration techniques. Section 3 explains Albatross and
Section 4 argues its correctness. Section 5 describes a prototype
implementation that is evaluated in Section 6. Section 7 surveys
related work and Section 8 concludes the paper.

2. PRELIMINARIES

2.1 Multitenancy Models
Multitenancy, i.e. resource sharing amongst different tenants, is

important to serve applications that have small but varying resource
requirements [14, 21, 23]. SaaS providers like Salesforce.com [21]
are the most common examples of multitenancy in both the ap-
plication as well as the database tier. A tenant is an application’s
database instance with its own set of clients and data. Different
multitenancy models arise from resource sharing at different lev-
els of abstraction; the shared machine, shared process, and shared

table models are well known [14]. Salesforce.com [21] uses the
shared table model where tenants share the database tables. Elas-
TraS [9], SQL Azure [1], and RelationalCloud [8] use the shared

process model where the tenants share the database process. Xiong
et al. [22] uses the shared machine model where tenants only share
the physical hardware but have their independent VMs and database
processes. Since different models store the tenants’ data in differ-
ent forms, a common logical notion of a Tenant Cell (or Cell for
brevity) is used to represent a self-contained granule of application
data, meta data, and state representing a tenant.

Figure 1: Reference database system model.

The multitenancy model also has implications on the system’s
performance and dynamics. For instance, the shared machine model
provides strong VM level isolation and allows using VM migra-
tion techniques [5] for elastic scaling. However, as observed in a
recent study [8], such a model results in up to an order of mag-
nitude lower performance compared to the shared process model.
On the other hand, the shared table model allows efficient sharing
amongst tenants with small footprints but limits the tenant’s schema
and requires custom techniques for efficient query processing. The
shared process model, therefore, provides a good balance of effec-
tive resource sharing, schema diversity, performance, and scale; we
develop a live migration technique for this model.

2.2 Reference System Model
Our reference system model (see Figure 1) uses the shared pro-

cess multitenancy model where a cell is entirely contained in a sin-
gle database process which co-locates multiple cells. Application
clients connect through a query router which abstracts physical
database connections as logical connections between a tenant and
its cell. Even though Figure 1 depicts the query router as a single
logical unit, a deployment will have a distributed query router to
scale to a large number of connections. The mapping of a cell to its
server is stored as system metadata which is cached by the router.

A cluster of DBMS nodes serves the cells; each node has its
own local transaction manager (TM) and data manager (DM). A
TM consists of a concurrency control component for transaction
execution and a recovery component to deal with failures. A cell is
served by a single DBMS node, called its owner. The size of a cell
is therefore limited by the capacity of a single DBMS node. This
unique ownership allows transactions to execute efficiently without
distributed synchronization amongst multiple DBMS nodes.

A network attached storage (NAS) provides a scalable, highly
available, and fault-tolerant storage of the persistent image of the
tenant databases. This decoupling of storage from ownership obvi-
ates the need to copy a tenant’s data during migration. This archi-
tecture is however different from shared disk systems which use the
disk for arbitration amongst concurrent transaction [2]. A system
controller performs control operations including determining the
cell to migrate, the destination, and the time to initiate migration.

2.3 Migration Cost
We now discuss four cost metrics to evaluate the effectiveness of

a live database migration technique.

• Service unavailability: Duration of time for which a tenant is
unavailable during migration.

• No. of failed requests: Number of well-formed requests that
fail due to migration. Failed requests include both aborted trans-
actions and failed operations. A transaction consists of one of
more operations. Aborted transactions signify failed interactions
with the system while failed operations signify the amount of
work wasted as a result of an aborted transaction. The failed op-

495



erations account for transaction complexity; when a transaction
with more operations aborts, more work is wasted for the tenant.
We therefore include both types of failures in this cost metric.

• Impact on response time: Change in transaction latency (or
response time) observed as a result of migration.

• Data transfer overhead: Data transferred during migration.

The first three cost metrics measure the external impact on the
tenants and their SLAs while the last metric measures the internal
performance impact. In a cloud data platform, a provider’s service
quality is measured through SLAs and satisfying them is foremost
for customer satisfaction. A long unavailability window or a large
number of failed requests resulting from migration might violate
the availability SLA, thus resulting in a penalty. For instance, in
Google AppEngine, if the availability drops below 99.9%, then ten-
ants receive a service credit.2 Similarly, low transaction latency is
critical for good tenant performance and to guarantee the latency
SLAs. For example, a response time higher than a threshold can
incur a penalty in some service models [22]. A live migration tech-
nique must have minimal impact on tenant SLAs to be effective in
elastic scaling.

2.4 Straightforward Migration Techniques
When using the shared machine multitenancy model, where each

tenant has its independent database instance within a VM [22], live
virtual machine migration techniques [5, 17] can be leveraged for
elasticity. Such an approach, however, results in two levels of inef-
ficiencies. First, migrating the entire VM incurs the additional (and
unnecessary) overhead of copying the OS and VM state which can
be avoided by a database migration technique cognizant of database
semantics. Second, as reported in a recent study by Curino et al. [8],
when compared to the shared process model, the shared machine
model requires 2× to 3× more machines to serve the same num-
ber of tenants and for a given tenant assignment results in 6× to
12× less performance. Therefore, a shared process model is pre-
ferred for performance considerations where VM migration cannot
be used to migrate individual tenant databases from a database pro-
cess shared by multiple tenants.

Most traditional DBMSs do not support live migration since en-
terprise infrastructures were statically provisioned for peak expec-
ted load, and elasticity was not considered a first class feature in
database systems. In such a scenario, a cell is migrated by stopping
the cell at the source DBMS node, aborting all active transactions,
flushing all the changes to the NAS, and restarting it at the desti-
nation. This approach, however, results in high migration cost: the
tenant becomes unavailable during migration and all transactions
active at the start of migration must be aborted. Furthermore, the
entire database cache is lost when the cell is restarted at the destina-
tion DBMS node, thereby incurring a high post migration overhead
for warming up the database cache. This approach, therefore, has
a high impact on the tenant’s SLA, thus preventing it from being
effectively used for elastic scaling.

3. THE ALBATROSS TECHNIQUE
Albatross aims to have minimal impact on tenant SLAs while

leveraging the semantics of the database structures for efficient data-
base migration. This is achieved by iteratively transferring the
database cache and the state of active transactions. For a two phase
locking (2PL) based scheduler [2], the transaction state consists of
the lock table; for an Optimistic Concurrency Control (OCC) [16]
scheduler, this state consists of the read-write sets of active trans-
actions and a subset of committed transactions. Figure 2 depicts

2
http://code.google.com/appengine/business/sla.html.

Figure 2: Migration timeline (times not drawn to scale).

the timeline of Albatross when migrating a cell (Cmigr) from the
source DBMS node (Nsrc) to the destination DBMS node (Ndst).

Phase 1: Begin Migration: Migration is initiated by creating a
snapshot of the database cache at Nsrc. This snapshot is then
copied to Ndst. Nsrc continues processing transactions while
this copying is in progress.

Phase 2: Iterative Copying: Since Nsrc continues serving trans-
actions for Cmigr while Ndst is initialized with the snapshot,
the cached state of Cmigr at Ndst will lag that of Nsrc. In this
iterative phase, at every iteration, Ndst tries to “catch-up” and
synchronize the state of Cmigr at Nsrc and Ndst. Nsrc tracks
changes made to the database cache between two consecutive it-
erations. In iteration i, changes made to Cmigr’s cache since
the snapshot of iteration i − 1 are copied to Ndst. This phase
is terminated when approximately the same amount of state is
transferred in consecutive iterations or a configurable maximum
number of iterations have completed.

Phase 3: Atomic Handover: In this phase, the exclusive read/write
access of Cmigr (called ownership) is transferred from Nsrc to
Ndst. Nsrc stops serving Cmigr , copies the final un-synchroniz-
ed database state and the state of active transactions to Ndst,
flushes changes from committed transactions to the persistent
storage, transfers control of Cmigr to Ndst, and notifies the query

router of the new location of Cmigr . To ensure safety in the pres-
ence of failures, this operation is guaranteed to be atomic. The
successful completion of this phase makes Ndst the owner of
Cmigr and completes the migration.

The iterative phase minimizes the amount of Cmigr’s state to
be copied and flushed in the handover phase, thus minimizing the
unavailability window. In the case where the transaction logic is
executed at the client, transactions are seamlessly transferred from
Nsrc to Ndst without any loss of work. The handover phase copies
the state of active transaction along with the database cache. For
a 2PL scheduler, it copies the lock table state and reassigns the
appropriate locks and latches at Ndst; for an OCC scheduler, it
copies the read/write sets of the active transactions and that of a
subset of committed transactions whose state is needed to validate
new transactions. For a 2PL scheduler, updates of active transac-
tions are done in place in the database cache and hence are copied
over during the final copy phase; in OCC, the local writes of the
active transactions are copied to Ndst along with the transaction
state. For transactions executed as stored procedures, Nsrc tracks
the invocation parameters of transactions active during migration.
Any such transactions active at the start of the handover phase are
aborted at Nsrc and are automatically restarted at Ndst. This al-
lows migrating these transactions without moving the process state
at Nsrc. Durability of transactions that committed at Nsrc is en-
sured by synchronizing the commit logs of the two nodes.

496

http://code.google.com/appengine/business/sla.html


In the event of a failure, data safety is primary while progress
towards successful completion of migration is secondary. Our fail-
ure model assumes reliable communication channels, node failures,
and network partitions, but no malicious node behavior. Node fail-
ures do not lead to complete loss of data: either the node recovers
or the data is recovered from the NAS where data persists beyond
DBMS node failures. If either Nsrc or Ndst fails prior to Phase 3,
migration of Cmigr is aborted. Progress made in migration is not
logged until Phase 3. If Nsrc fails during Phases 1 or 2, its state is
recovered, but since there is no persistent information of migration
in the commit log of Nsrc, the progress made in Cmigr’s migra-
tion is lost during this recovery. Ndst eventually detects this failure
and in turn aborts this migration. If Ndst fails, migration is again
aborted since Ndst does not have any log entries for a migration
in progress. Thus, in case of failure of either node, migration is
aborted and the recovery of a node does not require coordination
with any other node in the system.

The atomic handover phase (Phase 3) consists of the following
major steps: (i) flushing changes from all committed transactions
at Nsrc; (ii) synchronizing the remaining state of Cmigr between
Nsrc and Ndst; (iii) transferring ownership of Cmigr from Nsrc

to Ndst; and (iv) notifying the query router that all future trans-
actions must be routed to Ndst. Steps (iii) and (iv) can only be
performed once the Steps i and ii. Ownership transfer involves
three participants—Nsrc, Ndst, and the query router—and must
be atomic (i.e., either all or nothing). We perform this handover
as a transfer transaction and a Two Phase Commit (2PC) proto-
col [13] with Nsrc as the coordinator guarantees atomicity in the
presence of node failures. In the first phase, Nsrc executes steps (i)
and (ii) in parallel, and solicits a vote from the participants. Once
all the nodes acknowledge the operations and vote yes, the transfer
transaction enters the second phase where Nsrc relinquishes con-
trol of Cmigr and transfers it to Ndst. In the case when one of the
participants votes no, this transfer transaction is aborted and Nsrc

remains the owner of Cmigr . This second step completes the trans-
fer transaction at Nsrc which, after logging the outcome, notifies
the participants about the decision. If the handover was successful,
Ndst assumes ownership of Cmigr once it receives the notification
from Nsrc. Every protocol action is logged in the commit log of
the respective nodes.

4. CORRECTNESS GUARANTEES
Migration correctness or safety implies that during normal oper-

ation or in case of a failure during migration, the system’s state or
data is not left in an inconsistent state as a result of migration.

DEFINITION 1. Safe Migration. A migration technique is safe

if the following conditions are met: (i) Data Safety and Unique
ownership: The persistent image of a cell is consistent and only a

single DBMS node owns a cell at any instant of time; and (ii) Dura-
bility: Updates from committed transactions are durable.

We argue migration safety using a series of guarantees provided
by Albatross and reason about how these guarantees are met.

GUARANTEE 1. Atomicity of handover. In spite of failures,

Cmigr is owned by exactly one of Nsrc or Ndst.

This is trivially satisfied when no failures occur. We now de-
scribe how logging and recovery ensures atomicity during failures.
At most one owner: A failure in the first phase of the atomic han-
dover protocol is handled similar to a failure during Phases 1 and 2—
both Nsrc and Ndst recover normally and abort Cmigr’s migration
and Nsrc remains the owner. Failure in this phase does not need
coordinated recovery. After receiving responses (both yes or no

votes), Nsrc is ready to complete the transfer transaction and en-
ters the second phase of atomic handover. Once the decision about
the outcome is forced into Nsrc’s log, the transfer transaction en-
ters the second phase. A failure in this phase requires coordinated
recovery. If Nsrc decided to commit, Ndst is the new owner of
Cmigr , otherwise Nsrc continues as the owner. If Nsrc failed be-
fore notifying Ndst, Ndst must wait until the state of Nsrc is recov-
ered before it starts serving Cmigr . Therefore, the atomic handover
protocol guarantees that there is at most one owner of Cmigr .
At least one owner: A pathological condition arises when after
committing the transfer transaction at Nsrc, both Nsrc and Ndst

fail. Atomic handover guarantees that in such a scenario, both Nsrc

and Ndst do not relinquish ownership of Cmigr . If the handover
was complete before Nsrc failed, when Nsrc recovers, it trans-
fers ownership to Ndst. Otherwise Nsrc continues as the owner
of Cmigr . The synchronized recovery of Nsrc and Ndst guaran-
tees at least one owner.

GUARANTEE 2. Changes made by aborted transactions are

neither persistently stored nor copied over during migration.

This follows from the invariant that in the steady state, the com-
bination of the database cache and the persistent disk image does
not have changes from aborted transactions. In OCC, changes from
uncommitted transactions are never publicly visible. In locking
based schedulers, the cache or the persistent database image might
have changes from uncommitted transactions. Such changes are
undone if a transaction aborts. Any such changes copied over dur-
ing the iterative phases are guaranteed to be undone during the first
round of the atomic handover phase.

GUARANTEE 3. Changes made by committed transactions are

persistent and never lost during migration.

Cache flush during the handover phase ensures that writes from
transactions that have committed at Nsrc, are persistent. The log
entries of such committed transactions on Cmigr are discarded at
Nsrc after successful migration.

GUARANTEE 4. Migrating active transactions does not vio-

late the durability condition even if the commit log at Nsrc is dis-

carded after successful migration.

This is ensured since Albatross copies the commit log entries for
transactions active during migration to Ndst, which are then forced
to Ndst’s commit log when these transactions commit.

Guarantee 1 ensures data safety and Guarantees 2, 3, and 4 to-
gether ensure durability, thus guaranteeing the safety of Albatross.
Therefore, in the presence of a failure of either Nsrc or Ndst, the
migration process is aborted without jeopardizing the safety.

GUARANTEE 5. Serializability. Copying the transaction state

in the final handover phase of Albatross ensures serializable trans-

action execution after migration.

OCC guarantees serializability by validating transactions against
conflicts with other concurrent and committed transactions. The
handover phase copies the state of active transactions and that of a
subset of transactions that committed after the earliest of the active
transactions started. Therefore, all such active transactions can be
validated at Ndst and checked for conflicts.

For a 2PL Scheduler, the two phase locking rule ensures serial-
izability of a locking based scheduler. The final handover phase
copies the state of the lock table such that active transactions have
the locks that were granted to them at Nsrc when they resume exe-
cution at Ndst. Therefore, a transaction continues to acquire locks
using the two phase rule at Ndst, thus ensuring serializability.

497



5. IMPLEMENTATION DETAILS
We implemented Albatross in ElasTraS [9, 10], a multitenant

DBMS for the cloud. ElasTraS’s architecture is similar to the ab-
stract system model depicted in Figure 1. The DBMS Nodes are
called Owning Transaction Managers (OTM) which own a num-
ber of cells and provide transactional guarantees on them using
optimistic concurrency control (OCC). The NAS is a distributed

fault tolerant storage (DFS) which stores the persistent database
image and the transaction logs. The controller is called the TM

Master which is responsible for system management such as load
balancing, detecting and recuperating from failures, and initiating
migration. Its role in migration is only limited to notifying the
source OTM (Nsrc) and the destination OTM (Ndst) to initiate mi-
gration. ElasTraS uses an append only storage layer (the Hadoop
Distributed File System) where updates to a tenant’s data is period-
ically flushed to create new files on the DFS. The commit log of the
OTMs is stored in the DFS. Transaction routing is handled by the
client library that is linked to every application client; the router
transparently migrates the client connections after migration with-
out any changes to the application code. The client library uses a
collection of metadata tables that store the mapping of a cell to the
OTM which is currently serving the cell. The combination of the
client library and the metadata tables constitute the query router.

ElasTraS uses a data storage format, called SSTable, designed
specifically for append-only storage [4]. Conceptually, an SSTable
is an immutable structure which stores the rows of a table in sorted
order of their keys. Internally, an SSTable is a collection of blocks

with an index to map blocks to key ranges. This SSTable index is
used to read directly from the block containing the requested row
and obviates an unnecessary scan through the entire SSTable. An
OTM caches the contents of the SSTables. Due to the append only
nature of storage, updates are maintained as a separate main mem-
ory buffer which is periodically flushed to the DFS as new SSTa-
bles; a flush of the update buffers is asynchronous and does not
block new updates. The read-cache caches blocks from SSTables
as they are accessed by the transactions; a least recently used policy
is used for evicting blocks to accommodate new blocks.
Creating a database snapshot. In the first step of migration, Nsrc

creates a snapshot of the tenant’s database. Albatross does not re-
quire a transactionally consistent snapshot of the database cache.
Nsrc’s database snapshot is a list of identifiers for the immutable
SSTable blocks that are cached. This list of block ids is obtained
by scanning the read cache using a read lock. It is passed to Ndst

which then reads the blocks directly from the DFS and populates
its cache. This results in minimal work at Nsrc and delegates all
the work of warming up the cache to Ndst. The logic for this ap-
proach is that during migration, Ndst is expected to have less load
compared to Nsrc. Therefore, transactions at Nsrc observe mini-
mal impact during snapshot creation and copying. After Ndst has
loaded all the blocks into its cache, it notifies Nsrc of the amount
of data transferred (∆0); both nodes now enter the next iteration.
No transaction state is copied in this phase.
Iterative copying phase. In every iteration, changes made to the
read cache at Nsrc are copied to Ndst. After a first snapshot is
created, the data manager of Cmigr at Nsrc tracks changes to the
read cache (both inserts and evictions) and incrementally main-
tains the list ids for the blocks that were evicted from or loaded
to the read cache since the previous iteration which is then copied
to Ndst in subsequent iterations. Again, only the block ids are
passed; Ndst populates its cache using the ids and notifies Nsrc

the amount of data transferred (∆i). This iterative phase contin-
ues until the amount of data transferred in successive iterations is
approximately the same, i.e. ∆i ≈ ∆i−1. The logic behind this

termination condition is that when ∆i ≈ ∆i−1, irrespective of
the magnitude of ∆i, little gain is expected from subsequent iter-
ations. ∆i is small for most cases, except when the working set
of the database does not fit into the cache when the cache changes
frequently. A maximum bound on the number of iterations ensures
termination when ∆i fluctuates between iterations. The write cache
is periodically flushed during the iterative copying phase when its
size exceeds a specified threshold. A write cache flush creates a
new block whose identifier is passed to Ndst which loads the new
block into its read cache. After the handover, Ndst starts serving
Cmigr with an empty write cache, but the combination of the read
and write cache contains the same state of data as in Nsrc.
Copying the transaction state. ElasTraS uses OCC [16] for con-
currency control. In OCC, the transaction state consists of the read
and write sets of the active transactions and a subset of commit-
ted transactions needed to validate new transactions; the read/write
sets of active transactions and committed transactions are main-
tained in separate main-memory structures. Two counters are used
to assign transaction numbers and commit sequence numbers. In
Albatross, the transaction state is copied only in the final handover
phase. Writes of an active transaction are stored with the transac-
tion’s state and are copied to Ndst during handover, along with the
counters maintained by the transaction manager. State of a subset
of committed transactions (ones that committed after any one of the
current set of active transactions started) are copied to Ndst to val-
idate the active transactions at Ndst. The small size of transaction
states allows efficient serialization. After handover, Ndst has the
exact same transaction state of Cmigr as Nsrc, thus allowing it to
continue executing the transactions that were active at the start of
the handover phase.
Handover phase. The handover phase flushes changes from com-
mitted transactions. After the transaction state and the final changes
to the read cache have been copied, the atomic handover protocol
makes Ndst the unique owner of Cmigr and updates the mapping
in the metadata used by the query router. The query router (Elas-
TraS clients) caches the metadata. After handover, Nsrc rejects any
request to Cmigr which invalidates the system metadata cached at
the clients; the clients subsequently read the updated metadata. The
metadata tables in ElasTraS are served by one of the live OTMs.
The OTM serving the metadata tables participates in the transfer

transaction of the atomic handover phase. The TM Master can
be a participant of the transfer transaction so that it is aware of
the outcome of migration; however, it is not needed for correct-
ness. In our implementation, the TM Master is notified by Nsrc

after handover completes. Clients that have open connections with
Cmigr at Nsrc are notified directly about the new address of Ndst.
This prevents an additional network round-trip to read the updated
metadata mappings. For a transaction accessing Cmigr during the
atomic handover phase, ElasTraS client library transparently retries
the operation; once the handover completes, this retried operation
is routed to Ndst. Since an OTM’s commit log is stored in the
DFS, it is not migrated. Cmigr’s transaction log at Nsrc is garbage
collected once the transactions active at the start of the handover
phase have completed at Ndst, though the entries for transactions
that committed at Nsrc can be purged after handover completes.

6. EXPERIMENTAL EVALUATION
We now evaluate our prototype implementation of Albatross us-

ing a variety of workloads. We measure migration cost using four
cost measures: tenant unavailability window, number of failed re-
quests (aborted transactions or failed operations), impact on trans-
action latency (or response time), and additional data transfer dur-
ing migration. We compare performance with the stop and mi-

498



grate (S&M), a representative off-the-shelf technique, implemented
in ElasTraS. In stop and migrate, a long unavailability window re-
sults from flushing cached updates from committed transactions.
An optimization, called flush and migrate (F&M), performs a
flush while continuing to serve transactions, followed by the final
stop and migrate step.

6.1 Experimental Setup

6.1.1 Cluster Configuration

Experiments were performed on a six node cluster, each with 4
GB memory, a quad core processor, and a 200 GB disk. The dis-
tributed fault-tolerant storage and the OTMs are co-located in the
cluster of five worker nodes. The TM master (controller) and the
clients generating the workloads were executed on a separate node.
Each OTM was serving 10 tenants on average. When an opera-
tion fails due to tenant unavailability (due to migration or other-
wise), the ElasTraS client library transparently retries these oper-
ations until the tenant becomes available again and completes the
request. We set the maximum number of iterations in Albatross to
10; Albatross converged within 3−7 iterations in our experiments.

In all experiments, except the one presented in Appendix B.1.7,
we evaluate migration cost when both Nsrc and Ndst were lightly
loaded, so that the actual overhead of migration can be measured.
The load on a node is measured using the amount of resources (for
instance CPU cycles, disk I/O bandwidth, or network bandwidth)
being utilized at the node. When resource utilization is less than
25%, it is referred to as lightly loaded, utilization between 25 −
70% is referred to as moderately loaded, and utilization above 70%
is called overloaded. We only consider CPU utilization.

6.1.2 Benchmarks

We evaluate migration cost using two OLTP benchmarks: the
Yahoo! cloud serving benchmark (YCSB) [7] and the TPC-C bench-
mark [20]. YCSB [7] is a recently proposed benchmark to evaluate
systems that drive web applications. The initial benchmark was
designed for Key-Value stores and hence did not support transac-
tions. We extended the benchmark by adding support for multi-step
transactions that access multiple tables belonging to a single tenant;
we chose a tenant schema with three tables where each table has
ten columns of type VARCHAR and 200 byte data per column. The
workload comprises a set of multi-step transactions which are pa-
rameterized by the number of operations, percentage of reads and
updates, and the distributions (uniform, Zipfian, and hotspot distri-
butions) used to select the data items accessed by the transaction. In
addition, we vary the transaction loads, database sizes, and cache
sizes. We ran multiple instances of the benchmark, one for each
tenant. Due to space constraints, some YCSB experiments and all
TPC-C experiments are provided in Appendix B.

6.2 Methodology
We vary different YCSB parameters to cover a wide spectrum

of workloads. These parameters include the percentage of read op-
erations in a transaction (default is 80%), number of operations in
a transaction (default is 10), size of the tenant database (default is
1 GB), load on the tenant (default is 50 transactions per second
(TPS)), cache size (default is 250 MB), and the distribution from
which the keys accessed are selected (default is a hotspot distribu-
tion3). For Zipfian distribution, the co-efficient is set to 1.0. In an
experiment, we vary one of these parameters while using the default

3In a Hotspot distribution, x% operations access y% data items–
default is 80% operations accessing 20% data items.

0

1000

2000

3000

4000

5000

T
ra

n
sa

ct
io

n
 L

a
te

n
cy

 (
m

s)

0

100

200

300

25 54 1771 1451

Normal Albatross S&M F&M

(a) Transaction latency distribution (box and whisker plot). Inset
shows the same graph but with a limited value of the y-axis to show

the box corresponding to the 25th and 75th percentiles.

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

T
ra

n
sa

ct
io

n
s 

L
a

te
n

cy
 (

m
s)

Time (sec)

 

 

Migration
(S&M)

completes

S&M

F&M

Migration (F&M)
completes

Iterative Copying Phase (Albatross)

Migration
(Albatross)
completes

Migration
Initiated

Albatross

(b) Transaction latency observed for different migration techniques.
There are 3 different series and each correspond to an execution using
one of the discussed migration techniques. All series are aligned at
the time at which migration was initiated (about 38 seconds). Other
vertical lines denote time instances when migration completed.

Figure 3: Impact of migration on transaction latency.

values for the rest of the parameters. In every experiment, we ex-
ecute about 12, 000 transactions (about 240 seconds at 50 TPS) to
warm up the cache, after which migration is initiated. Clients con-
tinue to issue transactions while migration is in progress. We only
report the latency for committed transactions; latency of aborted
transactions is ignored.

6.3 Evaluation
In the first experiment, we analyze the impact of migration on

transaction latency using the default workload parameters described
above. We ran a workload of 10, 000 transactions, after warming
up the cache with another workload of 10, 000 transactions; Fig-
ure 3(a) plots the distribution of latency (or response time) of each
individual transaction as a box and whisker plot. The four series
correspond to the observed transaction latency of an experiment
when migration was not initiated (Normal) and that observed when
migration was initiated using each of the three different techniques.
The inset shows the same plot, but with a restricted range of the y-
axis. The box in each series encloses the 25th and 75th percentile
of the distribution with the median shown as a horizontal line within
each box. The whiskers (the dashed line extending beyond the box)
extend to the most extreme data points not considered outliers, and
outliers are plotted individually as circles (in blue).4 The number
beside each series denotes the number of outlier data points that lie
beyond the whiskers.

As is evident from Figure 3(a), when migrating a tenant using
Albatross, the transaction latencies are almost similar to that in the
experiment without migration. A cluster of data points with latency
about 1000− 1500 ms correspond to transactions that were active

4The whiskers denote the sampled minimum and sampled maxi-
mum (http://en.wikipedia.org/wiki/Sample_minimum).

499

http://en.wikipedia.org/wiki/Sample_minimum


20 40 60 80 100
0

1000

2000

3000
U

n
a
v
a
ila

b
ili

ty
 W

in
d
o
w

 (
m

s
)

Transactions per second

 

 

Albatross F&M S&M

(a) Tenant unavailability.

20 40 60 80 100
0

50

100

150

N
o
. 
o
f 
fa

ile
d
 r

e
q
u
e
s
ts

Transactions per second

 

 

No failed requests

in Albatross

Albatross F&M S&M

(b) Failed requests.

20 40 60 80 100
0

100

200

300

400

500

P
e
rc

e
n
ta

g
e
 l
a
te

n
c
y
 i
n
c
re

a
s
e

Transactions per second

 

 

Albatross F&M S&M

(c) Transaction latency increase.

20 40 60 80 100
300

350

400

450

500

Transactions per second

D
a
ta

 s
y
n
c
h
ro

n
iz

e
d
 (

M
B

)

 

 

Albatross

(d) Data transfer overhead.

Figure 4: Evaluating migration cost using YCSB by varying the transaction load on the tenant. For failed requests (4(b)), the wider

bars represent aborted transactions and narrower bars represent failed operations.

during the handover phase which were stalled during the handover
and resumed at Ndst. On the other hand, both S&M and F&M
result in a high impact on transaction latency with about 1500 or
more transactions having a latency higher than that observed during
normal operation. The high impact on latency for S&M and F&M
is due to cache misses at Ndst and contention for the NAS. Since
all transactions active at the start of migration are aborted in F&M
and S&M, they do not contribute to the increase in latency.

The low impact of Albatross on transaction latency is further
strengthened by Figure 3(b) which plots the average latency ob-
served by the tenants as time progresses; latencies were averaged
in disjoint 500 ms windows. The different series correspond to
the different migration techniques and are aligned based on the mi-
gration start time (about 38 seconds). Different techniques com-
plete migration at different time instances as is shown by the verti-
cal lines; S&M completes at about 40 seconds, F&M completes at
around 45 seconds, while Albatross completes at around 160 sec-
onds. The iterative phase for Albatross is also marked in the figure.
As is evident, both F&M and S&M result in an increase in latency
immediately after migration completes, with the latency gradually
decreasing as the cache at Ndst warms up. On the other hand, even
though Albatross takes longer to finish, it has negligible impact on
latency while migration is in progress. This is because in Albatross,
most of the heavy lifting for copying the state is done by Ndst, thus
having minimal impact on the transactions executing at Nsrc. A
small spike in latency is observed for Albatross immediately after
migration completes which corresponds to transactions active dur-
ing the final handover phase. The low impact on latency ensures
that there is also a low impact on transaction throughput (see Fig-
ure 5 in the Appendix).

Therefore, for all the techniques, an impact on transaction la-
tency (and hence throughput) is observed only in a time window
immediately after migration completes. Hence, for brevity in re-
porting the impact on latency, we report the percentage increase
in transaction latency for Cmigr in a time window immediately
after migration, with the base value being the average transaction
latency observed before migration. We select 30 seconds as a rep-
resentative time window based on the behavior of latency in Fig-
ure 3(b) where Ndst is warmed up within about 30 − 40 seconds
after the completion of migration. We also measured the percent-
age increase in latency in the period from start of migration to 30
seconds beyond completion of the respective migration techniques.
Since Albatross takes much longer to complete compared to the
other techniques and has minimal impact on latency during migra-
tion, this measure favors Albatross and unfairly reports a lower in-
crease for Albatross. Therefore, we consider the 30 second window
after migration such that all techniques can be evenly evaluated.

Figure 4 plots the migration cost as a function of the load, ex-
pressed as transactions per second (TPS), on Cmigr . As the load on

the tenant increases (20 TPS to 100 TPS), the amount of un-flushed
changes in the write cache also increases. Hence the unavailabil-
ity window of S&M increases with load (see Figure 4(a)). But
since both Albatross and F&M flush the cache (at least once) be-
fore the final phase, they are not heavily impacted by load. The un-
availability window of Albatross increases slightly since at higher
load more transaction state must be copied during the final han-
dover phase. Similarly, a higher load implies more transactions
are active at the initiation of migration which are aborted in F&M
and S&M, resulting in a large number of failed requests (see Fig-
ure 4(b) where the wider bars represent transactions aborted and
the narrower bars represent failed operations). Albatross does not
result in any failed requests since it copies transaction state and al-
lows transactions to resume at Ndst. Both F&M and S&M incur a
high penalty on transaction latency. The impact increases with load
since more read operations incur a cache miss, resulting in higher
contention for accessing the NAS (see Figure 4(c)). Albatross re-
sults in only 5 − 15% transaction latency increase (over 80 − 100
ms average latency) in the 30 second window after migration, while
both F&M and S&M result in 300−400% latency increase. Finally,
Figure 4(d) plots the amount of data synchronized as a function of
load. In spite of the increase in data transmission, we note that this
does not adversely affect performance when using Albatross.

We also ran experiments varying a number of other parameters
of the YCSB workload as well as with TPC-C. Most experiments
follow a trend similar to that observed here, except for the case
when the working set of a tenant does not fit in the cache. In that
case, Albatross results in a longer unavailability window compared
to S&M and F&M since more state must be synchronized in the fi-
nal handover phase. This is because the state of the cache changes
frequently during migration. Albatross, however, continues to have
no failed requests and low impact on transaction latency. The low
cost incurred by Albatross also makes it effective for live database
migration allowing for lightweight elasticity as a first class notion
in databases. A detailed analysis of the experiments is provided
in Appendix B. In summary, Albatross’s migration cost is consid-
erably lower compared to S&M or F&M. Albatross has a small
unavailability window, zero failed requests, and less than 15% in-
crease in transaction latency immediately after migration.

7. RELATED WORK
Recently, much research has focussed on cloud databases, data-

bases in a virtualized environment, and multitenancy models. How-
ever, little research has focused on live database migration for elas-
tic load balancing. In [12], we propose Zephyr, a live database
migration technique for shared nothing database architectures. In a
shared nothing architecture, the disks are locally attached to every
node. Hence, the persistent image must also be migrated. Zephyr,
therefore, focusses on minimizing the service interruption and uses

500



a synchronized dual mode where the source and destination nodes
are both executing transactions. On the other hand, Albatross is de-
veloped for shared storage architectures where the persistent image
is not migrated. Albatross not only minimizes the service interrup-
tion but also minimize the impact on transaction latency by copying
the database cache during migration.

Even though little work has focused on live migration of databas-
es, a number of techniques have been proposed in the virtualization
literature to deal with the problem of live migration of virtual ma-
chines (VM) [5, 17]. The technique proposed by Clark et al. [5]
is conceptually similar to Albatross. The major difference is that
Clark et al. use VM level memory page copying and OS and net-
working primitives to transfer live processes and network connec-
tions. On the other hand, Albatross leverages the semantics of a
DBMS and its internal structures to migrate the cached database
pages (analogous to VM pages), state of active transactions (anal-
ogous to active processes), and database connections (analogous
to network connections). This allows Albatross to be used for live
database migration in the shared process multitenancy model where
live VM migration cannot be used. Liu et al. [17] propose an im-
provement over [5] to reduce the downtime and the amount of data
synchronized by using a log based copying approach. Our tech-
nique tracks changes to the database state, however, we do not use
explicit log shipping for synchronization. Bradford et al. [3] pro-
pose a technique to consistently migrate a VM across a wide area
network. Database migration in other contexts—such as migrating
data as the database schema evolves, or between different versions
of the database system—has also been studied; Sockut et al. [19]
provide a detailed survey of the different approaches. Our focus is
migration used for elasticity.

A large body of work also exists in scalable and distributed data
management for the cloud [1, 8, 9, 10, 11, 18]. Even though a large
number of such systems exist, the focus of the majority of such
systems is to scale single large databases to the cloud and the focus
is on performance optimization. Kraska et al. [15] propose the use
of varying consistency models to minimize the operating cost in a
cloud DBMS. On the other hand, our work proposes the use of live
database migration as a primitive for elastic load balancing.

8. CONCLUSION
With the growing number of applications being deployed in dif-

ferent cloud platforms, the need for a scalable, fault-tolerant, and
elastic multitenant DBMS has also increased. In such large multi-
tenant systems, the ability to seamlessly migrate a tenant’s database
is an important feature that allows effective load balancing and elas-
ticity to minimize the operating cost and to ensure efficient resource
sharing. We presented Albatross, a technique for live database mi-
gration in a shared storage architecture that results in minimal per-
formance impacts and minimal disruption in service for the tenant
whose database is being migrated. Albatross decouples a cell from
the DBMS node owning it, and allows the system to routinely use
migration as a primitive for elastic load balancing. Our evaluation
using YCSB and TPC-C benchmarks shows the effectiveness of
Albatross and analyzes the associate trade-offs. In the future, we
plan to extend the design by adding an intelligent system control
that can model the cost of migration to predict its cost as well the
behavior of the entire system.

Acknowledgments

The authors would like to thank Philip Bernstein, Pamela Bhat-
tacharya, Aaron Elmore, and the anonymous reviewers for provid-
ing useful feedback. This work is partly funded by NSF grants III
1018637 and CNS 1053594 and NEC Labs America.

9. REFERENCES
[1] P. A. Bernstein et al. Adapting Microsoft SQL Server for

Cloud Computing. In ICDE (to appear), 2011.

[2] P. A. Bernstein and E. Newcomer. Principles of Transaction

Processing. MK Publishers Inc., second edition, 2009.

[3] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg.
Live wide-area migration of virtual machines including local
persistent state. In VEE, pages 169–179, 2007.

[4] F. Chang et al. Bigtable: A Distributed Storage System for
Structured Data. In OSDI, pages 205–218, 2006.

[5] C. Clark et al. Live migration of virtual machines. In NSDI,
pages 273–286, 2005.

[6] B. F. Cooper et al. PNUTS: Yahoo!’s hosted data serving
platform. Proc. VLDB Endow., 1(2):1277–1288, 2008.

[7] B. F. Cooper et al. Benchmarking Cloud Serving Systems
with YCSB. In ACM SoCC, pages 143–154, 2010.

[8] C. Curino et al. Relational Cloud: A Database Service for the
Cloud. In CIDR, pages 235–240, 2011.

[9] S. Das, S. Agarwal, D. Agrawal, and A. El Abbadi.
ElasTraS: An Elastic, Scalable, and Self Managing
Transactional Database for the Cloud. Technical Report
2010-04, CS, UCSB, 2010.

[10] S. Das, D. Agrawal, and A. El Abbadi. ElasTraS: An Elastic
Transactional Data Store in the Cloud. In USENIX HotCloud,
2009.

[11] S. Das, D. Agrawal, and A. El Abbadi. G-Store: A Scalable
Data Store for Transactional Multi key Access in the Cloud.
In ACM SoCC, pages 163–174, 2010.

[12] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Zephyr:
Live Migration in Shared Nothing Databases for Elastic
Cloud Platforms. In SIGMOD (to appear), 2011.

[13] J. Gray. Notes on data base operating systems. In Operating

Systems, An Advanced Course, volume 60, pages 393–481.
Springer-Verlag, 1978.

[14] D. Jacobs and S. Aulbach. Ruminations on multi-tenant
databases. In BTW, pages 514–521, 2007.

[15] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann.
Consistency Rationing in the Cloud: Pay only when it
matters. PVLDB, 2(1):253–264, 2009.

[16] H. T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. ACM TODS, 6(2):213–226, 1981.

[17] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu. Live migration of
virtual machine based on full system trace and replay. In
HPDC, pages 101–110, 2009.

[18] D. B. Lomet, A. Fekete, G. Weikum, and M. J. Zwilling.
Unbundling transaction services in the cloud. In CIDR

Perspectives, 2009.

[19] G. H. Sockut and B. R. Iyer. Online reorganization of
databases. ACM Comput. Surv., 41(3):1–136, 2009.

[20] The Transaction Processing Performance Council. TPC-C
benchmark (Version 5.10.1), 2009.

[21] C. D. Weissman and S. Bobrowski. The design of the
force.com multitenant internet application development
platform. In SIGMOD, pages 889–896, 2009.

[22] P. Xiong et al. Intelligent management of virtualized
resources for database systems in cloud environment. In
ICDE (to appear), 2011.

[23] F. Yang, J. Shanmugasundaram, and R. Yerneni. A scalable
data platform for a large number of small applications. In
CIDR, 2009.

501



APPENDIX

A. FAULT­TOLERANCE
We now articulate two important properties of Albatross that al-

low the system to gracefully tolerate failures and characterize its
behavior in the presence of failures during migration.

PROPERTY 1. Independent Recovery. Except during the exe-

cution of the atomic handover protocol, recovery from a failure of

Nsrc or Ndst can be performed independently.

At any point of time before atomic handover, Nsrc is the owner
of Cmigr . If Nsrc fails, it recovers without interacting with Ndst

and continues to be the owner of Cmigr . Similarly, if Ndst fail, it
recovers its state. Unless the handover phase was initiated (Phase 3
of the protocol), Ndst has no log record about the migration in
progress, so it “forgets” the migration and continues normal oper-
ation. Similarly, once handover has been successfully completed,
Ndst becomes the new owner of Cmigr . A failure of Nsrc at this
instant can be recovered independently as Nsrc does not need to
recover state of Cmigr . Similarly, a failure of Ndst requires recov-
ery of only its state; Ndst can independently recover state of Cmigr

since it had successfully acquired the ownership of Cmigr .

PROPERTY 2. A single failure does not incur additional un-

availability. Any unavailability of Cmigr resulting from the failure

of one of Nsrc or Ndst during migration is equivalent to unavail-

ability due to a failure during normal operation.

From an external observer’s perspective, Nsrc is the owner of
Cmigr until the atomic handover phase (Phase 3) has successfully
completed. Any failure of Ndst before Phase 3 does not affect the
availability of Cmigr . A failure of Nsrc during this phase makes
Nsrc unavailable, which is equivalent to a failure of Nsrc under
normal operation where Cmigr would also become unavailable.
Similarly, after migration is complete, Ndst becomes the owner of
Cmigr . Any failure of Nsrc does not affect Cmigr , and a failure of
Ndst which makes Cmigr unavailable is equivalent to the failure of
Ndst during normal operation. The only complexity arises in the
case of a failure in Phase 3 when a coordinated recovery is needed.
If Nsrc fails before successful completion of Phase 3, even if Nsrc

had locally relinquished ownership of Cmigr , if the transfer trans-
action did not complete, Ndst cannot start serving Cmigr in which
case it becomes unavailable. This is similar to the blocking behav-
ior in 2PC [13]. However, since the handover transaction did not
complete, from an observer’s perspective, Nsrc was still the owner
of Cmigr , and hence this unavailability is equivalent to the failure
of Nsrc during normal operation. Thus, it is evident, single site
failures during migration does not impact availability of Cmigr .

The ability to safely abort migration at an incomplete state and
the single owner philosophy allow independent recovery of the failed
node’s state even after a failure during migration . This is crucial
for effective use of migration for elasticity without unnecessarily
making tenants unavailable when a node fails. Furthermore, one of
the implications of Property 2 is that in spite of using a 2PC pro-
tocol, the handover phase does not block any system resources as
a result of a failure, limiting the impact of failure to only the cells
being served by the failed node. This is contrary to the case where
a coordinator failure in 2PC causes other transactions conflicting
with blocked transactions to also block.

During normal operation, the progress of Albatross is guaranteed
by the maximum bound on the number of iterations that forces a
handover. Since Albatross does not log the progress of migration,
the state synchronized at Ndst is not persistent. This is because

0 50 100 150 200
0

20

40

60

80

100

120

T
ra

n
sa

ct
io

n
 T

h
ro

u
g

h
p

u
t 

(T
P

S
)

Time (sec)

 

 

Albatross

F&M

S&M

Migration
Initiated

Migration
(S&M)
completes

S&M

Migration (F&M)
completes

F&M

Migration
(Albatross)
completes

Albatross

Iterative copying phase

Figure 5: Impact of migration on transaction throughput.

Albatross copies the main memory state of Cmigr which is lost
after a failure, little gain can be achieved by logging the progress at
either node. Progress towards migration is therefore not guaranteed
in case of failures.

B. DETAILED EXPERIMENTS
We now present a more in-depth evaluation of migration cost us-

ing YCSB and TPC-C benchmarks that augments the experiments
presented in Section 6. In the figures reporting the number of failed
requests, the wider bars represent transactions aborted and the nar-
rower bars represent failed operations.

B.1 Yahoo! Cloud Serving Benchmark

B.1.1 Impact on Transaction Throughput

Figure 5 plots the impact of migration on throughput as time
progresses (plotted along the x-axis). The y-axis plots the through-
put measured for a second long window. The load is generated
by four clients threads which issue transactions immediately after
the previous transaction completes. The different series correspond
to different migration techniques. As is evident from the figure,
both S&M and F&M result in a high impact on the client through-
put due to increased transaction latency after migration, coupled
with throughput reduction during the unavailability window. On
the other hand, Albatross results in minor throughput fluctuations,
once during the first snapshot creation phase and once during the
unavailability window in the handover phase; Albatross results in
negligible impact during migration since the list of block identi-
fiers in the cache snapshot is maintained incrementally and Ndst

performs most of the work done during the synchronization phase.

B.1.2 Effect of Read/Write Ratio

We now present results from experiments varying other param-
eters of YCSB. Figure 6 plots the migration cost measures as a
function of the percentage read operations in a transaction; we vary
the read percentage from 50 to 90. For an update heavy workload,
the write cache has a large amount of un-flushed updates that must
be flushed during migration. As a result, S&M incurs a long un-
availability window of about 2−4 seconds, the length of which de-
creases with a decrease in the percentage of writes (see Figure 6(a)).
On the other hand, both F&M and Albatross flush the majority of
updates before the final stop phase. Therefore, their unavailability
window is unaffected by the distribution of reads and writes. How-
ever, since both S&M and F&M do not migrate transaction state,
all transactions active at the start of migration are aborted, resulting
in a large number of failed requests (see Figure 6(b)). Albatross, on
the other hand, does not have any failed requests. As can be seen in
Figure 6(c), Albatross results in only 5 − 15% transaction latency
increase, while both F&M and S&M incur a 300− 400% increase

502



50 60 70 80 90
0

1000

2000

3000

4000
U

n
a

va
ila

b
ili

ty
 W

in
d

o
w

 (
m

s)

Percentage read operations

 

 

Albatross F&M S&M

(a) Tenant unavailability.

50 60 70 80 90
0

50

100

N
o

. 
o

f 
fa

ile
d

 r
e

q
u

e
st

s

Percentage read operations

 

 

No failed requests in Albatross

Albatross F&M S&M

(b) Failed requests.

50 60 70 80 90
0

100

200

300

400

P
e

rc
e

n
ta

g
e

 la
te

n
cy

 in
cr

e
a

se

Percentage read operations

 

 

Albatross F&M S&M

(c) Transaction latency increase.

50 60 70 80 90
10

−1

10
0

10
1

10
2

T
im

e
 t
o

 m
ig

ra
te

 (
se

c)

Percentage read operations

 

 

Albatross F&M S&M

(d) Total time, in seconds, to mi-
grate a cell (log scale).

Figure 6: Evaluating migration cost by varying the percentage of read operations for transactions in YCSB.

8 12 16 20 24
0

2000

4000

6000

U
n
a
va

ila
b
ili

ty
 W

in
d
o
w

 (
m

s)

Transaction Size

 

 

Albatross F&M S&M

(a) Tenant unavailability.

8 12 16 20 24
0

50

100

150

N
o
. 
o
f 
fa

ile
d
 r

e
q
u
e
st

s

Transaction size

 

 

No failed requests

in Albatross

Albatross F&M S&M

(b) Failed requests.

8 12 16 20 24
0

100

200

300

P
e
rc

e
n
ta

g
e
 la

te
n
cy

 in
cr

e
a
se

Transaction Size

 

 

Albatross F&M S&M

(c) Transaction latency increase.

8 12162024
0

20

40

60

80

100

Albatross

M
ig

ra
tio

n
 t
im

e
 p

ro
fil

e

8 12162024
0

20

40

60

80

100

Flush & Migrate

 

 

First Flush/Sync Rest

(d) Percentage time distribution.

Figure 7: Evaluating migration cost by varying the number of operations in a transaction in YCSB.

in transaction latency due to the cost of warming up the cache at the
destination. Since Albatross warms up the cache at the destination
during the iterative phase, the total time taken by Albatross from the
start to finish is much longer compared to that of F&M and S&M;
S&M is the fastest followed by F&M (see Figure 6(d)). However,
since Cmigr is still active and serving requests with no impact on
transaction latency, this background loading process does not con-
tribute to migration cost from the tenant’s perspective. The itera-
tive copying phase transfers about 340 MB data between Nsrc and
Ndst, which is about 35% greater that the cache size (250 MB).
F&M and S&M will also incur network overhead of 250 MB re-
sulting from cache misses at Ndst and a fetch from NAS.

B.1.3 Effect of Transaction Size

Figure 7 shows the effect of transaction size on migration cost;
we vary the number of operations in a transaction from 8 to 24. As
the transaction size increases, so does the number of updates, and
hence the amount of un-flushed data in the write cache. Therefore,
the unavailability window for S&M increases with increased trans-
action size (see Figure 7(a)). In this experiment, F&M has a smaller
unavailability window compared to Albatross. This is because Al-
batross must copy the transaction state in the final handover phase,
whose size increases with increased transaction size. F&M, on the
other hand, aborts all active transactions and hence does not incur
that cost. The number of failed requests is also higher for F&M
and S&M, since an aborted transaction with more operations result
in more work wasted (see Figure 7(b)). The impact on transac-
tion latency also increases with size since larger transactions have
more reads (see Figure 7(c)). Figure 7(d) shows a profile of the
total migration time. As expected, the majority of the time is spent
in the first sync or flush, since it results in the greatest amount of
data being transferred or flushed. As the number of operations in
a transaction increases, the amount of state copied in the later it-
erations of Albatross also increases. Therefore, the percentage of
time spent on the first iteration of Albatross decreases. On the other
hand, since the amount of data to be flushed in F&M increases with
transaction size, the time taken for the first flush increases.

B.1.4 Effect of Access Distributions

Figure 8 plots the migration cost as a function of the distribu-
tions that determine the data items accessed by a transaction; we
experimented with uniform, Zipfian, and four different variants of
the hotspot distribution where we vary the size of the hot set and
the number of operations accessing the hot set. Since the cache
size is set to 25% of the database size, uniform distribution incurs
a high percentage of cache misses. As a result, during the itera-
tive copy phase, the database cache changes a lot because of a lot
of blocks being evicted and loaded. As a result, every iteration
results in a significant amount of data being transferred. Since Al-
batross checks the size of data transferred in each iteration, this
value converges quickly; in this experiment, Albatross converged
after 3 iteration. However, the final handover phase has to synchro-
nize a significant amount of data, resulting in a longer unavailabil-
ity window. Therefore, a high percentage of cache misses results
in a longer unavailability window for Albatross. F&M and S&M
are, however, not affected since these techniques do not copy the
database cache. This effect disappears for skewed workload where
as expected, Albatross and F&M have similar unavailability win-
dow and S&M has a comparatively longer unavailability window.
Albatross does not result in any failed requests, while the number
of failed requests in F&M and S&M is not heavily affected by the
distribution (see Figure 8(b)). The uniform distribution results in a
higher number of cache misses even at Nsrc which offsets the im-
pact of cache misses at Ndst. Therefore, the percentage increase in
transaction latency for S&M and F&M is lower for the uniform dis-
tribution when compared to other access patterns (see Figure 8(c)).
Irrespective of the access distribution, Albatross has little impact
on latency.

Figure 8(d) plots the amount of data synchronized by Albatross.
Following directly from our discussion above, a uniform distribu-
tion results in a larger amount of data being synchronized when
compared to other distributions. It is however interesting to note
the impact of the different hotspot distributions on the data syn-
chronized. For H1 and H3, the size of the hot set is set to 10% of
the database, while for H2 and H4, the size of the hot set is set to

503



U H1 H2 H3 H4 Z
0

1000

2000

3000
U

n
a
va

ila
b
ili

ty
 W

in
d
o
w

 (
m

s)

Access distributions

 

 

Albatross F&M S&M

(a) Tenant unavailability.

U H1 H2 H3 H4 Z
0

20

40

60

80

N
o
. 
o
f 
fa

ile
d
 r

e
q
u
e
st

s

Access distributions

 

 

No failed requests in Albatross

Albatross F&M S&M

(b) Failed requests.

U H1 H2 H3 H4 Z
0

100

200

300

400

P
e
rc

e
n
ta

g
e
 la

te
n
cy

 in
cr

e
a
se

Access distributions

 

 

Albatross F&M S&M

(c) Transaction latency increase.

U H1 H2 H3 H4 Z
0

200

400

600

800

D
a
ta

 s
yn

ch
ro

n
iz

e
d
 (

M
B

)

Access distributions

 

 

Albatross

(d) Data transferred during mi-
gration.

Figure 8: Evaluating migration cost using YCSB for different data access distributions. U denotes uniform and Z denotes Zipfian.

H1–H4 denote hotspot distributions: 90-10, 90-20, 80-10, and 80-20, where x-y denotes x% operations accessing y% data items.

100 200 300 400 500
0

1000

2000

3000

4000

U
n

a
v
a

ila
b

ili
ty

 W
in

d
o

w
 (

m
s
)

Cache size (MB)

 

 

Albatross F&M S&M

(a) Tenant unavailability.

100 200 300 400 500
0

100

200

300

400

P
e

rc
e

n
ta

g
e

 l
a

te
n

c
y
 i
n

c
re

a
s
e

Cache size (MB)

 

 

Albatross F&M S&M

(b) Transaction latency in-
crease.

Figure 9: Evaluating migration cost using YCSB by varying

the cache size allocated to each tenant.

0 50 100 150 200
0

500

1000

1500

2000

T
ra

n
s
a
c
ti
o
n
s
 L

a
te

n
c
y
 (

m
s
)

Time (sec)

 

 

Albatross
F&M
S&M

Migration
initiated Iterative

copying
phase

S&M

Albatross

Migration
(Albatross)
completes

F&M

Migration
(F&M)
completes

Migration
(S&M)
completes

Figure 10: Impact of migration on transaction latency when

working set does not fit in the cache.

20%. Since in H1 and H3, a fraction of the cold set is stored in
the cache, this state changes more frequently compared to H2 and
H4 where the cache is dominated by the hot set and hence its state
does not change frequently. As a result, H1 and H3 result in a larger
amount of data synchronized. For the Zipfian distribution, the per-
centage of data items accessed frequently is even smaller than that
in the experiments with 10% hot set, which also explains the higher
data synchronization overhead.

B.1.5 Effect of Cache Size

Figure 9 plots migration cost as a function of the cache size
while keeping the database size fixed; the cache size is varied from
100MB to 500MB and the database size is 1GB. Since Albatross
copies the database cache during migration, a smaller database cache
implies lesser data to synchronize. When the cache size is set to
100MB, the unavailability window of Albatross is greater than that
of F&M and S&M (see Figure 9(a)). This behavior is caused by
the fact that at 100MB, the cache does not entirely accommodate
the hot set of the workload (which is set to 20% of the data items
or 200 MB), thus resulting in a high percentage of cache misses.

0.2 0.4 0.8 1.6
0

500

1000

1500

2000

U
n

a
v
a

ila
b

ili
ty

 W
in

d
o

w
 (

m
s
)

Database size (GB)

 

 

Albatross F&M S&M

(a) Tenant unavailability.

200 400 800 1600
0

100

200

300

400

500

D
a
ta

 s
y
n
c
h
ro

n
iz

e
d
 (

M
B

)

Database size (MB)

 

 

200 400 800 1600
0

10

20

30

40

50

F
ir
s
t 
s
y
n
c
 t
im

e
 (

s
e
c
)

Sync time Data sync

(b) Data synchronized and time
taken for first synchronization.

Figure 11: Evaluating migration cost using YCSB by varying

the tenant database size.

This impact of a high percentage of cache misses on migration cost
is similar to that observed for the uniform distribution. However,
since the iterations converge quickly, the amount of data synchro-
nized is similar to that observed in other experiments. For cache
sizes of 200MB or larger, the hot set fits into the cache, and hence
expected behavior is observed. Even though Albatross has a longer
unavailability window for a 100MB cache, the number of failed op-
erations and the impact on transaction latency continues to be low.
For F&M and S&M, the impact on transaction latency is lower for
the 100 MB cache because a large fraction of operations incurred
a cache missed even at Nsrc which somewhat offsets the cost due
to cache missed at Ndst (see Figure 9(b)). Number of failed opera-
tions and data synchronized show expected behavior.

Figure 10 plots the impact of migration on latency as time pro-
gresses. In this experiment we consider a scenario where the work-
ing set of the database does not fit in the cache. The cache size is
set to 100 MB when using a hotspot distribution where the hot set
is 20% of the database. This experiment confirms the observation
that when the working set does not fit in the cache, even though Al-
batross results in a longer unavailability window, there is minimal
impact on transaction latency.

B.1.6 Effect of Database Size

Figure 11 plots the migration cost as a function of the database
size. Since the persistent image of the database is not migrated, the
actual size of the database does not have a big impact on migration
cost. We therefore vary the cache size along with the database size
such that the cache is set to 25% of the database size. Since the
cache is large enough to accommodate the hot set (we use the de-
fault hotspot distribution with the hot set as 20% of the database),
the migration cost will be lower for a smaller database (with a
smaller cache); the cost increases with an increase in the database
size (see Figure 11(a)). Similarly, as the size of the database cache
increases, the amount of state synchronized and the time taken for
the synchronization also increases (see Figure 11(b)).

504



−50

0

50

100

150

200

TM TS TD

P
e

rc
e

n
ta

g
e

 c
h

a
n

g
e

 in
 la

te
n

cy

 

 

Albatross F&M S&M

Figure 12: Impact of migrating tenant TM from a heavily

loaded node to a lightly loaded node. TS and TD represent a

representative tenant at Nsrc and Ndst respectively.

500 1000 1500 2000 2500
0

1000

2000

3000

U
n

a
v
a

ila
b

ili
ty

 W
in

d
o

w
 (

m
s
)

Load on each tenant cell (tpmC)

 

 

Albatross F&M S&M

(a) Unavailability window.

500 1000 1500 2000 2500
0

200

400

600

800

N
o

. 
o

f 
fa

ile
d

 r
e

q
u

e
s
ts

Load on each tenant cell (tpmC)

 

 

No failed requests in Albatross

Albatross F&M S&M

(b) No. of failed requests.

Figure 13: Evaluating migration cost using TPC-C.

B.1.7 Migration Cost during Overload

We now evaluate the migration cost in a system with high load.
Figure 12 shows the impact of migrating a tenant from an over-
loaded Nsrc to a lightly loaded Ndst. In this experiment, the load
on each tenant is set to 50 TPS and the number of tenants served by
Nsrc is gradually increased to 20 when Nsrc becomes overloaded.
As the load on Nsrc increases, all tenants whose database is located
at Nsrc experience an increase in transaction latency. At this point,
one of the tenants at Nsrc is migrated to Ndst. In Figure 12, the
y-axis plots the percentage change in transaction latency in the 30
second window after migration; a negative value implies reduction
in latency. TM is the tenant that was migrated, TS is a tenant at
Nsrc and TD is a tenant at Ndst. The latency of TM ’s transactions
is higher when it is served by an overloaded node. Therefore, when
TM is migrated from an overloaded Nsrc to a lightly loaded Ndst,
the transaction latency of TM should decrease. This expected be-
havior is observed for Albatross, since it has a low migration cost.
However, the high cost of F&M and S&M result in an increase
in transaction latency even after migrating TM to a lightly loaded
Ndst. This further asserts the effectiveness of Albatross for elastic
scaling/load balancing when compared to other heavyweight tech-
niques like S&M and F&M. All migration techniques, however,
have low overhead on other tenants co-located at Nsrc and Ndst.
This low overhead is evident from Figure 12, where a small de-
crease in latency of TS results from lower aggregate load on Nsrc

and a small increase in transaction latency of TD results from the
increased load at Ndst.

B.2 TPC­C Benchmark
We now evaluate Albatross using the TPC-C benchmark [20]

adapted for a multitenant setting. The goal is to evaluate the per-
formance of Albatross using complex transaction workloads repre-
senting real-life business logic and tenant databases with complex
schema. The TPC-C benchmark is an industry standard bench-
mark for evaluating the performance of OLTP systems. The bench-
mark suite consists of nine tables and five transactions that portray
a wholesale supplier. The five transactions represent the business

needs and workloads: (i) the NEWORDER transaction which mod-
els the placing of a new order; (ii) the PAYMENT transaction which
simulates the payment of an order by a customer; (iii) the ORDER-
STATUS transaction representing a customer query for checking the
status of the customer’s last order; (iv) the DELIVERY transaction
representing deferred batched processing of orders for delivery; and
(v) the STOCKLEVEL transaction which queries for the stock level
of some recently sold items. A typical transaction mix consists
of approximately 45% NEWORDER transactions, 43% PAYMENT

transactions, and 4% each of the remaining three transaction types,
representing a good mix of read/write transactions. The system
comprises of a number of warehouses which in turn determines the
scale of the system. Since more than 90% of transactions have at
least one write operation (insert, update, or delete), TPC-C repre-
sents a write heavy workload. More details about the benchmark
can be found in [20]. Each tenant represents an instance of the
TPC-C benchmark and multiple benchmark instances are simulta-
neously executed in the system.

Figure 13 plots the results from the experiments using the TPC-C
benchmark where we varied the load on each of the tenant cells. In
both sub figures, the y-axis plots the migration cost measures, while
the x-axis plots the load on the system. In these experiments, each
tenant database size was about 1 GB and contained four TPC-C
warehouses and the cache per tenant is set to 500 MB. We vary the
load on each tenant from 500 tpmC (transactions per minute TPC-
C) to 2500 tpmC. As the load on each cell increases, the amount of
data transferred to synchronize state also increases. As a result, the
length of the unavailability window increases with an increase in
the load on the tenant (see Figure 13(a)). Furthermore, since the ar-
rival rate of operations is higher at a higher load, an increase in the
unavailability window has a greater impact at higher loads resulting
in more failed requests. This increase is observed in Figure 13(b).
Even using such complex transactional workloads, the performance
of Albatross is considerably better than S&M and F&M. The be-
havior of transaction latency increase and amount of data synchro-
nized is similar to previous set of experiments. Albatross incurred
less than 15% increase in transaction latency compared to 300%
increase for F&M and S&M, while Albatross synchronized about
700MB data during migration for a 500MB cache.

B.3 Discussion
In a multitenant system, due to aggressive consolidation and re-

source sharing between tenants, a low cost migration technique is
important. It enables the system to guarantee that if the need arises,
tenants can be migrated to improve performance while ensuring
that their SLAs are met. For instance, as is evident from the experi-
ment reported in Figure 12, even though the load on every tenant at
Nsrc is only 50 TPS, as the number of tenants at Nsrc increases, it
causes an overload. A low cost migration technique can help allevi-
ate such scenarios commonly encountered in multitenant systems.

A lightweight live migration technique is also helpful in a sce-
nario when one tenant faces a load spike. It allows the system to ei-
ther migrate other lightly loaded tenants from the overloaded node
to another node or migrate the overloaded tenant to a node with
more resources. The first option minimizes the total load on the
source node while isolating other tenants from being impacted by
the heavily loaded tenant. Moreover, as observed in our experi-
ments, migrating lightly loaded tenants is less expensive compared
to migrating a tenant with a high load. On the other hand, the sec-
ond option requires migrating only one tenant, though at a higher
migration cost. The option chosen will depend on the workload and
tenant characteristics. An intelligent system controller can make
prudent use of live migration for such elastic load balancing.

505


	Introduction
	Preliminaries
	Multitenancy Models
	Reference System Model
	Migration Cost
	Straightforward Migration Techniques

	The Albatross Technique
	Correctness guarantees
	Implementation Details
	Experimental Evaluation
	Experimental Setup
	Cluster Configuration
	Benchmarks

	Methodology
	Evaluation

	Related work
	Conclusion
	References
	Fault-tolerance
	Detailed Experiments
	Yahoo! Cloud Serving Benchmark
	Impact on Transaction Throughput
	Effect of Read/Write Ratio
	Effect of Transaction Size
	Effect of Access Distributions
	Effect of Cache Size
	Effect of Database Size
	Migration Cost during Overload

	TPC-C Benchmark
	Discussion


