
Entity Matching: How Similar Is Similar

Jiannan Wang # Guoliang Li # Jeffrey Xu Yu ∗ Jianhua Feng #

#Department of Computer Science, Tsinghua University, Beijing, China
∗Department of Systems Engineering and Engineering Management, Chinese University of Hong Kong, Hong Kong, China

wjn08@mails.tsinghua.edu.cn; {liguoliang,fengjh}@tsinghua.edu.cn; yu@se.cuhk.edu.hk

ABSTRACT

Entity matching that finds records referring to the same en-
tity is an important operation in data cleaning and integra-
tion. Existing studies usually use a given similarity function
to quantify the similarity of records, and focus on devising
index structures and algorithms for efficient entity matching.
However it is a big challenge to define “how similar is simi-
lar” for real applications, since it is rather hard to automat-
ically select appropriate similarity functions. In this paper
we attempt to address this problem. As there are a large
number of similarity functions, and even worse thresholds
may have infinite values, it is rather expensive to find appro-
priate similarity functions and thresholds. Fortunately, we
have an observation that different similarity functions and
thresholds have redundancy, and we have an opportunity to
prune inappropriate similarity functions. To this end, we
propose effective optimization techniques to eliminate such
redundancy, and devise efficient algorithms to find the best
similarity functions. The experimental results on both real
and synthetic datasets show that our method achieves high
accuracy and outperforms the baseline algorithms.

1. INTRODUCTION
In the fields of data cleaning and integration, entity match-

ing that identifies records referring to the same entity is an
important operation. This problem is also known as dupli-
cate detection, record linkage and merge/purge, and it has
been extensively studied by different communities such as
statistics, databases, and artificial intelligence (see [10] for a
recent survey). For example, Figure 1 gives a set of records
integrated from multiple sources. As there may have incon-
sistences in the data, we want to find the records that refer
to the same person from the data.

In statistics and artificial intelligence, existing studies for-
mulate this operation as a classification problem [12]. They
enumerate all record pairs, represent each record pair as a
feature vector, and classify these pairs as matching or non-
matching. While these methods typically have good accu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th ­ September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 10
Copyright 2011 VLDB Endowment 2150­8097/11/07... $ 10.00.

racy, they do not scale well for a large amount of data, since
they need to classify n2 feature vectors if there are n records.

In the database community, existing methods usually em-
ploy a rule-based method to find entities [7,11,13,14,18].
They define a set of record-matching rules to accommo-
date different representations of the same entity. Consider a
record-matching rule “if two records have similar name and
the same tel, they refer to the same entity” in Figure 1.
For instance, records r1 and r7 have similar names and the
same telephone numbers, they will be considered as the same
entity. Then they utilize these rules to find entities.

The rule-based method has the following problems.
Firstly, it is not straightforward to generate record-matching
rules, and Fan et al. [11] proposed to use schema information
to effectively generate record-matching rules, which may
contain exact-match conditions (e.g., tels are the same) and
approximate-match conditions (e.g., names are similar).
Secondly although it can be efficient to support exact-match
conditions, it is not straightforward to support approximate-
match conditions. To address this problem, existing meth-
ods [3,7] focus on devising effective index structures and al-
gorithms to efficiently support the approximate-match con-
ditions. Thirdly, it is a big challenge to define “how similar is
similar” for the approximate-match conditions. Traditional
methods [11,14] usually suppose a similarity function (e.g.,
Edit Similarity and Jaccard) is given to decide whether two
values are similar. However this method cannot be adapted
to different applications and it calls for a new method to au-
tomatically select appropriate similarity functions in record-
matching rules.

In this paper we address the third problem. Given a ta-
ble with a set of records and a set of record-matching rules
with unknown similarity functions and thresholds, we want
to identify the best similarity functions and thresholds for
effectively finding entities from the table. Note that it is
rather hard to find the best similarity functions by only us-
ing record-matching rules [6], since there could be larger
numbers of similarity functions and thresholds. To address
this problem, we suppose that users can provide a set of
positive examples (e.g., which records are known to be the
same entity) and negative examples (e.g., which records are
known to be not the same entity). We utilize these examples
to identify the best similarity functions.

This problem has the following challenges. Firstly there
are a large number of similarity functions, and even worse
thresholds may have infinite values. It is rather expensive
to find appropriate similarity functions and thresholds. Sec-
ondly, users may have different preferences (e.g., preferring

622

rid name tel email addr gender

r1 Jeffrey Yi 852 Jeff Room 567B, Computer Science Department, CUHK, HongKong Male
r2 Jeff Lee 852-333333 JeffLee@abc.com Room 123B, CS Dept., CUHK Female
r3 JeffreyYYu 852-222222 Jeffyx@mail.com Room 759B, Engineering Building, CUHK M.
r4 Yu Xu 852 Jeffyx@mail.com Room 759B, Engineering Building, CUHK Male
r5 Jeffrey Lee 852 Jeff Computer Science Department, CUHK F.
r6 Jeffery Yi 852-111111 Jeffyi@abc.com Room 567B, Computer Science Department, CUHK Male
r7 JeffreyYi 852 Jeffyi@abc.com Computer Science Building, CUHK, Room 567B M.
· · · · · · · · · · · · · · · · · ·

Positive-example set M : {rp1,6, rp1,7, rp2,5, rp3,4, rp6,7}
Negative-example set D : {rp1,2, rp1,3, rp1,4, rp1,5, rp2,3, rp2,4, rp2,6, rp2,7, rp3,5, rp3,6, rp3,7, rp4,5, rp4,6, rp4,7, rp5,6, rp5,7}

Figure 1: A sample data of relation R (RPi,j denotes the record pair (ri, rj)).

to a high recall or a high precision), and it is hard to devise
an adaptive algorithm for different preferences. Thirdly, as
there are large numbers of record-matching rules and exam-
ples, and different record-matching rules are not indepen-
dent, it is a big challenge to fully utilize these rules and
examples. Fortunately, we have an observation that dif-
ferent similarity functions and thresholds have redundancy,
and we have an opportunity to prune inappropriate similar-
ity functions. To this end, we propose effective optimization
techniques to eliminate such redundancy, and devise efficient
algorithms to find the best similarity functions and thresh-
olds. To summarize, we make the following contributions.
(1) We formalize the problem of similarity-function iden-
tification in record-matching rules for entity matching. (2)
We observe that different similarity functions and thresholds
have redundancy, and devise efficient techniques to eliminate
the redundancy. (3) We devise efficient algorithms to select
the best similarity functions and thresholds. (4) We have
conducted an extensive experiment study on both real and
synthetic data sets. The experimental result shows that our
algorithm achieves high accuracy and significantly outper-
forms the baseline algorithm.

Related Work. Entity Matching has been extensively
studied in different communities [5,6,7,9,11,12,13,14,16,18,
20,21,22]. In the artificial intelligence community, machine-
learning based techniques [5,9,20,21] usually learned a clas-
sifier (e.g., decision tree or SVM) from a given example set,
and used the classifier to classify each record pair as match-
ing or non-matching. However, these methods are rather
expensive since they need to enumerate n2 pairs. Although
some heuristic techniques (e.g., blocking [4] and canopy clus-
tering [19]) have been applied to filter “non-matching” pairs,
they are at expense of decreasing the accuracy. In addition,
these methods (e.g., SVM) usually employ black-box-based
techniques and the results are not explainable.

As an alternative, the rule-based method [6,7,11,13,14,18]
proposed from the database community has the advantages
that the algorithm scales well and the obtained results are
explainable. Typically, the rules can be specified based
on domain knowledge. Recently, Fan et al. [11] proposed
an effective algorithm for deducing record-matching rules
from a small set of matching dependencies. As early men-
tioned, to accommodate errors in data, the rules may con-
tain approximate-match conditions. However these methods
neglect the problem of selecting optimal similarity functions
and thresholds. It is challenging to select good similarity
functions and thresholds, and inappropriate selections will
lead to rather worse results (see Section 6.1). To address
this problem, Chaudhuri et al. [6] proposed an operator tree
for selecting similarity functions and thresholds. They mod-
eled record-matching rules as a tree structure with the root
node as a union operator, intermediate nodes as similarity-

(a) ARs
λi1 : (name , {fe, fg} , [0,1])
λe2 : (tel , f= , 1)
λe3 : (email , f= , 1)

λi4 : (addr , {fe, fj} , [0,1])
λe5 : (gender , f= , 1)

(b) RRs

φ1 λi1 ∧ λ
e
2

φ2 λe3 ∧ λ
i
4

φ3 λi1 ∧ λ
i
4 ∧ λ

e
5

Figure 2: Attribute-matching rules and record-
matching rules (“f=” denotes exact matching).

join operators and leaf nodes as relations. They identified
the best operator tree based on a given set of positive and
negative examples. However the method is rather inefficient
for large numbers of similarity functions, since it does not
consider the redundancy among similarity functions.

There were also many studies on similarity functions [17].

2. PROBLEM FORMULATION
Let R[a1, a2, · · · , an] be a relation with a set of attributes

ai (i ∈ [1, n]). Let r be a record in R and r[a] be the value
of the attribute a in record r. Given two records r and
r′, a similarity function f(r[a], r′[a]) computes a similarity
score in [0, 1]. A larger score indicates r[a] and r′[a] have
a higher similarity. As an example, we consider the follow-
ing three similarity functions. (1) Edit Similarity fe. The
edit similarity between two strings s1 and s2 is defined as

1 − ed(s1,s2)
max(|s1|,|s2|)

, where ed(s1, s2) is the edit distance be-

tween s1 and s2, and |s1|(|s2|) is the length of string s1(s2).
For example, given s1 = “Jeffrey Yi” and s2 = “Jeffery Yi”.
fe(s1, s2) = 1 − 2

10
= 0.8. (2) Jaccard Similarity fj . Given

two strings s1 and s2, we first tokenize them into two to-
ken sets token(s1) and token(s2). Their jaccard similarity

is |token(s1)∩token(s2)|
|token(s1)∪token(s2)|

. For example, token(s1)={Jeffrey,Yi }

and token(s2)={Jeffery, Yi }. fj(s1, s2) = 1
3
. (3) Gram-

based Similarity fg. Given two strings s1 and s2, we first
generate their gram sets gram(s1) and gram(s2), where a
q-gram is a substring with length q. For example, gram(s1)
= {“Je”, “ef”, “ff”, “fr”, “re”, “ey”, “y ”, “ Y”, “Yi”} (q = 2
in all running examples). The gram similarity is defined as
|gram(s1)∩gram(s2)|
|gram(s1)∪gram(s2)|

. For example, fg(s1, s2)=
6
12
.

In order to decide whether two records r and r′ in R refer
to the same entity, we employ a matching-rule-based scheme
to define their similarity. We below introduce a concept,
“explicit attribute-matching rule.”

Definition 1. An explicit attribute-matching rule
(eAR) is a triple λe(a, f, θ), where a is an attribute name,
f is a similarity function, and θ is a threshold. r[a] and
r′[a] are considered to be the same, if f(r[a], r′[a]) ≥ θ. We
use (r[a], r′[a]) � λe to denote that r[a] and r′[a] satisfy λe,
(r[a], r′[a]) 2 λe to denote that r[a] and r′[a] dissatisfy λe.

The explicit attribute-matching rule includes an explicit
similarity function and a threshold. We can use them to eas-

623

ily deduce whether two attribute values refer to the same en-
tity. However in most cases users do not know how to define
the similarly functions and how to determine the appropriate
thresholds. Users may want to provide multiple similarity
functions and a threshold range in the attribute-matching
rule, and the system can find the best similarity function and
a threshold in the range. We call such attribute-matching
rules “implicit attribute-matching rules,” defined as follows.

Definition 2. An implicit attribute-matching rule
(iAR) is a triple λi(a,F ,Θ), where a is an attribute name,
F = {f1, f2, · · · } is a set of similarity functions, and Θ is a
range. r[a] and r′[a] are considered to be the same if there
exists a similarity function f ∈ F and f(r[a], r′[a]) ≥ θ
where θ is the lower bound of Θ.

Given an iAR (a,F ,Θ) and an eAR (a, f, θ), the eAR is an
instance of the iAR (or iAR is a generalization of the eAR)
if f ∈ F and θ ∈ Θ. We can generate many instances of
the iAR by enumerating the similarity functions in F and
selecting a threshold in the threshold range.

For example, Figure 2(a) gives 2 iARs and 3 eARs. λi1 and
λi4 are iARs. λe2, λ

e
3, and λ

e
5 are eARs. λe : (name, fe, 0.8) is

an instance of λi1. We use “f=” to denote exact matching,
that is r[a] are similar to r′[a] if and only if r[a] = r′[a].

Based on these two concepts, we can define the concept
of “record-matching rule (RR)”.

Definition 3. A record-matching rule (RR) is a set of
(explicit or implicit) attribute-matching rules, denoted by

φ =
∧k

i=1 λi. A record pair (r, r′) satisfies the record-
matching rule, denoted by (r, r′) � φ, if (r[a], r′[a]) satisfies
every attribute-matching rule λi for 1 ≤ i ≤ k. We also use
(r, r′) 2 φ to denote that (r, r′) dissatisfies φ.

A record-matching rule φ =
∧k

i=1 λi is called an ex-
plicit record-matching rule (eRR) if every λi is an explicit
attribute-matching rule for 1 ≤ i ≤ k; otherwise it is called
an implicit record-matching rule (iRR). For examples, Fig-
ure 2(b) shows 3 iRRs. Consider φ1 = λi1∧λ

e
2 which indicates

that two records refer to the same entity if two records have
the similar names (where users want to select a similarity
function from fe and fg , and the threshold can be any value
in [0, 1]) and the same telephone number. To help readers
better understand, we summarizes the notations used in this
paper in Appendix A.

Traditional methods usually use explicit record-matching
rules to quantify similarity of records. In this paper, we
employ implicit record-matching rules to quantify the sim-
ilarity and study how to select the best instances (eRRs)
from a given set of iRRs. Note that iRRs can be gotten using
existing methods, such as the schema-based methods [11].

Next we discuss how to evaluate the quality of an instance
eRR. To address this problem, we suppose that users can
give a set of examples, denoted by E, including positive ex-
amples, e.g., which records are known to be the same entity,
denoted by M , and negative examples, e.g., which records
are known to be not the same entity, denoted by D. Obvi-
ously M ∪D = E and M ∩D = ∅.

Consider a set of eRRs Ψ. Given an eRR, ψ ∈ Ψ, let
Mψ = {(r, r′)|(r, r′) ∈ E, (r, r′) � ψ} be the set of record
pairs generated by ψ (record pairs that satisfy ψ). Let
MΨ =

⋃

ψ∈ΨMψ be the set of record pairs generated by Ψ.

Ideally, we hope thatMΨ is exactly equal toM . However, in
reality MΨ may contain negative record pairs. To evaluate

the quality of Ψ, in this paper we focus on a general case
of objective functions ̥(Ψ,M,D): the larger |MΨ ∩ M |,
the larger ̥(Ψ,M,D); the smaller |MΨ ∩ D|, the larger
̥(Ψ,M,D). Many functions belong to this general class.
For example, the well-know F-measure function in informa-
tion retrieval is a general objective function 2

1
p
+ 1

r

, where

p = |MΨ∩M|

|MΨ∩M|+|MΨ∩D|
is the precision, and r = |MΨ∩M|

|M|
is

the recall. Users can tune the weights of precision or recall
to select their preferences: preferring to recall or precision.

Now we are ready to formalize the problem of similarity
f unction identification in implicit record-matching rules for
effective entity matching (called SiFi).

Definition 4. Given a set of RRs Φ, a set of positive
examples M , and a set of negative examples D, SiFi finds a
set of instances (eRRs) Ψ from Φ to maximize a pre-defined
objective function ̥(Ψ,M,D).

Consider the relation R in Figure 1. The positive-example
set M = {rp1,6,rp1,7, · · · } contains five record pairs and
the negative-example set D = {rp1,2,rp1,3, · · · } contains
16 record pairs. Given a set of RRs in Figure 2, suppose
the user-defined objective function is F-measure. SiFi finds
a set Ψ of eRRs to maximize F-measure. Suppose we choose
the similarity function fe and the threshold 0.7 for λi1, and
choose the similarity function fj and the threshold 0.8 for λi4.
Then the set of eRRs is Ψ = {λe1 ∧λ

e
2, λ

e
3 ∧λ

e
4, λ

e
1 ∧λ

e
4 ∧λ

e
5}

where λe1 = (name, fe, 0.7) and λe4 = (addr, fj , 0.8). Since
fe(r1[name], r7[name]) = 0.9 ≥ 0.7 and r1[tel] = r7[tel],
the record pair rp1,7 satisfies λe1 ∧ λe2. Similarly, we can
also verify rp1,5 � λe1 ∧ λe2, rp3,4 � λe3 ∧ λe4 and rp1,6 �

λe1 ∧ λe4 ∧ λe5. Therefore, MΨ = {rp1,7,rp1,5,rp3,4, rp1,6}
where three record pairs rp1,7, rp3,4 and rp1,6 are in M ,
and one record pair rp1,5 is in D. The precision is p =

|MΨ∩M|

|MΨ∩M|+|MΨ∩D|
= 3

3+1
and the recall is r = |MΨ∩M|

|M|
= 3

5
.

The objective-function value of Ψ is 2
1
p
+ 1

r

= 2
4
3
+ 5

3

= 2
3
. This

value may not be the maximum one. In this paper we study
how to efficiently find the best Ψ to maximize the value.

3. FROM INFINITE THRESHOLDS TO FI­

NITE THRESHOLDS
A naive method to address SiFi problem is to enumer-

ate all possible eRRs and select the best eRRs to maximize
the objective function. However, as an iAR may contain
a threshold range, there are infinite values. For example in
Figure 2, we can get many eRRs from λi1∧λ

e
2 as there are in-

finite values in the threshold range of λi1 (Θ = [0, 1]). As we
are only interested in those eRRs which can maximize the
objective function, we want to generate finite eRRs which
can also maximize the objective function.

Consider λi(a,F ,Θ) and its two instances, λe1(a, f, θ1) and
λe2(a, f, θ2). Without loss of generality, suppose θ1 < θ2.
Obviously the set of examples that satisfy λe2 is a subset of
that of λe1, that is, Mλe2

⊆ Mλe1
(where Mλe denotes the

record pairs that satisfy λe). If there is no positive example
in Mλe1

−Mλe2
, for any iRRs that contain λi, we will not use

the eRRs with λe1 since they cannot get a better objective
value than those with λe2. The following Theorem shows the
correctness of this idea (all the proofs are in Appendix B).

Theorem 1. Consider a set of RRs Φ, a set of positive
examples M , a set of negative examples D, and an objective

624

Table 1: Similarity for iAR λi1 : (name, {fe, fg}, [0, 1]).
rid pairs fe fg rid pairs fe fg rid pairs fe fg

rp1,2 0.4 0.23 rp2,4 0.13 0 rp3,7 0.8 0.78
rp1,3 0.8 0.55 rp2,5 0.73 0.55 rp4,5 0.09 0
rp1,4 0.1 0 rp2,6 0.4 0.23 rp4,6 0.1 0
rp1,5 0.73 0.58 rp2,7 0.44 0.25 rp4,7 0 0
rp1,6 0.8 0.5 rp3,4 0.1 0.09 rp5,6 0.55 0.27
rp1,7 0.9 0.7 rp3,5 0.64 0.5 rp5,7 0.64 0.5
rp2,3 0.4 0.25 rp3,6 0.6 0.21 rp6,7 0.7 0.31

function ̥(Ψ,M,D). Consider an iRR in Φ which contains
an iAR λi : (a,F ,Θ), and two instances of λi, λe1 : (a, f, θ1)
and λe2(a, f, θ2). Suppose Ψ1 is an eRR set, Ψ2 is another
eRR set transformed from Ψ1 by replacing λe1 in Ψ1 with λe2.
If θ1 < θ2 and there is no positive example in Mλe1

−Mλe2
,

we have ̥(Ψ1,M,D) ≤ ̥(Ψ2,M,D).

Based on Theorem 1, we have an observation that a
large number of eRRs can be pruned since they cannot
provide a better objective value. For example, consider
an iAR λi1 : (name, {fe, fg}, [0, 1]) in Figure 2. It has
two similarity functions, edit similarity fe and gram-based
similarity fg. Table 1 shows fe(r[name], r

′[name]) and
fg(r[name], r

′[name]) of each record pair (r, r′) in E. The
positive examples are marked by the gray background color
(e.g. rp1,6). Consider two eARs λe1 : (a, fe, 0.6) and
λe2 : (a, fe, 0.7), Mλe1

= {rp1,3, rp1,5, rp1,6, rp1,7, rp2,5,

rp3,5, rp3,6, rp3,7, rp5,7, rp6,7}, Mλe2
= {rp1,3, rp1,5,

rp1,6, rp1,7, rp2,5, rp3,7, rp6,7}, Mλe1
−Mλe2

={rp3,5, rp3,6,

rp5,7}. As there is no positive example in Mλe1
−Mλe2

, we
can prune λe1.

Using this idea, we can generate a finite set of eARs, and
take them as a candidate eAR set, which can maximize the
object function. Given an iAR λi : (a,F ,Θ), we construct a
finite candidate eAR set of λi, denoted by P(λi), as follows.
For each similarity function f ∈ F , we add λe : (a, f, θmax)
into P(λi) where θmax is the upper bound of Θ (as it cannot
be pruned due to it is the maximal value); for each positive
example (r, r′), we compute θ = f(r[a], r′[a]), if θ ∈ Θ, we
add λe : (a, f, θ) into P(λi). For all other thresholds we can
prune them as proved in Corollary 1.

Corollary 1. Given an iAR λi : (a,F ,Θ) and a set of
positive examples M , we can use the candidate eAR set P(λi)
to generate the best eRR set.

Example 1. Consider the relation in Figure 1. We
show how the algorithm computes P(λi1) for λi1 :
(name, {fe, fg}, [0, 1]). Firstly, for fe and fg we add
two eRRs with the threshold θmax = 1 into P(λi1) =
{(name, fe, 1), (name, fg, 1)}. Then we enumerate each
record pair in M : {rp1,6,rp1,7,rp2,5, rp3,4,rp6,7}. For the
first record pair rp1,6, we compute the similarity fe(“Jeffrey
Yi”, “Jeffery Yi”) = 0.8 and fg(“Jeffrey Yi”, “Jeffery Yi”)
= 0.5 as shown in Table 1, and then add (name, fe, 0.8)
and (name, fg, 0.5) into P(λi1). We repeat these steps for
the rest of record pairs in M . Finally, we get P(λi1) with 12
eARs as shown in Table 2.

4. ELIMINATING REDUNDANCY
The size of candidate eAR set generated in Section 3 may

be quite large. In this section, we show that a large number
of eARs, called redundant eARs, can not lead to an optimal
objective-function value. In other words, we can eliminate
such redundancy to reduce the size of candidate eAR set.

Table 2: Candidate eAR Set of λi1: (name, {fe, fg}, [0, 1]).
λe1 (name,fe, 1) λe7 (name,fg, 1)
λe2 (name,fe, 0.9) λe8 (name,fg, 0.7)
λe3 (name,fe, 0.8) λe9 (name,fg, 0.55)
λe4 (name,fe, 0.73) λe10 (name,fg, 0.5)
λe5 (name,fe, 0.7) λe11 (name,fg, 0.31)
λe6 (name,fe, 0.1) λe12 (name,fg, 0.09)

Given a candidate eAR set P(λi), we first divide it into |F|
groups, where |F| is the size of λi’s similarity function set
F . Let Gf denote a group of candidate eARs in P(λi) whose
similarity function is f . For simplicity, in one group we say
λe1 > λe2 iff λe1 has a larger threshold than λe2. λ

e is maximal
(minimal) means it has the maximal (minimal) threshold.
For example, in Table 2 λi1 has two similarity functions.
P(λi1) is divided into two groups Gfe = {λe1, λ

e
2, · · · , λ

e
6} and

Gfg = {λe7, λ
e
8, · · · , λ

e
12}. We say λe3 > λe4 since the threshold

of λe3 (0.8) is larger than that of λe4 (0.73). Note that we can-
not say λe3 > λe9 since they are not in the same group. We
observe that in each group there may exist threshold redun-
dancy (Section 4.1), and between two different groups there
may exist similarity-function redundancy (Section 4.2).

4.1 Threshold Redundancy
Given an iAR λi : (a,F ,Θ), there may be still many eARs

of λi in P(λi), we can remove some of them based on the
following observation. Consider two eARs λe1 : (a, f, θ1) and
λe2 : (a, f, θ2) in P(λi). Suppose θ1 > θ2, then Mλe1

⊂ Mλe2

(If Mλe1
= Mλe2

, λe2 will be removed based on Theorem 1).

Obviously, λe1 and λe2 generate the same record pairs Mλe1
,

and λe2 can identify more record pairs Mλe2
−Mλe1

. If these

pairs are all positive examples, that is Mλe2
−Mλe1

⊆ M ,
then λe2 will be better than λe1. We say λe1 is redundant
w.r.t λe2. The correctness is proved in Theorem 2.

Theorem 2. Given a candidate eAR set P(λi) and a set
M of positive examples, λe1 : (a, f, θ1) ∈ P(λi) is redundant
w.r.t λe2 : (a, f, θ2) ∈ P(λi) if Mλe2

−Mλe1
⊆M and θ1 > θ2.

A simple algorithm to detect such redundancy is to enu-
merate |F| · |Gf | candidate eARs, and takes O

(

|Gf | · |E|
)

to verify the redundancy of each candidate. The algorithm
needsO

(

|F|·|Gf |
2·|E|

)

time. Next we propose an efficient al-

gorithm that reduces the time complexity to O
(

|F|·|K|·|E|
)

where |K| = log(|F| · |Gf |) (See analysis in Appendix C).
We use a compressed inverted index CIX to detect thresh-

old redundancy. An inverted index over P(λi) maps each
λe ∈ P(λi) to a list of record pairs that satisfy λe (i.e.
Mλe). We can compress the inverted index since if λe1 > λe2,

Mλe1
⊆Mλe2

. Suppose λe1 is the maximal eAR and λe2 is the

second maximal eAR in P(λi1). The compressed inverted list
CIX(λe2) of λ

e
2 only stores the record pairs inMλe2

−Mλe1
. It-

eratively we construct the compressed inverted index for all
eARs. Figure 3 shows the compressed inverted index over the
two groups of P(λi1). For example, CIX(λe3) =Mλe3

−Mλe2

= {rp1,6, rp1,3, rp3,7}. We partition CIX into two lists:
CIXM (λe) and CIXD(λ

e), which respectively denote the
positive and the negative record pairs in CIX(λe). For ex-
ample, CIXM (λe3) = {rp1,6} and CIXD(λ

e
3) = {rp1,3,rp3,7}.

Recall Theorem 2, to verify whether λe1 is redundant, we
need to check Mλe2

−Mλe1
⊆ M for every λe2 ∈ P(λi) that

is smaller than λe1. However, note that we only need to
check the maximal eAR λe2 such that λe2 < λe1, since if λe1

625

Candidate eARs
Compressed Inverted List

M D

λe1 - -
λe2 rp1,7 -
λe3 rp1,6 rp1,3,rp3,7
λe4 rp2,5 rp1,5

λe5 rp6,7 -

λe6 rp3,4
rp1,2,rp1,4,rp2,3,rp2,4,rp2,6,rp2,7,
rp3,5,rp3,6,rp4,6,rp5,6,rp5,7

λe7 - -
λe8 rp1,7 rp3,7

λe9 rp2,5 rp1,3,rp1,5
λe10 rp1,6 rp3,5,rp5,7
λe11 rp6,7 -
λe12 rp3,4 rp1,2,rp2,3,rp2,6,rp2,7,rp3,6,rp5,6

Figure 3: A compressed inverted index for P(λi1).

is not redundant w.r.t λe2 (i.e. Mλe2
− Mλe1

* M), then

for any smaller eAR λe3 < λe2, we have Mλe2
⊆ Mλe3

, thus

Mλe3
−Mλe1

* M . To check whether Mλe2
−Mλe1

⊆ M , we
can use the compressed inverted index to verify this condi-
tion. Since CIX(λe2) = Mλe2

−Mλe1
, we only need to check

the condition CIX(λe2) ⊆ M , that is whether CIXD(λ
e
2) is

empty. For example, consider the compressed inverted in-
dex in Figure 3. We can see λe1, λ

e
4, λ

e
10 are redundant since

CIXD(λ
e
2), CIXD(λ

e
5), CIXD(λ

e
11) are empty, respectively.

4.2 Similarity­Function Redundancy
In this section, we study redundancy among different sim-

ilarity functions. We observe that 1) Similarity functions
tend to return a higher score to a similar pair and a lower
score to a dissimilar pair, and they may give nearly the same
scores for some similar pairs; 2) Similarity functions may
share a common inherent coherence. For example, consider
some token-based similarity functions such as Jaccard and
Cosine. They all share an inherent coherence: if two strings
share many tokens, any token-based similarity functions will
return a higher value [7]. Based on these observations, we
discuss how to find redundancy among similarity functions.

Consider two eARs λe1 : (a, f1, θ1) and λe2 : (a, f2, θ2) in
P(λi) where f1 6= f2. We first consider a special case such
that, for each record pair, λe1 and λe2 always generate the
same record pairs, i.e. Mλe1

= Mλe2
. From the viewpoint of

RR set, they have no difference and we can only keep one of
them. To make this observation more general, we find that
1) for each positive pair (r, r′) (i.e. (r, r′) ∈ M), if λe1 takes
this pair as similar, λe2 will also takes it as similar, and 2)
for each negative pair (r, r′) (i.e. (r, r′) ∈ D), if λe1 takes
this pair as dissimilar, λe2 will also takes it as dissimilar,
then λe1 is redundant w.r.t λe2 since it can not lead to a
better objective value than λe2. The first statement implies
Mλe1

∩M ⊆Mλe2
∩M , and the second statement is equivalent

to Mλe1
∩D ⊇Mλe2

∩D. Theorem 3 shows the correctness.

Theorem 3. Given a candidate eAR set P(λi), a set M
of positive examples and a set D of negative examples, λe1 :
(a, f1, θ1) ∈ P(λi) is redundant w.r.t λe2 : (a, f2, θ2) ∈ P(λi)
if Mλe1

∩M ⊆Mλe2
∩M and Mλe1

∩D ⊇Mλe2
∩D.

A simple algorithm to detect such redundancy is to enu-
merate |P(λi)| candidate eARs, and takes O

(

|P(λi)| · |E|
)

to verify the redundancy of each candidate. The algorithm
needs O

(

|P(λi)|2 · |E|
)

time. It is expensive since |P(λi)|
may be quite large. Next we propose an efficient algorithm
that reduces the time complexity to O

(

|F| · |K| · |E|
)

where

|K| = min
(

|F|, log(|P(λi)|)
)

(See analysis in Appendix C).

is redundant w.r.t

:(name, fe , 0.73)

:(name, fg , 0.55)

:(name, fg , 0.5) ①

②

③

≥

e
10λ

e
4λ

e
9λ

fe
G

fg
G

e
10λ

feG

...
...

...

...
...

Figure 4: Verify similarity-function redundancy.

The basic idea is as follows. Consider two groups Gf1 , Gf2
with similarity functions f1, f2. Since similarity-function re-
dundancy exists between two different groups, we only need
to study how to detect redundant eARs in Gf1 w.r.t Gf2 .
Consider an eAR λe1 ∈ Gf1 . Next we show for each eAR

λe1 ∈ Gf1 we only need O(1) time to verify whether λe1 is
redundant w.r.t Gf2 . Let λeM be the maximal eAR in Gf2
such that Mλe1

∩M ⊆Mλe
M

∩M . For other eARs λe ∈ Gf2 ,

if λe > λeM , since λeM is maximal, Mλe1
∩M * Mλe ∩M ; if

λe ≤ λeM , then Mλe
M

⊆ Mλe , thus Mλe1
∩M ⊆ Mλe ∩M .

Therefore, to validate whether λe1 is redundant w.r.t Gf2 ,
we only need to check if there exists an eAR λe in C =
{λe ∈ Gf2 |λ

e ≤ λeM} such that Mλe1
∩D ⊇Mλe ∩D. Since

λeM is the maximal eAR in C, we haveMλe
M

∩D ⊆Mλe ∩D

for other λe in C, thus we only need to check Mλe1
∩ D ⊇

Mλe
M

∩ D. Let λeD be the maximal eAR in Gf1 such that

Mλe
D

∩ D ⊇ Mλe
M

∩ D. If λe1 > λeD, since λ
e
D is maximal,

Mλe1
∩ D + Mλe

M
∩ D; if λe1 ≤ λeD, since Mλe1

⊇ Mλe
D
,

Mλe1
∩ D ⊇ Mλe

M
∩ D. Therefore, λe1 is redundant w.r.t

Gf2 if and only if λe1 ≤ λeD. Note that we can pre-compute
λeM and λeD, and store them into two tables in advance (See
details in Appendix D). Then given λe, we can get λeM and
λeD with O(1) time. Example 2 shows how this idea works.

Example 2. In Figure 4, consider λe10 : (name, fg , 0.5)
in Gfg . We want to check whether λe10 is redundant w.r.t Gfe .

Firstly, we find the maximal λeM in Gfe such that Mλe10
∩

M ⊆Mλe
M

∩ M . From Table 1, we can compute Mλe10
∩ M

= {rp1,6, rp1,7, rp2,5}. Since Mλe10
∩ M ⊆Mλe4

∩ M =

{rp1,6, rp1,7, rp2,5} andMλe10
∩ M * Mλe3

∩ M = {rp1,6,
rp1,7}, the maximal λeM is λe4:(name, fe, 0.73). Secondly, we
find the maximal λeD in Gfg such thatMλe4

∩ D ⊆Mλe
D

∩ D.

From Table 1, we can compute Mλe4
∩ D = {rp1,3, rp1,5,

rp3,7}. Since Mλe4
∩ D ⊆ Mλe9

∩ D = {rp1,3, rp1,5,

rp3,7} and Mλe4
∩ D * Mλe8

∩ M = {rp1,3}, the maximal
λeD is λe9 : (name, fg, 0.55). Thirdly, we compare λe10 with
λe9. Since λe10 ≤ λe9, λ

e
10 is redundant w.r.t Gfe .

Eliminating Redundancy: Our method has two salient
features. (1) Eliminating threshold redundancy has no effect
on similarity-function redundancy. Therefore, for a candi-

date eAR set, we can first eliminate its threshold redundancy,
then eliminate its similarity-function redundancy. (2) The
eliminating order of function redundancy and threshold re-
dundancy will not change the final results. That is we get
the same results for the two cases (a) eliminating function
redundancy first and then threshold redundancy; and (b)
eliminating threshold redundancy first and then function re-
dundancy. (Appendix E shows the correctness).

5. ALGORITHMS FOR SiFi PROBLEM
A brute-force algorithm to solve the SiFi problem is to

first enumerate all candidates and then select the one with

626

the maximal value as follows. Given a set of RRs Φ, we
first generate P(λi) for each iAR λi in Φ and reduce P(λi)
to Pn(λi) by eliminating redundancy. Then we enumer-
ate all the combinations of eRRs and the number of candi-
dates is

∏

λi∈Φ |Pn(λi)|. For each candidate, we compute its

objective-function value, and select the one with the max-
imal value. However as there are large numbers of candi-
dates, this method is very expensive. Suppose there are 6
RRs, each RR contains 2 iARs, and there are 5 functions and
10 possible thresholds. Then there will be 5012 candidates.

In addition, the SiFi problem is NP -hard as formalized in
Theorem 4, which can be proved using a reduction from the
maximum-coverage problem [15]. We propose three heuris-
tic algorithms SiFi-Greedy, SiFi-Gradient and SiFi-Hill.

Theorem 4. The SiFi problem is NP -hard.

SiFi-Greedy: We propose SiFi-Greedy inspired by the greedy
algorithm for maximum-coverage problem [15]. Intuitively,
for a given set Φ of RRs, SiFi-Greedy picks the best iAR in
Φ at each time and terminates until all the iARs are picked.
Specifically, the algorithm first evaluates the quality of each
iAR in Φ based on the example set E, and then picks the iAR
with the highest quality, denoted by λimax. Next it updates
Φ by changing λimax to the eAR with the highest quality
in Pn(λimax), and updates the example set E by removing
the examples that satisfy the eRRs in Φ. The algorithm
terminates when there is no iAR in Φ. The quality of an
eAR λe w.r.t E =M ∪D is defined as Q(λe) = ̥(λe,M,D)
where ̥ is the same objective function used to quantity
eRRs (λe is taken as a special eRR with a single eAR). For
an iAR λi, since any eAR in Pn(λi) can become its instance,
we define its quality Q(λi) as the maximum of Q(λe) for
λe ∈ Pn(λi). Example 3 shows how SiFi-Greedy works.

Example 3. Suppose the objective function ̥(Ψ,M,D) =
|MΨ ∩M | − 0.5 · |MΨ ∩D|. In our running example, there
are two iARs λi1 and λi4, thus SiFi-Greedy needs two steps.
At the first step, we first compute the quality of λi1 and λi4.
For λi1, we obtain Pn(λi1) = {λe2, λ

e
3, λ

e
5, λ

e
12} after elimi-

nating redundancy from the candidate eAR set in Table 2.
As only rp1,7 satisfies λe2, Mλe2

= {rp1,7}. As rp1,7 is

in M , Mλe2
∩ M = {rp1,7} and Mλe2

∩ D = {}. There-

fore, Q(λe2) = |Mλe2
∩M | − 0.5 · |Mλe2

∩D| = 1. Similarly,
Q(λe3) = 1, Q(λe5) = 2.5 and Q(λe12) = 0.5. Since Q(λe5)
is maximum, Q(λi1) = 2.5. Using the same method, we can
compute Q(λi4) = 3.5. As Q(λi4) > Q(λi1), λ

i
max = λi4. Let

λe
′

4 denote the eAR with the highest quality in Pn(λi4). Thus,

λe
′

4 is the instance of λi4. We update Φ by changing λi4 to

λe
′

4 , and update the example set by removing the examples

that satisfy the eRRs in Φ, i.e. λe3 ∧ λ
e′

4 . At the second step,
based on the new example set, we recompute Q(λi1) and up-
date Φ by changing λi1 to the eAR with the highest quality in
Pn(λi1). Finally, we obtain the instances of λi1 and λi4.

SiFi-Gradient: The major problem of SiFi-Greedy is that
iARs are optimized independently, and the interaction among
different iARs is neglected. For example, in Figure 2, due
to the occurrence of both λi1 and λi4 in φ3, the best in-
stance of λi1 may change for different instances of λi4, and
vice versa. To address this problem, we devise an iterative
algorithm, namely SiFi-Gradient, which is based on the idea
of gradient descent. Intuitively, SiFi-Gradient iteratively ad-
justs the instances of iARs for reaching a higher objective

value. Initially, given a set Φ of RRs, for each λi ∈ Φ,
the algorithm takes λe ∈ Pn(λi) with the highest Q(λe) as
λi’s instance, and computes the objective value of the cor-
responding eRRs. At each iteration, the algorithm changes
the instance of each iAR to one of its neighbors which results
in the largest objective value. SiFi-Gradient terminates the
iteration when the objective value can not be larger. Con-
sider the instance λe : (a, f, θ) of an iAR λi. Intuitively,
the neighbors of λe consists of eARs whose thresholds are
close to θ. Formally, we say λe1 : (a, f1, θ1) is λe’s neigh-
bor if and only if λe1 ∈ Pn(λi) and there does not exist
λe2 : (a, f1, θ2) ∈ Pn(λi) such that θ2 ∈ (θ, θ1) or θ2 ∈ (θ1, θ).
Example 4 shows how SiFi-Gradient works.

Example 4. Recall Example 3, λe5 and λe
′

4 are the eARs

with the highest quality in Pn(λi1) and Pn(λi4), respectively.

Initially, SiFi-Gradient takes λe5 as λi1’s instance and λe
′

4

as λi4’s instance, and computes the corresponding objective
value, denoted as op. Next we iteratively adjust instances of
λi1 and λi4. Consider the current instance λ

e
5 : (name, fe, 0.7)

of λi1. We first identify the neighbors of λe5 from Pn(λi1) =
{λe2, λ

e
3, λ

e
5, λ

e
12}. We can see λe3 is a neighbor of λe5 since

for other eARs with the same similarity function as λe3, i.e.
λe2 : (name, fe, 0.9), the threshold of λe2 is 0.9 /∈ (0.7, 0.8).
Similarly, we can identify another neighbor λe12. We change
λe5 to one of its neighbors, λe3 or λe12 and choose the neigh-
bor, which can result in the largest objective value, as the
new instance of λi1. Using the similar method, we can iden-

tify a new instance for λi4. SiFi-Gradient changes λe5 and λe
′

4

to new instances, and updates op to the new objective value,
then goes to the next iteration. If the new objective value can
not be larger than op, SiFi-Gradient terminates the iteration
and returns the current instances of λi1 and λi4.

SiFi-Hill: SiFi-Gradient terminates the iteration when the ob-
jective value can not be larger by changing current instances
to their neighbors. In each iteration it only considers neigh-
bors of current instances, and it only uses a subset of Pn(λi)
and may lead to local optimal solution. The objective value
may become larger by changing current instances to other
eARs. To address this problem, we devise another iterative
algorithm, namely SiFi-Hill, which is based on the idea of hill
climbing. SiFi-Hill uses the same method as SiFi-Gradient to
initialize the instances of iARs. At each iteration, different
from SiFi-Gradient, the algorithm adjusts the instance of a
single iAR and allows to change the instance of λi to any eAR

in Pn(λi). SiFi-Hill terminates when the objective value can
not be larger. Example 5 shows how SiFi-Hill works.

Example 5. Recall Example 4, initially SiFi-Hill takes λe5
as λi1’s instance and λe

′

4 as λi4’s instance, and computes the
objective value op. Next we iteratively adjust instances of

λi1 and λi4. We first fix λe5 and try to replace λe
′

4 with the

other eAR in Pn(λi4), then fix λe
′

4 and try to replace λe5 with
the other eAR in Pn(λi1). SiFi-Hill chooses the case that
results in the largest objective value, and updates op to the
new objective value, then goes to the next iteration. If the
objective value can not be larger than op, SiFi-Hill terminates
and returns the current instances of λi1 and λi4.

We also explore the practical applicability of our approach
to support missing attribute values, combination of similar-
ity values and majority votes in Appendix F and provide
the complexity analysis of three algorithms in Appendix G.

627

6. EXPERIMENTS
We have conducted experiment evaluation on both real

and synthetic data sets: Cora, Restaurant and DBGen.
We compared with the baseline methods and state-of-the-
art methods, OpTrees [6] and SVM [5]. Appendix H.1 gives
detailed data set descriptions and experimental settings.

6.1 Comparison with Baseline Methods
We compared SiFi-Gradient and SiFi-Hill with baseline meth-

ods SiFi-Greedy, SiFi-Equal, SiFi-Expert, where SiFi-Equal uses
f= for each iAR and SiFi-Expert used the eARs formulated
by experts (see Table 5 in Appendix H.1). We asked for
three experts to formulate eARs who are familiar with the
datasets, SiFi-Expert-1, SiFi-Expert-2 and SiFi-Expert-3. We
used K -fold cross-validation to evaluate all methods.

We compared these methods on three data sets where
the objective function is F-measure (We evaluated differ-
ent objective functions in Appendix H.2). Figure 5 reports
F-measure values by varying the number of folds (K). We
can see SiFi-Hill and SiFi-Gradient outperform the baseline
methods on two real data sets Cora and Restaurant . For
example, in Figure 5(a) the values of SiFi-Hill are around
0.9 while the best baseline method SiFi-Greedy is around 0.7.
This is because iARs are interdependent, and SiFi-Greedy ne-
glects the interaction among different iARs. But for DBGen,
SiFi-Greedy almost got the same objective value as SiFi-Hill

since the data set contains errors in different attributes in-
dependently. SiFi-Hill performs better than SiFi-Gradient on
Cora since SiFi-Gradient only enumerates neighbors at each
iteration while SiFi-Gradient enumerates all possible eARs.

From the performance of SiFi-Equal, we can see it is im-
portant to match some attribute values approximately. For
example, in Figure 5(a) the values of SiFi-Equal are below
0.1. The performance of SiFi-Expert shows the necessity of
studying the SiFi problem. Firstly, experts can not select ap-
propriate similarity functions and thresholds for iARs. For
example, in Figure 5(a) the values of SiFi-Expert-1, SiFi-

Expert-2, SiFi-Expert-3 can not even reach 0.5 on Cora data
set. Secondly, it is hard for human to tell the difference
of similarity functions and thresholds, so the eARs formu-
lated by experts may lead to different results. For example,
in Figure 5(b) the F-measure of SiFi-Expert-3 is around 0.8
while that of SiFi-Expert-1 are only around 0.6.

6.2 Evaluation of Eliminating Redundancy
We first compared the efficiency of eliminating redun-

dancy on three data sets. In Figure 6, ER denotes the sim-
ple algorithm and ER-Op denotes the optimized algorithm
in Section 4. Note that ER-Op contains the time of pre-
computing λeM and λeD. We can see ER-Op is faster than
ER by several orders of magnitude. For example, in Fig-
ure 6(a) when the number of record pairs is 105, ER took
8492 seconds to eliminate redundancy, but ER-Op only took
5.5 seconds. Next we evaluated the effect of eliminating re-
dundancy on SiFi-Hill. In Figure 6, SiFi-Hill, SiFi-Hill+ER

and SiFi-Hill+ER-Op respectively denote the SiFi-Hill algo-
rithm without eliminating redundancy, using ER algorithm
to eliminate redundancy and using optimized ER algorithm
to eliminate redundancy. We can see SiFi-Hill+ER-Op per-
forms the best among the three algorithms. In Figure 6(c)
for 5K record pairs, SiFi-Hill took 53.6 seconds and SiFi-

Hill+ER took 121.1 seconds but SiFi-Hill+ER-Op only took
14.3 seconds. Figure 6 also illustrates two important find-

ings. The first one is eliminating redundancy can improve
the performance of SiFi-Hill. From Figure 6(a)-(c), we can
see SiFi-Hill+ER-Op always outperforms SiFi-Hill. The sec-
ond one is that optimizing the eliminating-redundancy al-
gorithm is quite necessary. In Figure 6(a), SiFi-Hill+ER per-
forms much worse than SiFi-Hill as ER is inefficient.

6.3 Comparison with existing techniques
We compared our methods with OpTrees and SVM for

record matching. OpTrees is another efficient and explain-
able technique for record matching [6]. It needs a set of posi-
tive and negative examples to construct an executable opera-
tor tree and also three input parameters β, d andK, where β
is used to adjust the precision, d denotes the maximal num-
ber of similarity functions in all RRs andK denotes the max-
imal number of RRs in the operator tree. In the experiment,
we set β to the value such that the precision is no larger than
0.9, d = 21 andK = 4. SVM is a machine-learning technique
for record matching that has been shown to significantly out-
perform other machine-learning techniques such as decision
trees [5]. Given a data set with n attributes, we represent
each record pair as a n|F|-dimensional vector where each
component denotes similarity between two attribute values
of the record that is calculated using one of the |F| simi-
larity functions. We implemented OpTrees by ourselves and
obtained the implementation of SVM from Bilenko et al [5].

We first compared the effectiveness with existing tech-
niques. Figure 7 reports F-measure values by varying the
number of folds. We see that SiFi-Hill can get higher values
than OpTrees. For example, in Figure 7(a) the values of SiFi-
Hill are around 0.9 while those of OpTrees are around 0.8.
This is because OpTrees does not consider the redundancy
among similarity functions. In our experiments, there are a
lot of optional similarity functions and OpTrees fails to find
the optimal similarity functions. We also see that SVM can
get the highest values while it consumes the most time for
record matching as shown in the following experiment.

Next we compared the efficiency with existing techniques.
We used the whole data set as training and testing data.
Table 3 reports the results. The training time of SiFi-Hill,
OpTrees, SVM respectively refers to the time of comput-
ing the optimal eARs, the time of constructing the operator
tree, and the time of learning classifier. The testing time
respectively refers to the time of executing eRRs, the time
of executing the operator tree, and the time of running the
classifier. In the training process, we see that SiFi-Hill con-
sumes the least time. For example, on Cora SiFi-Hill needs
2018 seconds which is about half of the time of OpTrees and
SVM. In the testing process, SiFi-Hill and OpTrees are much
more efficient than SVM. For example, on Restaurant the
elapsed time for SiFi-Hill and OpTrees are less than 8 seconds
while SVM needs 221.8 seconds. This is because similarity-
join operators can use some filter techniques to efficiently
join similar pairs [7]. Thus, SiFi-Hill is more efficient and
interpretable for record matching and can also achieve com-
parable accuracy with machine-learning techniques (SVM).

Table 3: Efficiency Comparison (seconds).
Cora Restaurant DBGen

train test train test train test
SiFi-Hill 2018 35 43.2 4.9 17.4 0.85
OpTrees 4555 47 1362 7.6 20.4 0.73
SVM 3610 3035 263.4 221.8 23.6 20.5

1In our settings, there are large numbers of candidate func-
tions. When d > 2, OpTrees cannot finish in 3 days.

628

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 3 4 5 6 7 8 9 10

F
 M

ea
su

re

Number of Folds

SiFi-Hill

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 3 4 5 6 7 8 9 10

F
 M

ea
su

re

Number of Folds

SiFi-Gradient

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 3 4 5 6 7 8 9 10

F
 M

ea
su

re

Number of Folds

SiFi-Greedy

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 3 4 5 6 7 8 9 10

F
 M

ea
su

re

Number of Folds

SiFi-Equal

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 3 4 5 6 7 8 9 10

F
 M

ea
su

re

Number of Folds

SiFi-Expert-1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 3 4 5 6 7 8 9 10

F
 M

ea
su

re

Number of Folds

SiFi-Expert-2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 3 4 5 6 7 8 9 10

F
 M

ea
su

re

Number of Folds

SiFi-Expert-3

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 3 4 5 6 7 8 9 10

F
 M

ea
su

re

Number of Folds

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 3 4 5 6 7 8 9 10

F
 M

ea
su

re

Number of Folds

(a) Cora (b) Restaurant (c) DBGen
Figure 5: Comparing F-measure of different methods.

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 4 6 8 10

R
u
n
n
in

g
 T

im
e

(s
)

Number of Record Pairs (10
4
)

SiFi-Hill

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 4 6 8 10

R
u
n
n
in

g
 T

im
e

(s
)

Number of Record Pairs (10
4
)

SiFi-Hill+ER

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 4 6 8 10

R
u
n
n
in

g
 T

im
e

(s
)

Number of Record Pairs (10
4
)

ER

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 4 6 8 10

R
u
n
n
in

g
 T

im
e

(s
)

Number of Record Pairs (10
4
)

SiFi-Hill+ER-Op

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 4 6 8 10

R
u
n
n
in

g
 T

im
e

(s
)

Number of Record Pairs (10
4
)

ER-Op

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8

R
u
n
n
in

g
 T

im
e

(s
)

Number of Record Pairs (10
4
)

SiFi-Hill

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8

R
u
n
n
in

g
 T

im
e

(s
)

Number of Record Pairs (10
4
)

SiFi-Hill+ER

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8

R
u
n
n
in

g
 T

im
e

(s
)

Number of Record Pairs (10
4
)

ER

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8

R
u
n
n
in

g
 T

im
e

(s
)

Number of Record Pairs (10
4
)

SiFi-Hill+ER-Op

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8

R
u
n
n
in

g
 T

im
e

(s
)

Number of Record Pairs (10
4
)

ER-Op

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5

R
u
n
n
in

g
 T

im
e

(s
)

Number of Record Pairs (10
3
)

SiFi-Hill

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5

R
u
n
n
in

g
 T

im
e

(s
)

Number of Record Pairs (10
3
)

SiFi-Hill+ER

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5

R
u
n
n
in

g
 T

im
e

(s
)

Number of Record Pairs (10
3
)

ER

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5

R
u
n
n
in

g
 T

im
e

(s
)

Number of Record Pairs (10
3
)

SiFi-Hill+ER-Op

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5

R
u
n
n
in

g
 T

im
e

(s
)

Number of Record Pairs (10
3
)

ER-Op

(a) Cora (b) Restaurant (c) DBGen
Figure 6: Comparison for the total running time of different methods.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 3 4 5 6 7 8 9 10

F
 M

ea
su

re

Number of Folds

SiFi-Hill
SVM

OpTrees

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 3 4 5 6 7 8 9 10

F
 M

ea
su

re

Number of Folds

SiFi-Hill
SVM

OpTrees

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 3 4 5 6 7 8 9 10

F
 M

ea
su

re

Number of Folds

SiFi-Hill
SVM

OpTrees

(a) Cora (b) Restaurant (c) DBGen
Figure 7: Comparison of F-measure with exsiting methods.

7. CONCLUSION
In this paper we have studied the problem of similarity-

function identification in record-matching rules for effective
entity matching. We proposed to identify the best similar-
ity functions and thresholds to maximize a given objective
function. We proposed to detect and eliminate redundancy
among similarity functions and thresholds. We also devised
efficient algorithms to find the best similarity functions to
maximize the eliminated redundancy. The experimental re-
sults on both real and synthetic datasets show that our
method achieves high performance and result quality.

Acknowledgement. The authors thank the anonymous review-

ers for their insightful suggestions. This work was partly supported

by the Research Grants Council of the Hong Kong SAR, China, un-

der Grant No. CUHK/419008 and CUHK/419109, the National Nat-

ural Science Foundation of China under Grant No. 61003004 and

60873065, the National Grand Fundamental Research 973 Program of

China under Grant No. 2011CB302206, National S&T Major Project

of China under Grant No. 2011ZX01042-001-002, and the “NExT Re-

search Center” funded by MDA, Singapore, under the research Grant

No. WBS:R-252-300-001-490.

8. REFERENCES
[1] http://secondstring.sourceforge.net/.

[2] http://www.dcs.shef.ac.uk/∼sam/simmetrics.html.

[3] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB, pages 918–929, 2006.

[4] R. Baxter, P. Christen, and T. Churches. A comparison of fast
blocking methods for record linkage. In Proceedings of the
2003 ACM SIGKDD Workshop on Data Cleaning, Record
Linkage, and Object Consolidation, pages 25–27, 2003.

[5] M. Bilenko and R. J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In KDD, pages
39–48, 2003.

[6] S. Chaudhuri, B.-C. Chen, V. Ganti, and R. Kaushik.
Example-driven design of efficient record matching queries. In
VLDB, pages 327–338, 2007.

[7] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator
for similarity joins in data cleaning. In ICDE, pages 5–16, 2006.

[8] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A
comparison of string distance metrics for name-matching tasks.
In IIWEB, pages 73–78, 2003.

[9] W. W. Cohen and J. Richman. Learning to match and cluster
large high-dimensional data sets for data integration. In KDD,
pages 475–480, 2002.

[10] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. TKDE, 19(1):1–16, 2007.

[11] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record
matching rules. PVLDB, 2(1):407–418, 2009.

[12] I. P. Fellegi and A. B. Sunter. A theory for record linkage.
Journal of the American Statistical Association,
64(328):1183–1210, 1969.

[13] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A.
Saita. Declarative data cleaning: Language, model, and
algorithms. In VLDB, pages 371–380, 2001.

[14] M. A. Hernández and S. J. Stolfo. The merge/purge problem
for large databases. In SIGMOD, pages 127–138, 1995.

[15] D. S. Hochbaum, editor. Approximation algorithms for
NP-hard problems. PWS Publishing Company, 1997.

[16] M. A. Jaro. Advances in record-linkage methodology as applied
to matching the 1985 census of tampa, florida. Journal of the

American Statistical Association, 84(406):414–420, 1989.

[17] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage:
similarity measures and algorithms. In SIGMOD, pages
802–803, 2006.

[18] E. Lim, J. Srivastava, S. Prabhakar, and J. Richardson. Entity
identification in database integration. In ICDE, pages 294–301,
1993.

[19] A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering
of high-dimensional data sets with application to reference
matching. In KDD, pages 169–178, 2000.

[20] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In KDD, pages 269–278, 2002.

[21] S. Tejada, C. A. Knoblock, and S. Minton. Learning
domain-independent string transformation weights for high
accuracy object identification. In KDD, pages 350–359, 2002.

[22] W. E. Winkler. Methods for record linkage and bayesian
networks. Technical report, Series RRS2002/05, U.S. Bureau of
the Census, 2002.

629

APPENDIX

A. SUMMARY OF NOTATIONS

Table 4: Summary of notations used in this paper.
Notations Descriptions

R a relation
a an attribute in R
r a record in R
λ an attribute-matching rule (AR)

λi an implicit attribute-matching rule (iAR)
λe an explicit attribute-matching rule (eAR)
φ a record-matching rule (RR)
ψ an explicit record-matching rule (eRR)
Φ a set of record-matching rules (RRs)
Ψ a set of explicit record-matching rules (eRRs)
f a similarity function
F a set of similarity functions
θ a similarity-function threshold
Θ a threshold range
E a set of examples
M a set of positive examples
D a set of negative examples

MΨ a set of record pairs generated by Ψ

B. PROOF
Proof of Theorem 1

Proof. As θ1 < θ2, we have Mλe1
⊇Mλe2

. Thus

Mλe1
∩M ⊇Mλe2

∩M, Mλe1
∩D ⊇Mλe2

∩D.

As there is no positive example in Mλe1
−Mλe2

, we have

Mλe1
∩M =Mλe2

∩M.

For any ψ1 ∈ Ψ1, if ψ1 does not contain λe1, Ψ2 also con-
tains ψ1; otherwise Ψ2 replaces it with another eRR ψ2 by
substituting λe1 for λe2. As Mψ = ∩Mλi , we have

Mψ1 ∩M =Mψ2 ∩M, Mψ1 ∩D ⊇Mψ2 ∩D.

As MΨ = ∪Mψi , we have

MΨ1 ∩M =MΨ2 ∩M, MΨ1 ∩D ⊇ MΨ2 ∩D.

That is ̥(Ψ1,M,D) ≤ ̥(Ψ2,M,D).

Proof of Corollary 1
Proof. Consider an eRR λe1(a, f, θ1) of this iAR. Suppose

λe1 /∈ P(λi). We prove that λe1 can be pruned. Let V =
{θmax} ∪ {f(r[a], r′[a])|f ∈ F , (r, r′) ∈ M}. As λe1 /∈ P(λi),
θ1 /∈ V . As θ1 < θmax, we find θ2 ∈ V , which is the minimal
value in V that is larger than θ1. Let λ

e
2 = (a, f, θ2). There

is no positive examples inMλi1
−Mλi2

, thus we can prune λe1
based on Theorem 1; otherwise, suppose there is a positive
example in Mλi1

−Mλi2
with similarity θ′. Obviously θ1 <

θ′ < θ2. Based on the definition of V , θ′ ∈ V , which conflicts
that θ2 is the minimal value in V that is larger than θ1.

Proof of Theorem 2
Proof. Consider a set of RRs with an iRR which contains

λi. Suppose Ψ1 is a specificized eRR set, Ψ2 is another
specificized eRR set transformed from Ψ1 by replacing λe1 in
Ψ1 with λe2. Since θ1 > θ2 we have Mλe1

⊆Mλe2
, thus

Mλe1
∩M ⊆Mλe2

∩M, Mλe1
∩D ⊆Mλe2

∩D.

For any record pair (r, r′) ∈ Mλe2
∩ D, (r, r′) should be

in Mλe1
∩D; otherwise if (r, r′) ∈ D, (r, r′) /∈ Mλe1

, and as

(r, r′) ∈ Mλe2
, (r, r′) ∈ Mλe2

−Mλe1
⊆ M , which conflicts

with (r, r′) /∈ M (as (r, r′) ∈ D). Therefore, Mλe1
∩ D =

Mλe2
∩D.

With the same idea as the proof in Theorem 1, we have

MΨ1 ∩M ⊆MΨ2 ∩M MΨ1 ∩D =MΨ2 ∩D.

That is ̥(Ψ1,M,D) ≤ ̥(Ψ2,M,D). λe1 is redundant w.r.t
λe2 since it cannot get a better objective value than λe2.

Proof of Theorem 3
Proof. Consider a set of RRs with an iRR which contains

λi. Suppose Ψ1 is a specificized eRR set, Ψ2 is another
specificized eRR set transformed from Ψ1 by replacing λe1 in
Ψ1 with λe2. Since θ1 > θ2 we have Mλe1

⊆Mλe2
, thus

Mλe1
∩M ⊆Mλe2

∩M, Mλe1
∩D ⊇Mλe2

∩D.

With the same idea as the proof in Theorem 1, we have

MΨ1 ∩M ⊆MΨ2 ∩M, MΨ1 ∩D ⊇MΨ2 ∩D.

That is ̥(Ψ1,M,D) ≤ ̥(Ψ2,M,D). λe1 is redundant w.r.t
λe2 since it cannot get a better objective value than λe2.

Proof of Theorem 4
Proof. We prove that the SiFi problem isNP -hard using

a reduction from maximum coverage problem [15]. Given a
universal set U = {e1, e2, · · · , en} of n elements, a collec-
tion C = {S1, S2, · · · , Sm} where Si ⊆ U (i ∈ [1, m]), and
an integer k, the maximum-coverage problem is to select k
sets from C such that their union has the maximum car-
dinality. We consider a variant of the maximum-coverage
problem that given k collections C1, · · · , Ck where each col-
lection is the same as C = {S1, S2, · · · , Sm}, the goal is to
select one set from each collection such that their union has
the maximum cardinality. A minor difference from the orig-
inal problem is that duplicate sets are allowed, e.g. we can
select S1 from both C1 and C2. Obviously, the difference
can not lead to a larger objective value. Therefore, we can
solve the maximum-coverage problem via its variant. Next
we reduce the variant to the SiFi problem.

1. Construct a positive example set M = {e1, e2, · · · , en}
and a negative example set D = {en+1, en+2, · · · , e2n}.

2. The set Φ = {λi1, λ
i
2, · · · , λ

i
k} contains k RRs where

each RR consists of one iAR, and each iAR λi : (a,F , [0, 1])
has a different attribute from other iARs in Φ and a
similarity-function set F = {f1, f2, · · · , fm}.

3. Consider one λi : (a,F , [0, 1]) in Φ. For each similarity
function fj ∈ F (j ∈ [1, m]), we divide the example set
M ∪D into two disjoint subsets, Sj and (M ∪D)−Sj .
Assume that for each example in Sj , the fj-similarity
of the attribute a is θ1; for each example in (M ∪D)−
Sj , the fj-similarity of the attribute a is θ2 (θ2 < θ1).
Based on the algorithm of computing candidate eAR

set in Section 3, we can generate three candidate eARs

for λi w.r.t fj , i.e. λe0 : (a, fj , 1), λ
e
1 : (a, fj , θ1) and

λe2 : (a, fj , θ2). The example set that satisfies λe0,λ
e
1,λ

e
2

is respectively Mλe0
= {}, Mλe1

= Sj and Mλe2
= M ∪

D. We can eliminate λe0 since it is threshold-redundant
w.r.t λe1. After dealing with all similarity functions in
F , we generate the candidate eAR set P(λi) =

{

λej :

(a, fj , θ1)|j ∈ [1, m]
}
⋃

{

λej+m : (a, fj , θ2)|j ∈ [1, m]
}

where Mλe
j
= Sj and Mλe

j+m
=M ∪D (j ∈ [1, m]).

4. Define the objective function as ̥(Ψ,M,D) = |MΨ ∩
M | − |MΨ ∩ D|. Any eAR in {λej+m : (a, fj , θ2)|j ∈

630

pairs fe fg pairs fe fg pairs fe fg

rp1,2 λe6 λe12 rp2,4 λe6 - rp3,7 λe3 λe8
rp1,3 λe3 λe9 rp2,5 λe4 λe9 rp4,5 - -
rp1,4 λe6 - rp2,6 λe6 λe12 rp4,6 λe6 -
rp1,5 λe4 λe9 rp2,7 λe6 λe12 rp4,7 - -
rp1,6 λe3 λe10 rp3,4 λe6 λe12 rp5,6 λe6 λe12
rp1,7 λe2 λe8 rp3,5 λe6 λe10 rp5,7 λe6 λe10
rp2,3 λe6 λe12 rp3,6 λe6 λe12 rp6,7 λe5 λe11

Figure 8: A forward index over P(λi1) in Table 2.

[1, m]} can not lead to the maximum objective value.
Otherwise, if λej+m is chosen as an instance of λi, then

|MΨ∩M | ≤ n and |MΨ∩D| = n, thus ̥(Ψ,M,D) ≤ 0.
But for the case that only eARs in {λej : (a, fj , θ1)|j ∈

[1, m]} are chosen, we have |MΨ ∩M | > 0 and |MΨ ∩
D| = 0, thus ̥(Ψ,M,D) > 0. Therefore we can reduce
P(λi) to {λej : (a, fj , θ1)|j ∈ [1, m]}.

The above SiFi problem aims to choose an eAR from each
P(λi) such that |MΨ ∩M | − |MΨ ∩D| is maximum. Since
P(λi) = {λej : (a, fj , θ1)|j ∈ [1, m]}, then for λej ∈ P(λi),

we have Mλe
j
= Sj ⊆ M , thus |MΨ ∩ M | − |MΨ ∩ D| =

|(
⋃

λe∈ΨMλe) ∩ M | − |(
⋃

λe∈ΨMλe) ∩ D| =
⋃

λe∈ΨMλe .

An equivalent statement of the SiFi problem is that given k
collections where each one is {Mλe

j
|j ∈ [1, m]}, the goal is to

select one set from each collection such that
⋃

λe∈ΨMλe is

maximum. Since Mλe
j
= Sj (j ∈ [1, m]), the problem is the

same as the variant of the maximum coverage problem.

C. TIME COMPLEXITY ANALYSIS OF RE­

DUNDANCY DETECTION
We first analyze the time complexity of the algorithm for

threshold-redundancy detection. It contains two steps to de-
tect redundant eARs in P(λi). The first step is to construct
the compressed inverted index CIX and the second step is
to use CIX to detect redundancy. For the first step, as there
are |E| record pairs and each pair needs O(|F| · log|P(λi)|)
time to insert it into CIX (as it needs to do a binary search
to insert λi into corresponding position), the total time to
construct CIX is O(|F| · log|P(λi)| · |E|). For the second
step, for each λe ∈ P(λi) the algorithm needs O(log|P(λi)|)
to check whether λe is redundant, thus the total time of
this step is O(|P(λi)| · log|P(λi)|). Based on the algorithm
of computing candidate eAR set in Section 3, |P(λi)| is no
larger than |F| · |E|, thus the whole algorithm to detect
threshold redundancy needs O

(

|F| · log|P(λi)| · |E|
)

, i.e.

O
(

|F| · |K| · |E|
)

where |K| = log(|F| · |Gf |).
We analyze the time complexity of the algorithm for func-

tion redundancy detection. It needs O(|F| · log|P(λi)| · |E|)
time to construct the compressed inverted index and the
forward index, and O(|F|2 · |E|) time to compute TLM and
TLD. When detecting similarity-function redundancy, it
enumerates |P(λi)| eARs and needs O(1) to check whether
each eAR is redundant w.r.t another group. Since there
are |F| groups, the total time is O(|F| · |P(λi)|). Since
|P(λi)| is no larger than |F| · |E|, it needs O

(

|F| · |K| · |E|
)

where |K| = min
(

|F|, log(|P(λi)|)
)

to eliminate similarity-

function redundancy.

D. PRE­COMPUTING TLM AND TLD
To avoid the expensive computation of finding λeM and λeD

on the fly, we pre-compute λeM and λeD and store them into

two tables TLM and TLD. TLM (λe, f) stores the max-
imal eAR λeM in Gf such that Mλe ∩ M ⊆ Mλe

M
∩ M .

TLD(λ
e, f) stores the maximal eAR λeD in Gf such that

Mλe ∩ D ⊆ Mλe
D

∩ D. Next we focus on obtaining TLM
and TLD efficiently.

We first construct a forward index FX over P(λi) from E.
Each row represents a record pair rp in E and each column
represents a similarity function f in F . FX(rp, f) stores the
maximal eAR λe in Gf such that rp � λe. Figure 8 shows
the forward index for the running example. For instance,
FX(rp1,5, fg) = λe9 as rp1,5 � λe9 but rp1,5 2 λe8. Specially
FX(rp4,5, fe) = ‘−’ means there is no eAR λe in Gfe such
that rp4,5 � λe. We analyze the time complexity of con-
structing FX. It has |E| rows and |F| columns. Consider
one cell FX(rp, f). We need O(log|P(λi)|) time to find the
maximal eAR λe in Gf such that rp � λe. Therefore, the
total time is O(|F| · |E| · log|P(λi)|).

Suppose we want to compute TLM (λe, f) (λe ∈ Gfi) that
is the maximal eAR λeM in Gf such that Mλe ∩M ⊆Mλe

M
∩

M . Then for each record pair rp in Mλe ∩ M , we have
rp � λeM . And since FX(rp, f) is the maximal eAR in Gf
such that rp � FX(rp, f), we have λeM ≤ FX(rp, f) for
each rp. As λeM should be maximal, we have

λeM = min
rp∈Mλe∩M

FX(rp, f).

Using this equation, we can compute TLM (λe, f) for all

λe ∈ Gfi incrementally. Let λe(k) be the k-th largest eAR in

Gfi . Initially, let λ
e(0)
M be the maximal eAR in Gf . Suppose

we have obtained λ
e(k)
M for λe(k). Then we compute λ

e(k+1)
M

for λe(k+1) incrementally. As Mλe(k+1) ∩M = (Mλe(k) ∩

M) ∪ CIXM (λe(k+1)), we have

λ
e(k+1)
M

= min
rp∈M

λe(k+1)∩M
FX(rp, f)

= min
(

min
rp∈M

λe(k)
∩M

FX(rp, f), min
rp∈CIXM (λe(k+1))

FX(rp, f)
)

= min
(

λ
e(k)
M

, min
rp∈CIXM (λe(k+1))

FX(rp, f)
)

.

This equation shows that λ
e(k+1)
M can be obtained by com-

paring λ
e(k)
M and FX(rp, f) for each rp ∈ CIXM (λe(k+1)).

Since |M | =
∑

λe(k)∈Gfi
CIXM (λe(k)), we only need O(|M |)

time to obtain TLM (λe, f) for all λe ∈ Gfi . Since the num-
bers of f and groups are both |F|, we need O(|F|2 · |M |)
time to obtain the table TLM . With the same idea, we can
obtain the table TLD in O(|F|2 · |D|) time. Therefore, the
total time of computing TLM and TLD is O(|F|2 · |E|).

E. ELIMINATING REDUNDANCY
We find that eliminating threshold redundancy has no

effect on similarity-function redundancy. That is if λe1 is
threshold redundant w.r.t P(λi), after eliminating λe1, for
any λe2 that is similarity-function redundant w.r.t P(λi),
λe2 is still similarity-function redundant w.r.t P(λi)− {λe1}.
Therefore, we can first eliminate its threshold redundancy,
then eliminate its similarity-function redundancy. The cor-
rectness is shown in Lemma 1.

Lemma 1. Given a candidate eAR set P(λi), a set M of
positive examples and a set D of negative examples, suppose
λe1 ∈ P(λi) is threshold redundant w.r.t P(λi) and λe2 ∈
P(λi) is similarity-function redundant w.r.t P(λi). If λe1 is
eliminated from P(λi), then λe2 is still similarity-function
redundant w.r.t P(λi)− {λe1}.

631

The eliminating order of function redundancy and thresh-
old redundancy will not change the final results. That is we
get the same results for the two cases (1) eliminating func-
tion redundancy first and then threshold redundancy; and
(2) eliminating threshold redundancy first and then function
redundancy. The correctness is shown in Lemma 2

Lemma 2. Consider two possible sequences of eliminating
redundancy. Seq1: Eliminating threshold redundancy first,
then function redundancy; Seq2: Eliminating function re-
dundancy first, then threshold redundancy. Given a candi-

date eAR set P(λi), a set M of positive examples and a set
D of negative examples, for any λe ∈ P(λi), we have (1)
both of Seq2 and Seq2 will eliminate λe; (2) neither Seq1
nor Seq2 will eliminate λe.

F. PRACTICAL APPLICABILITY
Missing Attribute Values: Our approach can support
the case of missing attribute values. This is because given
multiple RRs, a record pair is taken as matching if it satisfies
one of RRs. A missing attribute value can affect some RRs

while others may still work. Consider the RRs in Figure 2.
If a value of “tel” attribute is missing, φ1 will be affected
while φ2 and φ3 still work. Thus if r6[tel] is missing, the
matching pair rp6,7 can still be returned based on φ2 (if
email attributes are same and addr attributes are similar).

Combination of Similarity Values: The record match-
ing rules allow a combination of similarity values of a sin-
gle attribute. This can be achieved by adding a combina-
tion of similarity functions into the similarity-function set
F . For example, consider λi = {name,F , [0, 1]}. Adding
0.7fe + 0.3fj into F makes name attribute allow a combina-
tion of Edit Similarity and Jaccard Similarity. However, for
the record-matching rules with a combination of similarity
values of multiple attributes, there is no method that can
efficiently find record pairs satisfying such rules [6]. Since
we focus on efficient record-matching methods, such record-
matching rules are not allowed.

Majority Votes: To make RRs support majority votes,
we can define that a record pair satisfies a set Φ of RRs if
and only if it satisfies more than a half of the RRs in Φ. As
formalized in Theorem 5, Theorems 1, 2, 3 and Corollary 1
also hold for majority votes. Therefore, the algorithms of
computing candidate eAR set and eliminating redundancy
are applicable for majority votes.

Theorem 5. Theorems 1, 2, 3 and Corollary 1 hold for
changing MΨ =

⋃

ψ∈ΨMψ to MΨ =
⋃

Ψ′⊆Ψ,|Ψ′|>
|Ψ|
2

(
⋂

ψ∈Ψ′ Mψ

)

.

Proof Sketch. To prove Theorem 1, we only change the
line of its proof “As MΨ = ∪Mψi , we have” to “As MΨ =
⋃

Ψ′⊆Ψ,|Ψ′|>
|Ψ|
2

(
⋂

ψ∈Ψ′ Mψ

)

, we have”. For Theorems 2, 3

and Corollary 1, we do not change their proofs.

G. TIME COMPLEXITY ANALYSIS OFSiFi-

Greedy, SiFi-Gradient AND SiFi-Hill
Let n denote the number of iARs in Φ. All the algorithms

need O(n · |F| · |M |) time to obtain candidate eAR sets and
O
(

n · |F| · |K| · |E|
)

time to eliminate redundancy where

|K| = min
(

|F|, log(|P(λi)|)
)

. Next we analyze the time

complexity of finding the best instance. Let Pn(λi) denote

the candidate eAR set of λi without redundancy. For SiFi-

Greedy, to computeQ(λi), we need enumerate |Pn(λi)| eARs
and compute the quality of each eAR with O(|E|) time. At
the beginning, there are n iARs in Φ. The number of iARs
decreases one at each time. Therefore, the time complex-
ity of SiFi-Greedy is O(

∑n

k=1 k · |Pn(λi)| · |E|). For SiFi-

Gradient, at each iteration we need enumerate n ·2|F| neigh-
bors and compute the new objective value with O(|Φ| · |E|)
time. Therefore, the time complexity of SiFi-Gradient is
O(t ·n · |F| · |Φ| · |E|) where t is the number of iterations. For
SiFi-Hill, to check whether the objective value can become
larger, we need enumerate n · |Pn(λi)| eARs and compute
the new objective value with O(|Φ| · |E|) times. Therefore,
the time complexity of SiFi-Hill is O(t′ ·n · |Pn(λi)| · |Φ| · |E|)
where t′ is the number of iterations. In the worst case,
SiFi-Gradient and SiFi-Hill need |M | iterations, but in our
experiment, the algorithms can converge with smaller than
10 iterations on both real and synthetic data sets.

H. ADDITIONAL EXPERIMENTS

H.1 Experiment Setup
Datasets: We used three data sets to evaluate our method.

Cora2 is a collection of citation entries. The data consists
of 1875 distinct citations of 191 papers. We selected 9 fre-
quent attributes in our experiment: author, title, venue, ad-
dress, publisher, editor, date, volume, pages. It had 1875∗1874

2
= 1, 756, 875 record pairs. To eliminate this quadratic cost,
we used a similar idea with the canopy method [19]. We
concatenated attribute values of each citations to a string
and used jaccard similarity based on tokens to quantify the
similarity of two strings. We eliminated record pairs whose
similarity are either equal to 1 or no larger than 0.1. After
this process, the total number of record pairs was 184,738
with 14,358 positive pairs.

Restaurant3 is a collection of restaurant records. The data
contains 864 distinct records of 752 restaurants. Each record
has five attributes: name, addr (restaurant address), phone,
city, and type. It had 864∗863

2
= 372, 816 record pairs. We

used the same method as Cora to reduce the number of
record pairs to 87,492 with 106 positive pairs.

DBGen 3 is a random mailing-list generator. The gener-
ated mailing-list has 10 attributes, ssn (social security num-
ber), fname (first name), minit (middle initial), lname (last
name), stnum (street number), stadd (street name), apmt
(apartment number), city, state and zip. We generate data
set by setting Number of Records to 1000 and Number of
Clusters to 100, and keeping other parameters by default.
Using the same method as Cora, we construct a data set of
5,497 record pairs with 3,071 positive pairs.

SimilarityMetrics: A large number of similarity functions
are proposed to quantity string similarity. SecondString [1]
and SimMetrics [2] are two open-source Java packages that
implement a large collection of string functions. In partic-
ular, SimMetrics provides a consistent interface layer that
returns a normalized similarity measure from 0 to 1, 0 being
entirely different, 1 being identical. We used SimMetrics
package in our experiment. For token-based similarity func-
tions, we need to consider different ways of tokenization,
such as tokenizing by space, q-gram, etc. Totally we se-
lected 26 similarity functions. In the case of null values, we

2
http://www.cs.umass.edu/∼mccallum/data/cora-refs.tar.gz

3
http://www.cs.utexas.edu/users/ml/riddle/data

632

RR set for the Cora data set

1 : authori ∧ titlei ∧ venuee

2 : authori ∧ titlee ∧ venuei

3 : authore ∧ titlei ∧ venuei

4 : authori ∧ titlei ∧ venuei ∧ datee

5 : authori ∧ titlei ∧ venuei ∧ volumne ∧ pagese

6 : authori ∧ titlei ∧ publishere ∧ editore ∧ datee

7 : authori ∧ titlee ∧ publishere ∧ editore ∧ volumee ∧ pagese

RR set for the Restaurant data set

1 : namee ∧ addri

2 : namei ∧ addre

3 : namei ∧ addri ∧ citye

4 : namei ∧ addri ∧ cityi ∧ typee

RR set for the DBGen data set

1 : fnamei ∧ lnamee ∧ zipe

2 : fnamee ∧ lnamei ∧ zipe

3 : fnamee ∧ lnamee ∧ zipi

4 : fnamee ∧minite ∧ lnamee

5 : fnamei ∧ stnume ∧ staddi ∧ citye

6 : fnamei ∧ stnumi ∧ stadde ∧ citye

7 : lnamei ∧ stnume ∧ staddi ∧ citye

8 : lnamei ∧ stnumi ∧ stadde ∧ citye

9 : fnamei ∧ stnume ∧ staddi ∧ cityi ∧ statee

10 : fnamei ∧ stnumi ∧ stadde ∧ cityi ∧ statee

11 : lnamei ∧ stnume ∧ staddi ∧ cityi ∧ statee

12 : lnamei ∧ stnumi ∧ stadde ∧ cityi ∧ statee

Figure 9: RR sets for the Cora, Restaurant, DBGen data sets.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
b

je
ct

iv
e

V
al

u
e

Parameter: α

SiFi-Hill

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
b

je
ct

iv
e

V
al

u
e

Parameter: α

SiFi-Gradient

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
b

je
ct

iv
e

V
al

u
e

Parameter: α

SiFi-Geedy

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
b

je
ct

iv
e

V
al

u
e

Parameter: α

SiFi-Equal

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
b

je
ct

iv
e

V
al

u
e

Parameter: α

SiFi-Expert-1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
b

je
ct

iv
e

V
al

u
e

Parameter: α

SiFi-Expert-2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
b

je
ct

iv
e

V
al

u
e

Parameter: α

SiFi-Expert-3

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
b

je
ct

iv
e

V
al

u
e

Parameter: α

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
b

je
ct

iv
e

V
al

u
e

Parameter: α
(a) Cora (b) Restaurant (c) DBGen

Figure 10: Comparison with baseline methods for different objective functions.

suppose the similarity between two null values is 1 and the
similarity between a null value and a non-null value is 0.

Record-matching Rule Set: To reduce user effort, all
iARs are in the form of (a,F , [0, 1]) where F consists of
26 similarity functions. Figure 9 shows three RR sets for
Cora, Restaurant , DBGen respectively. To save space, we
denote (a, f=, 1) as a

e and (a,F , [0, 1]) as ai. The RR set for
Cora consists of seven RRs with three iARs, authori, titlei

and venuei. The RR set for Restaurant consists of four RRs
with three iARs, namei, addri and cityi. The RR set for DB-
Gen consists of twelve RRs with six iARs, fnamei, lnamei,
stnumi, staddi, cityi and zipi. Note that we ignore the at-
tribute phone and the attribute ssn in the RR set of Restau-
rant and DBGen respectively since we found that simply
returning record pairs that share the same phone (ssn) can
lead to an acceptable result. The RR sets of Restaurant and
DBGen are formulated by experts based on domain knowl-
edge. The RR set of Cora is deduced from an initial set of
matching dependencies [11]. A matching dependency over
one relation, λ1 ∧ λ2 · · · ∧ λn → a1, a2, · · · , am, denotes if
two records satisfy λ1 ∧ λ2 · · · ∧ λn, then it identifies a set
of attributes a1, a2, · · · , am where λi is either iAR or eAR.
For example, publishere ∧ editore ∧ datee → venue denotes
if two records have the same values on publisher, editor
and date attributes, then they should have the same val-
ues on venue. If we have another matching dependency
authori ∧ titlei ∧ publishere ∧ editore ∧ datee → A, where
A contains all the attributes of the relation, then we can de-
duce the record-matching rule authori∧titlei∧venuee → A.
When the number of deduced rules is large, the algorithm
can select the top-k rules based on some heuristic metrics
such as the diversity of rules.

User Study: We chose three students, called Expert 1,
Expert 2, Expert 3 respectively, from our research group
to do user study. They are quite familiar with similarity
metrics and data sets. We asked them to formulate the eARs
for the iARs in Figure 9. Table 5 shows the result. Note
that there are only six candidate functions. Experts tend to
select edit-based similarity functions such as Edit Similarity

and Soundex for the iAR whose attribute value consists of a
small number of tokens (e.g. Expert 1 selects Edit Similarity
fe for authori) and select token-based similarity functions
such as Jaccard Similarity and Cosine Similarity for the iAR
whose attribute values consists of a large number of tokens
(Expert 2 selects Jaccard Similarity fj for titlei). We see
eARs differ a lot in both similarity functions and thresholds.

Table 5: The eARs formulated by three experts for
iARs in Figure 9 (fe: Edit Similarity, fj : Jaccard Sim-
ilarity, fg: Gram-based Similarity, fc: Cosine Simi-
larity [8], fw: Jaro Winkler [8], fs: Soundex [17]).

Expert 1 Expert 2 Expert 3

Cora
(author, fe, 0.8) (author, fw , 0.75) (author, fw, 0.8)
(title , fj , 0.8) (title , fj , 0.7) (title , fc , 0.6)
(venue , fe, 0.85) (venue , fg , 0.75) (venue , fe , 0.7)

(name , fe, 0.8) (name , fw , 0.75) (name , fw, 0.8)
Rest- (addr , fj , 0.8) (addr , fj , 0.7) (addr , fc , 0.7)
aurant (city , fe, 0.8) (city , fg , 0.8) (city , fe , 0.8)

DBGen

(fname, fs, 0.8) (fname, fe , 0.8) (fname, fe , 0.7)
(lname , fs, 0.8) (lname , fe , 0.8) (lname , fe , 0.7)
(stnum , fe, 0.9) (stnum , fe , 0.9) (stnum , fe , 0.9)
(stadd , fj , 0.8) (stadd , fj , 0.7) (stadd , fc , 0.7)
(city , fe, 0.8) (city , fg , 0.75) (city , fe , 0.8)
(zip , fe, 0.8) (zip , fe , 0.8) (zip , fe , 0.8)

All the algorithms were implemented in C++ and com-
piled using GCC 4.2.3 with -O3 flag. All the experiments
were run on a Ubuntu machine with an Intel Core 2 Quad
X5450 3.00GHz processor and 4 GB memory.

H.2 Evaluation of Objective Functions
We evaluated the effectiveness of our methods with differ-

ent objective functions. We used a family of objective func-
tions, i.e. 1

α∗ 1
p
+(1−α) 1

r

(α ∈ (0, 1)) where α is a parameter to

tune the importance of precision and recall. In the case that
we require the returned record pairs have higher precision,
we can specify a larger α; on the contrary, if we require the
returned record pairs miss fewer matching record pairs, we
can specify a smaller α. Figure 10 shows the 5-cross valida-
tion results on three data sets. We can see SiFi-Hill is always
superior to other methods, and has more stable values with
changes of objective functions.

633

