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ABSTRACT

The identification of popular and important topics discussed in so-
cial networks is crucial for a better understanding of societal con-
cerns. It is also useful for users to stay on top of trends without hav-
ing to sift through vast amounts of shared information. Trend detec-
tion methods introduced so far have not used the network topology
and has thus not been able to distinguish viral topics from topics
that are diffused mostly through the news media. To address this
gap, we propose two novel structural trend definitions we call co-

ordinated and uncoordinated trends that use friendship information
to identify topics that are discussed among clustered and distributed
users respectively. Our analyses and experiments show that struc-
tural trends are significantly different from traditional trends and
provide new insights into the way people share information online.
We also propose a sampling technique for structural trend detec-
tion and prove that the solution yields in a gain in efficiency and
is within an acceptable error bound. Experiments performed on a
Twitter data set of 41.7 million nodes and 417 million posts show
that even with a sampling rate of 0.005, the average precision is
0.93 for coordinated trends and 1 for uncoordinated trends.

1. INTRODUCTION
Social networks provide large-scale information infrastructures

for people to discuss and exchange ideas about different topics.
Detecting trends of such topics is of significant interest for many
reasons. For one, trends can be used to detect emergent or sus-
picious behavior in the network. They can also be viewed as a
reflection of societal concerns or even as a consensus of collective
decision making. Understanding how a community decides that a
topic is trendy can help us better understand how ad-hoc communi-
ties are formed and how decisions are made in such communities.
In general, constructing useful trend definitions and providing scal-
able detection methods for such definitions will contribute towards
a better understanding of interactions in the context of social media.

Trends in social networks have recently been a major focus of
interest among researchers studying them from perspectives such
as temporal [24] and geographical [32, 30] dimensions. A similar
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interest can be observed in industry [36, 19]. Furthermore, the im-
portance society places on trends in social networks is increasing.
For instance, Twitter trends [36] have been a testament to societal
concerns to such an extend that a possible exclusion of the hashtag
#wikileaks from the trends list in Twitter created a large dispute
which the company had to officially address [40].

Although trends in social networks have been extensively stud-
ied, to our knowledge all the published work in this area ignores
the structural properties of the social network that created these
trends. In today’s social networks where users are highly influ-
enced by their friends, trend definitions that reach beyond simple
heavy-hitters approaches to integrate the importance of such flow
of influence can be of great benefit. The main purpose of this paper
is to introduce social network structure into trend analysis, propose
two novel structure-based trend definitions, emphasize their signif-
icance and provide efficient online solutions for them. Since infor-
mation diffusion is a substantial part of the process that creates the
information trends, properties that are defined in this context are
of significant interest. Although current trend definitions used by
the industry [36] are good at detecting trends at global scale, their
shortcomings such as their vulnerability to spammers or inability
to detect interesting activity in different communities make them
less valuable from an analytical perspective [37]. The new trend
definitions introduced in this paper provide methods for a deeper
analysis of activity in social networks.

A structural trend is a topic that is popular within structural sub-
groups of the network. The challenges are to formally define the
notions of a structural subgroup and to develop techniques to de-
tect structural trends. As a starting point, we focus on identify-
ing trends where the trendiness of a topic can be characterized by
the number of connected pairs of users discussing it. We refer to
this as detecting coordinated trends. This notion favors topics that
are discussed among clustered nodes in the network. Secondly,
we study another notion of trendiness that we call uncoordinated

trends where the score of a topic is based on the number of unre-

lated people interested in it. This definition of trendiness, not being
biased by a discussion amongst a small clustered group, can be used
to capture the notion of the trustworthiness of a trend. We estab-
lish the value of these two novel trend definitions by identifying
the types of topics they detect that would be undetected using tra-
ditional trend detection methods. We also provide graph-oriented
solutions for detection of structural trends. Considering both the
large scale of social networks and the sheer volume of informa-
tion shared, we introduce a sampling based technique that provides
efficiency while still remaining within an acceptable error bound.

To the best of our knowledge, this is the first work that incorpo-
rates the structure of a graph to the definition of trends. We intro-
duce two novel trend definitions based on the structure of the net-
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work. We experimentally and analytically show that coordinated

trends are significantly different from traditional trends whereas
the difference for uncoordinated trends is less pronounced. We
show that structural trends identify interesting activities in social
networks. In Section 2 we list related work. In Section 3 we for-
mally define structural trends and demonstrate their significance in
Section 4. Section 5 introduces and experimentally studies the ac-
curacy and efficiency of sampling-based solutions showing that a
high average precision of 0.93 can be achieved even with a sam-
pling probability of 0.005. Finally Section 6 concludes the paper.

2. RELATED WORK
Trends in social networks have recently been a focus of interest

for many researchers. A bulk of research concentrated on trends
from a temporal point of view [2, 17, 22, 24]. Kwak et al. [22]
study and compare trending topics in Twitter reported by Twitter
[36] with those in other media. The results show that the majority
of topics are headline news or persistent news in nature. Leskovec
et al. [24] also study temporal properties of information shared in
social networks by tracking “memes” across the blogosphere. An-
other important characteristic of news or discussions in social net-
works is the spatial properties of the agents that are involved in the
discussion or the source of the news. A recent work by Teitler et
al. [32] collects, analyzes, and displays news stories on a map in-
terface. A follow-up study performs similar techniques to identify
geographical information in news in Twitter [30]. Although trend
analysis based on temporal and spatial characteristics is important
for a better understanding of trends, they are orthogonal to the ap-
proaches introduced in this study. Unlike earlier studies, we focus
on structural properties of the network that create trends.

Trends, in the traditional sense, can simply be defined as the fre-
quently mentioned topics throughout the stream of user activities.
This problem is simply to find the frequent items in a stream, also
referred to as heavy hitters. The frequent elements problem is well
studied and several scalable, online solutions have been proposed.
A survey of such methods can be found in [14]. Unlike these tech-
niques, our solution is not oblivious to the graph structure. Several
works have studied structural properties of graphs in a streaming or
semi-streaming fashion. One problem that is relevant to our work
is counting triangles in a graph stream. There are three types of so-
lutions for this problem: exact counting [4], streaming [5, 12, 20]
and semi-streaming algorithms [6, 34]. Although streaming algo-
rithms [5, 12, 20] provide efficient solutions, they solve the global
triangle counting problem, which counts all the triangles in a graph
whereas structural trendiness requires solutions closer to local tri-
angle counting. In that sense, problems studied in [6, 34] are closer
to the problem studied in this paper. However, these works provide
a semi-streaming solution and therefore are not applicable as an on-
line solution. Structural properties of graphs also have significance
for research in the area of influence spread [21, 24, 13, 8, 11, 9, 10].
Different from these works, we focus on large-scale data analysis.

In a recent work that was executed concurrently with our work,
Agrawal et al. [1] posit that the nature of information items plays a
vital role in information spread and propose a model that assigns to
every information item two parameters: endogeneity and exogene-
ity. Our model is similar to this model and is more general since dif-
ferent endogeneity and exogeneity values can be assigned to nodes
as well as topics. Their findings support the claims put forward
in our work by showing that there are topics that are inherently of
different nature. The approaches presented in [1] and our work are
complimentary since [1] develops a maximum-likelihood frame-
work for estimating parameters of the model while we develop on-
line solutions for detecting endogenous and exogenous trends.

3. PROBLEM DEFINITION
Consider a directed graph G = (N,E) representing a social net-

work consisting of nodes N and edges E where e j,i ∈ E means node
ni is a neighbor of n j . At any point nodes of the network can share
information on any topic with their neighbors. We model each such
mention by node ni on a specific topic Tx as a tuple 〈ni,Tx〉. We re-
fer to the history of such tuples as stream and denote it using S.
Note that, topic extraction is a hard problem in its own right and
we will not focus on this problem in this paper. Under this model,
traditional trendiness of Tx can be defined as the total number of
times Tx is mentioned as:

f (Tx) = ∑
ni∈N

Ci,x (1)

where Ci,x represents the number of mentions of the form 〈ni,Tx〉 in
S. This trend definition is oblivious to the structure of the network.
We propose two new alternative trend definitions, namely coordi-

nated and uncoordinated trends, to capture this characteristic. Our
main goal for the first trend definition is to give a high score to top-
ics that are discussed heavily in a cluster of tightly connected nodes.
Therefore, we introduce coordinated trendiness score as follows:

g(Tx) = ∑
ni∈N

(Ci,x ∑
nk∈Ni

Ck,x) (2)

where Ni = {nk|ei,k ∈ E}. Informally, function g(Tx) counts the
number of pairs of mentions of neighboring nodes. This is achieved
by weighing the traditional count for each node by the sum of the
counts for all its neighbors. There are four characteristics of Equa-
tion 2 that are of interest from an analytical point of view:

(i) It assigns a high score to those topics that are discussed by a
large number of pairs of connected nodes. Consider the two graphs
in Figure 1 where the black nodes correspond to nodes that men-
tion topic Tx and white nodes do not. Even though f (Tx) has the
same value for both graphs, in the graph on the right, the nodes
mentioning Tx are a part of a clustered subgraph, giving Tx a higher
structural significance. Capturing this notion, g(Tx) = 6 for the
graph on the right and g(Tx) = 0 for the graph on the left.

(ii) It assigns a high score to topics with a large number of men-

tions by using a count of mentions per node rather than simply
counting number of pairs of nodes.

(iii) By multiplying the counts of mentions of neighbors, g fa-
vors a uniform distribution of mentions per node in the case of a
complete graph where each node, having the same degree central-
ity, is of same significance. Consider two topics Tx and Ty, each
having f = 2N where N is the number of nodes. For Tx assume
each node has 2 mentions while for Ty , the first node has N + 1
mentions and the other nodes have 1 mention each. In this case
since g(Ty) = 3N(N −1) while g(Tx) = 4N(N −1), the score of Tx

with a uniform distribution has a higher score.
(iv) In a power law graph with a small number of highly con-

nected and influential nodes, it is desirable that a score function is
biased towards mentions from influential nodes. As the counting
scheme for Equation 2 is a multiplication of mentions over edges,
for nodes that have a large number of edges, this results in a large
number. Consider a graph with a one-level tree structure where
each edge is bidirectional, a topic Tx with K mentions from the root
of the tree and 1 mention from the rest N −1 has score 2K(N −1),
while a topic Ty with K mentions from one of the leaves and 1 men-
tion from each other node only has a score of 2K +2N −4. For any
N > 2, Tx has a higher score than Ty. Note that, we use degree
centrality as a notion of influence, an idea used in the literature [9].

This new paradigm, in addition to addressing these four points,
captures all possible forms of influence propagation between any

two neighbors. Consider a stream: ...m1:〈n1,Tx〉,...,m2:〈n1,Tx〉,
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Figure 1: Black nodes represent nodes that mention topic Tx,

whereas white nodes represent the nodes that do not.

m3:〈n2,Tx〉,...,m4:〈n2,Tx〉,...,m5:〈n1,Tx〉... where n1 and n2 are neigh-
bors. In this setting n1 sharing m1 and m2 might have influenced n2

to share m3 and m4. Similarly m3 and m4 might have influenced
n1 to share m5. Equation 2 captures all the pairs of possible flow of

influence for this example and in general for undirected graphs. For
directed graphs, although the coordinated trend score does not cor-
respond directly to this notion, it captures a similar behavior. Our
main goal for the second trend definition is to give high score to
topics that are discussed heavily by unconnected nodes, giving the
topic a general credibility. Therefore, we introduce uncoordinated

trendiness score as follows:

h(Tx) = ∑
ni∈N

(Ci,x ∑
nk∈N\(ni∪Ni)

Ck,x) (3)

Informally, function h(Tx) counts the number of pairs of mentions
by unconnected nodes. Going back to our example in Figure 1, for
the graph on the left h(Tx) = 6, whereas h(Tx) = 0 for the graph
on the right. Due to space limitations, we omit detailed analysis of
characteristics of the h(Tx). However we note that it favors topics
with a large number of total mentions, while downgrading the im-
portance of topics that are mentioned by a small set of connected
nodes. Therefore uncoordinated trends can be used to capture the
notion of dispersed and widespread interest and could be used to
reflect the trustworthiness of a topic.

We denote top-k topics w.r.t. f , g, h scores as traditional, coordi-

nated and uncoordinated trends respectively. The combined class
of coordinated and uncoordinated trends is referred to as structural

trends. In the following sections, we will demonstrate the useful-
ness of structural trends and provide solutions for detecting them.

4. STRUCTURAL TRENDS SIGNIFICANCE
In this section, we will demonstrate the value of structural trends

by identifying the interesting activity detected using such new trend
definitions. We will demonstrate the significance of Equations 2
and 3 by addressing the following questions: 1) Are the structural

trends different from traditional trends? 2) What is the nature of
topics detected using structural trends? We make use of two differ-
ent methods to answer these questions. First, we develop a model
of diffusion of an arbitrary number of information campaigns in a
social network. The importance of structural trends is then iden-
tified with respect to the parameters of this model. Second, we
analyze data from Twitter, a large-scale online social network and
identify the types of topics detected using structural trends and fo-
cus on their significance.

4.1 ModelBased Validation
In order to systematically evaluate the significance of structural

trends, we need to model the process that creates trends in a social
network and identify characteristics of social networks or topics
that validate the significance of structural trends. Although there
are a number of models of diffusion of a single information cam-
paign [21], there is little research on modeling of concurrent infor-
mation campaigns with the exception of [11, 8, 13] which study the
diffusion of two concurrent campaigns. Here we introduce a natu-
ral extension of the widely used Independent Cascade model [21]
that models the diffusion of an arbitrary number of campaigns. We

call this model the Independent Trend Formation Model (ITFM) as
the diffusion of topics are assumed to be independent of each other.

ITFM captures nodes as entities that are influenced by their neigh-
bors as well as external entities such as news media. We model a
social network as a directed graph. There are a set of m topics
T = {T1, ...,Tm}. Information diffusion proceeds in discrete time
steps. At each step, nodes mention zero or more topics. As we
would like to model the different types of influence, we assign two
types of probabilities to each node ni: pi,x and qi, j,x that denote the
probability that ni will mention Tx independently from any of its
neighbors (external influence such as news media) and the proba-
bility that ni will mention Tx that its neighbor n j mentioned in the
earlier discrete time step (peer influence). If for a topic Tx the p

probabilities are high, Tx spreads mostly through the news media
channels, whereas if the q probabilities are high, this means Tx is
viral, spreading through peer influence.

Using ITFM as the information diffusion model, we performed
experiments on synthetic power-law graphs since social networks
have power-law degree distribution [29]. In order to produce the
synthetic graphs, we used the Nearest Neighbor model as it is shown
to accurately capture various statistical metrics of real social net-
works [29]. There are two important parameters for the Nearest
Neighbor Model; u, the probability two nodes with a distance of
two are connected at a time step and k, the number of pairs of ex-
isting nodes connected at a time step. We set u = 0.8 and k = 1
since these settings fit a real social network, namely the Facebook
Monterey Bay Network [29]. The experiments in this section were
performed on a 500 node power-law graph with a set of 50 topics.

Question 1: Are the structural trends different from tradi-

tional trends? Do structural trends provide extra information that
could not be obtained otherwise? Or in other words, how similar

are structural and traditional trends? To measure similarity be-
tween traditional and coordinated trends, we used Spearman rank

correlation coefficient (SRCC) [26]:

ρtrad−coor = 1−
6∑dx

2

n(n2 −1)
(4)

where dx is the difference between the ranks of topic Tx under co-

ordinated and traditional trends. Similarly, we used ρtrad−uncoor

to measure the similarity between traditional and uncoordinated

trends. SRCC assesses how well the relationship between two vari-
ables can be described using a monotonic function. A perfect SRCC

of +1 (or -1) occurs when the variables are monotonically increas-
ing (or decreasing) functions of the other. We measured ρtrad−coor

and ρtrad−uncoor using three different q values (0.1, 0.3, 0.5), with
all other variables fixed. Table 1 shows that as the social network
exhibits an increasingly viral behavior with increasing q values,
structural trends diverge from the traditional trends. The diver-
gence is faster for coordinated than for uncoordinated trends.

Equation 4 evaluates the similarity the rankings of all the topics
under two trend definitions. However, in most cases the rankings
of unpopular topics is of little significance. Our goal is to iden-
tify top-k coordinated (top–kcoor) and uncoordinated (top–kuncoor)
topics. Therefore it is more important to observe the similarity
between top–kcoor (or top–kuncoor) and top–ktrad , i.e. traditional

trends. In order to evaluate how good top–ktrad topics are at de-
tecting top–kcoor (or top–kuncoor), we use average precision, an IR
technique used to evaluate score of a ranked list of documents for
a query. Average precision (AP) incorporates precision and recall
values while evaluating a top-k algorithm and can be computed as:

AP =
∑
|D|
i=1 Prec(Ri)

|D|
(5)
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Table 1: Model Similarity Statistics.
q ρtrad−coor ρtrad−uncoor APcoor APuncoor

0.1 0.762 0.988 0.140 0.569

0.3 0.640 0.976 0.095 0.466

0.5 0.600 0.965 0.083 0.398

Table 2: Various Ranking Statistics.
AvgRtrad AvgRcoor AvgRuncoor

p′ = 0.1, q′ = 0.1 T ′ 24.44 36.52 18.56
p′′ = 0.032, q′′ = 0.15 T ′′ 24.56 12.48 30.44

p′ = 0.1, q′ = 0.1 T ′ 24.64 12 34.68
p′′ = 0.2, q′′ = 0.054 T ′′ 24.36 37 14.32

where D = {d1,d2, ...,dk} is the set of relevant documents, R is the
ranked set of documents retrieved by the top-k algorithm and Ri is
the set of ranked documents in R until document di is reached [25].
If di is not detected at all by the detection algorithm, Prec(Ri) = 0.
We performed tests evaluating the average precision of top–5trad

topics w.r.t. the relevant document set of top–5coor (or top–5uncoor)
topics. The results are given in Table 1 in columns APcoor and
APuncoor respectively and reflect similar results to these obtained
using SRCC on the entire topic list. Similar experiments where
all parameters except p values are fixed reveal that with increasing
p values, similarity between traditional and uncoordinated trends
increases. This adheres to the intuition that, as p values dominate q

values, peer influence becomes less important and there is a smaller
number of “spammy” topics for uncoordinated trends to filter out.
For completeness purposes, the summary of the findings for this set
of experiments is given in Appendix C.2.

Question 2: What is the nature of topics detected using struc-

tural trends? As we demonstrated earlier, structural trends tend to
be different from traditional trends. But what do such differences
corresponds to? In the previous experiments, the p and q values for
each node and topic were set to the same value. Therefore, all the
topics had similar nature. In the second set of experiments, half of
the topics are set to one value (q = p = 0.1) while the other half
of the topics are set to another. Consider a network G and a set of
topics T . Let T ′ denote the set of topics in T with q′ = 0.1 and
p′ = 0.1, and T ′′ denote the rest T −T ′ topics. Setting q < 0.1 for a
topic Tx results in Tx spreading less significantly through social ties
and setting p > 0.1 balances this shortcoming by spreading through
external influences. Therefore, for the set T ′′, there can be a dis-
tribution with q′′ < 0.1 and p′′ > 0.1 (or q′′ > 0.1 and p′′ < 0.1)
values such that the average traditional ranking of T ′ and T ′′ are
similar. Next we test, how topics in the subset T ′′ rank compared to
T ′ w.r.t. their coordinated and uncoordinated scores. Let AvgRtrad ,
AvgRcoor and AvgRuncoor of T ′ (or T ′′) denote the average ranking
of topics that belong to T ′ (or T ′′) w.r.t. their f ,g and h scores
respectively. As the data set of this experiment consists of 50 top-
ics, the topics rank from the highest score of 0 to 49. As could
be expected, Table 2, shows that when q′′ < 0.1 and p′′ > 0.1, the
coordinated significance of topics in set T ′′ is much lower than T ′,
while uncoordinated significance is higher. The opposite behavior
is observed when the settings are q′′ > 0.1 and p′′ < 0.1. For in-
stance, an average of 12 among 25 topics in T ′′ indicate that all the
topics in T ′′ rank in top-25 coordinated trends.

Possible use case of structural trends: detecting or filtering

Sybil activity: Our experiments thus far modeled nodes of the net-
work as having similar characteristics and focused on topics with
varying properties. In reality, behavior of the nodes in the network
can also vary. One use of structural trends would be if such variance
in the form of spamming can be detected or filtered out using struc-
tural trends. Spam in social networks is an important and widely
studied problem [7, 41, 16, 39, 27, 38]. We study one type of spam-

ming behavior where a malicious user launches a Sybil attack [15]
by creating a large number of virtual identities which have a large
number of connections with other Sybil nodes and a small number
of connections with real users. Given the importance of trends in
social networks, it is important that the trending topics reported are
not biased by the spam of a small number of Sybil nodes.

We claim that structural trends can identify or filter topics bol-
stered by malicious users in a Sybil setting. Unlike related work [38],
our approach does not solely depend on the network graph and uti-
lizes information diffusion data. Consider a social network where a
group of Sybil nodes are trying to bolster the importance of a topic
Ty. We performed experiments which investigate how the p and q

values of Sybil nodes for topic Ty or the number of Sybil nodes ef-
fect the importance of Ty as a traditional, coordinated and uncoordi-
nated trend. The details of the experimental study are given in Ap-
pendix C.1. Here we list some important findings: 1) The coordi-
nated ranking of Ty is consistently higher than the traditional rank-
ing which is higher than the uncoordinated ranking. This shows
that coordinated trends identify Sybil activity while uncoordinated

trends filter it. 2) Even with small values of p and q, there is a
breakpoint at which Ty becomes drastically more popular as a co-
ordinated trend. This breakpoint is observed at much larger p and
q values for the other two definitions. 3) Similarly, the jump in the
coordinated importance of Ty is observed with a small set of Sybil
nodes whereas this jump is seen much later with the other defini-
tions. These findings highlight the usefulness of structural trends
in Sybil attack detection. In general, spamming behavior in social
networks is not limited to Sybil attacks [27]. The effectiveness of
structural trends under such different conditions is an open problem
we plan to investigate in the future.

4.2 AnalysisBased Validation
Although using the methods introduced in Section 4.1, the value

of structural trend definitions can be systematically studied, a ver-
ification using real data sets is crucial. We use a Twitter data set
[31] of 467 million Twitter posts from 20 million users spanning a
7 month period containing author, time and content for each tweet.
Using the Twitter social network graph published by Kwak et al. [22]
we obtained the connections between the users sharing these tweets.
We identified 2.7 million users that have at least one tweet that in-
cludes at least one hashtag. Such users have 230 million edges
between them. We used hashtags to identify topics of tweets and
observed that there were many hashtags that were similar except
for some punctuation details or case differences. We categorize
such hashtags under one topic. Although there are over 10 million
hashtags in the Twitter data set, using this technique we were able
to reduce this number to 2960495. We now summarize the key
findings based on the analysis of this data.

Question 1: Are the structural trends different from tradi-

tional trends? Similar to the model-based verification, SRCC and
average precision were computed to observe similarity of struc-

tural and traditional trends. The results are presented in Table
3. Consider the second column; ρ value for this case is SRCC of
traditional and coordinated trends and AP(29604), AP(2960), and
AP(296) respectively represent the average precision of top 29604,
2960, 296 traditional topics in identifying the top 29604, 2960, 296
coordinated topics. These numbers correspond to the top-1, 0.1,
0.01 percentile of all the topics. The results consistently show that
traditional trendiness is not a good predictor of coordinated trendi-
ness, i.e. using coordinated trend definition, we identify topics that
are not identified using traditional trend analysis. Likewise, the
third column in Table 3 indicate that uncoordinated trends show
significant differences from traditional trends. Interestingly, ad-
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Table 3: Twitter Similarity Statistics.
Coordinated Uncoordinated

ρ 0.23 0.64

AP(29604) 0.54 0.9

AP(2960) 0.43 0.84

AP(296) 0.35 0.52

Table 4: Three Topics From Twitter.
hashtag Rtrad Rcoor Runcoor #users #edges

#apple 78 201 2960491 24050 218451

#hhrs 82 10 20 5789 392501

#twitterafterdark 83 856 5 17441 37084

hering to the results obtained in Section 4.1, uncoordinated trends

are more similar to traditional trends than coordinated trends.
Question 2: What is the nature of topics detected using struc-

tural trends? As our goal is to detect interesting topics using
structural trends that would be undetected otherwise, we studied a
set of topics in Twitter data set that have sizable number of men-
tions though not ranking high enough to be detected as a traditional

trend (ranking 60th to 100th). Of those topics we identified topics
that have a high structural significance compared to their traditional

significance, i.e., top-10 topics sorted by Rcoor(x)− Rtrad(x) (or
Runcoor(x)−Rtrad(x)) where Rtrad(x), Rcoor(x) and Runcoor(x) cor-
responds to the traditional, coordinated and uncoordinated rank-
ing of a topic Tx respectively. The results indicate that coordinated

trends result from tweets from a relatively small number of users
(7694 on average) with a very large number of ties (21.5 number
of neighbors per node on average), whereas uncoordinated trends

result from tweets from a large number of distinct users (21114 on
average) with small number of ties (8.6 number of neighbors per
node on average). The details of such topics are provided in Ap-
pendix C.2 and show interesting distinctions.

Table 4 demonstrates the results using three topics; #apple, #twit-
terafterdark, #hhrs. The columns of the table correspond to the
hashtag, traditional, coordinated and uncoordinated ranking of the
hashtag, number of distinct users that used the hashtag and the
number of edges between such users respectively. Of those three
topics that have similar traditional scores, #twitterafterdark has a
high uncoordinated score, #hhrs has a high coordinated score and
#apple is insignificant as a structural trend. The coordinated trend
#hhrs originates from a small number of nodes with a large num-
ber of edges between them whereas the uncoordinated trend #twit-
terafterdark originates from a large number of distinct users with
a much smaller ratio of edges between them. The hashtag #hhrs
refers to Hugh Hewitt Radio Show which is a conservative talk
show, whereas #twitterafterdark is a hashtag used by users to refer
to their experiences at night. It is intuitive that #hhrs is mentioned
by connected pairs of nodes, especially considering the effects of
homophily in connection formation [23]. On the other hand, #twit-
terafterdark is an idiom whose usage depends on experiences of
users rather than the use of the hashtag by their friends. The hash-
tag #apple is used in tweets relating to Apple products. These three
hashtags have very different characteristics that would go unnoticed
with traditional trend analysis as their traditional rank is similar.

We now give a visualization that demonstrates the difference be-
tween trends detected using coordinated and traditional trends. We
use Prefuse, an open-source software [18], to visualize subgraphs
of the Twitter data set, consisting of only nodes that participated
in particular hashtags and edges between such nodes. The size
of a node is proportional to log2 of number of tweets that node
had on that particular hashtag. The visualization results for hash-
tags #pawpawty and #mafiawars are given in Figures 2(a) and 2(b).

These two hashtags have different categorical natures; #pawpawty
is commonly used to raise money for animal rescue organizations,
whereas #mafiawars is commonly used by gamers. Despite this
important difference, the two hashtags have very similar traditional
rankings of 289 and 212 respectively. Unlike traditional trends,
coordinated trends detect the difference between the two hashtags;
#pawpawty has a high coordinated importance, ranking 24th, while
#mafiawars does not. This difference can be seen in Figures 2(a)
and 2(b). We can see that #mafiawars has a large number of uncon-
nected nodes, while the opposite is true for #pawpawty suggesting
that this socially motivated hashtag, unlike #mafiawars, diffuses
mostly through the friendship edges or that homophily effect for
#pawpawty is stronger. This analysis takes us to our next question:
Do hashtags with different categorical characteristics have lower or
higher structural importance?

(a) #pawpawty (b) #mafiawars

Figure 2: Two traditionally similar hashtags in Twitter.

In order to answer this question, we analyze 500 hashtags that are
categorized into 7 different topics; political, technology, celebrity,
games, idioms, movies, music and none. These hashtags and their
categories were obtained from a recent study [28] that categorizes
the top 500 hashtags for a Twitter data set. The timeframe of the
data set used in that study overlaps with our data set. Therefore
these hashtags have significant importance in our data set as well,
though not necessarily amongst top-500. Our analysis provides
some interesting insights as to how people use Twitter to share
information. Figure 3(a) demonstrates the cumulative distribution
function (CDF) of coordinated, uncoordinated and traditional rank-
ing of political hashtags given in [28]. We see that using the coor-
dinated trends definition, the importance of political hashtags are
bolstered. Political hashtags having a high coordinated importance
indicate that such hashtags are used by highly clustered set of nodes
and that people tend to re-share political information shared by
their friends. This is not the case for other categories, such as id-
ioms [28] as demonstrated in Figure 3(b). Such topics are more
significant as an uncoordinated trend indicating that usage of these
hashtags is mostly amongst dispersed nodes. This phenomenon
could have been facilitated by the unique nature of Twitter, which
broadcasts tweets of every user. A user interested in a specific hash-
tag can easily obtain the list of tweets under that hashtag. So usage
of Twitter is likely to be more centric to the use of this feature
rather than social friend following. A different behavior can possi-
bly be observed in other social networks. In general, the structural
trend based data analysis facilitates the identification of interest-
ing specifics of user interactions in different categorical contexts
in various social network. An interesting problem is the evolution
of trends throughout time which can be studied using sliding win-
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dows of user tweets. More interestingly online solutions in this set-
ting can be applied using techniques similar to the ones explained
in Section 5. Due to space limitations, we omit such analyses and
leave an extensive study on timing issues as future work.

(a) Political hashtags (b) Idiom hashtags

Figure 3: CDF of ranking of topics of different categories.

5. STRUCTURAL TREND DETECTION
In this section, we provide methods for both coordinated and

uncoordinated trend detection. In Section 5.1, we will first give
details about the solution for coordinated trends. Later in Section
5.2, we will provide the details for uncoordinated trend detection.

5.1 Coordinated Trend Detection
We start by presenting a naive solution to detect coordinated

trends, i.e. computing Equation 2 exactly for each topic. Since
this solution is expensive for large social networks with high traffic
of information sharing, we next explore ways to improve efficiency.
To this end, we propose a sampling based solution. We show that a
simple sampling method can be used while still guaranteeing high
accuracy, especially for popular topics. In order to demonstrate the
use of this sampling technique, we reduce the problem of evaluating
the coordinated trendiness of each topic to the problem of counting
local triangles, i.e., counting the number of triangles incident to a
given node in a graph G.

5.1.1 Incremental Counting Algorithm

As our main goal is to detect trends, it is crucial to provide incre-
mental solutions. Therefore semi-streaming methods [34, 6] which
traverse the data a non-constant number of times are not applicable.
For these methods, updates such as the receipt of a small number
of broadcasts would necessitate the repetition of the whole process
to find new trends. Instead, we propose using an incremental ap-
proach. The approach introduced in this section finds exact values

and therefore is computationally expensive, but using the sampling
method described in Section 5.1.2, the complexity can be reduced.

Consider the actions that need to be taken upon receiving a new
tuple 〈nl ,Tx〉. Assume that until this point the exact value of Ci,x

for each Tx ∈ T and ni ∈ N and the exact value for Equation 2 for
each Tx are known. Upon the receipt of 〈nl ,Tx〉, Cl,x has to be
incremented by 1. Also, the score of Tx should be updated as:

g′(Tx) = g(Tx)+ ∑
ni∈Nl

′

Ci,x + ∑
ni∈Nl

Ci,x (6)

where g(Tx) is the coordinated score of Tx before receipt of 〈nl ,Tx〉,
g′(Tx) is its score afterwards, Ni = {n j |ei, j ∈E} and Ni

′ = {n j|e j,i ∈
E}. The proof of the correctness of this equation can be found in
Section B.1. As is evident from this computation, after receiving
tuple 〈nl ,Tx〉, g(Tx) has to be increased by the sum of all C j,x where
n j is a neighbor of nl , and Cm,x, where nl is a neighbor of nm. This
requires O(n) reads. However, in social networks, only a small frac-
tion of nodes are connected to a large number of nodes. So in most
cases this operation requires a small number of reads. The solution

requires using two adjacency lists per node ni, one to keep track of
incoming and outgoing edges. Fast access to Ci,x for each i and x

is needed as well. Therefore a hashtable per topic is used to keep
track of the counts of broadcasts per node.

As our ultimate goal is to give an ordered list of top-k coordi-
nated topics at each point in time, in addition to accurately report-
ing coordinated scores per topic we need to provide a sorted repre-
sentation of top-k topics. Therefore, a simple solution uses a sorted
structure to keep track of the top-k topics. In this case the receipt
of a new tuple 〈nl ,Tx〉 might require an update to this structure as
well. The naive implementation provides a good solution for small
networks with a small number of broadcasts per seconds. However,
the sheer volume of information shared on online social networks
today still poses a scalability challenge. A recent report from Twit-
ter announced 3283 tweets per second [33]. Data flow at this scale
calls for solutions that sacrifice accuracy for efficiency.

5.1.2 Counting Local Triangles and Sampling

We now propose our sampling based solution to overcome the
scalability challenge of coordinated trend detection. As it is eas-
ier to describe the correctness in a graph-oriented manner, we will
show that the problem of finding coordinated trends is equivalent to
counting local triangles in a multi-graph. Later, we will prove that
using sampling this specific problem can be made more efficient.

Consider a directed graph G = (N,E), a set of topics T and
stream of tuples S, where a tuple is in the form: 〈ni,Tx〉 s.t. ni ∈ N

and Tx ∈ T . Create a directed multi-graph G′ = (N′,E ′) s.t. N′ =
N ∪ T and E ′ = {(u,v)|(u,v) ∈ E ∨ 〈u,v〉 ∈ S ∨ 〈v,u〉 ∈ S}. The
nodes can be categorized into two categories: topic nodes Tx ∈ T

and user nodes ni ∈N. Let the edges of the form (ni,Tx) (or (Tx,ni))
be topic edges and denote this set as Et . Similarly, edges of the
form (ni,n j) are friendship edges and are denoted by E f . Clearly
E ′ = Et ∪E f . In a multi-graph two vertices may be connected by
more than one edge. By construction of G′, there can be at most
one friendship edge from a node ni to n j and an arbitrary number
of topic edges between ni and Tx. Any three nodes u, v and w s.t.
(u,v) ∈ E ′ ∧ (v,w) ∈ E ′ ∧ (w,u) ∈ E ′ form a triangle in G′. The
g(Tx) score of a topic Tx given in Equation 2 is simply the number
of triangles incident to node Tx in G′. Figure 4 gives an exam-
ple of one such reduction. Nodes T1,n2,n3 induce two triangles
whereas T1,n3,n4 induce only one since (n2,n3) is a bidirectional
edge whereas (n3,n4) is unidirectional. Also T1,n1,n2 induce two
triangles because there are two topic edges between T1 and n1.

(a) A graph G and stream of
mentions S.

(b) The multigraph created us-
ing G and S.

Figure 4: Reduction to counting local triangles.

After this reduction, the stream of 〈ni,Tx〉 tuples can be observed
as the incoming topic edges of G′. Given the entire graph G is avail-
able and only Et , the topic edges are sampled, g(Tx) can be accu-
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rately predicted. The procedure is straightforward and the sampling
method resembles to the one introduced in [35]: Create a directed
multi-graph G′′ = (N′′,E ′′) s.t. N′′ = N′ and E ′′ = {(u,v)|(u,v) ∈
E}. For each incoming tuple 〈ni,Tx〉, which corresponds to topic

edges (ni,Tx) and (Tx,ni) in G′, flip a coin with bias ps. With
ps probability, we keep both (ni,Tx) and (Tx,ni) edges by setting
E ′′ = E ′′ ∪ (ni,Tx)∪ (Tx,ni) and discard them both otherwise. The
number of triangles involving Tx in G′ can be estimated as Xx =
Countx/ps

2, where Countx denotes the number of triangles involv-
ing Tx in G′′. We can guarantee that the number of triangles cal-
culated based on the sampled data is a good approximation of the
actual number of triangles. Specifically, the probability that the pre-
diction Xx is off by ε∆x is upper-bounded by the following equation:

Pr(|Xx −∆x| ≥ ε∆x) ≤
Var(Xx)

ε2∆x
2

≤
(ps

2 − ps
4)

ps
4ε2∆x

+2αx
(ps

3 − ps
4)

ps
4ε2∆x

2

(7)
where ∆x is the actual number of triangles involving Tx, αx is the
number of pairs of triangles that involve Tx and are not edge disjoint
and ps is the rate of sampling. The proof of correctness of Equation
7 is provided in Appendix A. As is evident from Equation 7 the
quality of the estimate depends on the number of triangles as well
as the number of edge-disjoint triangles. Since the number of multi-
edges has a big effect on this property, the quality of the estimate
depends on the number of times a specific user mentions a specific
topic. As this number gets increasingly large, the quality of the
estimate degrades. However the estimate becomes quadratically
better with increasing ∆x and only linearly worse with αx which is
smaller so the estimate is still better for “trendy” topics.

5.2 Uncoordinated Trend Detection
Similar to coordinated trends, uncoordinated trends can be re-

duced to counting local triangles in a multi-graph. Considering
same definition for G,T and S as given in Section 5.1, create a
multi-graph G′ = (N′,E ′) s.t. N′ = N ∪T and E ′ = {(u,v)|(u,v) /∈
E ∨ (u,v) ∈ S}. The h(Tx) is simply the number of triangles inci-
dent to node Tx in G′. In this setting, the tuples 〈ni,Tx〉 are the edges
of the multi-graph G′. As demonstrated in Section 5.1.2, this prob-
lem can be efficiently approximated by sampling. Since an online
algorithm is a requirement, the uncoordinated trendiness score of
topics should be incrementally updated. As proven in Section B.2,
the increase can be calculated in the following way:

h′(Tx) = h(Tx)+ ∑
ni∈N\(nl∪Nl)

Ci,x + ∑
ni∈N\(nl∪Nl

′)

Ci,x (8)

where h(Tx) is the uncoordinated score of Tx before receipt of 〈nl ,Tx〉,
h′(Tx) is its score after the receipt of the tuple, Ni = {n j|ei, j ∈
E}and Ni

′ = {n j|e j,i ∈ E}. Upon receiving tuple 〈nl ,Tx〉, the un-

coordinated trendiness score of Tx has to be increased by the sum
of all C j,x such that n j is not a neighbor of nl and Cm,x such that
nl is not a neighbor of nm. This requires in the worst case O(n)
reads. Unfortunately unlike the computation necessary coordinated

trendiness, this operation in most cases requires close to n reads.
However, a simple realization results in an efficient solution that
performs a small number of reads per update by making use of
the power-law degree distribution of social networks. By keep-
ing track of traditional trendiness score, f (Tx), for each topic Tx,
the update on h(Tx) can be computed as: 2∗ f (Tx)−∑n j∈Nl

C j,x −
∑n j∈Nl

′ C j,x −2∗Cl,x as shown in Section B.2.

5.3 Experimental Results on Twitter
Our goal is to provide a ranked list of top-k structural trends.

Therefore, we performed experiments on the Twitter data set in-
troduced in Section 4.2 to compute the average precision (AP) of

Figure 5: Average Precision of sampling for coordinated

trends.

sampled data for both coordinated and uncoordinated top-k lists
for different values of ps (0.5,0,2,0.1, 0.01 and 0.005) and k. Fig-
ure 5, which provides the results for coordinated trends, shows that
top-29 coordinated trend detection is largely robust to the sampling
parameter, i.e. even for a small value of ps = 0.005 where approx-
imately 1 out of 200 tuples is processed, AP lies above 0.93. This
is not the case for the top-29604 topics where AP degrades largely
with decreasing ps. This is mostly due to the large number of tail

topics that are unpopular and have close-to-zero values. This be-
havior therefore is to be expected considering that sampling has
low accuracy for unpopular topics as is shown in Equation 7. Note,
however, unpopular topics are of little interest for trend detection.
Results for uncoordinated trends are similar to that of coordinated

trends and are provided in Appendix C.3. Interestingly, uncoordi-

nated trend detection is more robust to sampling since the quality
of sampling is higher for larger values of exact number of triangles
as given in Equation 7 and due to the sparsity of social network
graphs number of triangles induced from uncoordinated trendiness
tend to be larger than that of coordinated trendiness. As could be
expected, a linear speed-up is observed w.r.t 1/ps. We refer the
reader to Appendix C.3 for the experiment results.

6. CONCLUSION
In this paper, we introduced new methods for identification of

important topics in social networks that utilizes the network topol-
ogy. We proposed two novel trend definitions called coordinated

and uncoordinated trends that detect topics that are popular amongst
highly clustered and distributed users respectively. We also in-
troduced a novel information diffusion model called Independent

Trend Formation Model (ITFM) that distinguishes viral diffusion of
information from diffusion through external entities such as news
media and captures the diffusion of an arbitrary number of top-
ics in a social network. Using both ITFM and a Twitter data set
with 41.7 million nodes and 417 million posts, we demonstrated
the value of the new trend definitions by showing that they identify
substantially different set of topics as trending and shed light on
the way information diffuses in social networks. We also proposed
a sampling technique for structural trend detection that provides
computational gain as well as a solution within an acceptable er-
ror bound. Our experimental study on the Twitter data set show
an impressive 0.93 average precision for coordinated trends and a
perfect average precision of 1 for uncoordinated trends.

As this work emphasizes, traditional ways of identifying popu-
lar items are not enough to characterize information diffusion and
discover interesting activity in social networks. We specifically ex-
plored two novel ways of discovering trends. We do not propose
the new techniques as a substitute for traditional trend detection
but rather as a compliment. As future work, we plan to study more
general structural trend definitions that explore the space between
the two extremes introduced in this work, such as topics discussed
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by a group of c connected users. We also plan to investigate other
metrics such as strength of ties and timing of mentions to incorpo-
rate into structural trend analysis.
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Table 5: Definitions of symbols and Acronyms.

Symbol Definition

G = (N,E) social network graph

S stream of node-topic tuples (mentions)

T Topic nodes in G′ (induced from the set of
all possible topics)

G′ = (N′,E ′) multi-graph induced using G, T and S

N′ = N ∪T

E ′ = E f ∪Et where E f is the set of friendship
edges and Et is the set of topic edges

G′′ multi-graph after sampling

∆x number of triangles involving Tx in G′

δx, j indicator variable, δx, j = 1 if jth triangle of Tx

exists in G′′ and δx, j = 0 otherwise

Xx estimate of number of triangles after sampling

(computed as Countx/p2, where Countx is
the number of triangles involving Tx in G′′)

ps sampling probability, i.e. probability that a
topic edge in G′ exists in G′′

APPENDIX

A. PROOF OF QUALITY OF SAMPLING
In this section we prove the correctness of Equation 7 which

shows the error bound for counting the number of local triangles
in G′ where a certain subset of the edges (Et ) are sampled. We list
an overview of notations in Table 5 as a guideline for this section
and refer the reader to Section 5.1.2 for the construction of G′ and
G′′. Our goal is to prove that the number of local triangles involv-
ing a specific topic node Tx can be accurately estimated given that
the topic edges in Et are sampled and the exact sets of N′ and E f

are provided. To this end, we start by studying the mean and vari-
ance of the number of triangles estimated using the sampled data
and derive bounds on the expected number of triangles detected.

THEOREM A.1. The expected value of Xx in G′′ is ∆x which is

equivalent to the score of topic Tx.

PROOF. Xx is the multiplication of the sum of indicator variables

for topic Tx and (1/ps)
2. Therefore, E[Xx] = E[∑

∆x

j=0 δx, j/ps
2]

= ∑
∆x

j=0 E[δx, j/ps
2] = 1/ps

2 ∑
∆x

j=0 E[δx, j] = 1/ps
2 ∑

∆x

j=0 ps
2 = ∆x

Using Chebyshev’s inequality [3], which states Pr(|Xx −∆x| ≥

ε∆x) ≤
Var(Xx)

ε2∆x
2 , guarantees of the accuracy of Xx in predicting the

actual ∆x values can be given. In order to do so, we now study the
variance of variable Xx.

THEOREM A.2. The variance of Xx is:

Var(Xx) =
∆x(ps

2 − ps
4)+2αx(ps

3 − ps
4)

ps
4

where αx is the number of pairs of triangles that involve Tx and are

not edge disjoint.

PROOF. Xx is a sum of indicators that a certain triangle involv-
ing Tx survives after sampling. These indicators are not indepen-
dently distributed. Consider two triangles denoted by indicator
variables δx, j and δx,l where j 6= l ( jth and lth triangle involving Tx).
Such two triangles cannot share all three edges as they are distinct
triangles. They can neither share two friendship edges since there
can be at most 1 edge from a node ni to n j . They cannot share two
topic edges either since in this case the triangles would be identical

Figure 6: Cases to be considered for variance.

as two triangles sharing two topic edges would also have to share
the friendship edge. Eliminating such possibilities, there are four
possible cases to be considered. They can share: 1) one topic edge

(δi,1 and δi,2 in Figure 6), 2) one friendship edge 3) one friendship

and one topic edge or 4) no edge (δi,3 and δi,4 in Figure 6). Figure
6 lists these possible scenarios of how two such indicators might
(or not) be dependent. For case 2) and 4), the two indicators would
be independent as friendship edges are not sampled. For cases 1)
and 3), the two indicator variables both are dependent on the topic

edge “surviving”. Let number of cases of the form 1) or 3) be αx

for topic Tx. The variance of X can be computed as:

Var(Xx) = Var(
1

p2

∆x

∑
j=1

δx, j) =
1

p4

∆x

∑
j=1

∆x

∑
l=1

Cov(δx, j,δx,l)

There are ∆x
2 terms in this summation. ∆x of these terms are the

variances of indicator variables. Since there are αx of cases where
two indicator variables are dependent on each other (share one topic

edge), the covariance for αx out of
(∆x

2

)

pairs of indicator variables

is: Cov(δx, j,δx,l) = ps
3 − ps

4. Cov(δx,m,δx,o) = ps
4 − ps

4 = 0 for

the rest
(∆x

2

)

−αx terms. Therefore the variance is:

Var(Xx) =
1

ps
4
(∆x(ps

2 − ps
4)+2αx(ps

3 − ps
4))

Using Chebyshev’s inequality [3] and Theorems A.2 and A.1,
we can show the correctness of Equation 7 as follows:

Pr(|Xx −∆x| ≥ ε∆x) ≤
Var(Xx)

ε2∆x
2

≤
(ps

2 − ps
4)

ps
4ε2∆x

+2αx
(ps

3 − ps
4)

ps
4ε2∆x

2

B. INCREMENTAL COORDINATED AND

UNCOORDINATED SCORE UPDATES
In this section we prove the correctness of Equations 6 and 8

which identify how coordinated and uncoordinated scores of a topic
Tx need to be update upon receipt of a tuple 〈nl ,Tx〉.

B.1 Coordinated Score Update
Upon processing the mention 〈nl ,Tx〉, the “trendiness score” of

Tx has to be increased by the sum of all C j,x such that n j is a neigh-
bor of nl and Cm,x such that nl is a neighbor of nm. Now, we
will prove the correctness of this update function which is given in
Equation 6 where g(Tx) denotes the coordinated score of Tx before
receipt of 〈nl ,Tx〉 and g′(Tx) denotes its score afterwards. Similarly,
we use the symbol C for the counts of mentions per node before re-
ceipt of the new mention and C′ for afterwards. Keeping in mind
that the only C′ value changed is (Cl,x)

′, the new coordinated score
for Tx can be calculated in the following way:
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g′(Tx) = ∑
ni∈N

n j∈Ni

Ci,x
′ ·C j,x

′

= ∑
ni∈N\nl
n j∈Ni\nl

Ci,x
′ ·C j,x

′ + ∑
ni=nl
n j∈Ni

Ci,x
′ ·C j,x

′ + ∑
n j=nl

ni∈N j
′

Ci,x
′ ·C j,x

′

= ∑
ni∈N\nl
n j∈Ni\nl

Ci,x ·C j,x + ∑
n j∈Nl

(Cl,x +1) ·C j,x + ∑
ni∈Nl

′

Ci,x · (Cl,x +1)

= ∑
ni∈N
n j∈Ni

Ci,x ·C j,x + ∑
ni∈Nl

′

Ci,x + ∑
ni∈Nl

Ci,x

= g(Tx)+ ∑
ni∈Nl

′

Ci,x + ∑
ni∈Nl

Ci,x

where Ni = {n j|ei, j ∈ E} and Ni
′ = {n j|e j,i ∈ E}.

B.2 Uncoordinated Score Update
According to Equation 8, upon receiving mention 〈nl ,Tx〉, the

uncoordinated trendiness score of Tx has to be increased by the
sum of all C j,x such that n j is not a neighbor of nl and Cm,x such
that nl is not a neighbor of nm. Now we will prove this statement.
Similar to Section B.1, the counts per node are denoted by C before
receipt of the new tuple and C′ after receipt of the new tuple.

h′(Tx) = ∑
ni∈N

n j∈Ni
c

Ci,x
′ ·C j,x

′

= ∑
ni∈(N\nl)

n j∈(Ni
c\nl )

Ci,x
′ ·C j,x

′ + ∑
ni=nl

n j∈Ni
c

Ci,x
′ ·C j,x

′ + ∑
n j=nl

ni∈N j
′c

Ci,x
′ ·C j,x

′

= ∑
ni∈(N\nl)

n j∈(Ni
c\nl )

Ci,x ·C j,x + ∑
n j∈Ni

c

(Cl,x +1) ·C j,x + ∑
ni∈Nl

′c

Ci,x · (Cl,x +1)

= ∑
ni∈N

n j∈Ni
c

Ci,x ·C j,x + ∑
ni∈N\(nl∪Nl)

Ci,x + ∑
ni∈N\(nl∪Nl

′)

Ci,x

= h(Tx)+ ∑
ni∈N\(nl∪Nl)

Ci,x + ∑
ni∈N\(nl∪Nl

′)

Ci,x

where h(Tx) is the uncoordinated score of Tx before receipt of the
new tuple 〈nl ,Tx〉, h′(Tx) is its score after the receipt of the tuple,
Ni = {n j |ei, j ∈ E}, Ni

′ = {n j|e j,i ∈ E}, Ni
c = N \ (ni ∪ Ni) and

Ni
′c = N \ (ni ∪Ni

′). We can further analyze this result to obtain:

h′(Tx) = h(Tx)+ ∑
ni∈N\(nl∪Nl)

Ci,x + ∑
ni∈N\(nl∪Nl

′)

Ci,x

= h(Tx)+ ∑
ni∈N

Ci,x −Cl,x − ∑
ni∈Nl

Ci,x + ∑
ni∈N

Ci,x −Cl,x − ∑
ni∈Nl

′

Ci,x

= h(Tx)+2∗ f (Tx)− ∑
ni∈Nl

Ci,x − ∑
ni∈Nl

′

Ci,x −2∗Cl,x

Using this observation, the power-law properties of degree dis-
tribution of social networks can be leveraged to perform the update
on h(Tx) requiring only a small number of reads for most cases.

C. FURTHER EXPERIMENTAL RESULTS

AND ANALYSES

C.1 Sybil Attack Experiments
In Section 4, we claimed that structural trend analysis has a nice

side effect of either identifying or filtering topics bolstered by ma-
licious users in a Sybil setting. In order to validate these proposi-
tions, we used the 500-node synthetic graph and identified a set of

nodes, Ssybil , as Sybil by randomly selecting a seed and performing
a breadth-first search until a number of attack edges are reached.
This method of testing Sybil behavior is based on the technique in
[42]. Throughout our experiments, this set of Sybil nodes are set
to be highly interested in a topic Ty and have little interest in other
topics whereas the interests of the other users are uniform among
all the topics.

(a) Effect of Sybil p, q values. (b) Effect of # of Sybil nodes.

Figure 7: Sybil Attack Experiments.

We evaluated the relative importance of topic Ty which is the
topic of interest of Sybil nodes, as a traditional, coordinated or un-
coordinated trend with varying sizes of |Ssybil |. We answer two
questions: 1) For a fixed size of Sybil nodes, how do the p and q

values of Sybil nodes for Ty effect the relative trendiness of Ty as
a traditional, coordinated and uncoordinated trend? 2) How does
the size of Sybil nodes affect the same metric? In order to answer
the former question, a set of experiments with increasing p and q

values of Sybil nodes for Ty were performed where the Sybil at-
tack size was set to 10 nodes. The results are presented in Figure
7(a) where the X-axis denotes the setting of the p and q values of
Sybil nodes for topic Ty and Y-axis denotes the importance of Ty as
a traditional, coordinated and uncoordinated trend. “Importance”
refers to the number of topics Ty outranks (including Ty itself). So
when Ty is the highest ranking topic, its importance is 50 as there
are 50 possible topics in the data set. As it can be seen from Fig-
ure 7(a) with changing p and q values, coordinated score of Ty is
consistently higher than traditional score and traditional score is
higher than that of the uncoordinated score. It is also worthwhile
to point out that, even with small values of p and q, we can see a
breakpoint upon which Ty becomes significantly more trendy un-
der coordinated trendiness, whereas this breakpoint is much later
for the other two definitions.

A similar effect is observed in Figure 7(b) where the effect of the
number of Sybil nodes in the trendiness of Ty is given. The X-axis
refers to the number of Sybil nodes while the Y-axis demonstrates
the same notion as the Y-axis in Figure 7(a). This set of experi-
ments, for a fixed setting of p and q values (For Sybil nodes:pi,y =
qi, j,y = 0.9 and pi,k = qi, j,k = 0.01 for ni ∈ Ssybil , Tk ∈ T −Ty and
n j ∈N. As for non-sybil nodes: pi,k = qi, j,k = 0.0.03 for ni /∈ Ssybil ,
Tk ∈ T and ni ∈ N), tests the importance of the number of Sybil
nodes and shows coordinated trendiness of Ty is consistently higher
than its traditional and uncoordinated trendiness. Also, the jump
in coordinated importance of Ty, which is useful for detecting the
suspicious activity, can be observed with a small set of Sybil nodes
whereas this jump is seen much later with the other definitions.

C.2 Further Results on Significance of Struc
tural Trends

Here we provide some additional analysis and figures relating to
the significance of structural trends in social networks. We first
provide Table 6 relating to the model-based validation as given in
Section 4.1. This table demonstrates the effect of increasing p val-
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Figure 8: Average Precision of sampling technique for uncoor-

dinated trends.

Table 6: Model Similarity Statistics.
p ρtrad−coor ρtrad−uncoor APcoor APuncoor

0.1 0.763 0.988 0.144 0.571

0.3 0.518 0.993 0.079 0.672

0.5 0.401 0.996 0.062 0.737

Table 7: Coordinated trends in Twitter that are Traditionally

Insignificant.
hashtag Rcoor Rtrad hashtag category/explanation

#bb11 29 60 big brother 11 - tv series

#f1 35 70 sports

#green 33 74 political/social

#honduras 49 93 political/social

#ocra 44 91 Organized Conservative Resistance Alliance
(political/social)

#digg 11 65 used mostly by digg.com users
70% retweet

#redsox 34 90 sports

#jesus 18 85 religious

#nieuws 27 97 news in Dutch

#hhrs 9 81 Hugh Hewitt Radio Show
conservative talk show (political/social)

ues (probability that a node discusses a topic independent from its
neighbors) in the similarity of structural and traditional trends. The
results show that with increasing p values, the similarity between
traditional and uncoordinated trends increases. The analysis sum-
mary is provided in Section 4.

We also provide two lists of Twitter hashtags in Tables 7 and
8 that list the details about 10 hashtags that have high coordinated

and uncoordinated scores while having insignificant traditional rank-
ings. These tables relate to the analysis-based validation of struc-

tural trend significance as discussed in Section 4.2. A large number
of political/social/religious hashtags are listed in Table 7, whereas
Table 8 mostly consists of idiom/generic concept hashtags. We fur-
ther see that the list reported in Table 7 consists of narrow topics
compared to the general topics in Table 8.

C.3 Further Results on Structural Trend De
tection

In Section 5.3 we provided the figures that summarize the re-
sults of accuracy experiments for coordinated trends on the Twitter
data set. As we noted before, the behavior of uncoordinated trends
is similar to that of coordinated trends. We also noted that un-

Table 8: Uncoordinated trends in Twitter that are Traditionally

Insignificant.
hashtag Runcoor Rtrad hashtag category/explanation

#politics 6 83 political hashtag used
by both conservatives and liberals

#marketing 15 92 generic concepts

#dontyouhate 19 96 idiom

#wheniwaslittle 7 84 idiom

#lol 17 94 generic concepts

#random 9 86 generic concepts

#5 10 88 hashtag related to being #5
an important aspect in Twitter

#twitterafterdark 4 82 idiom

#love 0 80 generic concept

#google 14 95 technology

coordinated trends are more robust to sampling while providing a
possible reasoning for this behavior. In this section, we provide the
summary of the experiments for uncoordinated trends accuracy in
Figure 8 for completeness. Similar to Figure 5, the X-axis denotes
the rate of sampling whereas the Y-axis denotes the average preci-

sion for the given sampling ratio. Sampling ratio values used were
p = 0.5,0,2,0.,0.01 and 0.005. For top-29 topics, for all sampling
ratios, we observe a perfect average precision of 1 while this value
degrades rapidly for top-29604 uncoordinated topics.

As discussed in Section 5.3, sampling provides a linear speed-up.
For completeness here we provide the figures that summarize the
timing of experiments on the Twitter data set. Figure 9(a) provides
the results for coordinated trends and Figure 9(b) provides the re-
sults for uncoordinated trends. For both figures, the X-axis denotes
the inverse of sampling ratio (1/ps) and Y-axis is the speed-up, i.e.
the ratio of the time it takes for the exact solution to the time it takes
for sampling method to process the entire data set.

(a) Speed-up of sampling tech-
nique for coordinated trends.

(b) Speed-up of sampling tech-
nique for uncoordinated trends.

Figure 9: Speed-up of sampling.
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