
Recovering Semantics of Tables on the Web

Petros Venetis Alon Halevy Jayant Madhavan Marius Paşca
Stanford University Google Inc. Google Inc. Google Inc.

venetis@cs.stanford.edu halevy@google.com jayant@google.com mars@google.com

Warren Shen Fei Wu Gengxin Miao Chung Wu
Google Inc. Google Inc. UC Santa Barbara Google Inc.

whshen@google.com wufei@google.com miao@umail.ucsb.edu chungwu@gmail.com

ABSTRACT
The Web offers a corpus of over 100 million tables [6], but the
meaning of each table is rarely explicit from the table itself. Header
rows exist in few cases and even when they do, the attribute names
are typically useless. We describe a system that attempts to recover
the semantics of tables by enriching the table with additional anno-
tations. Our annotations facilitate operations such as searching for
tables and finding related tables.

To recover semantics of tables, we leverage a database of class
labels and relationships automatically extracted from the Web. The
database of classes and relationships has very wide coverage, but
is also noisy. We attach a class label to a column if a sufficient
number of the values in the column are identified with that label
in the database of class labels, and analogously for binary relation-
ships. We describe a formal model for reasoning about when we
have seen sufficient evidence for a label, and show that it performs
substantially better than a simple majority scheme. We describe a set
of experiments that illustrate the utility of the recovered semantics
for table search and show that it performs substantially better than
previous approaches. In addition, we characterize what fraction of
tables on the Web can be annotated using our approach.

1. INTRODUCTION
The Web offers a corpus of over 100 million high-quality tables

on a wide variety of topics [6]. However, these tables are embedded
in HTML and therefore their meaning is only described in the text
surrounding them. Header rows exist in few cases, and even when
they do, the attribute names are typically useless.

Without knowing the semantics of the tables, it is very difficult
to leverage their content, either in isolation or in combination with
others. The challenge initially arises in table search (for queries
such as countries population, or dog breeds life span), which is the
first step in exploring a large collection of tables. Search engines
typically treat tables like any other text fragment, but signals that
work well for text do not apply as well to table corpora. In particular,
document search often considers the proximity of search terms
on the page to be an important signal, but in tables the column
headers apply to every row in the table even if they are textually far

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th – September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 9
Copyright 2011 VLDB Endowment 2150-8097/11/06... $ 10.00.

away. Furthermore, unlike text documents, where small changes
in the document structure or wording do not correspond to vastly
different content, variations in table layout or terminology change
the semantics significantly. In addition to table search, knowing
the semantics of tables is also necessary for higher-level operations
such as combining tables via join or union.

In principle, we would like to associate semantics with each table
in the corpus, and use the semantics to guide retrieval, ranking and
table combination. However, given the scale, breadth and hetero-
geneity of the tables on the Web, we cannot rely on hand-coded
domain knowledge. Instead, this paper describes techniques for
automatically recovering the semantics of tables on the Web. Specif-
ically, we add annotations to a table describing the sets of entities
the table is modeling, and the binary relationships represented by
columns in the tables. For example, in the table of Figure 1 we
would add the annotations tree species, tree, and plant to
the first column and the annotation is known as to describe the
binary relation represented by the table.

Figure 1: An example table on the Web, associating the com-
mon names of trees to their scientific names. Full table at http:
//www.hcforest.sailorsite.net/Elkhorn.html.

The key insight underlying our approach is that we can use facts
extracted from text on the Web to interpret the tables. Specifically,
we leverage two databases that are extracted from the Web: (1)
an isA database that contains a set of pairs of the form (instance,
class), and (2) a relations database of triples of the form (argument1,
predicate, argument2). Because they are extracted from the Web,
both of these databases have very broad coverage of topics and
instances, but are also noisy. We use them to annotate columns as
follows. We label a column A with class C in the isA database if a
substantial fraction of the cells in a columnA are labeled with a class
C in the isA database. We label the relationship between columns
A and B with R if a substantial number of pairs of values from
A and B occur in extractions of the form (a,R, b) in the relations
database. We describe a formal model that lets us determine how
much evidence we need to find in the extracted databases in order

528

http://www.hcforest.sailorsite.net/Elkhorn.html
http://www.hcforest.sailorsite.net/Elkhorn.html

to deem a label appropriate for a column or a pair of columns.
In particular, the model addresses the challenge that the extracted
databases are not a precise description of the real world or even of
the Web, since some entities occur more frequently on the Web than
others.

We show experimentally that the labels we generate describe the
contents of the table well and are rarely explicit in the table itself.
We show that the labels are even more accurate when we consider
only the ones that are associated with a column in the table that
is the subject of the table. Based on this, we build a table search
engine with much higher precision than previous approaches. In
summary, we make the following contributions:
• We propose an approach that partially recovers semantics of

structured data on the Web in order to improve table search and
enable more advanced operations. Our approach uses information
extracted from text on the Web.
•We describe a formal model for reasoning about the evidence

underlying our annotations.
•We describe a table-search algorithm based on the recovered

semantics.
• We describe an experimental evaluation on a corpus of 12.3

million tables extracted from the Web. We show: (1) that we obtain
meaningful labels for tables that rarely exist in the tables themselves,
(2) a characterization of the portion of tables on the Web that can
be annotated using our method, and that it is an order of magnitude
larger than is possible by mapping tables to Wikipedia classes or
Freebase attribute columns, and (3) that considering the recovered
semantics leads to high precision search with little loss of recall of
tables in comparison to document based approaches.

Roadmap: Section 2 defines our terminology and the table search
problem. Section 3 describes how we recover semantics of tables
and our formal model. Section 4 describes our experimental evalua-
tion. Section 5 describes related work, and Section 6 concludes.

2. PROBLEM SETTING
We begin by describing the Web table corpus and the problems

of annotating tables and table search.

Table corpus: Each table in our corpus is a set of rows, and each
row is a sequence of cells with data values (see Figure 1 for an
example). Tables may be semi-structured and have very little meta-
data. Specifically:
• We do not have a name for the table (i.e., the relationship or

entities that it is representing).
• There may not be names for attributes, and we may not even

know whether the first row(s) of the table are attribute names or data
values (as in Figure 1).
• The values in a particular row of a column will typically be

of a single data type, but there may be exceptions. Values may be
taken from different domains and different data types. In addition,
we often also see sub-header rows of the type one would see in a
spreadsheet (see Figure 5 in the appendix).
• The quality of tables in the corpus varies significantly, and it

is hard to determine whether HTML table tags are used for high-
quality tabular content or as a formatting convenience.

Annotating tables: Our goal is to add annotations to tables to
expose their semantics more explicitly. Specifically, we add two
kinds of annotations. The first, column labels are annotations that
represent the set of entities in a particular column. For example,
in the table of Figure 1 possible column labels are tree, tree
species and plant. The second, relationship labels represent
the binary relationship that is expressed by a pair of columns in

the table. For example, a possible relationship label in the table of
Figure 1 is is known as. We note that our goal is to produce
any relevant label that appears on the Web, and therefore be able to
match more keyword queries that users might pose. In contrast, pre-
vious work [17] focused on finding a single label from an ontology
(YAGO [26]).

Typically, tables on the Web have a column that is the subject of
the table. The subject column contains the set of entities the table
is about, and the other columns represent binary relationships or
properties of those entities. We have observed that over 75% of the
tables in our corpus exhibit this structure. Furthermore, the subject
column need not be a key — it may contain duplicate values.

Identifying a subject column is important in our context because
the column label we associate with it offers an accurate description
of what the table is about, and the binary relationships between the
subject column and other columns reflect the properties that the
table is representing. Hence, while our techniques do not require
the presence of a subject column, we show that the accuracy of our
annotations and resulting table search are higher when the subject
column is identified.

Table search: We test the quality of our annotations by their ability
to improve table search, the most important application that the
annotations enable. We assume that queries to table search can be
posed using any keyword because it is unreasonable to expect users
to know the schemata of such a large collection of heterogeneous
tables in such a vast array of topics.

In this work we consider returning a ranked list of tables in re-
sponse to a table search query. However, the ability to retrieve tables
based on their semantics lays the foundation for more sophisticated
query answering. In particular, we may want to answer queries that
require combining data from multiple tables through join or union.
For example, consider a query asking for the relationship between
the incidence of malaria and the availability of fresh water. There
may be a table on the Web for describing the incidence of malaria,
and another for access to fresh water, but the relationship can only
be gleaned by joining two tables.

We analyzed Google’s query stream and found that queries that
could be answered by table search fall into two main categories:
(1) find a property of a set of instances or entities (e.g., wheat
production of African countries), and (2) find a property of an
individual instance (e.g., birth date of Albert Einstein). This paper
focuses on queries of the first kind, and we assume they are of the
form (C,P), where C is a string denoting a class of instances and
P denotes some property associated with these instances. Both C
and P can be any string rather than being drawn from a particular
ontology, but we do not consider the problem of transforming an
arbitrary keyword query into a pair (C,P) in this paper. We also
note that there are millions of queries of both kinds being posed
every day.

While our techniques can also be used to help answering the sec-
ond kind of queries, there are many other techniques that come into
play [1, 12]. In particular, answers to queries about an instance and
a property can often be extracted from free text (and corroborated
against multiple occurrences on the Web).

Finally, we note that we do not consider the problem of blending
results of table search with other Web results.

3. ANNOTATING TABLES
At the size and breadth of the table corpus we are considering,

manually annotating the semantics of tables will not scale. The key
idea underlying our approach is to automatically annotate tables
by leveraging resources that are already on the Web, and hence

529

have similar breadth to the table corpus. In particular, we use two
different data resources: (1) an isA database consisting of pairs
(instance, class) that is extracted by examining specific linguistic
patterns on the Web, and (2) a relations database consisting of triplets
of the form (argument1, predicate, argument2) extracted without
supervision from the Web. In both databases, each extraction has a
score associated with it describing the confidence in the extraction.
The isA database is used to produce column labels and the relations
database is used to annotate relationships expressed by pairs of
columns. Importantly, our goal is not necessarily to recover a single
most precise semantic description (i.e., we cannot compete with
manual labeling), but just enough to provide useful signals for search
and other higher-level operations.

Sections 3.1 and 3.2 describe how the isA database and relations
database are created, respectively. In Section 3.3 we consider the
problem of how evidence from the extracted databases should be
used to choose labels for tables. Since the Web is not a precise model
of the real world and the algorithms used to extract the databases
from the Web are not perfect, the model shows which evidence
should be weighed more heavily than others in determining possible
labels. As we described earlier, when labels are associated with a
subject column, they are even more indicative of the table’s seman-
tics. We describe an algorithm for discovering subject columns in
Appendix C.

3.1 The isA database
The goal of column labels is to describe the class of entities

that appear in that column. In Figure 1 the labels tree, tree
species and plant describe the entities in the first column and
may correspond to terms used in searches that should retrieve this
table. Recall that the isA database is a set of pairs of the form
(instance, class). We refer to the second part of the pair as a class
label. We assign column labels to tables from the class labels in
the isA database. Intuitively, if the pairs (I, C) occur in the isA
database for a substantial number of values in a column A, then
we attach C as a column label to A. We now describe how the isA
database is constructed.

We begin with techniques such as [21] to create the isA database.
We extract pairs from the Web by mining for patterns of the form:

〈[..] C [such as|including] I [and|,|.]〉,

where I is a potential instance and C is a potential class label for
the instance (e.g., cities such as Berlin, Paris and London).

To apply such patterns, special care needs to be paid to determin-
ing the boundaries of C and of I . Boundaries of potential class
labels, C, in the text are approximated from the part-of-speech tags
(obtained using the TnT tagger [4]) of the sentence words. We
consider noun phrases whose last component is a plural-form noun
and that are not contained in and do not contain another noun phrase.
For example, the class label michigan counties is identified
in the sentence [..] michigan counties such as van buren, cass
and kalamazoo [..]. The boundaries of instances, I , are identified
by checking that I occurs as an entire query in query logs. Since
users type many queries in lower case, the collected data is converted
to lower case. These types of rules have also been widely used in
the literature on extracting conceptual hierarchies from text [13, 25].

To construct the isA database, we applied patterns to 100 million
documents in English using 50 million anonymized queries. The
extractor found around 60,000 classes that were associated with 10
or more instances. The class labels often cover closely-related con-
cepts within various domains. For example, asian countries,
east asian countries, south asian countries, and
southeast asian countries are all present in the extracted

data. Thus, the extracted class labels correspond to both a broad and
relatively deep conceptualization of the potential classes of interest
to Web search users, on one hand, and human creators of Web tables,
on the other hand. The reported accuracy for class labels in [21] is
>90% and the accuracy for class instances is almost 80%.

To improve the coverage of the database beyond the techniques
described in [21], we use the extracted instances of a particular
class as seeds for expansion by considering additional matches in
Web documents. We look for other patterns on the Web that match
more than one instance of a particular class, effectively inducing
document-specific extraction wrappers [16]. For example, we may
find the pattern 〈headquartered in I〉 and be able to mine more
instances I of the class label cities. The candidate instances
are scored across all documents, and added to the list of instances
extracted for the class label [29]. This increases coverage with
respect to instances, although not with respect to class labels.

Given the candidate matches, we now compute a score for every
pair (I, C) using the following formula [20]:

Score(I, C) = Size({Pattern(I, C)})2 × Freq(I, C). (1)

In the formula, Pattern(I, C) is the set of different patterns in
which (I, C) was found. Freq(I, C) is the frequency count of
the pair, but since high frequency counts are often indicative of
near-duplicate sentences appearing on many pages, we compute
it as follows. We compute a sentence fingerprint for each source
sentence, by applying a hash function to at most 250 characters
from the sentence. Occurrences of (I, C) with the same sentence
fingerprint are only counted once in Freq(I, C).

3.2 The relations database
We also want to annotate tables with the set of relationships that

it represents between pairs of entities. For example, the table in
Figure 1 represents the relationship is known as between trees
and their scientific names. In general, two types of relationships
are common in tables on the Web: symbolic (e.g., capital of)
and numeric (e.g., population). In what follows we use the
relations database to obtain labels for the symbolic relationships (we
comment on numeric relationships in Section 6).

Intuitively, given two columns, A and B, we look at correspond-
ing pairs of values in the columns. If we find that the relation
(a,R, b) is extracted for many rows of the table, then R is a likely
label for the relationship represented by A and B.

We use Open Information Extraction (OIE) to extract triples for
the relations database. Unlike traditional information extraction that
outputs instances of a given relation, OIE extracts any relation using
a set of relations-independent heuristics. In our implementation, we
use the TextRunner open extraction system [2]. As reported in [2],
TextRunner has precision around 73.9% and recall around 58.4%.
In Appendix B we provide additional details about TextRunner.

3.3 Evaluating candidate annotations
The databases described above provide evidence from the Web

that a particular label applies to a column, or that a particular binary
relationship is represented by a pair of columns. However, the imme-
diate question that arises is how much evidence is enough in order
to assign a label to a column or pair of columns, or alternatively,
how to rank the candidate labels.

If the isA and relations databases were a precise description of
the real world, then we would require a label to apply to all rows of
a table before it is assigned. However, the databases have two kinds
of imprecision: first, the Web is not an accurate description of the
world, and second, no matter how good the extractors are, they will
miss some facts that are mentioned on the Web. Consider the effect

530

of the first kind of imprecision. Paris and France are mentioned very
frequently on the Web and therefore we expect to find sentences
on the Web that say that Paris is the capital of France. However,
Lilongwe and Malawi are not mentioned as often, and therefore there
is a smaller likelihood of finding sentences that say that Lilongwe
is the capital of Malawi. Hence, if we have a table that includes a
row for Paris, France and one for Lilongwe, Malawi, but we do not
find (Lilongwe, capital of, Malawi) in the relations database, that
should not be taken as strong evidence against assigning the label
capital of to that pair of columns.

The second kind of imprecision stems from the fact that ultimately,
the extractors are based on some kind of rules that may not extract
everything that is said on the Web. For example, to extract cities, we
look for patterns of the form 〈cities such as I〉, which may not be
found for rare entities such as Lilongwe. In addition, some entities
are simply not mentioned in such patterns at all. For example, there
are many tables on the Web describing the meaning of common
acronyms, but there are very few sentences of the form 〈acronyms
such as I〉.

The model we describe below lets us reason about how to interpret
the different kind of positive and negative evidence we find in our
extracted database. We use a maximum-likelihood model based
on the following intuition. A person constructing a table in a Web
page has a particular intent (“schema”) in mind. The intent is to
describe properties of instances of an entity class. The maximum-
likelihood model attempts to assign class labels to a column given
the contents the person has used to populate the column. The best
label is therefore the one that, if chosen as part of the underlying
intent, is most likely to have resulted in the observed values in the
column. Hence, we are trying to infer the intent of the table designer
based on the evidence they have given us.

We begin by considering the problem of assigning class labels to
a column. Assigning labels to binary relationships is analogous and
covered in Appendix B. Let V = {v1, . . . , vn} be the set of values
in a column A. Let l1, . . . , lm be all possible class labels.

To find the best class label, we use the maximum likelihood
hypothesis [19], i.e., the best class label l(A) is one that maximizes
the probability of the values given the class label for the column:

l(A) = argmax
li

{Pr [v1, . . . , vn | li]} .

We assume that each row in the table is generated independently
given the class label for the column, (and thus Pr [v1, . . . , vn | li] =∏

j Pr [vj | li]). This is, again, a reasonable assumption in our
context because tables that are relational in nature are likely to have
dependencies between column values in the same row, rather than
across rows. Further, from Bayes rule, we know that Pr [vj | li] =
Pr[li|vj]×Pr[vj]

Pr[li]
. It follows that:

Pr [v1, . . . , vn | li] =
∏
j

Pr [li | vj]× Pr [vj]

Pr [li]
∝

∏
j

Pr [li | vj]
Pr [li]

.

The product term
∏

j Pr [vj] applies identically to each of the labels.

Hence, it follows that l(A) = argmaxli

∏
j

Pr[li|vj]
Pr[li]

.
We assign a score U(li, V) to each class that is proportional to

the expression in the above equation. We normalize them to sum up
to 1, i.e.,

U(li, V) = Ks

∏
j

Pr [li | vj]
Pr [li]

, (2)

where normalization constant Ks is such that
∑

i U(li, V) = 1.
The probability Pr [li] can be estimated from the scores in the

isA database (see Equation 1). However, estimating the conditional

probability Pr [li | vj] is more challenging. While a simple estima-
tor is Score(vj ,li)∑

k Score(vj ,lk)
, it has two problems. First, when computing

the maximum likelihood hypothesis, since we are multiplying each
of the Pr [li | vj], we cannot have any of the probabilities be 0.
Second, since information extracted from the Web is inherently
incomplete, it is likely that there are values for which there is an
incomplete set of labels in the isA database.

To account for the incompleteness, we smooth the estimates for
conditional probabilities:

Pr [li | vj] =
Kp × Pr [li] + Score(vj , li)

Kp +
∑

k Score(vj , lk)
,

where Kp is a smoothing parameter.
The above formula ensures that in the absence of any isA ex-

tractions for vj , the probability distribution of labels tends to be
the same as the prior Pr [li]. As a result, values with no known
labels are not taken as negative evidence and do not contribute to
changing the ordering among best hypotheses. On the other hand,
if there are many known class-label extractions for vj , its condi-
tional probabilities tend towards their true value and hence such vj
contribute significantly (positively or negatively) in selecting the
best class labels. As the score in the isA database increases (with
increased extractions from the Web), the conditional probability
estimator depends more on the scores. The parameter Kp controls
how sensitive the probabilities are to low extraction scores. If we
are to assume that extractions from the Web are mostly true (but
incomplete), then we can set Kp to be very low (say 0.01).

Finally, we need to account for the fact that certain expressions
are inherently more popular on the Web and can skew the scores in
the isA database. For example, for a value v with two labels with
Score(v, l1) = 100 and Score(v, l2) = 10,000, a simple fraction
with result in Pr [l1 | v] � Pr [l2 | v]. We refine our estimator
further to instead use the logarithm of the scores, i.e.,

Pr [li | vj] =
Kp × Pr [li] + ln(Score(vj , li) + 1)

Kp +
∑

k ln(Score(vj , lk) + 1)
. (3)

The +1 in the logarithm prevents ln 0. As before, the probabilities
can be normalized to sum to 1.

To determine the prior probabilities of class labels Pr [li], we add
the scores across all values for that label, i.e.,

Pr [li] ∝
∑
j

ln(Score(vj , li) + 1 + δ). (4)

We use 1 + δ to ensure that Pr [li] 6= 0. The probabilities are
normalized such that

∑
i Pr [li] = 1.

Given the set of values in a column, we estimate the likelihood
score U for each possible label (Equation 2). We consider only
the labels that have a normalized likelihood score greater than a
threshold tl and rank the labels in decreasing order of their scores.

4. EXPERIMENTS
We evaluate the quality of the table annotations (Section 4.1) and

their impact on table search (Section 4.2).

Table corpus: Following [6], we constructed a corpus of HTML ta-
bles extracted from a subset of the crawl of the Web. We considered
pages in English with high page rank. From these, we extracted
tables that were clearly not HTML layout tables, and then filtered
out empty tables, form tables, calendar tables, tiny tables (with only
1 column or with less than 5 rows). We were left with about 12.3
million tables. We estimate that this corpus represents about a tenth
of the high-quality tables on the Web as of late 2010.

531

4.1 Column and relation labels
We discuss the quality of the labels assigned with the isA and

relations databases in Section 4.1.1. In Section 4.1.2 we show
that our method labels an order of magnitude more tables than is
possible with Wikipedia labels and many more tables than Freebase.
In Section 4.1.3 we show that the vast majority of the remaining
tables can either be labeled using a few domain specific rules or do
not contain useful content.

4.1.1 Label quality
We compare three methods for assigning labels. The first, denoted

Model, is the likelihood model described in Section 3.3. The second,
denoted Majority, requires that at least t% of the cells of the column
have a particular label. Of these, the algorithm ranks the labels
according to a MergedScore(C) =

∑
L

1
Rank(C,L)

(if C has not
been assigned to cell content L, then Rank(C,L) = ∞). After
experimenting with different values, we observed that the Majority
algorithm performs best when t = 50. We also examined a Hybrid
method that uses the ranked list of the Majority method concatenated
with the ranked list of the Model (after removing labels outputted by
Majority). As we will explain in the following, the Hybrid method
performs better than both the Model and the Majority methods.

Gold standard: To create a gold standard, we considered a random
sample of tables and removed those that did not have any class or
relations labels assigned by run R10, the Majority algorithm with
t = 10% (i.e., a very permissive labeling — for examples see Ta-
ble 5 in Appendix C.2). We then manually removed tables whose
subject columns have been incorrectly identified or do not corre-
spond to any meaningful concept. For each of the remaining 168
tables, we presented to human annotators the result of R10. The
annotators mark each label as vital, okay, or incorrect. For example,
given a table column containing the cells {Allegan, Barry, Berrien,
Calhoun, Cass, Eaton, Kalamazoo, Kent, Muskegon, Saint Joseph,
Van Buren}, the assigned class labels southwest michigan
counties and michigan counties are marked as vital; la-
bels counties and communities as okay; and illinois
counties and michigan cities as incorrect. In addition,
the annotators can manually enter any additional labels that apply to
the table column, but are missing from those returned by any of the
experimental runs. The resulting gold standard associates the 168
tables with an average of 2.6 vital and 3.6 okay class labels, with 1.3
added manually by the annotators. For the relations labels we had
an average of 2.1 vital and 1.4 okay labels; since there were many
options by our relations database, we did not add any new (manual)
annotations to the binary relations labels.

Evaluation methodology: For a given table, the actual evaluation
consists of automatically comparing the ranked lists of labels pro-
duced by an experimental run to the labels available in the gold
standard. To compute precision, a retrieved label is assigned a score
of 1, if it was marked as vital or manually added to the gold standard;
0.5, if it was marked as okay; or 0, otherwise [21]. Similarly, recall
is computed by considering a label as relevant (score 1) if it was
marked as vital or okay or was manually added to the gold standard,
or irrelevant (score 0) otherwise.

Results: Figure 2 summarizes the performance results for the three
algorithms. We varied the precision and recall by considering top-k
labels for values of k between 1 and 10; k increases from the left of
the graph to its right.

We observed that Majority (with t = 50) has relatively high
precision but low recall (it labeled only 30% of the 168 tables).
This is due to the requirement that a label must be given to 50%

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.4 0.5 0.6 0.7 0.8 0.9

P
re

c
is

io
n

Recall

Model
Majority

Hybrid

Figure 2: Precision/recall diagram for class labels for various
algorithms and top-k values.

of the rows. In addition, Majority tends to output general labels
(e.g., compound chemical vs. antibiotic) because they
are more common on the Web and more rows are likely to agree
on them. Still, its labels are generally of high quality. On the other
hand, Model tends to do well in the cases where there are good
labels, but they do not appear for a majority of rows in the table,
in a sense, where more subtle reasoning is required. Consequently,
Hybrid gives the best of both methods.

We obtained similar results for binary relationships (which we
omit due to space considerations) except that Majority did not per-
form well. The reason is that our extractions are more sparse than
in the unary case so it was harder to find labels that occur for 50%
of the rows. Still, we obtained precision of 0.45 and recall of 0.7.

One may wonder if the class labels are not redundant with infor-
mation that is already on the Web page of the table. In fact, there are
only about 60,000 tables in our corpus (4%) where all class labels
already appears in the table header, and only about 120,000 tables
(8%) where a label appears anywhere in the body of the Web page.
Hence, assigning class labels adds important new information.

4.1.2 Labels from ontologies
Next, we compare the coverage of our labeling to what can be

obtained by using a manually created ontology. Currently, the state-
of-the-art, precision-oriented isA database is YAGO [26], which
is based on Wikipedia. Table 1 compares the labeling of tables
using YAGO vs. the isA database extracted from the Web. Our
Web-extracted isA database is able to assign labels to the subject
columns of almost 1.5 million tables (out of 12.3 million tables we
have at hand), while YAGO assigns labels to ∼185 thousand tables
(an order of magnitude difference). This is explained by the very
large coverage that our Web-extracted repository has in terms of
instances (two orders of magnitude larger than YAGO).

Web-extracted YAGO Freebase
Labeled subject columns 1,496,550 185,013 577,811
Instances in ontology 155,831,855 1,940,797 16,252,633

Table 1: Comparing our isA database and YAGO

For the binary relations, we were able to assign about 3 times as
many labels for pairs of columns than Freebase (2.1M compared
to 800K). We also examined the quality of the binary labels on our
gold standard that included 128 binary relations involving a subject
column. Our model detected 83 of them (64.8%) correctly (assign-
ing vital or average binary labels), while Freebase only managed to
detect 37 of them (28.9%) correctly.

532

We also compared our labeling on the same data sets (wiki manual
and Web manual data sets) used in [17], where the authors proposed
using YAGO to label columns in tables. These data sets have tables
from Wikipedia and tables that are very related to Wikipedia tables,
and hence we expect YAGO to do relatively well. Still, we achieved
F1 measure of 0.67 (compared to the 0.56 reported in [17]) on
the wiki manual data set, and 0.65 for the Web manual data set
(compared to 0.43), both for the top-10 class labels returned by the
majority-based algorithm. We note that using YAGO will result in
higher precision. For the goal of table search though, coverage (and
hence recall) is key.

4.1.3 The unlabeled tables
Our methods assigned class labels to approximately 1.5 million

tables out of the 12.3 in our corpus when only subject columns are
considered, and 4.3 million tables otherwise. We investigated why
the other tables were not labeled, and most importantly, whether we
are missing good tables in the unlabeled set. We discovered that the
vast majority of these tables were either not useful for answering
(C,P) queries, or can be labeled using a handful of domain-specific
methods. Table 2 summarizes the main categories of the unlabeled
tables.

Category Sub-category # tables (M) % of corpus

Labeled Subject column 1.5 12.20
All columns 4.3 34.96

Vertical 1.6 13.01

Extractable Scientific Publications 1.6 13.01
Acronyms 0.043 0.35

Not useful 4 32.52

Table 2: Class label assignment to various categories of tables

First, we found that many of the unlabeled tables are vertical
tables. These tables contain (attribute name, value) pairs in a long
2-column table (see Figure 3 in the appendix). We developed an
algorithm for identifying such tables by considering tables that had
at least two known attribute names in the left columns (the known
attribute names were mined from Wikipedia and Freebase). This
process identified around 1.6 million tables. After looking at a
random sample of over 500 of these tables, we found that less than
1% of them would be useful for table-search queries.

Next, we found a few categories where the entities are too specific
to be in the isA database. In particular, the most voluminous category
is tables about publications or patents (1.45 million tables). It turns
out that these can be identified using simple heuristics from very
few sites. As another, much smaller category, we found 43,000
tables of acronyms on one site. Thus, extending our work to build a
few domain-specific extractors for these tables could significantly
increase the recall of our class assignment.

Among the remaining 4 million tables we found (based on a
random sample of 1,000) that very few of them are useful for (C,P)
queries. In particular, we found that many of these tables have
enough text in them to be retrieved by traditional search techniques.
Examples of such categories include course description tables (with
the course number and university on the page) and comments on
social networks, bug reports and job postings.

Hence, in summary, though we have annotated about a sixth of
our tables, our results suggest that these are the useful content for
table-search queries.

4.2 Table search
We now describe the impact of our annotations on table search.

We built a table search engine which we refer to as TABLE, that lever-

ages the annotations on tables. Given a query of the form (C,P),
where C is a class name and P is a property, TABLE proceeds as
follows:

Step 1: Consider tables in the corpus that have the class label C in
the top-k class labels according to Section 3.3.1 Note that tables that
are labeled with C may also contain only a subset of C or a named
subclass of C.

Step 2: We rank the tables found in step 1 based on a weighted
sum of the following signals: occurrences of P on the tokens of the
schema row, occurrences of P on the assigned binary relations of the
table, page rank, incoming anchor text, number of rows and tokens
found in the body of table and the surrounding text. The weights
were determined by training on a set of examples. We note that in
our current implementation we require that there be an occurrence
of P in the schema row (which exist in 71% of the tables [7]) or in
the assigned binary relations of the table.

In principle, it would also be possible to estimate the size of
the class C (from our isA database) and to try to find a table in
the result whose size is close to C. However, this heuristic has
several disadvantages. First, the isA database may have only partial
knowledge of the class, and therefore the size estimate may be off.
Second, it is very common that the answer is not in a table that is
precisely about C. For example, the answer to (african countries,
GDP) is likely to be in a table that includes all the countries in the
world, not only the African countries. Hence, we find that in general
longer tables tend to provide better answers.

We compare TABLE with three other methods: (1) GOOG: the
results returned by www.google.com, (2) GOOGR: the intersec-
tion of the table corpus with the top-1,000 results returned by GOOG,
and (3) DOCUMENT: document-based approach proposed in [6].
The document-based approach considers several signals extracted
from the document in the ranking, including hits on the first two
columns, hits anywhere in the table (with a different weight) and
hits on the header of the subject column.

Query set: To construct a realistic set of user queries of the form
(C,P), we analyzed the query logs from Google Squared, a service
in which users search for structured data. We compiled a list of 100
queries (i.e., class names) submitted by users to the website. For
each class name, each of the authors identified potential relevant
property names. We then randomly selected two properties for each
class name to create a test set of 200 class-property queries. We
chose a random subset of 100 out of the 200 queries (see Appendix D
for a complete listing).

Evaluation methodology: We performed a user study to compare
the results of each algorithm. For the purpose of this experiment,
each algorithm returns Web pages (if an algorithm originally re-
turned Web tables, we now modified it to return the Web pages
containing those Web tables). For each of the 100 queries, we re-
trieved the top-5 results using each of TABLE, DOCUMENT, GOOG,
and GOOGR. We combine and randomly shuffle these results, and
present to the user this list of at most 20 search results (only GOOG
is always guaranteed to return 5 results). For each result, the user
had to rate whether it was right on (has all information about a
large number of instances of the class and values for the property),
relevant (has information about only some of the instances, or of
properties that were closely related to the queried property), or irrel-
evant. In addition, the user marked if the result, when right on or

1As an extension, when C is not in the isA database, TABLE could search
for other class names that are either the correct spelling of C or could be
considered related — these extensions are currently not supported in TABLE.

533

www.google.com

Method All Ratings Ratings by Queries Query Precision Query Recall
Total (a) (b) (c) Some Result (a) (b) (c) (a) (b) (c) (a) (b) (c)

TABLE 175 69 98 93 49 24 41 40 0.63 0.77 0.79 0.52 0.51 0.62
DOCUMENT 399 24 58 47 93 13 36 32 0.20 0.37 0.34 0.31 0.44 0.50
GOOG 493 63 116 52 100 32 52 35 0.42 0.58 0.37 0.71 0.75 0.59
GOOGR 156 43 67 59 65 17 32 29 0.35 0.50 0.46 0.39 0.42 0.48

Table 3: Results of user study: The columns under All Ratings present the number of results (totalled over the 3 users) that were
rated to be (a) right on, (b) right on or relevant, and (c) right on or relevant and in a table. The Ratings by Queries columns aggregate
ratings by queries: the sub-columns indicate the number of queries for which at least two users rated a result similarly (with (a), (b)
and (c) as before). The Precision and Recall are as defined in Section 4.2.

relevant, was contained in a table. The results for each query were
rated independently by three separate users.

Note that by presenting a combined, shuffled list of search results,
and asking the user to rate the result Web documents, we can de-
termine which algorithm produced each result. We cannot present
the users directly with the extracted tables, because GOOG does not
always retrieve results with tables. Further, we do not ask users
to directly compare the ranked lists of results listed separately by
approach, since it might be possible for a rater to work out which
algorithm produced each list. Thus, we are able to achieve a fair
comparison to determine which approach can retrieve information
(not just tables) that is relevant to a user query.

Precision and recall: The results of our user evaluation are sum-
marized in Table 3. We can compare the different methods using
measures similar to the traditional notions of precision and recall.
Suppose Nq(m) was the number of queries for which the method
m retrieved some result, Na

q (m) was the number of queries for
whichm retrieved some result that was rated right on by at least two
users, and Na

q (∗) is the number of queries for which some method
retrieved a result that was rated right on. We define P a(m) and
Ra(m) to be:

P a(m) =
Na

q (m)

Nq(m)
, Ra(m) =

Na
q (m)

Na
q (∗)

.

Note that we can likewise define P b(m) and Rb(m) by consid-
ering results that were rated right on or relevant and P c(m) and
Rc(m) by considering results that were rated in a table (right on or
relevant). Note that each P (m) and R(m) roughly correspond to
traditional notions of precision and recall.

In our experiments, we found Na
q (∗) = 45 (right on), Nb

q (∗) =
75 (right on or relevant), andNc

q (∗) = 63 (in a table). The resulting
values for precision and recall are listed in Table 3. Note that we
could likewise define these measures in terms of the number of
results (and the patterns are similar).

Results: As demonstrated in Table 3, TABLE has the highest pre-
cision (0.79 when considering right on and relevant results). This
result shows that even modest recovery of table semantics leads to
very high precision. GOOG on the other hand has a much higher
recall, but a lower precision.

We note that the recall performance of GOOG is based on re-
trieving Web pages that are relevant Web pages (not necessarily
tables that are right on). In fact, the precision of GOOG is lower, if
we only consider the right on ratings (0.42). If we only consider
queries for which the relevant information was eventually found in
a table, TABLE has both the highest precision (0.79) and highest
recall (0.62) and clearly outperforms GOOG. This result shows that
not only does TABLE have high precision, but it does not miss many
tables that are in the corpus. Hence, we can use TABLE to build a
search service for tables, and when it returns too few answers, we
can fall back on general Web search.

Observe that DOCUMENT does not perform well in comparison
to either TABLE or GOOG. This is likely because DOCUMENT (as
described in [6]) was designed to perform well for instance queries.
It does not have the benefit of class labels, which are no doubt
important for class-property queries. It essentially boils down to be
like GOOG, but with a far smaller corpus (only our ∼4.3 million
extracted tables), and hence has poor performance.

GOOGR in general has a higher precision and lower recall than
GOOG. GOOGR filters the results from GOOG to only include
Web pages that have tables with class labels. Thus, it will retrieve
information when present in table (higher precision, as they are
excellent at answering class-property queries), but omit relevant
Web pages without tables.

Our results clearly demonstrate that whenever there is a table that
satisfies a class-property query, our table search algorithm is likely
to retrieve it. At the same time, it rarely retrieves irrelevant tables.
The importance of subject columns: In our experiments we con-
sidered labels on any columns in the tables, but we observe the
importance of subject columns in two ways. First, in 80.16% of the
results returned by TABLE, the class label was found in the subject
column. For the other ∼20%, we typically observed tables that had
more than one possible subject column. Second, in our collection
of 168 tables for which we know the subject column and the binary
relations, we observed the following. Of the pairs of columns that
involved a subject, our algorithms found labels in 43.3% of the
cases, compared to only 19.1% for pairs of arbitrary columns.

5. RELATED WORK
Like us, Limaye et al. [17] annotate tables on the Web with

column and relationship labels. However, unlike us, their goal is to
choose a single label from an ontology (YAGO [26]). They propose
a graphical model for labeling table columns with types, pair of
columns with binary relations, and table cells with entity IDs, and
use YAGO as a source for their labels. The key idea of that work is to
use joint inference about each of the individual components to boost
the overall quality of the labels. As we show in our experiments,
YAGO includes only a small fraction of the labels we find. In
particular, YAGO includes less than 100 binary relationships, hence
our work is the first that tries to detect binary relationships at any
serious scale. In principle, we can also apply joint inference with
our techniques as the component inference methods, but we leave
that for future work.

Cafarella et al. [6] considered the problem of table search, but
approached it as a modification of document search. They added
new signals to ranking documents, such as hits on the schema el-
ements and left-hand columns. The weights of the new signals
were determined by machine learning techniques. As we show
in Section 4, table search based aided by our annotations offers
significantly higher precision than that of [6].

Several works have considered how to extract and manage data
tables found on the Web (e.g., [5, 11, 15]), but did not consider the

534

annotation or search problems. Gupta and Sarawagi considered how
to answer fact queries from lists on the Web [12]. In addition, there
has been a significant body of work considering how to rank tuples
within a single database in response to a keyword query [14]. The
distinguishing challenge in our context is the vast breadth of the
data and the fact that it is formatted on Web pages in very different
ways.

Downey et al. [10] proposed a theoretical model for measuring
the confidence of extractions from the Web. They proposed a com-
binatorial “urns” model that computes the probability that a single
extraction is correct based on sample size, redundancy, and corrobo-
ration from multiple extraction patterns. In contrast, we compute the
probabilistic distribution of semantic labels for columns in Web ta-
bles based on a set of cell values/pairs. Hence, one of the challenges
in our model is to provide smaller weights for missing extractions
when the entities they involve do not appear frequently on the Web.
The output of the “urns” model can be used as one of the inputs to
our model to infer the label distributions.

Existing methods for extracting classes of instances from the
Web require sets of instances that are each either unlabeled [18,
23, 29], or associated with a class label [1, 13, 21, 22, 30]. When
associated with a class label, the sets of instances may be organized
as flat sets or hierarchically, relative to existing hierarchies such as
WordNet [25, 26] or the category network within Wikipedia [24,
31]. To our knowledge, the isA database described in this paper is
larger than similar databases extracted from unstructured text. In
particular, the number of useful extracted class labels (e.g., class
labels associated with 10 instances or more) is at least one order
of magnitude larger than in the isA databases described in [27],
although those databases are extracted from document collections
of similar size, and using the same initial sets of extraction patterns
as in our experiments.

Previous work on automatically generating relevant labels, given
sets of items, focuses on scenarios where the items within the sets
to be labeled are descriptions of, or full-length documents within
document collections [8, 9, 28]. Relying on semi-structured con-
tent assembled and organized manually as part of the structure of
Wikipedia articles, such as article titles or categories, the method in-
troduced in [8] derives labels for clusters containing 100 full-length
documents each. In contrast, our method relies on isA relations
and binary relations automatically extracted from unstructured text
within arbitrary Web documents, and computes labels given textual
input that is orders of magnitude smaller, i.e., table columns.

6. CONCLUSIONS
We described algorithms for partially recovering the semantics

of tables on the Web. We explored an intriguing interplay between
structured and unstructured data on the Web, where we used text
on the Web to recover the semantics of structured data on the Web.
Since only the breadth of Web matches the breadth of structured
data on the Web, we are able to recover semantics effectively. In
addition, we give a detailed breakdown of when our techniques will
not work and how these limitations can be addressed.

In current work, we are investigating better techniques for open
information extraction in order to recover a larger fraction of binary
relationships and techniques for recovering numerical relationships
(e.g., population, GDP). The other major direction of research is
increasing our table corpus by extracting tables from lists [11] and
structured websites and PDF files.

7. REFERENCES
[1] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and

O. Etzioni. Open Information Extraction from the Web. In IJCAI,
pp 2670–2676, 2007.

[2] M. Banko and O. Etzioni. The Tradeoffs Between Open and
Traditional Relation Extraction. In ACL, pp. 28–36, 2008.

[3] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for
optimal margin classifiers. In COLT, pp. 144–152, 1992.

[4] T. Brants. TnT — A Statistical Part of Speech Tagger. In ANLP,
pp. 224–231, 2000.

[5] M. Cafarella, A. Halevy, and N. Khoussainova. Data Integration for
the Relational Web. PVLDB, 2(1):1090–1101, 2009.

[6] M. Cafarella, A. Halevy, D. Wang, E. Wu, and Y. Zhang. WebTables:
Exploring the Power of Tables on the Web. PVLDB, 1(1):538–549,
2008.

[7] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang.
Uncovering the Relational Web. In WebDB, 2008.

[8] D. Carmel, H. Roitman, and N. Zwerding. Enhancing Cluster
Labeling Using Wikipedia. In SIGIR, pp. 139–146, 2009.

[9] D. Cutting, D. Karger, and J. Pedersen. Constant Interaction-Time
Scatter/Gather Browsing of Very Large Document Collections. In
SIGIR, pp. 126–134, 1993.

[10] D. Downey, O. Etzioni, and S. Soderland. A Probabilistic Model of
Redundancy in Information Extraction. In IJCAI, pp. 1034–1041,
2005.

[11] H. Elmeleegy, J. Madhavan, and A. Halevy. Harvesting Relational
Tables from Lists on the Web. PVLDB, 2:1078–1089, 2009.

[12] R. Gupta and S. Sarawagi. Answering Table Augmentation Queries
from Unstructured Lists on the Web. PVLDB, 2(1):289–300, 2009.

[13] M. Hearst. Automatic Acquisition of Hyponyms from Large Text
Corpora. In COLING, pp. 539–545, 1992.

[14] P. Ipeirotis and A. Marian, editors. DBRank, 2010.
[15] Z. G. Ives, C. A. Knoblock, S. Minton, M. Jacob, P. P. Talukdar,

R. Tuchinda, J. L. Ambite, M. Muslea, and C. Gazen. Interactive Data
Integration through Smart Copy & Paste. In CIDR, 2009.

[16] N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper Induction for
Information Extraction. In IJCAI, pp. 729–737, 1997.

[17] G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating and
Searching Web Tables Using Entities, Types and Relationships. In
VLDB, pp. 1338–1347, 2010.

[18] D. Lin and X. Wu. Phrase Clustering for Discriminative Learning. In
ACL-IJCNLP, pp. 1030–1038, 2009.

[19] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
[20] M. Paşca. The Role of Queries in Ranking Labeled Instances

Extracted from Text. In COLING, pp. 955–962, 2010.
[21] M. Paşca and B. Van Durme. Weakly-Supervised Acquisition of

Open-Domain Classes and Class Attributes from Web Documents and
Query Logs. In ACL, pp. 19–27, 2008.

[22] P. Pantel and M. Pennacchiotti. Espresso: Leveraging Generic
Patterns for Automatically Harvesting Semantic Relations. In
COLING-ACL, pp. 113–120, 2006.

[23] M. Pennacchiotti and P. Pantel. Entity Extraction via Ensemble
Semantics. In EMNLP, pp. 238–247, 2009.

[24] S. Ponzetto and R. Navigli. Large-Scale Taxonomy Mapping for
Restructuring and Integrating Wikipedia. In IJCAI, pp. 2083–2088,
2009.

[25] R. Snow, D. Jurafsky, and A. Ng. Semantic Taxonomy Induction from
Heterogenous Evidence. In COLING-ACL, pp. 801–808, 2006.

[26] F. Suchanek, G. Kasneci, and G. Weikum. YAGO: a Core of Semantic
Knowledge Unifying WordNet and Wikipedia. In WWW, pp. 697–706,
2007.

[27] P. Talukdar, J. Reisinger, M. Paşca, D. Ravichandran, R. Bhagat, and
F. Pereira. Weakly-Supervised Acquisition of Labeled Class Instances
using Graph Random Walks. In EMNLP, pp. 582–590, 2008.

[28] P. Treeratpituk and J. Callan. Automatically Labeling Hierarchical
Clusters. In DGO, pp. 167–176, 2006.

[29] R. Wang and W. Cohen. Iterative Set Expansion of Named Entities
Using the Web. In ICDM, pp. 1091–1096, 2008.

[30] R. Wang and W. Cohen. Automatic Set Instance Extraction using the
Web. In ACL-IJCNLP, pp. 441–449, 2009.

[31] F. Wu and D. Weld. Automatically Refining the Wikipedia Infobox
Ontology. In WWW, pp. 635–644, 2008.

535

APPENDIX
A. TYPICAL CHALLENGES POSED BY TA-

BLES ON THE WEB
There are billions of HTML tables on the Web, but the vast major-

ity of them use the HTML table construct for formatting purposes.
Even if we consider only tables that contain high-quality data that
we would imagine storing in a database, it is still not the case that
they are all formatted as sets of rows and columns. The variation in
formatting is one of the key reasons that table search is hard. The fol-
lowing examples illustrate some of the typical challenges posed by
tables on the Web. At the core, the reasons all these challenges arise
is because tables on the Web are formatted for human consumption,
not machine consumption and that each table is constructed with a
different set of assumptions and context in mind.

Figure 3 shows a vertical table, where the table is transposed so
the column names are actually all in the first column of the table,
and the column to its right corresponds to a row. Such tables are
extremely common on the Web and differentiating between them
and ordinary tables can be very tricky.

Figure 4 shows a relatively well structured table. However, the
main challenge is to figure out what relation this table is represent-
ing. In this case, the table stores the winners of the men’s Boston
marathon, but that can only be gleaned by reading the text preced-
ing the table. There is no standard location where the table name
appears.

Figure 5 shows a table where some of the rows are sub-headers
for the rows following them. This is very common when tables
are formatted for human consumption (as they would be in spread-
sheets). One of the challenges raised by this practice is that the type
of the column may not be uniform because the sub-headers will not
be of the same type as the other rows, or that one of the rows may
be an aggregate of some of the rows preceding it.

The other main challenges concern the vast heterogeneity in at-
tribute names and the fact that they are often long and span multiple
rows at the top of the table. In addition, some tables have an impor-
tant selection condition that is not explicit in the table. For example,
we may have a table describing the coffee production of various
countries, but the fact that this is the production for the year 2006 is
only mentioned in the text.

B. DETAILS ON RECOVERING BINARY RE-
LATIONS

In this section, we provide additional details on the treatment of
binary relations.

TextRunner: TextRunner uses a Conditional Random Field (CRF)
for the detection of relations. First, it chunks all phrases in the
Web documents of the corpus and identifies noun phrases, which
are then treated as candidate entities of the extraction. The CRF
used takes into account a number of features, such as part-of-speech
tags (predicted using a separately trained maximum-entropy model),
regular expressions (e.g., detection of capitalization, punctuation),
context words and conjunctions of features occurring within six
words to the right or left of the current word. Using these features,
TextRunner makes a prediction about whether or not a relation has
been detected; if one has been detected, then a tuple is inserted into
the relations database. As an example, TextRunner is able to extract
the tuple (Microsoft, is headquartered in, Redmond) from the phrase
Microsoft is headquartered in beautiful Redmond.

The formal model for binary relations: A similar derivation ap-
plies for binary relations. Suppose, R = {r1, . . . , rn} is the set of

value pairs that occur in two columns A and B, and b1, . . . , bm is
the set of binary relations, then

B(bi, R) = Kb ×
∏
j

Pr [bi | rj]
Pr [bi]

, such that
∑
i

B(bi, R) = 1.

Each of the conditional probabilities Pr [bi | rj] and the prior
probability Pr [bi] are estimated using the relations database. The
score Score(bi, rj) in this case corresponds to the number of Tex-
tRunner extractions of the binary relation. Equations 3 and 4 can be

Figure 3: A vertical table: the column names appear in the first
column, and each other column corresponds to a database row.

Figure 4: The relation represented by the table appears in the
text surrounding the table.

Figure 5: Some of the rows in the table are sub-headers rather
than actual rows.

536

applied as is to estimate conditional and prior probabilities for the
binary relation labels.

Extensions to more than binary relations: Although we have
focused on binary relations until now, our model can be used for
unary, binary, or generally n-ary relation. The unary relation is
for example the assignment of a class label to the subject column,
the binary relation is for example the assignment of a TextRunner
predicate to a pair of columns (one of which is the subject column)
and so on.

Usefulness of binary relations in table search: During the table
search experiment, we focused on whether schema tokens contained
the property P of a (C,P) query. Another approach we could have
taken is to let P match on of the assigned binary relations also. We
observed for the 100 queries we evaluated, we would have retrieved
4% more tables if we had considered the assigned binary relations.

C. SUBJECT COLUMN DETECTION
Many tables on the Web provide the values of properties for a set

of instances (e.g., GDP of countries). In these tables we typically
have one column that stores the names of the instances. Our goal in
this section is to identify this column, which we refer to as subject
column. Before we describe our algorithm, we mention a few
caveats. First, the subject column need not be a key of the table and
may well contain duplicate values. Second, it is possible that the
subject of the table is represented by more than one column, and we
do not attempt to identify these cases (we also observed that they
are relatively very rare). Third, there are many tables that do not
have a subject column, and our algorithm will still assign one to
them. We will see later that assigning subject columns to tables that
do not really have them does not impede search quality.

We consider two algorithms. The first algorithm is based on
a simple rule: we scan the columns from left to right. The first
column that is not a number or a date is selected as the subject
column. The second algorithm is a bit more involved, and is based
on learning a classifier for subject columns using support vector
machines (SVM) [3].

We model subject detection as a binary classification problem.
For each column in a table, we compute features that are dependent
on the name and type of the column and the values in different
cells of the column. Given a set of labeled examples (i.e., tables
and their subject column), we train a classification model that uses
the computed features to predict if a column in a table is likely
to be subject column. Our algorithm takes care of overfitting, by
taking a small number of features into account. As we show in our
experiments, while even the simple rule-based approach achieves an
accuracy of 83%, we are able to improve that to 94% using our SVM.
While we could have experimented with other classifiers, SVMs are
generally believed to be more robust to overfitting. Further, SVMs
have been shown to work well even with unbalanced training data —
in our case, subject columns are far fewer than non-subject columns.

Very briefly, an SVM attempts to discover a plane that separates
the two classes of examples by the largest margin. A kernel function
is often applied to the features to learn a hyperplane that might be
non-linear in the original feature space. We used the radial basis
function in our experiments.

A subset of the 25 features we used can be seen in Table 4. While
we could have used any number of features that we could construct,
using all of them can result in overfitting. To avoid this, we used the
following process to identify a small subset of the features that is
likely to be sufficient in predicting the subject column. From our
training data, we measured the correlation of each of our features
with the labeled prediction (is the column a subject). The features

No. Feature Description
1 Fraction of cells with unique content
2 Fraction of cells with numeric content
3 Average number of letters in each cell
4 Average number of numeric tokens in each cell
5 Variance in the number of date tokens in each cell
6 Average number of data tokens in each cell
7 Average number of special characters in each cell
8 Average number of words in each cell
9 Column index from the left
10 Column index excluding numbers and dates

Table 4: Subset of the 25 features used in the classification of
columns

were then sorted in decreasing order of correlation. For each value
of k, we consider the top-k features (in order of correlation) and
trained the SVM classifier. We used n-fold cross validation, i.e.,
dividing the training set into n parts, and performing n runs where
for each run, we trained on (n − 1) parts and tested on one. We
measured accuracy as the fraction of predictions (subject or not) that
are correct for the columns in the test set.

 91

 92

 93

 94

 95

 96

 97

 0 5 10 15 20 25

C
ro

s
s
 v

a
lid

a
ti
o

n
a

c
c
u

ra
c
y
 r

a
te

 (
%

)

Dimension of the feature space

Figure 6: Cross validation accuracy rate.

Figure 6 shows the average cross-validation accuracy as we in-
crease the number of features k. As can be seen, there is not much
increase in accuracy for k > 5. At the same time, we also found that
the number of support vectors in the learned hypothesis decreases
for k ≤ 5 and then starts to increase (a sign of overfitting). Thus,
we can identify the set of 5 features that we then use in the rest of
our study.

The selected subset of 5 features are bold-faced in Table 4 (1, 2,
5, 8, 9). Not surprisingly, some of them coincide with the baseline
hand-crafted rule from our first algorithm.

The SVM classifier, when applied on a new table, can identify
more than one column to be the subject (since it is a binary classifier).
However, in practice there is typically only one subject column in
a table. Hence, we adapt the result of the SVM as follows. Rather
than simply using the sign of the SVM decision function, we instead
select the column that has the highest value for the decision function.

C.1 Identifying subject columns
We first tested the subject-detection algorithm on tables that were

known to have subjects. We manually labeled a set of 1,200 tables
from our corpus. The set of tables were separated into a training
set of 1,000 tables and a test set of 200 tables. The training set
included a total of 4,409 columns of which 1,028 were subject
columns. We used 4-fold cross validation to select the 5 most

537

Sample of Cells from Table Column Top Class Labels Assigned to Table Column
{Admiral Benbow Inn, Comfort Inn Destin, Country
Inn And Suites, Days Inn, Hampton Inn Destin,..}

[hotels, brands, hotel brands, hotel chains, franchises, chains]

{H, He, Ni, F, Mg, Al, Si, Ti, Ar, Mn, Fr, ..} [elements, trace elements, systems, metals, metal elements, metallic elements, heavy ele-
ments, additional elements, metal ions, ..]

{Rose Macaulay, Dorothy Sayers, Graham Greene,
Matthew Arnold, A.E. Housman, ..}

[authors, writers, figures, literary figures, poets, favorite authors, famous authors, famous
people, british authors, contemporaries, ..]

{Keil Software, Byte Craft Limited, BKR Software,
Razorcat, Infineon Technologies, ..}

[companies, semiconductor companies, customers, manufacturers, semiconductor manufac-
turers, technology companies, clients, vendors, suppliers, ..]

{256Mb, 512Mb, 1Gb, 2Gb, ..} [capacities, storage capacities, sizes, available capacities, memory configurations, memory
sizes, storage capacity memory cards, ipods, memory card storage capacities, data storage
capacities, drives, ..]

{Acute Otitis Media Infection, Bronchitis, Proteus Uri-
nary Tract Infection, Streptococcal Tonsillitis, ..}

[infections, common infections, bacterial infections, respiratory infections, respiratory
symptoms, acute respiratory infections, respiratory tract infections,..]

{Muscular-Skeletal, Digestion, Nervous, Circulation,
Respiration, Reproduction, Excretion, Symmetry, ..}

[systems, processes, physiological processes, biological processes, physiological systems,
organ systems, life processes, body systems, vital processes, physiologic processes, bodily
systems, factors, properties, metabolic processes, ..]

Table 5: Examples of ranked lists of class labels attached by run R10 to various table subject columns.

Class Name Property Names Class Name Property Names
presidents political party, birth amino acids mass, formula
antibiotics brand name, side effects apples producer, market share
asian countries gdp, currency australian universities acceptance rate, contact
infections treatment, incidence baseball teams colors, captain
beers taste, market share board games age, number of players
breakfast cereals manufacturer, sugar content broadway musicals lead role, director
browsers speed, memory requirements capitals country, attractions
cats life span, weight cereals nutritional value, manufacturer
cigarette brands market share, manufacturer clothes price, brand
constellations closest constellation, date discovered countries capital, gdp
laptops cpu, price diseases incidence, risks, mortality
dogs life span, weight dslr cameras price, megapixels
erp systems price, manufacturer eu countries year joined, currency
european cities population, country external drives capacity, manufacturer
extreme sports web sites, events food calories, type
football clubs year founded, city french speaking countries gdp, population
games age, platform google products launch date, reviews
greek cities location, main attractions guitars manufacturer, price
healthy food nutritional value, cost hormones effects
household chemicals strength, risks hurricanes location, date
inventors invention, birth irish counties population, area
jewish festivals date, origin lakes depth, altitude
law firms partners, address macintosh models cost, release date
maryland counties zip code, population mobile phones weight, operating system
movie stars income, awards names popularity
nba stars team

Table 6: Query set for the user study: Each query consists of a class name and a single property name.

relevant column features. Recall that our SVM algorithm always
assigns some subject column.

On the test set of 200 tables, we found that the simple hand-crafted
rule identified the subject column in 83% of the tables. Using the
SVM method we were able to identify the subject column in 94%
of the tables.

We then tested the subject detection algorithm on an arbitrary set
of tables. We collected a separate random sample of 160 tables, 63
of which had no subject columns. We found that of the 97 tables
that do have a subject column, we identify it correctly in 92 cases.
Thus, we achieve an overall precision of 92

160
= 0.58 and a recall of

92
97

= 0.95.
We note that the lower precision we incur by marking a subject

column in every table is not a significant penalty to the eventual
precision of table search. This is because the subject column is
exploited in the table search algorithm only if it is also assigned a
class label. If a column were not a true subject column, it is unlikely
to be assigned a class label. This is substantiated in our training data:

class labels were assigned for only one of the 68 (= 63+(97−92))
incorrectly marked subject columns, whereas labels were assigned
to 23 out of the 92 columns that were correctly identified.

C.2 Labeling subject columns
We assigned class labels to the subject columns of a set of tables

using the Majority algorithm with parameter t set to 10% (for details
see Section 4.1.1). Some examples of these assignments are shown
in Table 5.

D. FULL LIST OF QUERIES
The four approaches TABLE, DOCUMENT, GOOG, and GOOGR

were compared in Section 4.2 on a query set of 100 class-property
queries. The class names were extracted from an analysis of the
query logs of Google Squared. The property names were contributed
by the authors. Table 6 lists the complete set of class and property
names that were used in the comparison.

538

