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ABSTRACT
Keyword search over a graph finds a substructure of the
graph containing all or some of the input keywords. Most
of previous methods in this area find connected minimal
trees that cover all the query keywords. Recently, it has
been shown that finding subgraphs rather than trees can
be more useful and informative for the users. However, the
current tree or graph based methods may produce answers
in which some content nodes (i.e., nodes that contain in-
put keywords) are not very close to each other. In addition,
when searching for answers, these methods may explore the
whole graph rather than only the content nodes. This may
lead to poor performance in execution time. To address the
above problems, we propose the problem of finding r-cliques
in graphs. An r-clique is a group of content nodes that cover
all the input keywords and the distance between each two
nodes is less than or equal to r. An exact algorithm is pro-
posed that finds all r-cliques in the input graph. In addition,
an approximation algorithm that produces r-cliques with 2-
approximation in polynomial delay is proposed. Extensive
performance studies using two large real data sets confirm
the efficiency and accuracy of finding r-cliques in graphs.

1. INTRODUCTION
Keyword search, a well known mechanism for retrieving

relevant information from a set of documents, has recently
been studied for extracting information from structured data.
Structured data are usually modeled as graphs. For exam-
ple, considering IDREF/ID as links, XML documents can be
modeled as graphs. Relational databases can also be mod-
eled using graphs, in which tuples are nodes of the graph
and foreign key relationships are edges that connect two
nodes (tuples) to each other [6, 12]. In such models, key-
word search plays a key role in finding useful information
for the users. Users usually do not have sufficient knowl-
edge about the structure of data. In addition, they are not
familiar with query languages such as SQL. Thus, they need
a simple system that receives some keywords as input and
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Figure 1: A sample graph. The shortest distance
between a pair of nodes is shown on their edge.

returns a set of nodes that together cover all or part of the
input keywords. A node that contains one or more keywords
is called a content node.

Most of the work in keyword search over graphs finds min-
imal connected trees that contain all or part of the input
keywords [15]. A tree that covers all the input keywords
with the minimum sum of edge weights is called Steiner
tree1. Tree-based methods produce succinct answers. Re-
cently, methods that produce graphs are proposed, which
provide more informative answers [12, 13]. However, these
tree or graph based methods have the following problems.
First, while some of the content nodes in the resulting trees
or graphs are close to each other, there might be content
nodes in the result that are far away from each other, mean-
ing that weak relationships among content nodes might ex-
ist in the found trees or graphs. We argue that, assuming
all the keywords are equally important, results that contain
strong relationships (i.e., short distances) between each pair
of content nodes should be preferable over the ones contain-
ing weak relationships. Second, current graph or tree based
methods explore both content and non-content nodes in the
graph while searching for the result. Since there may be
thousands or even millions of nodes in an input graph, these
methods have high time and memory complexity.

In this paper, we propose to find r-cliques as a new ap-
proach to the keyword search problem. An r-clique is a
set of content nodes that cover all the input keywords and
whose shortest distance between each pair of nodes is no
larger than r. The benefits of finding r-cliques are as fol-
lows. First, in an r-clique all pairs of the content nodes are
close to each other (i.e, within r distance). Second, there
is no need to explore all the nodes in the input graph when
finding r-cliques if a proper index is built. This reduces the
search space by orders of magnitude. To illustrate the differ-

1In some literature, it is called minimal Steiner tree.
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Figure 2: Two different answers (a) and (c) and their
Steiner trees (b) and (d) over the sample graph.

ences between r-clique and other approaches (e.g., Steiner
tree [2, 6] and community [13]), an example is given below.

Suppose the nodes in an input graph are web pages of re-
searchers and their organizations. Two nodes are connected
by an edge if there is a link from one page to the other.
Assume the weight on each edge is 1. Let’s assume that
the user would like to find a collection of pages that contain
James, John and Jack and each page is reasonably close to
each of the other pages. Given such input keywords, our
method will reduce the size of the input graph by keeping
only the nodes that contain at least one of the input key-
words. Assume that there are only 6 nodes containing the
above keywords and the reduced graph is shown in Figure
1, in which the shortest distance between each pair of nodes
is shown in the edge that connects the two nodes. Assum-
ing r = 10, edges with distance larger than 10 are ignored.
Our method will produce ranked r-cliques, two of which are
shown in Figure 2 (a) and (c). In Figure 2 (a) each node
contains one input keyword, all the pages are from the same
university, and each pair of the pages are related to each
other via 3 other pages (which are not shown). A Steiner
tree that covers these nodes is presented in Figure 2 (b).
The r-clique in Figure 2 (c) also contains three pages, two
of which from the same university but the other one is from
a different organization. A Steiner tree covering these three
nodes is shown in Figure 2 (d). Our method will rank the
answer in (a) ahead of the one in (c) because the sum of the
distances between each pair of nodes in (a) is 12, while the
one in (c) is 14. On the other hand, a method that produces
Steiner trees would rank the result in (d) ahead of the one in
(b) because the total distance on the tree paths in (d) is 7,
while the one in (b) is 8. Since the web pages in (a) and (b)
are from the same organization and all close to each other,
the ranking produced by our method is reasonably better.

The closest work in the literature to our work is [13]. The
authors proposed to find communities as the results of key-
word search over graphs. In each community, there are some
center nodes which are close to the content nodes. The an-
swers are ranked based on the sum of the distances of content
nodes to the centers. In the above example, node James is

considered as the center node in both answers (a) and (c)
because it has the least sum of the distances to other con-
tent nodes. The community method will rank the answer in
(c) ahead of the one in (a) because the sum of the distances
from the center node to the content nodes in (c) is 7, while
the one in (a) is 8. However, (a) is better than (c) because
the three nodes in (a) are from the same university.

The contributions of this paper are summarized as follows:

1. We propose a new model for keyword search in graphs
that produces r-cliques in which all pairs of content
nodes are reasonably close to each other.

2. We prove that finding the r-clique with the minimum
weight is an NP-hard problem.

3. An exact algorithm based on Branch and Bound is
proposed for finding all r-cliques.

4. An approximation algorithm that produces r-cliques
with 2-approximation is proposed. The algorithm can
produce all or top-k r-cliques in polynomial delay in
ascending order of their weights.

5. To reveal the relationship between the nodes in a found
r-clique, we propose to find a Steiner tree in the graph
that connects the nodes in the r-clique. Using a tree
instead of a graph reduces the chance of including ir-
relevant nodes in the final answer.

The paper is organized as follows. Related work is dis-
cussed in section 2. In section 3, a formal problem state-
ment is given. In section 4, an algorithm based on Branch
and Bound for finding all r-cliques is introduced. An algo-
rithm that produces r-cliques with a 2 approximation ratio
in polynomial delay is presented in section 5. A method for
presenting an r-clique is given in section 6. Experimental
results are given in section 7. Section 8 concludes the pa-
per. The appendix contains theorem proofs, pseudo codes,
a graph-indexing method and the information on data sets.

2. RELATED WORK
Most of the approaches to keyword search over graphs

find trees as answers2. In [2], a backward search algorithm
for producing Steiner trees is presented. A dynamic pro-
gramming approach for finding Steiner trees in graphs are
presented in [3]. Although the dynamic programming ap-
proach has exponential time complexity, it is feasible for
input queries with small number of keywords. In [5], the au-
thors proposed algorithms that produce Steiner trees with
polynomial delay. The algorithms follows the Lawler’s pro-
cedure [11]. Due to the NP-completeness of the Steiner tree
problem, producing trees with distinct roots are introduced
in recent years [7]. BLINKS improves the work of [7] by
using an efficient indexing structure [6].

There are two methods that find subgraphs rather than
trees for keyword search over graphs [12, 13]. The first
method finds r-radius Steiner graphs that contain all of the
input keywords [12]. Since the algorithm for finding r-radius
graphs index them regardless of the input keywords, if some
of the highly ranked r-radius Steiner graphs are included in
other larger graphs, this approach might miss them. In addi-
tion, it might produce duplicate and redundant results [13].

2A survey on keyword search in databases and graphs can
be found in [15].

682



The second method finds multi-centered subgraphs, called
communities [13]. In each community, there are some cen-
ter nodes. There exists at least a single path between each
center node and each content node such that the distance
is less than Rmax. Parameter Rmax is used to control the
size of the community. The authors of [13] propose an algo-
rithm that produces all communities in an arbitrary order
and another algorithm that produces ranked communities
in polynomial delay. The rank of a community is based on
the minimum value among the total edge weights from one
of the centers to all of the content nodes. Finding com-
munities as the answer for keyword search over graph data
has three problems. While some of the content nodes might
be close to each other, the others might not. In addition,
for finding each community, the algorithm considers all of
the nodes within Rmax distance from every content node
as a candidate for a center node. This leads to poor run-
time performance. Finally, while including center and inter-
mediate nodes in the answers can reveal the relationships
between the content nodes, these center and intermediate
nodes may be irrelevant to the query, which makes some
answers hard to interpret. Our proposed model improves
the community method by (1) finding r-cliques in which all
the content nodes are close to each other, (2) improving the
run-time by exploring only the content nodes during search,
and (3) reducing the irrelevant nodes by producing a Steiner
tree (instead of a graph) to reveal the relationship between
the content nodes in an r-clique.

Finding r-cliques is closely related to Multiple Choice Cover
problem introduced in [1] and used in [10] for finding a team
of experts in social networks. These approaches find a sin-
gle best answer with the smallest diameter. In comparison,
we find all or top-k r-cliques with polynomial delay. Our
problem is apparently more challenging. In addition, we use
the sum of the weights between each pair of nodes as the
ranking function. Previous works use other functions such
as the diameter of the graph to evaluate the answers.

Keyword search in graphs is also related to the graph pat-
tern matching problem. The concept of bounded graph sim-
ulation for finding maximum matches in graphs was recently
introduced in [4]. The authors extended the definition of
patterns in the graphs. In a pattern of [4], each node indi-
cates a search condition and each edge specifies the connec-
tivity in the graph with a predefined distance. The authors
proposed algorithms for finding the maximum match in a
graph based on the new definition of matches. The r-clique
defined in this paper can be considered as an input pattern
in [4]. Also, the output of our algorithm is different from the
one in [4]. Their algorithm finds one maximum match in a
graph which contains all the nodes in the graph that match
with a node in the query. Our top-k r-clique algorithm finds
matches that cover all the input keywords but minimize the
sum of distances between each two nodes.

3. PROBLEM STATEMENT
Given a data graph and a query consisting of a set of

keywords, the problem of keyword search in a graph is to
find a set of connected subgraphs that contain all or part
of the keywords. It is preferred that the answers are pre-
sented according to a ranking mechanism. The data graph
can be directed or undirected. The edges or nodes may have
weights on them. In this work, we only consider undirected
graphs with weighted edges. Undirected graphs can be used

to model different types of unstructured, semi-structured
and structured data, such as web pages, XML documents
and relational datasets. It should be noted that our ap-
proach is easily adaptable to work with directed graphs3.

The problem tackled in this paper is to find a set of r-
cliques, preferably ranked in ascending order of their weights.
An r-clique and its weight are defined below.

Definition 1. (r-clique) Given a graph G and a set of
input keywords (Q = {k1, k2, . . . , kl}), an r-clique of G with
respect to Q is a set of content nodes in G that together
cover all the input keywords in Q and in which the shortest
distance between each pair of the content nodes is no larger
than r. The shortest distance between two nodes is the sum
of the weights of the edges in G on the shortest path between
the two nodes.

Definition 2. (Weight of r-clique) Suppose that the
nodes of an r-clique of a graph G are denoted as {v1, v2, . . . , vl}.
The weight of the r-clique is defined as

weight =

l∑
i=1

l∑
j=i+1

dist(vi, vj)

where dist(vi, vj) is the shortest distance between vi and vj
in G, i.e., the weight on the edge between the two nodes in
the r-clique.

r-cliques with smaller weights are considered to be better
in this paper. Thus, the core of our problem can be stated
below in Problem 1.

Problem 1. Given a distance threshold r, a graph G and
a set of input keywords, find an r-clique in G whose weight
is minimum.

Theorem 1. Problem 1 is NP-hard.

Proof. We prove the theorem by a reduction from 3-
satisfiability (3-SAT). The detailed proof is presented in Ap-
pendix A.

4. BRANCH AND BOUND ALGORITHM
We present a branch and bound algorithm for finding all

r-cliques in a graph. The algorithm is based on systematic
enumeration of candidate solutions and at the same time
using the distance constraint r to avoid generating subsets
of fruitless candidates. Note that this method does not rank
the r-cliques by their weights. The ranking, if needed, can
be done as a post-processing process. This method is used
as a baseline to compare with the polynomial delay approx-
imation algorithm proposed in the next section.

The pseudo-code of the algorithm is presented in Algo-
rithm 1 in Appendix D. In the first step, the set of nodes
that contain each keyword is extracted. This can be easily
done using a pre-built inverted index that stores a mapping
from a word in the dataset to the list of nodes containing
the word. The set of nodes containing keyword ki is stored
in set Ci. Cj

i specifies the jth element of set Ci. The candi-
date partial r-cliques are stored in a list called rList. The

3For directed graphs, the shortest distance between two
nodes in an r-clique should be no larger than r in both
directions.
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basic idea of the algorithm is as follows. First, the con-
tent nodes containing the first keyword are added to rList.
Then, for the second keyword, we compute the shortest dis-
tance between each node in C2 and each node in rList. If
the distance ≤ r, a new candidate that combines the corre-
sponding nodes in C2 and rList is added to a new candidate
list called newRList. After all pairs of nodes in C2 and rList
have been checked, the content of rList is replaced by the
content of newRList. The process continues in the same
way to consider all of the remaining keywords. The final
content of rList is the set of all r-cliques.

To speed up this process, an index (described in Appendix
F) is pre-built to store the shortest distance between each
pair of nodes. Thus, the shortest path computation is at
the unit cost. Assume that the maximum size of Ci (1 ≤
i ≤ l where l is the number of keywords) is |Cmax|. The
complexity of the algorithm is O(l2|Cmax|l+1).

5. POLYNOMIAL DELAY ALGORITHM
The branch and bound algorithm is slow when the number

of keywords is large. Also, it does not rank the generated
r-cliques. To speed up the process, we propose an approxi-
mation algorithm with approximation ratio of 2 for finding
r-cliques with polynomial delay.

5.1 Main Procedure
Our approximation algorithm is an adaption of Lawler’s

procedure [11] for calculating the top-k answers to discrete
optimization problems. Lawler generalized Yen’s algorithm
in [14] which finds the k shortest loopless paths in a network.
In Lawler’s procedure, the search space is first divided into
disjoined sub-spaces; then the best answer in each subspace
is found and used to produce the current global best answer.
The sub-space that produces the best global answer is fur-
ther divided into sub-subspaces and the best answer among
its sub-subspaces is used to compete with the best answers
in other sub-spaces in the previous level to find the next best
global answer. Two main issues in this procedure are how
to divide a space into subspaces and how to find the best
answer within a (sub)space.

We first informally describe the idea of dividing the search
space into subspaces using an example4. Suppose that the
input query consists of four keywords, i.e., {k1, k2, k3, k4}.
Let Ci be the set of nodes in graph G that contains input
keyword ki. Thus, the search space that contains the best
answer can be represented as C1×C2×C3×C4. From this
space, we use the FindTopRankedAnswer procedure (to
be described later in this section) to find the best (approxi-
mate) answer in polynomial time in the size of the database
and the number of keywords. Assume that the best answer
is (v1, v2, v3, v4), where vi is a node in graph G containing
keyword ki, and

∑4
i=1

∑4
j=i+1 dij is the weight of the an-

swer, where dij is the shortest distance between nodes i and
j in graph G. Based on this best answer, the search space is
divided into 5 subspaces SB0, SB1, SB2, SB3 and SB4 as
shown in Table 1, where SB0 contains only the best answer.
The union of the subspaces cover the whole search space.

After finding the best answer and dividing the search
space into subspaces, the best answer in each subspace ex-
cept subset SB0 is found using the FindTopRankedAnswer

4Our approach to dividing a search space is similar to the
idea used in [13].

Table 1: An Example of dividing the search space.
Subspace Representative set

SB0 {v1} × {v2} × {v3} × {v4}
SB1 [C1 − {v1}]× C2 × C3 × C4

SB2 {v1} × [C2 − {v2}]× C3 × C4

SB3 {v1} × {v2} × [C3 − {v3}]× C4

SB4 {v1} × {v2} × {v3} × [C4 − {v4}]

procedure. These best answers are inserted into a priority
queue, where the answers are ranked in ascending order ac-
cording to their weights. Obviously, the second best answer
is the one at the top of the priority queue. Suppose that
this answer is taken from SB2. After returning the second
best answer, SB2 is divided into 5 subspaces in the way sim-
ilar to the one shown in Table 1. In each subspace (except
the first subspace), the best answer is found and is added
to the priority queue. At this state, the priority queue has
seven elements: three elements from the first step and four
elements from this new step5. Then, the top answer is re-
turned and removed from the queue, its corresponding space
is divided into subspaces and the best answer (if any) in each
new subspace is added to the priority queue. This procedure
continues until the priority queue becomes empty.

The pseudo-code of algorithm GenerateAnswers is pre-
sented in Algorithm 2 in Appendix D. The main body of the
algorithm is similar to other polynomial delay algorithms
discussed in [5, 13]. It is modified to perform in the setting
of producing ranked r-cliques from a graph. The algorithm
takes graph G, query {k1, k2, . . . , kl}, the distance threshold
r and k as input. It searches for answers and outputs top-k
of them in ascending order according to their weights. In
lines 1 and 2, the algorithm computes sets Ci, the set of the
nodes containing keyword ki. This can be easily done using
a pre-built inverted index. Then, the collection of sets Ci is
called C in line 3. It should be noted that C is the whole
search space that contains keyword nodes and the first best
answer should be found in this space. In line 5, procedure
FindTopRankedAnswer (to be discussed later) is called to
find the best answer in space C in polynomial time. If the
best answer exits (i.e., A on line 6 is not empty), A, to-
gether with the related space C, is inserted into Queue in
lines 6 and 7. The Queue is maintained in the way that
its elements are ordered in ascending order of their weights.
The while loop starting at line 8 is executed until the Queue
becomes empty or k answers have been outputted. In line
9, the top of the Queue is removed. The top of the Queue
contains the best answer in the Queue and the space that
this answer is produced from. We assign this space to S
and the best answer to A. The answer in A is outputted in
line 10. Then if the number of answers has not reached k, l
sets of content nodes are generated based on space S, each
set corresponding to an input keyword (lines 14 and 15). In
line 16, procedure ProduceSubSpaces produces l new sub-
spaces based on the current answer A and sets S1, S2, . . . ,
Sl. These subspaces are shown by SBi. In lines 17-20, these
new subspaces are explored. For each subspace, the best
answer is found and it is inserted into the Queue with its

5This is based on the assumption that all of the subspaces
contain at least one r-clique. In some cases, the subspace
does not have any answer.
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related subspace6. If procedures FindTopRankedAnswer
and ProduceSubSpaces terminate in polynomial time, then
algorithm GenerateAnswers produces answers with poly-
nomial delay. Below, we explain these two procedures.

5.2 Finding Best Answer from a Search Space
The pseudo-code of algorithm FindTopRankedAnswer is

presented in Algorithm 3 in Appendix D. It takes the current
space, S, as the input and produces the best (approximate)
answer in S as the output in polynomial time. In lines 1 and
2, it produces the set of nodes containing each keyword, Si.
Variable sji denotes the j-th node of set Si. d(sji , k) denotes

the shortest distance between sji and set Sk, which is the

distance between sji and the node in Sk that is closest to

sji . n(sji , k) denotes the node in Sk which has the shortest

distance to sji . In lines 3-6, the distance of a node to its own

set is set to 0. In lines 7-16, the values of d(sji , k) and n(sji , k)
for all the nodes in Si (1 ≤ i ≤ l) are calculated. That is, for
each node sji in Si for 1 ≤ i ≤ l and 1 ≤ j ≤ |Si|, its distance
to Sk and its nearest node in Sk are computed. This is done
by comparing all distances and choosing the smallest one.
Then, in lines 17-26 for each node sji , the algorithm checks

to see if d(sji , k) ≤ r for all k values. If yes, which means

the distance from sji to its nearest node in each set Sk is

less than r, then the set of nodes consisting of sji and its
nearest nodes in all other sets Sk (for 1 ≤ k ≤ l and k 6= l)
is considered as a candidate for best answer. The sum of
distances from sji to all its nearest nodes in other sets Sk

is calculated and used to compete with other candidates for
the best answer in space S. The candidate with the lowest
sum is outputted as the best answer (denoted as topAnswer
in the pseudo-code).

Clearly, all of the above operations can be done in poly-
nomial time. Since a pre-built index (described in Appendix
F) is used for finding the shortest path between each pair
of nodes, the shortest path computation is at the unit cost.
Thus, the complexity of this algorithm is O(l2|Smax|2), where
|Smax| is the maximum size of Si for 1 ≤ i ≤ l.

It should be noted that the answer returned by this ap-
proximation algorithm might not be an r-clique. In the
worst cast, the distance between a pair of nodes in the an-
swer is 2× r, as stated in the following theorem.

Theorem 2. The distance between each pair of nodes in
the answer produced by procedure FindTopRankedAnswer
is at most 2× r.

Proof. A proof is provided in Appendix B.

6Note that, unlike tree-based methods, this procedure pro-
duces duplication-free answers (i.e., the set of content nodes
in an answer is unique compared to other answers in the
top-k list) if no content node contains more than one input
keyword in the input graph. But if a node contains more
than one input keyword, the procedure may produce dupli-
cate answers although the answers are unique in terms of
keyword-node couplings. In this regard, our result is the
same as the top-k result in [13], where the authors consider
such answers duplication-free because of different keyword-
node couplings in the top-k answers. If a user prefers a
completely duplication-free set of answers with respect to
the set of content nodes in an answer, a post-pruning pro-
cess can be applied to remove an answer if the set of nodes
in the answer is the same as an answer already generated
in the top-k list. Since k is usually small, the post-pruning
process is fast.
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Figure 3: Run time on DBLP for the algorithms
that produce all answers. The number of keywords
in the left graph is 3. The r value on the right graph
is 6. The frequency of keywords is 0.0009.
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Figure 4: Run time on DBLP for algorithms that
produce top-k answers with polynomial delay. When
not changing, the number of keywords is set to 4, r
is set to 6 and keyword frequency is 0.0009.

Also, in the worst case, the weight of an answer produced
by the above algorithm is twice the weight of the optimal
answer. However, as we will show in the experimental re-
sults, in practice the difference in weight between the op-
timal answer and the one produced by this approximation
algorithm is small, much less than the difference in the worst
case scenario. For the convenience reason, we still refer to
an answer from this algorithm as r-clique. The following
theorem proves that this procedure produces r-cliques with
2-approximation.

Theorem 3. Procedure FindTopRankedAnswer produces
an r-clique with 2-approximation.

Proof. In the worst case situation, the following expres-
sion is stated for l query keywords.

2× (l − 1)

l
(optimal weight) ≥ candidate weight

A formal and detailed proof with an example is presented
in Appendix C.

The pseudo-code of algorithm ProduceSubSpaces is pre-
sented in Algorithm 4 in Appendix D. It takes the best an-
swer of the previous step, A, and the set of content nodes,
S1, . . . , Sl, as input. It produces l new subspaces, 〈SB1, . . . ,
SBl〉. In the procedure, SBj

i specifies the j-th position in
vector SBi. It is a polynomial procedure and runs in O(l2).

6. PRESENTING R-CLIQUES
Each r-clique is a unique set of content nodes that are

close to each other and cover the input keywords. However,
sometimes it is not sufficient to only show the set of content
nodes discovered. It is also important to see how these nodes
are connected together in the input graph. To show the
relationship between the nodes in an r-clique, we further
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Figure 5: Run time on the IMDb data set of al-
gorithms producing top-k answers with polynomial
delay. When not changing, the number of keywords
is 4, r is 11 and keyword frequency is 0.0009.

find a Steiner tree from the input graph which connects the
nodes in the r-clique with the minimum sum of edge weights.
The tree contains all the nodes in the r-clique. Its leaves are
the content nodes of the r-clique, and its internal node can
be a content node in the r-clique or an intermediate node
that connects the content nodes. The algorithm for finding
the tree given an r-clique is presented in Appendix E and is
based on the algorithm presented in [9].

The reason for choosing a Steiner tree instead of a graph
to present an r-clique is that it potentially minimizes the
number of intermediate nodes, which decreases the chance
of having irrelevant nodes in the answer presented to the
user. In the next section, we will show that the community-
based method [13] (which returns a graph) tends to include
more irrelevant nodes in its answer. Compared to other
methods that return trees, our approach returns fewer du-
plicate answers with respect to the set of content nodes in
an answer and is faster because finding r-cliques from only
the content nodes in the graph and then finding a Steiner
tree that covers all the nodes in an r-clique are together
much faster than finding Steiner trees directly from the in-
put graph based on the input keywords. In other words, we
take the advantage of trees for presenting the answers with
fewer irrelevant nodes than the graph-based methods while
preventing the disadvantages of the tree-based methods.

7. EXPERIMENTAL RESULTS
We implemented the Branch and Bound algorithm for

finding all r-cliques and two versions of the polynomial de-
lay algorithm, one finding all r-cliques and the other finding
top-k r-cliques. For the purpose of comparison we also im-
plemented the algorithms presented in [13]. All of the algo-
rithms were implemented using Java. To keep the compar-
ison fair, all of the algorithms use the same graph indexing
structures. The experiments are conducted on an Intel(R)
Core(TM) i7 2.86GHz computer with 3GB of RAM. In this
section, the results of the algorithms and the factors affect-
ing the performance of the algorithms are presented. The
factors include the value of r, the number of keywords (l)
and the frequency of keywords. Throughout this section, the
Branch and Bound algorithm is called B&B and our poly-
nomial delay algorithms that produce all and top-k answers
are called poly-delay-All and poly-delay-k respectively. In
addition, the algorithm in [13] that produces all communi-
ties is called com-All and the algorithm that produces top-k
communities with polynomial delay is called com-k.

Two data sets are used in the evaluation: DBLP and
IMDb. The sets of input keywords and parameters used
in the evaluation are the same as the ones in [13]. The data
sets and keyword queries are described in Appendix G. Be-

50 98 84 12.98 13.27

20 6.88 6.88 7.82

40 7.38 7.39 8.09

0

20

40

60

80

100

5 10 20 30 40
k 

p
er

ce
n

ta
g

e 

(a) 

0

5

10

15

20

25

5 10 20 30 40

B&B
poly-delay-k

a
v

er
a

g
e 

 w
ei

g
h

t 

k (b) 

Figure 6: Quality of the poly-delay-k algorithm on
DBLP. The number of keywords is set to 4, r is 8
and the frequency of keywords is 0.0009.

rClique-3 community-3 rClique-4

20 6.88 6.88 7.82

40 7.38 7.39 8.09

0

5

10

15

5 10 20 30 40

poly-delay-k
com-k

D
ia

m
et

er
 

k 4 Keywords 

0

5

10

15

5 10 20 30 40

poly-delay-k
com-k

D
ia

m
et

er
 

k 3 Keywords 

Figure 7: The average diameter of answers on
DBLP. The r is set to 8 and the frequency of key-
words is 0.0009.

tween the two datasets, DBLP is larger and contains more
textual information and relations. Due to the space limit,
some of results on IMDb are not presented.

7.1 Search Efficiency
For the algorithms that produce top-k answers, the aver-

age time for producing one answer in finding top-50 answers
is used as their run time. For the algorithms that produce all
answers, the run time is the total time the program takes. If
there is no answer for the query, the time of completing the
program is considered as the run time. Since the number of
communities is usually more than that of r-cliques given the
same value for parameter r, to keep the comparison fair, we
stop com-All when it produces the same number of results as
poly-delay-All. For r-clique methods, the time also includes
the time for generating Steiner trees as final answers.

The run time of different algorithms on the DBLP dataset
that produce all answers is presented in Figure 3. The left
graph shows how the run time varies with the value of r,
while the number of keywords is set to 3. The right graph
shows how the run time changes with the number of key-
words while r is set to 6. These two figures show that for
producing all answers the Branch and Bound algorithm out-
performs others when the number of input keywords is 3.
But when the number of keywords becomes larger, its run-
time increases significantly and is much higher than poly-
delay-All and com-All. Comparing poly-delay-All and com-
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Figure 8: The average number of nodes in final an-
swers of poly-delay-k and com-k on DBLP. k is set
to 10 and the frequency of keywords is 0.0009.
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Figure 9: Top-k precision of answers with different values of k.

All, poly-delay-All is faster. By increasing the value of r, the
run time of all algorithms increase. This is because there are
more nodes to evaluate as candidates for generating answers.

The run time of polynomial delay algorithms for produc-
ing top-k answers on the DBLP and IMDb datasets is shown
in Figures 4 and 5. We can see that poly-delay-k produces
results faster than com-k. By increasing the value of r and
the frequency of keywords, the run time of both algorithms
increases. This is because there are more candidates and
nodes to evaluate. These results agree with the findings in
[13]. By increasing the number of keywords, the average run
time of both algorithms for producing one answer also in-
creases. This means that average delay increases when the
number of keywords increases. This is because more nodes
need to be evaluated in each step. It should be mentioned
that this result does not agree with the results presented in
[13] for generating top-k communities.

7.2 The Quality of the Approximation
Algorithm Compared with B&B

In this section, the quality of the answers generated by
the approximation algorithm is evaluated. We compare the
answers from Branch and Bound algorithm with those of the
poly-delay-k algorithm. Figure 6 (a) shows the percentage
of answers produced by the approximation algorithm which
are actually r-cliques. The results suggest that at least 90%
of the answers are r-cliques. Figure 6 (b) shows the average
weight of the answers produced by the B&B and poly-delay-k
algorithms for different k values. To get the top-k results for
B&B, we rank the answers from B&B based on their weight.
Although in theory the weight of an answer from poly-delay-
k can be twice that of the corresponding answer from B&B,
our results show that the difference is small in practice (only
11% in the worst case when k=10). These results suggest
the high quality of the proposed approximation algorithm.

7.3 Comparing the Compactness of r-cliques
with that of Communities

In this section, we evaluate the quality of the answers pro-
duced by poly-delay-k and com-k in terms of their compact-
ness. A well known measure for estimating the proximity of
a subgraph is the diameter of the subgraph, defined as the
largest shortest distance between any two nodes in the sub-
graph. Generally, the smaller the diameter, the closer the
nodes are to each other. When calculating the diameter for
poly-delay-k, we use all the nodes in the final answer, i.e., the
nodes in the Steiner tree presented to the user. The average
diameters of the answers produced by the poly-delay-k and
com-k algorithms are shown in Figure 7, which shows that
the nodes in an answer produced by poly-delay-k are closer
to each other than those from com-k for different k values
and different numbers of keywords. The average number of
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Xuping 

Zhang 

w w 

Figure 10: Best r-clique answer to the query consist-
ing of parallel, graph, optimization and algorithm.

nodes in the answers produced by each algorithm is shown
in Figure 8. Since a community includes all of the nodes
whose distance to each content node is no larger than r ,
the number of nodes in a community is higher than that in
the r-cliques that use trees to present the final answers.

7.4 Search Accuracy from a User Study
We further compare the poly-delay-k and com-k algorithms

in terms of how relevant their answers are to the query. A
common metric of relevance used in information retrieval is
top-k precision, defined as the percentage of the answers in
the top-k answers that are relevant to the query. To eval-
uate the top-k precision of the algorithms, we conducted
a user study. We designed 4 meaningful queries from the
lists of keywords used in [13] for the DBLP dataset in order
for human users to be able to evaluate the search results.
The four queries are listed in Table 3 in the Appendix. For
example, the first query is ”parallel graph optimization algo-
rithm”. In the experiment, r is set to 8 and top-10 answers
are produced for each query from each algorithm.

We asked 8 graduate students in computer science and
electrical engineering at two universities to judge the rele-
vancy of the answers. The users are asked to evaluate the
answers using two methods. In the first method, for each
answer, the user assigns a score between 0 and 1 to each
paper (i.e., node) in the answer where 1 means completely
relevant and 0 means completely irrelevant to the query.
Then, the average score of the papers in an answer is calcu-
lated as the relevancy score of the answer. This score may
vary among the users. We use the average of the relevancy
scores from the 8 users as the final relevancy score of the
answer. The top-k precision is computed as the sum of the
relevancy scores of the top-k answers divided by k. In the
second method, users assign a score between 0 and 1 to the
whole answer based on the relevancy and understandability
of the answer. The results and trends from both methods
are very close to each other. Due to the space limit, we only
report the results of the first method.

The top-2 to top-10 precisions for each query are presented
in Figure 9. Clearly, poly-delay-k achieves better precisions
than com-k in all the queries for all the k values. The reason
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Figure 11: Best community answer to the query con-
sisting of parallel, graph, optimization and algorithm.

for the community method to have a lower precision is that a
community may contain some center nodes and these centers
are determined only based on their distance to the content
nodes. If a node’s distance to each of the content nodes
is within a threshold, it is included in the community as
a center. However, such a node may not be relevant to
the query. By looking at the individual answers, we find
that the community method indeed returns papers that are
considered irrelevant to the query by the users.

7.5 Qualitative Evaluation
We compare the poly-delay-k and com-k algorithms via an

example. The top answer returned by poly-delay-k for the
first query in the user study is shown in Figure 10. The two
boxes at the top are content nodes, each containing the title
of a paper. The node at the bottom is the mediator node
generated by our Steiner tree algorithm given the two con-
tent nodes. It is a common author of the two papers. The
”W” symbol on an edge indicates the ”writing” relation-
ship. Clearly, our r-clique based method is able to reveal
a relationship between the two content nodes. Figure 11
illustrates the top answer from the com-k algorithm. The
top two nodes are content nodes, and the others are center
nodes because each of them is within r distance from each of
the content nodes. As can be seen, the community contains
more nodes than the answer from the r-clique method. The
three middle nodes are the three common authors of the
two papers and the bottom node is another paper written
by one of the authors, which is not relevant to the query.
The advantage of this answer is that it reveals more com-
mon authors of the two papers (assuming this is useful for
the user), but the disadvantage is that it also includes an
irrelevant node. Having irrelevant nodes in an answer can
make the answer hard to understand. Most of the users in
our user study prefers the answer in Figure 10 over this one.

8. CONCLUSIONS
We have proposed a novel and efficient method for key-

word search on graph data. A problem with existing ap-
proaches is that, while some of the nodes in the answer are
close to each other, others might be far from each other. To
address this problem, we introduced the concept of r-cliques
as the answer for keyword search in graphs. A benefit of
finding r-cliques is that only content nodes need to be ex-
plored during the search process, which leads to significant
runtime improvement. We proposed an exact algorithm that
produces all r-cliques using the Branch and Bound strategy
and a polynomial delay algorithm that produces r-cliques

with 2 approximation ratio. To reveal the relationship be-
tween the nodes in an r-clique, a Steiner tree is generated
based on the r-clique and presented to the user. Our experi-
mental results showed that finding r-cliques is more efficient
and produces more compact and more relevant answers than
the method for finding communities [13]. We also showed
that quality of the answers from the proposed approxima-
tion algorithm is high in terms of the percentage of r-cliques
and the sum of weights in the top ranked answers.
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APPENDIX
A. PROOF OF THEOREM 1

In this section, we formally prove that Problem 1 ( finding
an r-clique with the minimum weight) is NP-hard. We prove
that the decision version of the problem presented below is
NP-hard. Thus, as a direct result, Problem 1 is NP-hard
too. The decision problem is specified as follows.

Problem 2. Given a distance threshold r, a graph G and
a set of input keywords S1, . . . , Sl, determine whether there
exists an r-clique with weight w, for some constant w. The
weight of the r-clique is defined in Definition 2.

Theorem 4. Problem 2, a decision version of Problem 1,
is NP-hard.

Proof. The problem is obviously in NP. We prove the
theorem by a reduction from 3-satisfiability (3-SAT)7. First,
consider a set of m clauses Dk = xk ∨ yk ∨ zk (k = 1, . . . ,m)
and {xk, yk, zk} ⊂ {u1, u1, . . . , un, un}. We set the distance
between each variable and its negation (i.e. ui and ui) to
2×w. The distance between other variables is set to w

(n+m
2 )

.

The distance of each variable to itself is set to zero. We
define an instance of the above problem as follows. First, r
is set to 2×w. For each pair of variables ui and ui, two nodes
are created. Thus, we have 2 × n nodes. For each pair of
variables ui and ui, we create one keyword Si (i = 1, . . . , n).
Thus, ui and ui have keyword Si and the only holders of Si

are ui and ui. In addition, for every clause Dk, we create
one keyword Sn+k (k = 1, . . . ,m) such that the holders of
keyword sn+k consists of the triplet of nodes associated with
those of xk, yk and zk. Therefore, the number of required
keywords is n + m.

A feasible solution to the above problem with the weight
at most w is any set of nodes such that from each pair of
nodes corresponding to ui and ui, exactly one is selected and
from each triplet of nodes corresponding to xk, yk and zk,
one is selected. Thus, if there exists a subset of the weight
at most w, then there exists a satisfying assignment for D1∧
D2 ∧ · · · ∧Dm. On the other hand, a satisfying assignment
apparently determines a feasible set of nodes with the weight
at most w. Therefore, the proof is complete.

B. PROOF OF THEOREM 2
We prove that the upper bound on the distance between

any pair of nodes in an answer produced by the approxima-
tion algorithm is 2× r.

Proof. In the answer produced by algorithm
FindTopRankedAnswer, there is a content node (sji in line
10 of Algorithm 3) that has distance less than or equal to
r to each of the other nodes in the answer. Assume this
node is called a. The distance between a and any of other
nodes is less than or equal to r. We want to show that the
distance between two other nodes b and c in the answer is
at most 2 × r. Since shortest distances satisfy the triangle
inequality, we have:

dbc ≤ dab + dac
7It should be noted that the same approach is used in [1] for
proving the NP-hardness of multiple choice cover problem.

where dbc is the shortest distance between nodes b and c and
so on. Also, as we mentioned above, the distance between
nodes a and b and the distance between nodes a and c are
both less than or equal to r (i.e., dab ≤ r and dac ≤ r).
Thus, based on the above equation, we have:

dbc ≤ dab + dac ≤ r + r ≤ 2× r

C. PROOF OF THEOREM 3
To prove Theorem 3, we first give an example and then

present a formal proof. Consider the example presented in
Fig.12 with four input keywords. One of the answers is the
optimal answer and the other one is the candidate answer
produced by procedure FindTopRankedAnswer. Without
the loss of generality, we assume that the node for keyword
k1 is the best candidate node (i.e., the best sji ) selected by
the procedure. Since the sum of the weights on edges con-
nected to k1, i.e. d12, d13 and d14, in the selected candidate is
the smallest among all the content nodes whose connected
edges have a weight less than or equal to r, the following
expressions hold:


k1 : o12 + o13 + o14 ≥ d12 + d13 + d14
k2 : o12 + o23 + o24 ≥ d12 + d13 + d14
k3 : o13 + o23 + o34 ≥ d12 + d13 + d14
k4 : o14 + o24 + o34 ≥ d12 + d13 + d14

(1)

Summing up both sides of the above equations, we have:

2(o12 + o13 + o14 + o23 + o24 + o34) ≥ 4(d12 + d13 + d14) (2)

Since the distance between each pair of nodes is the short-
est distance between them, the triangle inequality is satisfied
and the following equations hold:

 d12 + d13 ≥ d23
d12 + d14 ≥ d24
d13 + d14 ≥ d34

(3)

The weight of the selected candidate produced by proce-
dure FindTopRankedAnswer is d12 +d13 +d14 +d23 +d24 +
d34. Based on Equation 3, the candidate weight is at most
3 × (d12 + d13 + d14). Thus, after some basic calculations
and based on Equation 2, the following is valid:

2× 3

4
(o12 +o13 +o14 +o23 +o24 +o34) ≥ 3×(d12 +d13 +d14)

(4)
The left side of the equation is at most twice the weight

of the optimal answer and the right side of the equation is
at most the weight of the selected candidate. Thus, in the
worst case, the weight of the selected candidate is twice the
weight of the optimal answer. Now we are ready to present
the formal proof in detail.

C.1 Formal Proof
We prove that procedure FindTopRankedAnswer pro-

duces r-cliques with an approximation ratio of 2. Consider
two answers, one optimal answer and the answer produced

689



k
1 k

2 

k
3 k

4 

o
12 

o
13 

o
14 

o
24 

o
23 

o
34 

Optimal Answer 

k
1
  

selected 

 candidate
 

k
2 

k
3 k

4 

d
12 

d
13 

d
14 

d
24 

d
23 

d
34 

Answer produced by  

FindTopRankedAnswer 

Figure 12: The optimal answer and the answer pro-
duced by procedure FindTopRankedAnswer.

by FindTopRankedAnswer (denoted here as candidate an-
swer). Our purpose is to show that the weight of the can-
didate answer is at most twice the weight of the optimal
answer.

Assume that the number of input keywords are l. We de-
note a node in candidate answer that has the smallest sum
of weights on the edges connected to it as candidate node. In
other words, the sum of the weights on the l− 1 edges con-
nected to candidate node in candidate answer is the smallest
among all other content nodes of all keywords in the input
graph. Without loss of generality, assume that the candidate
node is the node related to the first keyword, i.e. k1. Let’s
call the edges of the candidate node d12, d13, . . . , d1l. Thus,
based on the FindTopRankedAnswer procedure,

∑l
i=2 d1i

has the smallest value among all other content nodes in the
graph. Each node in the optimal answer also has l − 1
neighbors and l−1 edges are connected to it. For each node
containing kj : 1 ≤ j ≤ l of the optimal answer, we have:

o1j +o2j + · · ·+oj−1j +ojj+1 + · · ·+ojl ≥ d12 +d13 + · · ·+d1l
(5)

In other words,

j−1∑
i=1

oij +

l∑
i=j+1

oji ≥
l∑

i=2

d1i (6)

In the above equation, oij i < j (oji i > j) is the weight of
the edges between i and j in the optimal answer. If we write
the above equation for all l content nodes of the optimal
answer and sum up both sides of the inequalities, we have:

2×
l∑

i=1

l∑
j=i+1

oij ≥ l ×
l∑

i=2

d1i (7)

This is because we have l content nodes. Also, since each
edge is connected to two content nodes, each edge appears
in the left side of the equation twice. The left side of the
above equation is twice the weight of the optimal answer.
Thus, the following is valid:

2× (optimal weight) ≥ l ×
l∑

i=2

d1i (8)

Since the distance between each pair of nodes in the can-
didate answer is the shortest distance between them, the
triangle inequality is satisfied:

dij ≤ d1i + d1j , i 6= j 6= 1 (9)

The weight of the candidate answer is as follows:

candidate weight =

l∑
i=1

l∑
j=i+1

dij =

l∑
i=2

d1i +

l∑
i=2

l∑
j=i+1

dij

(10)
Since we have dij ≤ d1i + d1j , the following is valid:

l∑
i=2

d1i +

l∑
i=2

l∑
j=i+1

dij ≤
l∑

i=2

d1i +

l∑
i=2

l∑
j=i+1

(d1i + d1j) (11)

In the right side of the above equation, each edge d1i is
appeared exactly l − 1 times. Thus, we have:

l∑
i=2

d1i +

l∑
i=2

l∑
j=i+1

(d1i + d1j) = (l − 1)×
l∑

i=2

d1i (12)

As a result, we have:

candidate weight ≤ (l − 1)×
l∑

i=2

d1i (13)

Based on equations 8 and 13, we have:

2× (l − 1)

l
(optimal weight) ≥ candidate weight (14)

It proves that the weight of the candidate answer is at
most twice the weight of the optimal answer.

D. PSEUDO-CODE OF ALGORITHMS

Algorithm 1 Branch and Bound Algorithm

Input: the input graph G; the query {k1, k2, . . . , kl} and r
Output: the set of all r-cliques

1: for i← 1 to l do
2: Ci ← the set of nodes in G containing ki
3: rList← empty
4: for i← 1 to size(C1) do
5: rList.add(Ci

1)
6: for i← 2 to l do
7: newRList← empty
8: for j ← 1 to size(Ci) do
9: for k ← 1 to size(rList) do

10: if ∀ node ∈ rListk dist(node,Cj
i ) ≤ r (where

rListk is the kth element of rList) then
11: newCandidate← Cj

i .concatenate(node)
12: newRListk.add(newCandidate)
13: rList ← newRList
14: return rList

E. FINDING STEINER TREES
We present an algorithm for finding a Steiner tree for an

r-clique. The purpose of finding a Steiner tree for an r-clique
is to reveal the relationship among the content nodes in the
r-clique via their relationships to other nodes.
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Algorithm 2 GenerateAnswers Algorithm

Input: the input graph G; the query {k1, k2, . . . , kl}; r and
k
Output: the set of top-k ordered r-cliques printed with
polynomial delay

1: for i← 1 to l do
2: Ci ← the set of nodes in G containing ki
3: C ← 〈C1, C2, . . . , Cl〉
4: Queue ← an empty priority queue
5: A ← FindTopRankedAnswer(C, G, l, r)
6: if A 6= ∅ then
7: Queue.insert(〈A, C〉)
8: while Queue 6= ∅ do
9: 〈A, S〉 ← Queue.removeTop()

10: print(A)
11: k ← k − 1
12: if k = 0 then
13: return
14: for i← 1 to l do
15: Si ← S.get(i)
16: 〈SB1, SB2, . . . , SBl〉 ← ProduceSubSpaces(〈A,

S1, . . . , Sl〉)
17: for i← 2 to l do
18: Ai ← FindTopRankedAnswer(SBi, G, l, r)
19: if Ai 6= ∅ then
20: Queue.insert(〈Ai, SBi〉)

Given a set of nodes, S, that belong to graph G, the
Steiner tree problem is to find a tree of graph G that spans
S with the minimal total distance on the edges of the tree.
This is a well known NP-hard problem [8]. A heuristic al-
gorithm was introduced in [9] to find a Steiner tree from
a graph G given a set S of nodes in G. The nodes in S
are called Steiner points. The algorithm in [9] first finds
the shortest path in G between each pair of nodes in S and
builds a complete graph, G1, whose nodes are the nodes in S
and whose edge between each two nodes is weighted by the
total distance on the shortest path between the two nodes
in G. It then finds a minimal spanning tree, T1, of G1, and
constructs a subgraph G2 of G by replacing each edge of T1

by its corresponding shortest path in G. Finally, it finds a
minimal spanning tree, T2, of G2, and constructs a Steiner
tree from T2 by deleting leaves and their associated edges
from the tree so that all the leaves are Steiner points.

We make use of this procedure to find a Steiner tree for an
r-clique. The input to our procedure is an r-clique, which is
a complete graph whose weight on each edge is the shortest
distance between the two corresponding nodes in the graph
G from which the r-clique was generated. The set of Steiner
points is the set of nodes in the r-clique. The output of the
algorithm is a Steiner tree of G that spans all the nodes in
the r-clique. The pseudo-code of the algorithm is presented
in Algorithm 5. The Steiner tree produced by this heuristic
algorithm is not necessarily minimal, but its total distance
on the edges is at most twice that of the optimal Steiner
tree [9]. The algorithm terminates in polynomial time [9].

A major difference of our method from other keyword
search methods that generate Steiner trees is that we gener-
ate a Steiner tree based on an r-clique, which contains a very
small subset of content nodes in the original graph G. The
number of nodes in an r-clique is no more than the number
of input keywords. Other tree-based keyword search meth-

ods need to explore at least all the content nodes in G or the
entire graph to find a Steiner tree to cover the input key-
words. Since our r-clique finding algorithm is also fast due
to the fact that only the content nodes are explored during
the search, the total time spent on finding r-cliques and then
trees is much less than finding Steiner trees directly from G.

Algorithm 3 FindTopRankedAnswer Procedure

Input: the search space S; the input graph G; the number
of query keywords l and r
Output: the best r-clique in the search space S

1: for i← 1 to l do
2: Si ← S.get(i)
3: for i← 1 to l do
4: for j ← 1 to size(Si) do
5: d(sji , i)← 0

6: n(sji , i)← sji
7: for i← 1 to l do
8: for j ← 1 to size(Si) do
9: for k ← 1 to l ; k 6= i do

10: 〈dist, nearest〉 ← shortest path from sji to Sk

11: if dist ≤ r then
12: d(sji , k)← dist

13: n(sji , k)← nearest
14: else
15: d(sji , k)←∞
16: n(sji , k)← ∅
17: leastWeight←∞
18: topAnswer ← ∅
19: for i← 1 to l do
20: for j ← 1 to size(Si) do
21: if ∀k : [1 . . . l], d(sji , k) ≤ r then

22: weight←
∑l

h=1 d(sji , h)
23: if weight < leastWeight then
24: leastWeight← weight
25: topAnswer ← 〈n(sji , 1), . . . , n(sji , l)〉
26: return topAnswer

F. NEIGHBOR INDEXING METHOD
In the above algorithms, we need to compute the shortest

distance between each pair of nodes. Calculating the short-
est path on the fly is not feasible and it increases the running
time of the algorithm. An index that stores the shortest dis-
tance and path between nodes improves the performance of
the algorithm. A straight forward indexing method is to
calculate and store the shortest path between each pair of
nodes. However, this index needs O(n2) storage, where n is
the number of nodes in graph G. This index is very large
and not feasible for graphs with a large number of nodes.

We use a simple and fast indexing method that pre-com-
putes and stores the shortest distances for only the pairs of
nodes whose shortest distance is within a certain threshold
R. The index is called neighbor index. The value of R
should be bigger than the value of r used in the r-clique
finding algorithms. This requires the estimation of possible
r values based on the graph structure and user preferences
and may be estimated using the domain knowledge. At the
same time, we should keep it as small as possible to keep
the index in a feasible size. The idea of indexing the graph
using a distance threshold has been used in [13, 12].
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Table 2: Keywords used in DBLP data set.
Frequency Keywords

0.0003 distance, discovery, scalable, protocols
0.0006 graph, routing, space, scheme
0.0009 fuzzy, optimization, development,

support, environment, database
0.0012 modeling, logic, dynamic, application
0.0015 control, web, parallel, algorithms

Table 3: Set of queries used for finding the accuracy
of the results in DBLP data set.

Query Keywords
1 parallel, graph, optimization, algorithm
2 dynamic, fuzzy, logic, algorithm
3 graph, optimization, modeling,
4 development, fuzzy, logic, control

Algorithm 4 ProduceSubSpaces Procedure

Input: the best answer of previous step, A = 〈v1, v2, . . . vl〉,
and the sets of content nodes, S1, . . . , Sl

Output: l new subspaces

1: for i← 1 to l do
2: for j ← 1 to i− 1 do
3: SBj

i ← {vj}
4: SBi

i ← Si − {vi}
5: for j ← i + 1 to l do
6: SBj

i ← Sj

7: return 〈SB1, . . . , SBl〉 where SBi = SB1
i × · · · × SBl

i

Algorithm 5 Generating Steiner Tree Algorithm based on
an algorithm introduced in [9]

Input: an r-clique generated from graph G
Output: the Steiner tree of G that spans the nodes in the
r-clique

1: Let G1 be the input r-clique.
2: Find the minimal spanning tree T1 of G1.
3: Create graph G2 by replacing each edge in T1 by its

corresponding shortest path in G. The shortest path can
be obtained by using the neighbor index on G described
in the next section.

4: Find the minimal spanning tree T2 of G2.
5: Create an Steiner tree from T2 by removing the leaves

(and the associated edges) that are not in the r-clique.

The neighbor index of a graph G with respect to the dis-
tance threshold R is structured as follows. For each node
n, a list is created to contain the nodes that are within R
distance from node n. This list is called the neighbor list of
n. In each node m of the neighbor list of node n, the short-
est distance between n and m is stored and also a pointer
to the node right before m on the shortest path from n to
m is stored. The pointed node p must be within R distance
from n, is thus on n’s neighbor list and contains a pointer
to the node right before p on the shortest path between n
and p. The space complexity of this index is O(mn), where
n is the number of nodes in G and m is the average number
of nodes on a neighbor list. To build the index we use the
Dijkstra’s algorithm to compute the shortest path between
each pair of nodes.

When finding r-cliques, both inverted and neighbor in-
dexes are used to retrieve the shortest distance from a node,
n, containing keyword k1, to a node, m, containing keyword
k2 by first looking up the inverted index list for k1 to locate
the entry for node n and then search the neighbor list of n
for node m. If the neighbor list contains node m, the stored
shortest distance is returned. Otherwise, nodes n and m are
not within R distance from each other. The shortest path
between n and m (which is used in the Steiner tree finding
algorithm) can be found by following the pointer stored in
the m node in n’s neighbor list, which points to the node
right before m on the shortest path. In our experiments,
the whole neighbor index is loaded into the main memory.
For larger data sets or larger R values, the index may need
to be disk resident. A performance study that distinguishes
between cold/warm cache timings is an item of future work.

G. DATA SETS AND QUERIES IN EXPER-
IMENTS

To evaluate the proposed algorithms, we use the DBLP
and IMDb data sets. The input graphs are undirected and
weighted. The weight of the edge between two nodes v and
u is (log2 (1 + vdeg)+log2 (1 + udeg))/2, where vdeg and udeg

are the degrees of nodes v and u respectively [13, 7, 3].
The DBLP graph is produced from the DBLP XML data

(http://dblp.uni-trier.de/xml/). The dataset contains in-
formation about a collection of papers and their authors. It
also contains the citation information among papers. Pa-
pers and authors are connected together using the citation
and authorship relations. The numbers of tuples of the 4
relations author, paper, authorship and citation are 613K,
929K, 2,375K, and 82K respectively. The set of input key-
words and their frequencies in the input graph are presented
in Table 2. The queries used in our experiments are gener-
ated from this set of keywords with the constraint that in
each query all keywords have the same frequency (in order
to better observe the relationship between run time and key-
word frequency). Noted that the set of input keywords and
the way to generate queries are the same as the ones in [13].

To evaluate the search accuracy through a user study,
four queries are formed from the set of keywords in Table
2. The set of four queries are presented in Table 3. These
four queries are formed to be meaningful so that it is more
convenient for the users to evaluate the relevancy of the
search results.

The IMDb dataset contains the relations between movies
and the users of the IMDb website that rate the movies
(http://www.grouplens.org/node/73). The numbers of tu-
ples of 3 relations user, movie and rating are 6.04K, 3.88K
and 1,000.21K, respectively. The set of input keywords and
the frequencies are presented in Table 4. Note that the set
of input keywords is the same as the one used in [13].

Table 4: Keywords used in IMDb data set.
Frequency Keywords

0.0003 game, summer, bride, dream
0.0006 Friday, street, party, heaven
0.0009 girl, lost, blood, star, death, all
0.0012 city, world, blue, American
0.0015 king, house, night, story
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