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ABSTRACT
State-of-the-art Complex Event Processing technology (CEP),
while effective for pattern query execution, is limited in its
capability of reacting to opportunities and risks detected by
pattern queries. Especially reactions that affect the query
results in turn have not been addressed in the literature.
We propose to tackle these unsolved problems by embed-
ding active rule support within the CEP engine, hence-
forth called Active CEP (ACEP). Active rules in ACEP al-
low us to specify a pattern query’s dynamic condition and
real-time actions. The technical challenge is to handle in-
teractions between queries and reactions to queries in the
high-volume stream execution. We hence introduce a novel
stream-oriented transactional model along with a family of
stream transaction scheduling algorithms that ensure the
correctness of concurrent stream execution. We demonstrate
the power of ACEP technology by applying it to the develop-
ment of a healthcare system being deployed in UMass Med-
ical School hospital. Through extensive performance exper-
iments using real data streams, we show that our unique
Low-Water-Mark stream transaction scheduler, customized
for streaming environments, successfully achieves near-real-
time system responsiveness and gives orders-of-magnitude
better throughput than our alternative schedulers.

1. INTRODUCTION
Complex patterns of events often capture exceptions, th-

reats or opportunities occurring across application space and
time. Complex Event Processing (CEP) technology has thus
increasingly gained popularity for efficiently detecting such
event patterns in real-time [1, 8, 12, 16, 17]. However, to
allow CEP technology to be an end-to-end solution, beyond
monitoring the world via pattern queries, we also need to
react to the risks and opportunities detected by pattern
queries in real-time. We now illustrate this need using a
healthcare application as a representative example.
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Motivating Application. Healthcare-associated infec-
tions hit 1.7 million people a year in the United States, caus-
ing an estimated 99,000 deaths [18]. The HyReminder sys-
tem is a hospital infection control system developed by WPI
and UMass Medical School to continuously track healthcare
workers (HCWs) for hygiene compliance (for example sani-
tizing hands and wearing masks), and to remind HCWs to
perform hygiene precautions - thus preventing the spread of
infections [11]. As shown in Figure 1, every HCW wears
a RFID badge which has a three-color light for indicating
his (hygiene) status: “safe”, “warning” or “violation”. Pat-
tern queries continuously monitor each HCW’s behaviors
observed by sensors. The status of each HCW is continu-
ously changed upon detecting certain event patterns. For ex-
ample, a detected hygiene violation pattern will change the
HCW’s status to “violation” (henceforth his badge light).
In order to urge a HCW to perform precautions immedi-
ately upon the detected hygiene violation, it is critical for us
to support such real-time reactions for the pattern queries.
Furthermore, the status of each HCW is also used as a con-
dition by pattern queries, e.g., a pattern query may only
monitor HCWs in “safe” status. Clearly the reactions for
queries that update HCWs’ status will affect query results
in turn. It is absolutely vital to control such concurrent
updates and accesses so as to assure the correct execution
logic. Otherwise we risk for a potentially highly contagious
disease to be transmitted to vulnerable patients - thus in-
creasing patient suffering and even causing deaths.

Further in Appendix A we show that the requirements de-
rived above are prevalent across applications ranging from
algorithmic trading to fraud detection. Unfortunately, cur-
rent CEP systems support “read-only” query processing.
Pattern queries only contain in-place conditions, i.e., the
query qualification is either based on the attributes of events
matched in the input stream [8, 12, 16, 17] or on static infor-
mation pre-loaded once yet not updated during query execu-

Figure 1: Representative hand hygiene logic. If the

HCW is in the start-status node and his behavior matches

the pattern-query annotating an outgoing edge, then

change his status to the end-status node.
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tion [1, 4, 15]. Moreover, reactions for event detections are
limited to “side-effect-free” actions like sending a message
or logging events that do not affect the event detection in
turn [22]. Supporting concurrent update actions within the
continuous execution of pattern queries over streams, espe-
cially actions that directly affect the pattern query results
themselves, is an open problem.

Supporting Active Rules. We propose to tackle this
unsolved problem by embedding active rule support within
the complex event processing paradigm, henceforth called
Active CEP (ACEP). Active rules in ACEP allow us to
specify a pattern query’s dynamic condition and real-time
actions that in turn may affect the query results.

A critical technical challenge is to handle the real-time
mutual effects between queries and reactions for queries in
the high-volume stream execution. In ACEP we abstract
such effects as interactions among continuous queries and
active rules. Apparently, state-of-the-art data stream sys-
tems [4, 5, 7, 8] and CEP engines [12, 16, 17], which com-
monly use the push-based execution paradigm, have not ad-
dressed this challenge. In fact, as we demonstrate via real-
world examples in Section 2, using the push-based execution
for interactions among continuous queries and active rules
leads to a variety of anomalies and thus erroneous results.

Introducing Stream Transactions. A common ap-
proach to deal with interactions between concurrent accesses
and updates is to enforce concurrency control. However, ex-
isting concurrency control schedulers [2, 19] are based on
the notion of a “database transaction” - the execution of
a finite sequence of one-time data manipulation operations
on conventional stored data sets [2]. While in our stream
environments pattern queries are continuously executed on
potentially infinite data streams. This implies that we can-
not “finish” the current query as a finite-scoped operation
before processing another query. In short, the concept of a
transaction has not been established for stream processing.
In this work, we fill this void by introducing the notion of a
transaction in the stream context.

Furthermore, we design transactional pattern query pro-
cessing to deal with interactions among continous queries
and active rules. This processing is especially challenging
because concurrency control poses strict time-based con-
straints, while our algorithms have to work for high-volume
streams yet achieve near-real-time responsiveness.

Contributions. I. We propose the first model of inte-
grating active rules into a stream processing system, called
ACEP model, which significantly extends the state-of-the-
art CEP model to meet the needs of reacting in real-time
by affecting the physical or virtual world. (Section 3).

II. To characterize the interactions among continuous
queries and active rules, we define the notion of correctness
for stream-centric execution given concurrent accesses and
updates. Based on this notion, we introduce the stream
transaction model along with stream-specific ACID propo-
sitions. To the best of our knowledge, our work is the first
at introducing the transaction concept into the stream pro-
cessing context. (Section 4).

III. Our model empowers us to leverage classical con-
currency control approaches originally designed for static
databases to now solve the novel stream transaction schedul-
ing problem. Our Strict-Two-Phase-Locking (S2PL) sched-
uler successfully applies a pessimistic concurrency control
mechanism to the ACEP context. However, S2PL incurs a

large synchronization delay due to its rigorous order preserv-
ing. Hence we provide a unique scheduler called Low-Water-
Mark (LWM) which is customized to our stream context to
maximize concurrent execution without compromising cor-
rectness. (Section 5).

IV. We implement the proposed techniques within a HP
CHAOS CEP engine and conduct comprehensive experi-
mental studies using real data streams. We show that LWM
achieves orders-of-magnitude better throughput in high-
volume workload compared to S2PL (Section 6).

2. STREAM CONCURRENCY PROBLEM:
EXAMPLES

In the commonly-employed push-based stream execution
paradigm [4, 7, 8, 12, 16, 17], new events are evaluated
by continuous queries immediately upon event arrival with-
out any safeguard mechanism to synchronize the concurrent
accesses and updates during stream execution. Since con-
tinuous queries may vary in their complexities and event
consumption, they may exhibit different processing delays.
As a result, events with different timestamps tend to co-exist
and be simultaneously executed in the system. Using this
push-based execution for pattern queries and reactions for
queries (represented as active rules) may raise unexpected
anomalies. We illustrate the problems with three examples
drawn from the HyReminder application1. Suppose pat-
tern query Q1 continuously detects the event sequence (EXIT,

!SANITIZE, ENTER) within 45 seconds for HCWs whose in “safe”
status when his ENTER event occurs. The checking of a HCW’s
status is abstracted as a Read operation on the shared table
storing his current status. Suppose an active rule R1 con-
currently monitors the output of Q1: once Q1 produces a
match for a specific HCW, R1 changes the HCW’s status
into “warning”. This action is abstracted as a Write opera-
tion on the shared table. Suppose another query Q2 is also
executed. Q2 detects the event sequence (MASK,EXIT) within 5

sec for HCWs in “warning” status when his EXIT event occurs.
Figure 2 depicts the following examples respectively.

Example 1. Correct Query and Rule Processing. Let
us consider processing an event sub-stream {exit2, enter10

and exit15} with the superscript denoting the event’s appli-
cation timestamp. Suppose before application time 10 the
HCW was in the “safe” status and enter10 leads to a match
of Q1. Consequently R1 is triggered and updates the HCW’s
status to “warning”. Later Q2 consumes the next input
event exit15 and recognizes that this is an event for a HCW
in “warning” status (by accessing the shared table). The
above query output and the value of the shared table are both
as expected conforming to the desired application semantics.

Example 2. Read-too-late Anomaly. Let us process
the same event stream as in Example 1 using the push-based
execution model. Suppose Q1 evaluates enter10 first. Then
when Q2 evaluates exit2, R1 has already updated the HCW’s
status into “warning”. So Q2 would read the HCW status as
“warning”, though intuitively at application time 2 the sta-
tus should have been “safe”. Subsequently the query process-
ing result of Q2 is “incorrect”- not matching the semantics
required by the application. The problem is that Q2 reads
the shared table “too late”. As depicted in Figure 2(b), the

1
We assume that the discussion below is regarding the same indi-

vidual healthcare worker (HCW) and that the status of a HCW is
independent from that of others.
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Figure 2: Stream concurrency examples. Input events

are consumed in their application time; Read and Write

are executed by the system with system time. Dashed line

represents that the input event triggers a corresponding

operation. E.g., ReadQ1(Pk) denotes the Read performed

by query Q1 on shared table Pk.

dashed lines for WriteR1(Pk) and for ReadQ2(Pk) cross, in-
dicating the conflict between these two operations.

Example 3. Write-too-late Anomaly. Considering the
same Q1, Q2 and R1 as above, now suppose Q2 evaluates
exit15 first. Thereafter Q1 evaluates enter10, and then R1
updates HCW’s status into “warning”. In this case Q2 should
have read the status “warning” because after application time
10 the HCW’s status should become “warning”. However
Q2 reads some other value instead. The problem is that R1
writes “too late”: the shared table has already been read by
Q2 that theoretically should have executed later. As depicted
in Figure 2(c), the dashed lines for WriteR1 and for ReadQ2

cross - this time in the opposite order.

It is important to note that the above identified prob-
lems of stream concurrency are general, and would indeed
equally arise in alternate stream-centric computational mod-
els, other than the active rule model employed above, that
express the reactions to pattern queries (see Appendix C).

3. THE ACEP MODEL
To support the specification of actions for pattern queries,

we design an Active CEP model that integrates active rules
into the CEP context.

Event Instances and Types. The input to the ACEP
system is a potentially infinite event stream that contains all
events of interest. Each event instance (e.g., ei) represents
an instantaneous occurrence of interest. Each event instance
has two time-stamps, application time and system time [21].
The application time for ei refers to the discrete moment of
the occurrence of ei assigned by the event source, denoted as
ei.ts. While the system time of an event instance is assigned
by the ACEP engine using the system wall-clock time, de-
noted as ei.sts. Similar event instances can be grouped into
an event type. Event types are distinguished by event type
names (e.g., EXIT). See Appendix B for more preliminaries
of event based systems.

Shared Store. In real-world applications, raw event data
is typically augmented with semantically richer information.
Semantic information regarding the application hence needs
to be maintained in the system, referred to as shared store
through this paper. For illustration, we assume the shared
store is organized using the relational model. A table in the
shared store can be either static, namely the knowledge is
loaded once and not updated throughout the system exe-
cution (e.g., the mapping between RFID to HCW-ID), or
dynamic, namely the information can be changed over time
(e.g., a HCW’s current hygiene status). In ACEP, a shared
store thus may be both readable and updatable by multiple
queries and active rules. We abstract all data processed in
the ACEP system as ACEP system state.

Definition 1. Let I be the domain of input event
stream. If i is an input sub-stream in I, then i =< e1, e2, ...,
en > where ei is an event instance. Let O be the domain of
output event streams. If o is an output stream in O, then
o = {ce1, ..., ceh} where cei is a composite event output by a
pattern query. Let P be the domain of shared tables. If p
is a shared table in P , then p = {t1, t2, ..., tm} where ti is a
shared tuple within the system. All data in the ACEP sys-
tem, including events and shared tuples, together constitute
the ACEP system state.

ACEP Query. We now consider basic operations on the
ACEP system state prevalent in any ACEP application. For
operations over an event stream, we focus on the dequeue
operation, i.e., to consume the first available event from the
head of a stream2, and the enqueue operation, i.e., to append
an event to the end of a stream. These queue-based opera-
tions are common across most CEP and stream systems [8,
12, 14, 17]. A CEP query consumes the input stream, exe-
cutes specified query semantics and then appends the result
events to the output stream (if any). Formally we define a
CEP query as below.

Definition 2. Let Φ be the domain of dequeue opera-
tions, Ψ be the domain of enqueue operations. A CEP
query, q, is defined as a function that takes as argument an
instance of Ψ on the input stream, i.e., an arrival of input
event, and returns an instance of Φ on the input stream and
zero or more instances of Ψ on the output stream. That is,
q : I ×Ψ→ {I × Φ} ×{O ×Ψ}.

Operations over the shared store are Read and Write. An
ACEP query can be viewed as a combination of shared store
accesses (e.g., to check the HCW’s hygiene status) and a
CEP query (e.g., to detect the pattern SEQ(EXIT, !SANITIZE,

ENTER)). Namely, an ACEP query can defined as below.

Definition 3. Let Rd be the domain of Read operations
and Wr be the domain of Write operations on shared tables.
An ACEP query, q′, can be defined as a function that:
q′ : I ×Ψ→ {I × Φ}× {P ×Rd} × {O ×Ψ}.

We further abstract a set of one or more operations, in-
cluding both operations on event streams and on the shared
store, as ACEP system change, as formally defined below.

Definition 4. Let ∆ be the domain of ACEP system
changes, if δ is an ACEP system change in ∆, then δ ∈
{Φ,Ψ, Rd,Wr}.
2
Here we mean multi-reader dequeuing (for multi-query).
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ACEP Rule. As widely recognized [6, 20], active rules
have intricate run-time semantics even in static databases.
We are the first to explore active rules in the streaming con-
text and thus focus on the core features. An ACEP active
rule is triggered by the output of an ACEP query. The
condition of an active rule is a logical test that, if evaluates
to true, causes the action of the active rule to be carried out.
Similar to the qualification of a pattern query (Appendix B),
the logical test can be based on the attributes of the trigger-
ing event or on the content of the shared store. The action
of an active rule supported in the current ACEP model is
the Write operation on the shared store. Such active rules
are of great use and ubiquitous in ACEP applications as
demonstrated by our motivating examples. Namely, pat-
tern queries read the shared store, while the active rules
may write the shared store, both in real-time. Hence the
newly updated value of the shared store will in turn affect
subsequent query execution. Our model includes a rule type
that describes the definition of a rule, denoted by upper-case
letters (e.g., “RA”), and a rule instance that corresponds to
an instantiation of a rule type, denoted by lower-case letters
(e.g., “rAi”). Formally,

Definition 5. An ACEP active rule, r, is a function
that takes as argument an ACEP query output and returns
a boolean value (indicating whether the rule is triggered or
not) and a set of operations on the shared store. That is,
r : O ×Ψ→ {true, false}× {P × {Rd,Wr}} .

3.1 ACEP Active Rule Specification
For illustration, we adopt a declarative active rule lan-

guage (presented in Appendix B) implementing the model
described above based on the commonly used ECA format
[20, 23]. For ACEP queries, we are interested in sequential
pattern queries commonly supported in most CEP systems
[8, 12, 17], namely the SEQ operator that specifies a partic-
ular order in which the events of interest must occur. We
now explain the clauses using examples drawn from our mo-
tivating healthcare application. Assume each event has the
schema (timestamp, HCW-ID, behavior, location). Also as-
sume the current hygiene status of every HCW is stored in a
shared table named workerStatus, with the schema worker-
Status:(workerID, status). In this example, the Read opera-
tion (resp. Write) on HCW status is expressed as a SELECT
clause (resp. UPDATE) supported by standard SQL.

CREATE QUERY Q1 ON estream
PATTERN SEQ(EXIT, !SANITIZE, ENTER)
WHERE [HCW-ID] AND
EXIT.location != ENTER.location AND
’safe’=(SELECT status FROM workerStatus

WHERE workerID=ENTER.HCW-ID)
WITHIN 45 sec
RETURN ENTER.HCW-ID, ENTER.location

CREATE RULE R1
ON OUTPUT Q1
REFERENCING NEW AS newEvent
FOR EACH EVENT
BEGIN

UPDATE workerStatus SET status = ’warning’
WHERE workerID = newEvent.HCW-ID

END

In pattern query Q1, the SEQ operator SEQ(EXIT, !SANITIZE,

ENTER) together with the window constraint WITHIN 45 sec de-
tects a specific HCW behavior pattern. The attribute en-
closed in the square bracket, i.e., [HCW-ID] stands for the
equivalence test on this common attribute across an entire
event sequence. The qualification ’safe’=(SELECT ...) speci-

fies that such pattern detection should only be applied to
the HCW who is in “safe” status when he enters the pa-
tient room. The active rule R1 is triggered by any output
event produced by Q1, represented as ON OUTPUT Q1. The ac-
tion of R1 (defined in the BEGIN...END block) states that once
a match of Q1 is detected, a rule instance of R1 will update
the HCW’s status to “warning”. It is worth noting that
Q1 checks the HCW’s hygiene status for query evaluation,
while the output of Q1 can result in changing the HCW’s
status (via triggering R1). In short, here we have demon-
strated how to define a pattern query’s dynamic condition
and real-time action based on the shared table.

4. STREAM TRANSACTIONS

4.1 Notion of Correctness
In this section we introduce our notion of correctness for

the simultaneous execution of pattern queries and active
rules in the stream context. To better capture the time-
based properties of active rules, we first design the time-
stamp assignment mechanism.

Timestamp of active rule instance. At the moment when
the triggering event occurs, the change defined by the rule
action is assumed to take effect instantaneously. We model
this by associating an application timestamp with each rule
instance, denoted as rj .ts, and setting the value to be the
same as the timestamp of its corresponding triggering event.

Timestamp of an operation on shared store. For a Write
operation Writei on the shared store performed by an active
rule instance ri, we assign Writei.ts = ri.ts. For a Read
operation Readi to retrieve the value of a shared store at
the application time t1, we assign Readi.ts = t1.

Distinguishing Features of our notion of application
correctness include: First, it targets ACEP applications,
such as the motivating healthcare system, which apply real-
time effect to the external world, and thus do not tolerate
the undo or redo of any externally visible output or action.
Second, in our target applications, a Write operation repre-
sents a real-time effect, e.g., changing a HCW’s badge color.
Hence the order of executing Writes must confirm to their
timestamp order. In our formal definition below, let Writei,
Writej , Readk and Readl be operations on a shared table.
We use the symbol ≺ to denote the preceding order of two
operations in the system time.

Definition 6. (Correctness of Real-time Operations). An
algorithm for scheduling operations on a shared table per-
formed by pattern queries and active rules is called correct if
every schedule produced by the algorithm exhibits the follow-
ing properties: (1) if Writei.ts < Readk.ts, then Writei ≺
Readk; (2) if Writei.ts < Writej .ts, then Writei ≺Writej;
(3) if Readk.ts < Writei.ts, then Readk ≺ Writei; (4) if
Writei.ts = Readk.ts, or Readk.ts ≤ Readl.ts, or Writei.ts
= Writej .ts, then the order of execution conforms to what
the application specifies.

4.2 Stream Transaction Model
When we attempt to exploit the concurrency control prin-

ciples from static databases [2, 19] to analyze our stream
concurrency problem, a fundamental obstacle we encounter
that the concept of a transaction has not been established for
stream processing. Traditionally a database transaction cor-
responds to a user program that is invoked when a user ex-
plicitly requests so, while our stream query processing is trig-
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gered by incoming streaming events. Moreover, a database
transaction corresponds to the execution of a sequence of
one-time queries [2, 19], while in our stream system the pat-
tern queries are continuously running. Therefore we must
first define the notion of a transaction in the stream context.

Definition 7. A stream transaction, or short s-trans-
action, in ACEP is a sequence of ACEP system state changes
that are triggered by a single input event.

This definition considers the active rule execution to be
an in-line extension of the triggering transaction [10]. The
top of Figure 4 illustrates four s-transactions correspond-
ing to three input events respectively. To focus on covering
the core requirements drawn from ACEP applications, we
first assume there is no system failure of the ACEP engine.
We then discuss the system recovery for ACEP engine in
Appendix H. We also assume that there are no application-
specific constraints other than the pattern query semantics
defined in Section 3 and the specifications defined in Defini-
tion 6 that must hold.

A database transaction has been traditionally defined to
be an encapsulated sequence of user operations that must
be ACID [19]. However, these ACID properties cannot di-
rectly apply to our s-transactions due to significantly differ-
ent transactional models. We thus have proposed a mapping
of the classical ACID properties to stream-ACID proper-
ties (s-ACID), as specified in Appendix D.

5. S-TRANSACTION SCHEDULING
Our s-transaction scheduling algorithms have two objec-

tives: first, to guarantee the correct execution of pattern
queries and active rules as per Definition 6; second, to as-
sure the near-real responsiveness as required by high perfor-
mance stream processing. The strict application-time based
correctness requirement are in conflict with the high system
responsiveness requirement, posing great challenges.

We introduce three solutions for s-transaction scheduling
to address this challenge. The first solution, called Single-
Event-Initiated (SEI) scheduler, requires minimum change
of an existing CEP engine and hence is easy to use. The sec-
ond solution adapts a general-purpose concurrency control
mechanism, namely the Strict Two-phase Locking (S2PL
[2]), to the ACEP context, demonstrating that our proposed
notion of s-transactions allows us to leverage existing con-
currency control approaches. The third solution, called Low-
Water-Mark (LWM), successfully combines the optimistic
and pessimistic principles to maximize concurrent execu-
tion in our stream context and achieves high system respon-
siveness without compromising the correctness. Preliminary
features common across all three algorithms are:

• Orderness of stream. Following the state-of-the-art
literature [9, 12, 17], we initially assume events are fed into
our system in strictly increasing application time order.
Later we relax this assumption and extend the schedulers
to function also over disordered streams in Appendix F.

• Rule execution order. For ACEP real-time applica-
tions, we assume that the execution order of rule instances
that have the same timestamp makes no difference on
the appearance of observable actions. This is a reason-
able assumption commonly used in state-of-the-art active
database literature [20, 23]. It is also practical in our tar-
get applications, since it is the application administrator’s
responsibility to ensure active rules are well-defined.

Figure 3: Lock compatibility (X - incompatibility).

• Termination of s-transaction. Our current ACEP mo-
del uses the no-cascading-trigger assumption. That is,
rules are triggered by the stream output of queries while
rules do not produce any stream output. Hence cycles
in triggering will not arise. We also assume every single
s-transaction is finite. Consequently, all s-transactions in
ACEP are guaranteed to terminate. This model, while
simple, has practical utility as demonstrated by our moti-
vating applications. Similarly, most DBMSs in the litera-
ture [6, 10] or in practice (e.g., Oracle) either require finite
rule specification or they place a hard-coded threshold on
the number of cascading trigger calls allowed.

5.1 Single-Event-Initiated Scheduler
Based on Definition 7, the most direct scheduling strat-

egy would be to take a single input event at a time and to
execute all affected queries and rules to converge, i.e., until
no more actions are queued to be executed and all output
has been generated. This is an intuitive solution due to
its simplicity and thus ease of adoption within any CEP en-
gine. However it suffers from the following drawbacks. First,
since it only permits one input event to be processed at a
time, it may cause a large delay due to blocking a significant
number of input events. Second, s-transactions that would
not conflict are unnecessarily delayed. This may underload
inter-operator buffers and waste processing cycles.

5.2 Strict 2PL Scheduler
We now relax the single s-transaction at a time constraint.

When multiple s-transactions are executed concurrently, an
s-transaction obtains “locks” on the shared tables it accesses
to prevent other s-transactions from accessing these tables
at the same time and thereby incurring the risk of errors.
We now adopt and adapt the Strict Two-Phase Locking ap-
proach (S2PL) to our ACEP context. Below we assume locks
are performed at the table level, yet our schedulers can be
easily extended to support locks with multiple granularities.

If an s-transaction Ti intends to write the shared table Pk,
Ti needs to have a write lock on Pk, denoted as xli(Pk). If a
transaction Ti wishes to read Pk then Ti requests a read lock,
denoted as sli(Pk). Mimicking the classical S2PL [2], our
S2PL inserts locks into an s-transaction ahead of all query
and rule processing (known as Phase I). All locks applied by
an s-transaction Ti are released after the s-transaction has
successfully ended (known as Phase II).

The lock insertion algorithm (Algorithm 1) used in Phase
I determines Reads and Writes possibly requested by ana-
lyzing active rules and queries. We also employ the lock or-
dering mechanism to avoid deadlock [2]. Consequently, un-
der our in-order-stream assumption, Algorithm 1 ensures no
deadlock will occur hence no rollback will be performed. We
have thus shown the successful application of a pessimistic
concurrency control mechanism originally designed for static
databases, namely S2PL, to the ACEP context. However,
S2PL incurs a large synchronization delay due to the rigor-
ous lock incompatibility as depicted in Figure 3.

Example 4. Let us consider Examples 2 and 3. First
for s-transaction T1 created for input event exit2, the lock
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Algorithm 1 InsertLock

1: for each input event ei of type Ei do
2: initiate s-transaction Ti

3: // accepting-event-type is defined in Appendix B
4: if Ei = accepting-event-type of query Qi

AND ∃ rule Rj monitors Qi’s output as triggering event
AND action of Rj contains update on Pk then

5: insert write lock xli on Pk

6: end if
7: if ∃ pattern query Qi

Qi consumes ei and Qi access Pk then
8: insert read lock sli on Pk

9: end if
10: end for

inserted by S2PL is {sl1(Pk)}. Then for T2 created for
enter10, the locks are {sl2(Pk), xl2(Pk)}. Next for T3 cre-
ated for exit15, the lock is {sl3(Pk)}. As we can see, since
T1 holds the read lock first, xl2(Pk) from T2 is delayed un-
til T1 releases it. So the read-too-late anomaly is prevented.
Similarly, sl3(Pk) held by T3 must wait until T2 unlocks Pk.
Consequently the write-too-late anomaly is also prevented.

5.3 Low-Water-Mark Scheduler
We now propose the Low-Water-Mark scheduling strategy

(LWM) customized for stream-transaction execution. The
pseudocode of LWM and a formal proof of its correctness
are in Appendix E.

Consistent application-time based timestamping.
A distinguishing characteristic of an s-transaction is that op-
erations issued by an s-transaction have concrete application-
time based constraints (as per Definition 6). For that reason,
we propose to timestamp an s-transaction (say Ti) based on
the application timestamp of Ti’s triggering input event (say
ei). That is, Ti.ts = ei.ts. This assignment is consistent
with our previous timestamp management for the shared
store and active rules (Section 4.1), which is a core concept
underlying our proposed notion of correctness.

Our scheme of application-time based timestamping is
in contrast to the mechanism employed by classical Multi-
version Concurrency Control protocol (MVCC) or Time-
stamp Concurrency Control (TSCC). The later generates
timestamps using the system counter in a first-come-first-
served manner [2, 19]. While our scheme models the real-
time application logic that at the moment when the input
event occurs, the operations triggered by this event are as-
sumed to take effect instantaneously. The detailed compar-
ison between MVCC and LWM is in Appendix E.2.

Given our timestamping scheme, to allow different s-trans-
actions to access the specific value of the shared store that is
appropriate for each s-transaction’s application time based
progress, we propose to maintain historic records (multi-
versions) of each shared table. Specifically, when a Write
operation updates a shared table, say Pk, the new record
of Pk is appended to the end of the sequence of historical
records. This technique designed to increase the concurrent
execution level mimics MVCC. However, as we demonstrate
below, MVCC cannot be applied to solve our s-transaction
scheduling problem directly, as it fails to meet our correct-
ness requirement.

Demonstration of failure of MVCC. In MVCC [2,
19], every shared table Pk has an associated Read-timestamp,
denoted as Pk.Rts, which is set to the maximum of all ex-
ecuted readers’ timestamp. If a transaction Ti wants to
write Pk and T i.ts < Pk.Rts, then MVCC will abort Ti and

Figure 4: S-transactions and LWM Example.

restart Ti with a new, larger timestamp. First, abort of a
transaction, representing an undo of externally visible out-
put or action, is not acceptable in ACEP applications, as
stated in Section 4.1. Second, restarting a transaction with
a different timestamp is equally unacceptable. In LWM, an
s-transaction’s timestamp reflects the application time when
its issued operations should take effect. Hence if a restart
were to occur, the newly set timestamp would lead the s-
transaction to read and write the wrong version thus incur
erroneous results.

Low-water-mark based scheduling. To avoid those
undesired side-effects described above, we leverage the ap-
proaches of integrating locking and multiversioning [2]. Our
key novel technique is an intelligent strategy to consistently
render the synchronization order of both locking and time-
stamping. As the first step, LWM assigns an application-
time based timestamp for each lock, after determining locks
needed by an s-transaction using Algorithm 1. Specifically,
for each write lock xli(Pk) (resp. read lock sli(Pk)) inserted
into an s-transaction Ti, we set xli(Pk).ts = Ti.ts (resp.
sli(Pk) = Ti.ts).

Observation 1. Given the multi-versioned shared tables
and timestamped locks, a write lock xlt1i (Pk) represents a
potential Write on the shared table Pk at application time
t1. When Readi(Pk) intends to access Pk at application
time t2, to avoid the write-too-later anomaly, it is safe to
execute the Read only if t2 ≤ t1. That is, we need to make
sure Readi(Pk) obtains the value of Pk that will never be
affected by any future Write.

Hence, we introduce the low-water-mark ( lwm for short,
a special control parameter) based mechanism to guaran-
tee the correctness. Intuitively lwm represents the oldest
timestamp among all the timstamps of the write locks on a
shared table. And lwm is updated whenever a write lock is
added or released. lwm is formally defined below.

Definition 8. Given the write lock queue XL = {xlt11 , ...,
xltnn } on a shared table Pk, the low-water-mark (lwm) of
Pk, denoted as lwmPk , is defined to be
lwmPk = MINn

j=1{xlj .ts|xlj ∈ XL}.

Our LWM scheduler then synchronizes Reads and Writes
based on lwms respectively:

• A read lock sltsi (Pk) is granted if sli.ts ≤ lwmPk ; other-
wise sltsi (Pk) is delayed until lwmPk > sli.ts. Intuitively,
a Read is guaranteed to access the right record of Pk after
all Writes earlier than the Read have completed.

• LWM grants a write lock xltsi (Pk) only if xltsi (Pk) becomes
the oldest write lock among all write locks held on Pk,
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namely only if xli(Pk).ts = lwmPk . Basically a Write is
not allowed to jump the queue of Write requests on Pk.

Given this novel granting strategy, we now can relax the
lock compatibility (Figure 3). On the one hand, a read lock
does not block acquiring a write lock on the shared table.
That is, slt1i (Pk) will not block xlt2j (Pk) even if t1 < t2. On
the other hand, a write lock not necessarily to block a read
lock. Namely, xlt2j (Pk) will not block slt1i (Pk) if t1 < t2.
These compatibilities in turn enable significantly more s-
transactions to be executed concurrently.

Example 5. In Figure 4 we illustrate LWM using Exam-
ples 2 and 3. Before the s-transaction T2 created for input
event enter10 ends, the read lock sl21 is granted and the corre-
sponding Read accesses the proper version, i.e., (1, safe);
while the read lock sl153 is delayed due to the lwm constraint.
After T2 ends, the lwm is updated to application time 18.
Consequently sl153 is granted and the corresponding Read ob-
tains (10, warning). At this time, any Read operation with
timestamp earlier than 18 can be executed immediately and
guaranteed to read the right value.

6. EXPERIMENTAL EVALUATION
We have implemented our proposed ACEP technology

within HP CHAOS CEP engine [9]. All queries and rules
drawn from our real-world heathcare application are main-
tained in the query-rule pool. The query and rule param-
eters are listed in Table 1. Further details of our experi-
mental setup are given in Appendix G.1. In this section
we study the performance of our s-transaction scheduling
algorithms, namely SEI, S2PL and LWM. The performance
metrics we measure include throughput, average query la-
tency Lquery, average rule latency Lrule and average com-
bined latency Lcombined, as specified in Appendix G.2. For
S2PL and LWM, we employ the locking at two-level hierar-
chy of the shared store: table-level, e.g., all HCWs’ status,
and tuple-level, e.g., each individual HCW’s status.

Varying Number of Reads vs. Throughput. We
evaluate the throughput while varying the average number
of Read operations per s-transaction (readN) from 1 to 6.
The average number of Write operations per s-transaction
(writeN) is set to 0.25 by selecting the corresponding query-
rule pairs from the pool. S2PL and LWM perform locks at
tuple level. Figure 5 shows that LWM scales more gracefully
than S2PL. This is mainly because LWM is capable to grant
significantly more locks concurrently.

We next measure the throughput when the lock gran-
ularity for S2PL and LWM is at the coarsest level, i.e.,
lockG = table. Figure 6 shows the results for the three
schedulers when we vary readN from 1 to 6. SEI’s perfor-
mance degrades rapidly as readN increases. Because more
processing delay per s-transaction leads to a longer blocking
period for subsequently arriving events, which in turn causes
more processing delays to accumulate. Compared to Figure
5, the performances of both S2PL and LWM degrade due to
the coarse lock granularity reducing the concurrency level.
However LWM still outperforms the other schedulers, i.e.,
LWM achieves 2.5x higher throughput than S2PL and 3.4x
higher than SEI on average, and gains 3x higher throughput
than S2PL and 4.5x higher than SEI when readN = 6.

Varying Number of Writes vs. Throughput. We
here consider the throughput while varying the average num-
ber of Write operations per s-transaction (writeN) from
0.125 to 1.0. The average Reads per s-transaction (readN) is

Par. Description
seqL length of the pattern in a query
win time-based window size (in sec)
readN average num. of Read per s-transaction
writeN average num. of Write per s-transaction
lockG lock granularity (table/tuple)

Table 1: Parameters for queries and rules.

set to 1. The lock granularity is set to be at tuple level. Fig-
ure 7 shows that the throughputs drop as writeN increases.
One main reason is that the average processing complexity
per s-transaction rises. The increasing cost also comes from
more write-locks being requested. LWM beats S2PL due to
allowing more overlaps among s-transactions.

Next we set the lock granularity to be at table level. As
per Figure 8, the throughput of S2PL and LWM become
more sensitive to writeN compared to Figure 7. Especially
when writeN = 1, S2PL performs similar to SEI, because
on average one table-level write lock is held for every s-
transaction and S2PL in fact serializes every s-transaction
while synchronizing very few (if any) concurrent executions.

Overhead of Schedulers: Varying Pattern Length
vs. Latency. In this set of experiments, we set up the
underloaded scenario, in which the input rate is set to be
much less than the saturation level of the engine. In this
scenario, no transaction conflict will occur hence no transac-
tional scheduling is needed. We first measure the empirical
baseline of Lquery and Lrule by executing a single query-
rule pair without running any transactional scheduler. The
baseline results are depicted in Figure 9.

And then we execute the schedulers in the underloaded
scenario so as to observe their overhead. Figure 10 depicts
Lquery, Lrule and Lcombined relative to the baseline (as per
Figure 9). For example, 2% in the figure corresponds to
2% more latency than the baseline. In this experiment the
pattern query length (seqL) varies from 2 to 6, and S2PL
and LWM perform locks at the tuple granularity. SEI in-
curs 3x to 6x larger combined latency than S2PL and 3x to
5x larger than LWM. The primary cause is that S2PL and
LWM only invoke locks for s-transactions that may poten-
tially read or write the particular tuple. Instead SEI gives
every s-transaction the exclusive access to all shared tuples,
hence brings significant overhead. LWM bears a slightly
larger combined latency than S2PL in this underloaded sce-
nario due to maintaining multi-versions and lwms.

Varying Input Rate vs. Latency. We measure the la-
tency while varying the input rate from 50 to 20000 events/sec.
The parameters are readN = 1, writeN = 0.25, seqL = 3,
lockG = tuple. Figure 11 shows the latency relative to the
baseline (Figure 9). We observe that the latency rises as the
input rate increases because more events have to be held
back waiting to be processed as more events arrive per unit
of time. LWM incurs 1/9 of the combined latency of SEI
and 1/3 of the combined latency of S2PL when input rate
is 2000 events/sec. This confirms the effectiveness of our
design of LWM maximizing concurrent execution.

Varying Input Rate vs. Memory. From Figure 12
we can see that, the memory consumption for all schedulers
increases with input rate as expected. LWM spends ex-
tra memory to maintain multi-versions of the shared store.
However, when input rate≥ 5000, the memory used to buffer
input events due to processing delays becomes dominant.

7. RELATED WORK
The scheme of supporting active rules in ACEP borrows

several principles from active databases [6, 20, 23], e.g., the
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Figure 5: readN vs.

throughput (lockG=tuple).

Figure 6: readN vs.

throughput (lockG=table).

Figure 7: writeN vs.

throughput (lockG=tuple).

Figure 8: writeN vs.

throughput (lockG=table).

Figure 9: Baseline latency. Figure 10: Overhead of

schedulers.

Figure 11: Input rate vs.

latency.

Figure 12: Input rate vs.

memory.

“in-line” coupling model [10] and the ECA format. How-
ever, ACEP rules differ significantly from active rules in
static databases. ACEP rules have the unique formalization
of being triggered by the output of continuous queries over
infinite streams (Sec. 3). Its distinguishing application time
based correctness (Def. 6) and challenging requirement of
near-real-time responsiveness (Sec. 5) are also special to the
stream context. To our best knowledge, no previous work
addressed the issues of defining active rules in the CEP con-
text, nor in the more general data stream processing context.

CEP technologies exhibit sophisticated capabilities for pat-
tern matching in huge volume event streams [1, 4, 8, 12, 16,
17]. However, effort in supporting actions of pattern queries,
especially actions that will subsequently affect the pattern
matching results, is lacking. Our ACEP technology tack-
les this unsolved problem by supporting active rules within
the CEP context. See additional related work on stream
processing in Appendix H.

Transaction processing has been intensively explored in
RDBMS. See [2] for a survey of this field. To the best of
our knowledge our work is the first attempt at introducing
the transaction concept into the stream processing context.
Our invention of the stream-oriented ACID proposition and
stream-transaction allows us to leverage existing concurrent
control principles and further optimize them.

8. CONCLUSION
We have proposed the ACEP technology for supporting

active rules in CEP engines to meet the emerging need of
specifying a pattern query’s real-time actions that may in
turn affect query results. We are the first to identify the
problem of concurrency control in stream execution, and our
innovation of stream-transactions is the first attempt of in-
troducing transactional concepts into stream environments.
We then design three s-transaction scheduling algorithms
that achieve high responsiveness without compromising cor-
rectness. We successfully apply ACEP to a real-world ap-
plication and experimentally demonstrate its effectiveness.
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ets An input event with application timestamp ts
Qi An ACEP query
Rj An ACEP active rule
Pk A shared table in the shared store
ReadQi(Pk) A Read performed by query Qi on Pk

WriteRj(Pk) A Write performed by rule Rj on Pk

Ti A stream-transaction
sli(Pk) A read lock held by Ti on Pk

xli(Pk) A write lock held by Ti on Pk

sltsi (Pk) A read lock held by Ti with timestamp ts
xltsi (Pk) A write lock held by Ti with timestamp ts

Table 2: Summary of Symbols

APPENDIX
A. MORE MOTIVATING APPLICATIONS

Our work on supporting real-time reactions for pattern
queries is motivated by numerous emerging applications, be-
sides healthcare. Below we list two representative ones.

Algorithmic trading. Algorithms developed for au-
tomated trading strategies often categorize financial prod-
ucts, say stocks, into various expected-operation groups like
“to hold”, “to buy” and “to sell” in real-time. Pattern
queries monitor the fast-changing trends for a specific group
of stocks. At the same time, the results of detected pat-
tern may modify the group of a stock, e.g., a stock may be
changed from “to hold” to “to buy”. It is critical to provide
a way of defining such real-time actions of pattern queries,
and to correctly execute such actions given they will change
query results.

Fraud detection. In the application of real-time fraud
detection, pattern queries selectively consume transactions
issued by the sources in the “watch-lists”. The outcomes of
a query may result in adding a source to “alert-list” or re-
moving a source from the “watch-list”. Given the potential
impact of millions of dollars, it is vital to support such agile
reactions and to control the side-effects to queries themselves
caused by the reactions.

B. PRELIMINARIES
Pattern Query Specification. Pattern queries spec-

ify how individual events are filtered and multiple events are
correlated via time-based and value-based constraints. The
syntax of defining a pattern query over event streams we
adopt here is commonly used in the literature [12, 17]:

CREATE QUERY <query-name>
PATTERN <event-pattern> ON <event-stream>
[WHERE <qualification>]
[WITHIN <window>]
RETURN <output-specification>

The event-pattern describes an event pattern to be matched.
The sequence (SEQ) pattern is a core functionality for pat-
tern queries that specifies a particular order in which the
events of interest must occur. In the SEQ pattern, we say
an event ei is a positive (resp. negative) event if there is
no “!” (resp. with “!”) symbol used before its respective
event type. The qualification clause imposes predicates on
event attribute, as in state-of-the-art CEP engines. In ad-
dition, in our ACEP system, the predicate can also read
the shared store. The window clause describes the maximum
time span during which events that match the pattern must
occur. The output-specification clause defines the expected
output stream form by the pattern query.

The accepting event type refers to the last event type spec-
ified in a sequence pattern. For example, in Q1 = SEQ(EXIT,

!SANITIZE, ENTER), ENTER is considered to be the accepting event
type. We focus on the SEQ with positive accepting event
type in this work, while negative accepting event handling
refers to [14].

Timestamp of Composite Event. As assumed in the
literature [8, 12, 17], a composite event output by a pattern
query is assigned the application time when the last event
instance that composes the composite event occurs. Specifi-
cally, given a composite event instance cei constructed based
on a set of event instances, I = {e1, ..., en} that match the
query, ce.ts = MAXn

j=1{ej .ts|∀ej ∈ I}.
ACEP Rule Definition Language. For illustration,

we adopt a declarative active rule language implementing
our ACEP model described in Section 3 based on the com-
monly used ECA format [20, 23].

CREATE [OR REPLACE] RULE <rule-name>

ON OUTPUT <query-name>

[REFERENCING NEW AS <new-event-name>]

[FOR EACH EVENT]

[WHEN <trigger-condition>]

<action-body>

C. ALTERNATE MODELS
While we have chosen the active rule model as foundation

of our solution, alternate formalizations to express the re-
actions for pattern queries are also possible. By describing
these alternate models below, we show that no matter which
computational model is employed, the issues of concurrent
accesses and updates during stream execution would still
need to be tackled. For this, our core innovation, including
the correctness notion, stream-transactions and the schedul-
ing strategies (Sections 4, 5) could continue to be an elegant
solution for executing other models.

Feedback Stream Model. We could collect the results
of pattern queries into an intermediate stream and then feed
this stream back to the queries. In each query, a predicate
could read such feedback stream to determine the selective
consumption of original input events. Specifically, we could
extend an CEP engine with the following functionalities: (1)
Allow a query to delete and/or modify an event in an inter-
mediate stream. (2) Allow multiple queries to publish their
results into one single intermediate stream. Note that there
needs to be some atomicity and synchronization between
the read and removal from such intermediate streams. Now
we employ this feedback stream processing model to express
our example application logic in Figure 1.

(i) We create an intermediate stream named InGreenSta-
tus, which has the schema (worker-ID, timestamp) repre-
senting that the worker with the worker-ID is on the green
status since the timestamp moment. The operations on this
intermediate stream include: APPEND a new event (when a
worker becomes in green status); REMOVE an existing event
(when a worker is not longer in green status); TEMPORAL-JOIN

with a given to-join-workerID and to-join-timestatmp. TEMPORAL-

JOIN works as follows: it first checks whether there exists an
event, say ei, in InGreenStatus with the worker-ID equals
to the to-join-workerID; if there exists such ei, then it checks
whether ei.timestamp ≤ the to-join-timestamp. Similarly,
create two additional intermediate streams: InYellowStatus
and InRedStatus with the same semantics as above.
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(ii) We then define query Q1. Q1 takes two input streams:
the original input stream and the intermediate stream In-
GreenStatus. Q1 first detects the pattern SEQ(EXIT, !SANITIZE,

ENTER). And then for a matched event sequence, say cei, Q1
performs TEMPORAL-JOIN on InGreenStatus with to-join-workerID

= cei.worker-ID and to-join-timestamp = cei.ts. That is, Q1
checks whether the worker with the worker-ID was on green
status at the moment when his ENTER event occurred. If the
TEMPORAL-JOIN checking returns “true”, Q1 inserts an event
of the worker into InYellowStatus. Namely, a matched Q1
pattern will lead the worker to yellow status. At the same
time, Q1 removes the corresponding event of the worker in
InGreenStatus, because the worker is not longer in green
status. Similarly, we also define query Q2 and Q3.

Given the above design, the read-too-late and write-too-
late anomalies still arise. For example, when Q1 tries to read
InGreenStatus for checking worker007’s status at application
time 15, the event (worker007, 12) should have been already
inserted by Q2. However, Q2 in fact inserted such event
after Q1’s checking. In this case, Q1 should have read the
information that “worker007 was on green status at time
15” but read some other value instead.

State Transition Machine Model. We could model
the interaction between queries and actions of queries us-
ing a state transition table in the form of (current value of a
shared table Pk (v-current), set of queries to execute ({Qi}),
new value of the store (v-new)). The semantics are when an
input event ei arrives, if the current value of Pk equals to
v-current, then the queries in {Qi} should consume ei for
evaluation. If a query in {Qi} produces matches, then the
value of Pk is updated to v-new. In this setting, atomic-
ity and synchronization mechanisms are still needed when
multiple queries read and update Pk simultaneously.

D. STREAM-ACID PROPERTIES
s-Atomic (stream-atomic): all operations stimulated by

a single input event should occur in their entirety.
s-Consistent (stream-consistent): the execution of stream

transactions must guarantee to start in a correct ACEP sys-
tem state and then end leaving the ACEP system state cor-
rect (as per Definition 6).

s-Isolated (stream-isolated): the ACEP system state
changes triggered by a single input event must appear to
be executed as if no other input events are being processed
at the same time, i.e., no unexpected interactions among
s-transactions.

s-Durable (stream-durable): the output of the pattern
queries must satisfy the “permanently valid” property of
query output defined in [14]. That is, at any given time
point, all output events from the system so far satisfy the
ACEP query semantics.

E. LOW-WATER-MARK ALGORITHM
We now give the pseudocode of the Low-water-mark sche-

duling algorithm and prove its correctness. The overall
workflow of the algorithm is: the Adding & Timestamping-
Lock procedure inserts appropriate locks, and timestamps
locks and passes the locking information to the Maintaining-
LWM procedure. The Granting-Lock procedure determines
whether to delay or execute Read and Write operations
based on the low-water-mark of a particular shared table.
The Releasing-Lock procedure releases locks, and passes the
updated locking information to Maintaining-LWM. The al-
gorithm and proof below assume locking is performed at

shared table level. But they can be straightforwardly ex-
tended to support locking at different granularities.

Algorithm 2 LWM(using object-oriented design)

1: class Scheduler {
2: Map<STransaction, List¡SharedTable¿> lockTable
3:
4: void RequestRead(Readts

i (Pk)){
5: while ts > Pk.GetLWM() do
6: //blocking
7: end while
8: Readts

i (Pk) is executed }
9:

10: void RequestWrite(Writetsi (Pk)){
11: while ts! = Pk.GetLWM() do
12: //blocking
13: end while
14: Writetsi (Pk) is executed }
15:
16: void TimestampLock() {
17: InsertLock() // given in Algorithm 1
18: xlRj

.ts = ei.ts

19: slQi
.ts = ei.ts }

20:
21: void ReleaseLock(Ti) {
22: List<SharedStore> sStore = lockTable.GetValue(Ti)
23: for each store in sStore do
24: store.xLockQueue.ReleaseLock(Ti)
25: end for
26: }
27:
28: class SharedTable{
29: Map<time,string> versions
30: XLockQueue xLockQueue
31: SLockQueue sLockQueue
32: string Read(){}
33: void Write(){}
34: time GetLWM(){} }
35:
36: class XLockQueue{
37: List<XLock> locks
38: time lwm
39:
40: void AddLock(xlRj

){
41: locks.add(xlRj

)

42: MaintainLWM()}
43:
44: void ReleaseLock(Ti){
45: locks.Remove(all locks held by Ti)
46: MaintainLWM()}
47:
48: void MaintainLWM(){
49: lwm = MINn

i=1(locki.ts|∀locki ∈ locks)} }
50: //denoted as Upi(Pk) in the proof}

E.1 Proof of Correctness of LWM
Our proof follows the proof paradigm presented in [2]. To

prove that LWM scheduler is correct, we have to prove that
all executions that could be produced by it guarantee the
S-ACID properties. We start by proving the s-Consistent
property using two steps. First, given the LWM algorithm
we characterize the properties that all of its granted op-
eration sequences must have. Second, we prove that any
operation sequence with these properties is guaranteed to
meet the correctness specified in Definitions 6.

For the first step, we list all orderings of operations that
we know must hold. The function names used below refer
to the member functions defined in Algorithm 2. We use
Upi(Pk) to denote the update of the lwm of a shared table
Pk, which is shown in line 49 in Algorithm 2.

First, from InsertLock() we know that every potential
Write on Pk will add a write-lock xli(Pk) into the lock
queue of Pk at the beginning of creating the s-transaction. If
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Writei(Pk) is executed later, we know xli(Pk) ≺Writei(Pk)
and xli(Pk).ts = Writei(Pk).ts. From RequestWrite() we
also know that when Writei(Pk) is executed, it must hold
that lwmPk = Writei(Pk).ts. From ReleaseLock(), after
the Writei(Pk) completes, lwm of Pk is updated. That is,
Writei(Pk) ≺ Upi(Pk). Therefore, we can derive the follow-
ing proposition.

Proposition 1. Let Writei(Pk) be a Write operation pro-
duced by the LWM scheduler, xli(Pk) be the write-lock held
for Writei(Pk) on shared table Pk, and lwmPk be the current
lwm of Pk when Writei(Pk) is executed. Then xli(Pk) ≺
Writei(Pk) ≺ Upi(Pk).

Second, TimestampLock() is executed as soon as an input
event arrives (before any query or rule processing). Clearly,
the locks added for sequential input events are invoked in
their timestamp order. In addition, from RequestWrite(),
we see that the granting of locks is sorted by the timestamp
of locks. This leads to the following proposition.

Proposition 2. Let xli(Pk) and xlj(Pk) be the write locks
held by s-transactions Ti (created for input event ei), Tj

(created for input event ej) respectively. If ei.ts < ej .ts,
then xli ≺ xlj and xli.ts < xlj .ts. If xli.ts < xlj .ts then
Writei(Pk) ≺Writej(Pk).

Third, from RequestRead() we know that for a granted
Read, Readi(Pk).ts < lwmPk must hold. It implies that
Readi.ts falls inbetween two different values of lwmPk (at
different times). That is, there is a previous lwm′

Pk
and a

later lwm′′
Pk

, such that lwm′
Pk
≤ Readi.ts < lwm′′

Pk
. We

thus conclude the following proposition.

Proposition 3. Without loss of generality, let a Upi(Pk)
operation result in lwmPk > Readi(Pk).ts, then Upi(Pk) ≺
Readi(Pk) in system time.

Summing the above properties gives the following lemma.

Lemma 1. The LWM scheduler guarantees the s-consistent
property for all s-transactions executed in the ACEP system.

Proof : The proof is based on the cases in Definition 6. Let
Writei, Writej , Readk and Readl be operations produced
by the LWM scheduler on a shared table Pk, and lwmPk

be the lwm of Pk. For case (1), when Writei(Pk).ts <
Readk(Pk).ts. By Proposition 1, we have Writei(Pk) ≺
Upi(Pk). If Writei(Pk).ts < Readk(Pk).ts, without loss of
generality, we assume Upi(Pk) results in lwmPk > Readk(Pk).
Then by Proposition 3, we have Writei(Pk) ≺ Upi(Pk) ≺
Readk(Pk). Namely, Writei(Pk) ≺ Readk(Pk). For case
(2), when Writei(Pk).ts < Writej(Pk).ts, directly derived
from Proposition 2, we have Writei(Pk) ≺Writej(Pk). For
case (3), when Readk(Pk).ts < Writej(Pk).ts, the LWM
scheduler does not explicitly enforce the order of their exe-
cution. Hence we exhaust two scenarios: (i) if Readk(Pk) ≺
Writej(Pk), this is the correct result as expected; (ii) if
Writej(Pk) ≺ Readk(Pk), since the scheduler maintains
multi-version of Pk and Writej(Pk) will not affect the value
Readk(Pk) to read, the result equals to scenario (i). For the
case (4), because the LWM scheduler does not change the
order of execution specified by the application, the correct
execution order is ensured. �

Theorem 1. The LWM scheduler guarantees the S-ACID
properties for all execution produced in ACEP.

Proof: Here we prove each s-ACID property respectively.
(1) s-Isolated. LWM achieves snapshot isolation level

on the shared store. To prove LWM implements snapshot
isolation, we have to prove that: (a) all Reads made in an s-
transaction Ti see a consistent snapshot of the shared store;
(b) Ti successfully completes only if no Writes it has exe-
cuted conflict with any concurrent Writes since that snap-
shot [2]. Since InsertLock() along with TimestampLock() are
executed as soon as an s-transaction is created, we have that
if Ti.ts < Tj .ts then sli.ts < xlj .ts for any read lock sli made
in Ti and any write lock in Tj . Also from the lwm based
granting scheme in RequestWrite() and MaintainLWM(), we
know that if sli.ts < xlj .ts, then Readi ≺ Writej for the
corresponding Reads and Writes. Consequently, LWM guar-
antees that the version (of a shared table) being read by a
Read in Ti will not be updated by any Write in Tj . Hence,
the proposition (a) is assured in LWM. From RequestWrite(),
we see that the granting of write locks is sorted by the time-
stamp of s-transactions. Moreover, we have assumed that
the execution order of rule instances that have exactly the
same timestamp makes no difference on the appearance of
observable actions (in Section 5). We thus know that LWM
guarantees the proposition (b). By proving these two propo-
sitions we show that LWM implements snapshot isolation.

(2) s-Consistent. This has been proven by Lemma 1.
(3) s-Atomic. First, our definition of an s-transaction im-

plies that an s-transaction has the “all-or-nothing” propo-
sition. Second, once an event is processed by LWM, all
the triggered operations will take place as a whole, under
our assumption of “no system failure” (specified in Section
4.2). Hence LWM keeps the s-Atomic property for every
s-transaction.

(4) s-Durable. According to our ACEP model, an ACEP
system can be viewed as a combination of complex event
pattern matching and shared store accesses and updates.
We next prove the s-Durable property of LWM in these two
aspects respectively. First, LWM does not change the under-
lying sequential pattern matching. Hence, given the reason-
able assumption that the pattern matching scheme (without
active rule execution) is correct, the pattern matching out-
put of LWM is permanently valid. Second, the Reads and
Writes on the shared store scheduled by LWM have been
proved to be “correct” (via Lemma 1). In conclusion, LWM
ensures that all outputs are s-Durable. �

E.2 Comparison with MVCC
The key differences between LWM and MVCC can be de-

scribed w.r.t. two aspects. First, different ways of handling
write-to-late anomalies. MVCC aborts and then restarts the
transaction when an outdated Write occurs. While in our
LWM, because of the lock associated with each operation
and the low-water-mark based lock granting methodology,
such outdated Write will be correctly prevented. Put differ-
ently, in LWM, a Read is guaranteed to access the right
version after all Writes earlier than the Read have com-
pleted. Second, different timstamping mechanisms and dif-
ferent supports for disordered streams. As presented Section
5.3, in MVCC the timestamps of transactions are generated
in a first-come-first-served manner. While in LWM, since we
target real-time applications, the timestamps of transactions
are set to the triggering input event’s application timestamp.
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As a result, MVCC, if we attempted to apply it to our prob-
lem, would have to rely on the input stream being totally
ordered to correctly synchronize operations. In contrast, for
LWM, we design the advanced punctuation based technique
that allows LWM to work gracefully for disordered stream
(Appendix F).

F. DISORDERED STREAMS
We now sketch how to extend the proposed s-transaction

schedulers to function over disordered streams. First note
that our notion of correctness (Definition 6) is independent
of whether the input events are in application timestamp
order or not. Since SEI and S2PL synchronize executions on
a first-come-first-served basis, they rely on the input stream
being totally ordered in their application time. We thus
propose to apply existing buffer-based techniques for out-
of-order stream handling [14, 16], so that events are fed into
SEI or S2PL in strict order.

For LWM, we propose to employ punctuations that repre-
sent the input stream progress - a common paradigm most
advanced out-of-order event processing techniques rely on
[14, 16]. A punctuation event, denoted as ctsi , represents
that the engine will not see an input event etsi with ei.ts <
c.ts, i.e., an event that is earlier in application time than the
punctuation event. LWM then maintains the timestamp of
the most recent punctuation (MRP), denoted as mrp. The
LWM pseudo code (Algorithm 2 in Appendix E) can be
remedied by changing two lines:

Line 5: while ts > Pk.GetLWM() || ts > mrp
Line 12: while ts! = Pk.GetLWM() || ts > mrp

The proof of the correctness of this modified algorithm fol-
lows the methodology in Appendix E.1.

G. EXPERIMENTS

G.1 Experimental Setup
HP CHAOS system indeed employs multi-threaded pro-

cessing [9]. Our extension for ACEP also uses multi-thread
programming. Specifically, each stream operator is executed
by a thread. We execute ACEP on Intel Core 2 Duo CPU
3.0GHz with 3.21GB of RAM running Windows 7 and Java
JRE 6.

We use the real-world application workload collected from
UMass Medical School Hospital, where our HyReminder sys-
tem is being deployed for clinical studies. Our input stream
adapter feeds workloads collected from the hospital with ar-
rival patterns modeled as the uniform process and with var-
ious arrival rates.

Referring to the hand hygiene regulations applied in US
hospitals [3], we have created ACEP queries and active rules
using the following methodology: (1) model the specific se-
quence of HCW behaviors using pattern queries; (2) model
the HCW’s hand hygiene performance with three status,
namely “safe”, “warning” and “violation”. The status of
each HCW is maintained via a shared tuple within a shared
table; (3) model the logic of a HCW status transitions,
namely a certain sequence of behaviors leading the HCW
from one status to another status, using active rules. We
refer an active rule Rj together with the pattern query Qi

whose output is monitored by Rj as a query-rule pair. All
the application query-rule pairs are maintained in the query-
rule pool.

Term Description

estsi An event with system timestamp sts

outstsi A query output with system timestamp sts
numOut Number of query outputs so far
Tinii

System time when the rule instance is created
Tfini

System time when the rule instance finishes
numRules Number of rule instances executed so far

Table 3: Symbols for performance metric

G.2 Performance Metrics
The performance terms are listed in Table 3. The perfor-

mance metric throughput is measured as number of events
processed per second. Namely, given a batch of input events
of size numIn (numIn is set to be much larger than the
maximum window size of all queries), suppose the system
time span taken to process the batch is Tproc, then throughput
= numIn/Tproc. The metric average query latency Lquery

is the average time difference between the time a pattern
query Qi produces an output and the maximum arrival time
of any of the event instances that is composed into that out-
put (both system time). Given outi = {e1, ..., em}, Lquery

can be measured by:

Lquery =
ΣnumOut

i=1 (outi.sts−max{ej .sts|ej ∈ outi, 1 ≤ j ≤ m})
numOut

(1)

The metric average rule latency Lrule corresponds to the
average time difference between the time a rule instance is
initiated and the time the rule instance finishes, i.e.,

Lrule =
ΣnumRules

i=1 (Tfini − Tinii)

numRules
(2)

The metric average combined latency Lcombined corresponds
to the sum of the average query latency and the average rule
latency, i.e.,

Lcombined = Lquery + Lrule (3)

H. ADDITIONAL RELATED WORK
[22] presents a methodology to define the reactions for

RFID event detection. But it only deals with “trivial” reac-
tions like sending a message or logging events, that do not
affect the event detection in turn. Such scenario is simpler
than the query-rule interaction problem we study in this
paper - thus the concurrency can be safely ignored in [22].

The recovery strategies sketched in STREAM [7] and Au-
rora [13] stream engines focus on stream-oriented data back-
up. Because stream sources do not stop delivering data
to the engine while the system is down, requiring the en-
gine to “catch up” following a crash. However, [13, 7] do
not incorporate the transaction concept, i.e., the notion of
consistency in these stream engines does not tie to ACID
properties. Therefore these existing stream-specific recovery
mechanisms may need to be further re-examined so to ad-
just them to serve as crash recovery mechanisms consistent
with stream transaction semantics employed in the ACEP
system. We expect at logging, much like for traditional re-
covery, but now also including to log the state of stateful se-
quence operators and the intermediate operations conducted
by ACEP rules, will form the foundation for a solution in
this new context. Re-do protocols will be applicable, while
un-do will not be suitable. To achieve the near real-time re-
sponsiveness required to stay in syn with the physical world
being monitored, alternate strategies including possibly in-
telligent load shedding may also need to be incorporated as
part of an effective solution.
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