
On Querying Historical Evolving Graph Sequences

Chenghui Ren† Eric Lo‡ Ben Kao† Xinjie Zhu† Reynold Cheng†

†The University of Hong Kong ‡Hong Kong Polytechnic University
†{chren,kao,xjzhu,ckcheng}@cs.hku.hk ‡ericlo@comp.polyu.edu.hk

ABSTRACT
In many applications, information is best represented as graphs. In
a dynamic world, information changes and so the graphs represent-
ing the information evolve with time. We propose that historical
graph-structured data be maintained for analytical processing. We
call a historical evolving graph sequence an EGS. We observe that
in many applications, graphs of an EGS are large and numerous,
and they often exhibit much redundancy among them. We study the
problem of efficient query processing on an EGS and put forward a
solution framework called FVF. Through extensive experiments on
both real and synthetic datasets, we show that our FVF framework
is highly efficient in EGS query processing.

1. INTRODUCTION
Graphs are a pervasive structure that is used to model the state

of the world in many real-life applications. For example, users
and their relationships in a social network (such as Facebook and
Flickr) can be modeled as a graph, with vertices representing users
and edges representing friendships among users. In a dynamic
world, such relationships are continuously evolving. For example,
users join Facebook and friendships are established. A graph that
models the world can thus only capture the world’s state at a par-
ticular instant, or just a “snapshot” of the world. To fully capture
the dynamics of the world, we propose that a sizable collection of
snapshots should be used. For example, snapshots of the Facebook
graph should be taken periodically, forming a sequence of snapshot
graphs. We call such a sequence an Evolving Graph Sequence or
EGS for short. One can interrogate an EGS with many interesting
graph-based queries that characterize the world the snapshot graphs
depict. For example, given two vertices u and v, “What is the most
popular shortest path that connects u to v among all the snapshots
in an EGS?” “How does the centrality of a node evolve in an EGS?”
Queries of this sort, which are hardly meaningful when applied to
a single graph, provide valuable insights into the dynamic world.
Many traditional studies on graph queries and algorithms, such

as shortest-path and reachability, focus on answering queries effi-
ciently on a single graph. Different from those previous works, our
goal is to efficiently answer queries on a large sequence of related

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

0 100 200 300 400
0

1

2

3

4

Snapshot number

Sh
or

tes
t−

pa
th

dis
tan

ce

365
304

186
178

Figure 1: Distance between two users in FACEBOOK friendship
graph over a 365-day EGS.

graphs given in an EGS. We are particularly interested in those ap-
plications in which the snapshot graphs are large, numerous, and
gradually evolving. The first two properties call for highly efficient
algorithms to deal with the large amount of graph data. The third
property implies that successive snapshots in a graph sequence are
likely similar to each other. This property allows techniques that
exploit redundancies among similar snapshots to be developed to
achieve high efficiency.
To further illustrate how real-world information can be modeled

as an EGS, consider social networks, such as Facebook, Youtube
and Flickr. In a social network, people connect to and interact with
others to share their interests and experience. Social network anal-
ysis (SNA) [14] is a research area whose aims are to capture the
various interactions among users and to understand users’ behav-
ior. In most studies, the interactions among users are modeled as
graphs. For example, an edge between two (user) vertices could
model a simple and somewhat static friendship relationship; or an
edge can be used to model a more dynamic interaction, such as
whether two users have communicated within a certain period of
time, or whether they have written about the same topic. Numer-
ous statistical measures have been defined and studied on social
network graphs. These include global (graph-based) measures such
as the diameters, radii, and degree distributions of the graphs; and
local (vertex-based) measures such as centrality. To understand the
dynamics of social networks, daily snapshots of various social net-
works have been collected [11, 13]. For example, an EGS of a few
hundred daily snapshots of Facebook’s New Orleans regional net-
work is publicly available [13]. The graphs are big (e.g., the last
snapshot contains about 60,000 vertices and about 900,000 edges),
numerous (hundreds and many more if the collection were contin-
ued), and gradually evolving (successive snapshots are very similar,
sharing more than 99% of their edges). These snapshot graphs fa-
cilitate many interesting studies, particularly trend analysis, which
discovers pattern of change over time. For example, Figure 1 plots
the shortest-path distances between two Facebook users over a one-

726

� �

��� � ����	�
� ��� � �	�����������
�
������

�

������ �
�� �	��	

����
�

� � � ��

�

� ��

� � � ��

� � ��� � �� �

�����

� �

Figure 2: How did u and v get closer?

year period (365 snapshots). This plot gives interesting insights to
how “friendships” are established in the social network — we see
that the users were disconnected until snapshot #178. Since then,
they got closer to each other until they finally became friends at
snapshot #365. This plot reveals a few key moments in their friend-
ship development (at snapshots #186, #304, #365). By analyzing
the changes in their shortest paths at those key moments and the
snapshot graphs surrounding those moments, we can answer some
interesting questions: Did the users get closer because of a com-
pletely new (and shorter) path appeared, which was “disjoint” from
the previously shortest path (see Figure 2(a))? Or was it because a
“short-circuiting bridge” was established (Figure 2(b))? Or was it
because a new user had arrived that acted as a “common friend” of
some users along the previously shortest path (Figure 2(c))? How
“important” was this common friend in the network and how does
its importance evolve over time? (E.g., how does its centrality
evolve across snapshots?) Furthermore, how does the diameter of
the friendship network evolve over time? The objective of this pa-
per is to provide efficient solutions for evaluating queries of this
kind. Recent works on social network evolution analysis (e.g., [7])
focus on “what” information can be discovered from graph evolu-
tion. In this work, we focus on “how” those information can be
efficiently obtained. To do so, we have developed a solution frame-
work, called FVF, for efficient EGS query processing. We demon-
strate how some important graph measures, including shortest-path
distance, closeness centrality, and graph diameter, can be efficiently
computed from EGSs using our framework. Since an EGS gener-
ally contains numerous large graphs, we also discuss several com-
pact storage models that support our FVF framework.
The remainder of this paper is organized as follows. In Sec-

tion 2, we present the FVF framework and illustrate how to use the
framework to compute different graph measures. In Section 3, we
present several EGS storage models. In Section 4, we present the
major experimental results. In Section 5, we discuss related work.
In Section 6, we conclude the paper. The Appendix contains some
pseudocode, supplementary discussion, further experiment details,
and a case study that gives answers to the example social network
analytical queries mentioned above.

2. SOLUTION FRAMEWORK
Given an evolving graph sequence EGS = 〈G1, . . . , Gn〉, where

each Gi is a directed graph, and a query Q (e.g., shortest-path be-
tween two vertices), our objective is to efficiently answerQ on each
snapshot in an EGS. In this paper, we focus on directed graphs.
Applying our solutions to undirected graphs is straightforward and
therefore we will skip the discussion on undirected graphs.
To support efficient EGS query processing, we propose a Find-

Verify-and-Fix (FVF) solution framework (see Figure 3). The FVF
framework consists of two phases, namely, a preprocessing phase
and a query-processing phase. The purpose of the preprocessing
phase is to construct a small number of representative graphs from
the EGS. Each representative, sayGR, captures the structural simi-
larity among some snapshots in the EGS and is thus similar to those
snapshots. To achieve that, we group the snapshot graphs into clus-

ters such that graphs in the same cluster satisfy certain similarity
requirements. A representative graph is then constructed based on
the members of a cluster.
The query-processing phase consists of three steps: The first

step is to “FIND” a solution SR for each representative graph GR.
Since GR is similar to many graphs in the EGS, its solution, SR,
should also be a representative solution for those graphs. The sec-
ond step is thus to “VERIFY” whether SR is indeed a solution
to them. For a graph, say Gi, whose solution cannot be found by
successful verification, we proceed to the third step and attempt to
modify or “FIX” SR to obtain a solution for Gi. The rationale of
FVF is that solution verification and modification can potentially
be done much more efficiently than computing the solution from
scratch. In this section, we will demonstrate how shortest-path dis-
tance and closeness centrality can be efficiently computed from an
EGS using our FVF framework. Due to space constraints, we put
the discussion on computing graph diameter in Appendix E. Now,
we first discuss the preprocessing phase in detail.

2.1 Preprocessing
The preprocessing phase consists of two steps. First, we group

similar snapshot graphs together. Then, we extract two represen-
tative graphs from each cluster. We discuss the second step first
assuming that clustering has already been done. We will come
back to the issue of graph clustering later. Given a graph G, we
use V (G) and E(G) to denote the vertex set and the edge set of G,
respectively.
Suppose a certain number of snapshot graphs have been grouped

into a cluster C. W.l.o.g., let C = {G1, . . . , Gk}. We construct
two representative graphs for C: (1) G∩, which is the intersection
(the largest common subgraph) of all snapshots in C, and (2) G∪,
which is the union (the smallest common supergraph) of all snap-
shots in C. Note that,

PROPERTY 1. G∩ ⊆ Gi ⊆ G∪ ∀1 ≤ i ≤ k.1

Given two vertices u and v, if we use P(u, v,G) to denote the set
of paths connecting u to v in a certain graph G, then P(u, v,G∩)
and P(u, v,G∪) give a subset and a superset of P(u, v,Gi), re-
spectively. G∩ and G∪ are very useful to query-processing. For
example, knowing the shortest paths in G∩ and G∪ allows us to
effectively “bound” the shortest path solution in Gi (Section 2.2).
In order to partition the graphs in an EGS into clusters, we need

to define a similarity measure. In this paper we use a normalized
graph edit similarity (ges) measure that is based on the symmetric
difference of the graphs’ edge sets. Formally,

DEFINITION 1 (GRAPH EDIT SIMILARITY). Given two graphs
Ga and Gb,

ges(Ga, Gb) =
2|E(Ga ∩Gb)|

|E(Ga)|+ |E(Gb)|
. (1)

Graphs that are grouped into the same cluster should be sufficiently
similar. Since G∪ and G∩ essentially “bound” the graphs in the
cluster, the similarity requirement of a cluster can be conveniently
captured by the similarity between G∪ and G∩.

DEFINITION 2 (α-SIMILARITY). Two graphsGa andGb are
said to be α-similar if and only if ges(Ga, Gb) ≥ α.

DEFINITION 3 (α-BOUNDEDNESS). A clusterC of snapshots
is said to be α-bounded if and only if G∪ and G∩ are α-similar.
1Here, “⊆” denotes sub-graph relation.

727

���

����	
��������

������	�����	
��

����	���	�
�
��
�
�		��
������

�
��
�
�		��

�������������

������
��
�
�		��
�
����	����

�����	��
��
�
�		��
�
����	����

��
��
��
�
�		��
�
����	����

��������
���
�
�����	��

�
��
�
�		��

����	�����������

��
��
�

����
��

����

�

����

�

 ��

 ��

��

Figure 3: The FVF framework.

��

��

�� �� ���

���
����	

��
�

��
 ��� ��� ���

���

���

��
��

��	

��� ��

��

�� �� ���

���
����	

��
�

��
 ��� ��� ���

���

���

��
��

��	

���

��� 	� ��� 	�

��

��

�� �� ���

���
����	

��
�

��
 ��� ��� ���

���

���

��
��

��	

���

��� 	�

��

��

�� �� ���

���
����	

��
�

��
 ��� ��� ���

���

���

��
��

��	

���

��� 	�

��

��

�� �� ���

���
����	

��
�

��
 ��� ��� ���

���

���

��
��

��	

���

��� 	�

��

��

�� �� ���

���
����	

��
�

��
 ��� ��� ���

���

���

��
��

��	

���

��� 	�

��

��

�� �� ���

���
����	

��
�

��
 ��� ��� ���

���

���

��
��

��	

���

��� 	

��

��

�� �� ���

���
����	

��
�

��
 ��� ��� ���

���

���

��
��

��	

���

�� 	�

Figure 4: A running example.

Since typically an EGS models the continuous evolution of a graph,
we use a simple segmentation strategy to group snapshots into clus-
ters: Let 〈G1, . . . Gn〉 be an EGS and α be a user-specified similar-
ity threshold. We start with an empty cluster C1 and incrementally
insert the snapshots into C1 beginning with G1, then G2, etc., as
long as C1 remains α-bounded. If the bounding requirement would
have been violated by adding one more snapshot, we start building
the next cluster C2 and repeat the process. This incremental clus-
tering procedure is well-suited for incremental updates of EGSs —
as more snapshots are archived into an EGS, only the last cluster
needs to be updated. Also, the procedure essentially processes the
graphs in an EGS as a stream — it only needs to maintain one pair
of G∪ and G∩, and to access one snapshot Gi at a time. This al-
lows the clustering process to be done efficiently without requiring
all the snapshots be present in memory. Appendix A shows the
clustering algorithm. Finally, we note that graphs of the same clus-
ter are consecutive snapshots of an EGS. Also, a larger α implies
that G∩ and G∪ of a cluster are more similar, which then implies a
tighter bounding requirement. This results in fewer snapshots in a
cluster and more clusters segmented from an EGS.

2.2 Shortest-Path Query Processing
We now describe how to apply the concept of Find-Verify-and-

Fix to find the shortest path SPi between a pair of vertices u and
v for each snapshot Gi ∈ EGS. Obviously, one baseline algo-
rithm is to execute a shortest-path algorithm (SPA), say, BFS for
unweighted graphs or Dijkstra’s algorithm for weighed ones, di-
rectly on each snapshot in an EGS. This approach, which requires
n executions of SPA, is not efficient for EGSs whose graphs are
large and numerous because the total execution time is dominated
by the SPA executions. Therefore, the objective of FVF is to exploit
the precomputed clusters and representative graphs to minimize the
number of SPA executions.
First, let us assume the snapshots are unweighted. FVF evaluates

a shortest-path query Q on an EGS one cluster at a time. Let C =
{G1, . . . , Gk} be a cluster. Figure 4 shows an example cluster
containing 6 snapshots and the derived G∪ and G∩. We will use
this as a running example to illustrate how we efficiently find a
shortest path from v1 to v12 in each snapshot. We use (vi, vj) to
denote the edge that connects vertex vi to vj . For each snapshot
Gi, the delta set Δ(Gi, G∩) = E(Gi) − E(G∩) is highlighted.
For example, the edges (v5, v2) and (v4, v7) are in G1 but not in
G∩.

Given vertices u and v, we use P̃∗(u, v) to denote a uv-shortest-
path in graph G∗, where ∗ = 1, 2, ..., n,∪,∩. We use δ∗(u, v) to
denote the path length of P̃∗(u, v). If v is not reachable from u
in G∗, we define δ∗(u, v) = ∞. If a graph Ga is a subgraph of
another graph Gb, then obviously any path P in Ga must also be
in Gb. Hence, the set of paths connecting u to v in Ga must be a
subset of that set of paths in Gb. Therefore, δb(u, v) ≤ δa(u, v).
Since G∩ ⊆ Gi ⊆ G∪ for any snapshot Gi, we have

PROPERTY 2. δ∪(u, v) ≤ δi(u, v) ≤ δ∩(u, v) for any vertices
u, v and snapshots Gi ∈ C.

The path length in any snapshot is thus bounded above and below
by those of G∩ and G∪, respectively. For example, in Figures 4g
and 4h, a P̃∪(v1, v12) and a P̃∩(v1, v12) are highlighted. Since
δ∪(v1, v12) = 4 and δ∩(v1, v12) = 7, the length of any shortest
path that connects v1 to v12 in any snapshot is bounded by 4 and 7.
These bounds provide interesting methods for solution verification
and modification.
Following our framework, our FVF algorithm first runs SPA on

G∪ to FIND a shortest path in G∪, i.e., P̃∪(u, v). If it turns out
that v is not reachable from u in G∪, then v is not reachable from
u in any snapshot in cluster C. In this case, only one SPA (on G∪)
is executed and there is no need to run any SPAs on the snapshots
in C. This observation is captured by the following lemma:

LEMMA 1 (L1). If δ∪(u, v) = ∞ then v is not reachable
from u in any snapshot Gi ∈ C.

If P̃∪(u, v) exists, we run SPA on the other representative graph
G∩ to obtain P̃∩(u, v). If δ∩(u, v) = δ∪(u, v), then by Property 2,
δi(u, v) = δ∩(u, v). SinceG∩ ⊆ Gi for any snapshotGi, the path
P̃∩(u, v) must exist in all Gi’s. Hence, P̃∩(u, v) is a uv-shortest-
path in all Gi’s. Again, there is no need to run any SPA on the
snapshots in C. This discussion leads to Lemma L2:

LEMMA 2 (L2). If δ∪(u, v) = δ∩(u, v), then P̃∩(u, v) is a
solution for any Gi ∈ C.

If δ∪(u, v) = δ∩(u, v), Lemma L2 does not apply. By Property 2,
δ∪(u, v) is a lower bound of the length of any uv-shortest-paths in
any snapshot Gi. So if P̃∪(u, v) exists in Gi, it must be a shortest
one and hence a solution for Gi. Our algorithm identifies all the
snapshots in the cluster in which the path P̃∪(u, v) exists. This path
checking can be easily done and is much less costly than executing
SPA on those snapshots.

728

LEMMA 3 (L3). If P̃∪(u, v) exists in Gi, then P̃∪(u, v) is a
solution for Gi.

For example, in Figure 4, P̃∪(v1, v12) = (v1, v2, v4, v7, v12) is
present inG1,G2,G3 andG4. Therefore, P̃∪(v1, v12) is a solution
for those four snapshots.
If P̃∪(u, v) does not exist in Gi, we cannot apply Lemma L3.

For example, in Figure 4, P̃∪(v1, v12) is not contained in G5. In
this case, we turn to P̃∩(u, v) again and try to verify if P̃∩(u, v)
is indeed a solution for Gi. To do this, we consider Δ(Gi, G∩) =

E(Gi) − E(G∩). First, we know that P̃∩(u, v) exists in every
snapshot and so it is a path in Gi in particular. If we can prove that
no edges inΔ(Gi, G∩) can give us a path inGi that is shorter than
P̃∩(u, v), then P̃∩(u, v) must be a solution for Gi.
Consider any edge e = (p, q) ∈ Δ(Gi, G∩). Let P̃i(u, v|e) be

a shortest path that connects u to v inGi that goes through the edge
e. This path must consist of three segments: (1) a shortest path that
goes from u to p, (2) the edge e and (3) a shortest path that goes
from q to v. Hence,

|P̃i(u, v|e)| = δi(u, p) + 1 + δi(q, v) ≥ δ∪(u, p) + 1 + δ∪(q, v)

Given e = (p, q), define Γ(e) = δ∪(u, p)+1+δ∪(q, v). Note that
Γ(e) gives a lower bound on the length of the shortest path from u
to v that goes through e in Gi. Consider the following condition:

CONDITION 1. Γ(e) = δ∪(u, p) + 1 + δ∪(q, v) ≥ δ∩(u, v)

If Condition 1 holds, we know that any uv-shortest-path in Gi that
uses e cannot be shorter than δ∩(u, v). We can ignore e in quest of a
path that is shorter than δ∩(u, v). LetΓ∗

i be the smallestΓ(e) for all
e ∈ Δ(Gi, G∩). If Condition 1 holds for all edges in Δ(Gi, G∩),
i.e., Γ∗

i ≥ δ∩(u, v), then P̃∩(u, v) must be a uv-shortest-path for
Gi. This gives us the fourth lemma:

LEMMA 4 (L4). IfΓ∗

i = mine∈Δ(Gi,G∩){Γ(e)} ≥ δ∩(u, v),
then P̃∩(u, v) is a solution for Gi.

For example, in Figure 4, Δ(G5, G∩) = {(v5, v2), (v14, v18)}
and δ∩(v1, v12) = 7. Since Γ((v5, v2)) = δ∪(v1, v5) + 1 +
δ∪(v2, v12) = 3+ 1+ 3 = 7 and Γ((v14, v18)) = 2+ 1+ 5 = 8,
both are larger than or equal to δ∩(v1, v12). P̃∩(v1, v12) is thus a
v1v12-shortest-path for G5.
To apply Lemma L4, we need δ∪(u, p) and δ∪(q, v) for each

e = (p, q) ∈ Δ(Gi, G∩). These can be obtained by running SPA
twice on G∪ to determine the shortest paths from u to all other
vertices and the shortest paths from all other vertices to v. This
information will also be used in the next lemma.
If Γ∗

i < δ∩(u, v) (∴ Lemma L4 is not applicable), our VERIFI-
CATION based on the four lemmas has not been successful. In this
case, we attempt to FIX for a better solution. At this point we know
that (1) any uv-shortest-path in Gi that does not use any edges in
Δ(Gi, G∩) cannot be shorter than δ∩(u, v); (2) any uv-shortest-
path in Gi that uses any edges in Δ(Gi, G∩) cannot be shorter
than Γ∗

i ; and (3) Γ∗

i < δ∩(u, v). Hence, any uv-shortest-path in
Gi cannot be shorter than Γ∗

i . Our algorithm attempts to find a path
of length Γ∗

i in Gi. If it exists, it must be the shortest one.
Let Δ∗(Gi) = {e ∈ Δ(Gi, G∩)|Γ(e) = Γ∗

i } be the set of
edges with the smallest Γ() value in Δ(Gi, G∩). (In our example,
Δ∗(G6) = {(v4, v9), (v6, v10)}.) For each edge e = (p, q) ∈

Δ∗(Gi), we retrieve the paths P̃∪(u, p) and P̃∪(q, v). Our al-
gorithm checks if these two paths exist in Gi. If so, the path
P = P̃∪(u, p)‖e‖P̃∪(q, v) is contained in Gi. Since |P | = Γ∗

i ,
path P must be a uv-shortest-path for Gi. For example, (v4, v9) ∈

Δ∗(G6) and the paths P̃∪(v1, v4) = (v1, v2, v4) and P̃∪(v9, v12) =
(v9, v11, v12) are both present in G6. Therefore, the path (v1, v2,
v4, v9, v11, v12) must be a v1v12-shortest-path for G6. This leads
to the fifth lemma:

LEMMA 5 (L5). If ∃e = (p, q) ∈ Δ∗(Gi) such that both
P̃∪(u, p) and P̃∪(q, v) are present inGi, then P̃∪(u, p)‖e‖P̃∪(q, v)
is a solution for Gi.

Finally, if none of the five lemmas lead to the solution of a snap-
shot Gi, we execute SPA on Gi to obtain its uv-shortest-path. Al-
gorithm 1 summarizes the FVF algorithm for shortest-path queries.
Lines 1 to 5 find representative solutions onG∪ andG∩ (the FIND
phase). Lines 2 to 4 and Lines 6 to 29 apply the five lemmas
for either verifying a representative solution or fixing a solution
(the VERIFY-FIX phase). Line 30 applies SPA on those snapshots
whose solutions cannot be determined by the lemmas (the Residual
SPA phase).

Algorithm 1: The FVF Shortest Path Algorithm.
Input : Query (u, v), Cluster C = 〈G1, G2, . . . , Gk〉,

G∪, G∩,
〈Δ(G1, G∩),Δ(G2, G∩), . . . ,Δ(Gk, G∩)〉

Output: 〈P̃1(u, v), P̃2(u, v), . . . , P̃k(u, v)〉

1 run SPA on G∪ to obtain P̃∪(u, v)
2 if δ∪(u, v) = ∞ then // L1
3 return P̃i(u, v) does not exist (for i = 1, 2, . . . , k)
4 end
5 run SPA on G∩ to obtain P̃∩(u, v)
6 if δ∪(u, v) = δ∩(u, v) then // L2
7 P̃i(u, v) ← P̃∩(u, v) (for i = 1, 2, . . . , k)
8 return 〈P̃1(u, v), P̃2(u, v), . . . , P̃k(u, v)〉
9 end
10 flag ← false
11 foreach Gi ∈ C do
12 if P̃∪(u, v) exists in Gi then // L3
13 P̃i(u, v) ← P̃∪(u, v)
14 continue
15 end
16 if flag = false then
17 run SPA on G∪ to get all shortest paths from u
18 run SPA on G∪ to get all shortest paths to v
19 flag ← true
20 end
21 calculate Γ∗

i = mine∈Δ(Gi,G∩)(Γ(e))

22 if Γ∗

i ≥ δ∩(u, v) then // L4
23 P̃i(u, v) ← P̃∩(u, v)
24 continue
25 end
26 if ∃e = (p, q) ∈ Δ∗(Gi) such that both P̃∪(u, p) and

P̃∪(q, v) are present in Gi then // L5
27 P̃i(u, v) ← P̃∪(u, p)‖e‖P̃∪(q, v)
28 continue
29 end

// Solution not found by L1-L5

30 run SPA on Gi to obtain P̃i(u, v)
31 end
32 return 〈P̃1(u, v), P̃2(u, v), . . . , P̃k(u, v)〉

Now, we extend our discussion to EGSs with weighted graphs.
In a weighted EGS, there are structural changes (vertex and edge
inserts/deletes) as well as edge weight adjustments when one snap-
shot evolves to the next. In real applications, there are relatively
few structural changes (e.g., successive graphs in Facebook Wall

729

Post weighted EGS share more than 99% of the edges; Section 4
has more detail about this EGS) and moderate edge weight adjust-
ments (e.g., the number of Wall Post messages sent daily between
two users vary little). If we consider all such edge-weight adjust-
ments, then the shortest paths in the snapshots of a cluster would all
have slightly different path lengths. Recall that the idea of FVF is
to find a representative solution SR and verify that SR is indeed the
solution to many snapshots in a cluster. With the slightly changing
path lengths across the snapshots, it would be difficult to find an
SR that gives the exact solution to many snapshots.
In order to apply the FVF framework on weighted EGSs, we

shall trade absolute accuracy for efficiency. Specifically, we con-
sider a user-specified tolerance ε. Given a shortest-path query (u,
v), our goal is to find a path Pi in each snapshot Gi such that Pi

connects u to v and that its path length is guaranteed to differ from
the true shortest path inGi (i.e., P̃i(u, v)) by at most a factor of ε.
To do so, we need to revise some key elements and lemmas that

we just presented. Given an edge e, let w∗(e) be the weight of e
in a graph G∗. Given a cluster C = {G1, . . . , Gk}, G∪ and G∩

are constructed in the same way as in the unweighted case. The
edge weights w∪(e) and w∩(e) are set to be the minimum and the
maximum of all wi(e) (1 ≤ i ≤ k), respectively. It is easy to show
that under these definitions ofw∪(e) and w∩(e), Properties 1 and 2
remain correct. In particular, Property 2 tells us that we can use the
lengths of the shortest paths found inG∪ andG∩ (i.e., δ∪(u, v) and
δ∩(u, v)) to bound the solution of the shortest paths in the snapshot
graphs. The five lemmas can then be revised accordingly to prune
the corresponding SPA executions (e.g., Dijkstra’s algorithm). For
example, if δ∩(u, v) ≤ (1 + ε)δ∪(u, v), then by Property 2, we
have, ∀1 ≤ i ≤ k,

δi(u, v) ≤ δ∩(u, v) ≤ (1 + ε)δ∪(u, v) ≤ (1 + ε)δi(u, v).

So, P̃∩(u, v) satisfies the error tolerance requirement and is a so-
lution to all the snapshots in the cluster. Appendix C details the
revised definitions and lemmas for processing shortest-path queries
on weighted EGSs.

2.3 Closeness Centrality
In this section, we briefly discuss how FVF is applied to com-

pute centrality across snapshots in EGS efficiently. There are a few
centrality measures. As an example, let us consider closeness cen-
trality, which is defined as:

DEFINITION 4 (CLOSENESS CENTRALITY). For any vertex
u of a graph G∗, the closeness centrality of u in G∗, denoted by
cc∗(u), is cc∗(u) = 1/

∑
v∈V (G∗)

δ∗(u, v).

cc∗(u) is the reciprocal of the sum of distances from u to any
other vertices in G∗. Obviously, one can obtain cc∗(u) by run-
ning a single-source-shortest-path algorithm (SSSP) at vertex u.
So, a brute-force approach to determine the closeness centrality
of u for all the snapshot graphs in a cluster C = {G1, . . . , Gk}
would be to repeat SSSP k times, one for each snapshot. This takes
O(k(E + V)) time for unweighted graphs and O(kE lg V) time
for weighted ones, where E and V are the number of edges and the
number of vertices of a snapshot graph, respectively.
Similar to finding shortest-paths on weighted-graphs, if a user

accepts an approximate answer, the FVF approach can be signifi-
cantly faster than the brute-force approach. By Property 2, one can
easily verify that

cc∩(u) ≤ cci(u) ≤ cc∪(u) ∀1 ≤ i ≤ k. (2)

We consider the average cc(u) = (cc∩(u) + cc∪(u))/2. Given
an error tolerance ε, if cc∩(u)(1 + 2ε) ≥ cc∪(u), then we can

prove that cc(u) differs from the true centrality cci(u) (for any
1 ≤ i ≤ k) by at most a fraction of ε. We thus accept cc(u) as the
answer for all snapshots in cluster C. In this case, only 2 SSSP are
needed (one for each of G∪ and G∩).
If the condition cc∩(u)(1+2ε) ≥ cc∪(u) does not hold, we can

tighten the lower bound of cci(u) by doing a verification. Notice
that when we apply SSSP onG∪, we obtain the shortest paths from
u to all other vertices in G∪. These paths can be concisely rep-
resented by a shortest-paths tree, SPT∪(u), rooted at u. We can
verify which of those shortest paths are present inGi and which are
not by walking through SPT∪(u) and checking which edges in the
tree are present in Gi. For example, suppose (u, v1, v2, . . . , vd) is
a path from u to vd in SPT∪(u). If all the d edges in the path
are present in Gi, then we know that δi(u, vj) = δ∪(u, vj) for all
1 ≤ j ≤ d. If we collect all vertices v whose shortest paths from u
are successfully verified into a set A, then

cci(u) = 1/
∑

v∈V (Gi)

δi(u, v) = 1/(
∑

v∈A

δi(u, v) +
∑

v∈V (Gi)−A

δi(u, v))

≥ 1/(
∑

v∈A

δ∪(u, v) +
∑

v∈V (Gi)−A

δ∩(u, v)) = Ri(u). (3)

Notice that the RHS of Equation 3 (i.e., Ri(u)) can be obtained
from the executions of SSSP onG∩ andG∪ and it is a tighter lower
bound than cc∩(u). We can revise our answer for snapshot Gi to
cc(u)′ = (Ri(u) + cc∪(u))/2, which is more likely to satisfy the
tolerance requirement. Finally, if this revised answer does not sat-
isfy the tolerance requirement, we run SSSP on Gi to get the exact
value of cci(u). We remark that the shortest-paths tree verification
takes O(V) time because there are only V − 1 branches in the tree
whose existences in Gi are checked. This is much more efficient
than the O(E + V) (unweighted) or O(E lg V) (weighted) time
needed to do an SSSP on Gi under the brute-force approach.

3. EGS STORAGEMODELS
An EGS typically consists of a large number of big graphs. The

storage requirement of an EGS could be big. In this section we
discuss a few storage models for compressing EGS data that (1) are
space efficient so that the compressed data is likely small enough
to be stored in main memory and (2) can efficiently support the
applications of the pruning lemmas of the FVF algorithm.
In the following discussion, let us focus on representing a cluster

of snapshots C = {G1, . . . , Gk}. The FVF algorithm requires two
representative graphs G∩, G∪ and k delta sets, Δ(Gi, G∩),∀1 ≤
i ≤ k, as input. Note that this information is sufficient for FVF to
compute the representative solutions and to perform verify-and-fix
by applying the lemmas. In case a graph algorithm has to be exe-
cuted on a snapshot Gi (e.g., line 30 of Algorithm 1), the algorithm
can be done by considering the edge sets of Δ(Gi, G∩) and G∩

together. The snapshots, Gi’s, of the cluster need not be explicitly
stored. We call this storage model SM1:

SM1 (C) = {G∩,Δ(G∪, G∩),Δ(Gi, G∩)|1 ≤ i ≤ k}.

We have collected a number of social network datasets for our
experiment (see Section 4 for their descriptions). From them, we
observe that the size of a delta setΔ(Gi, G∩) is typically less than
10% of the size of a snapshot Gi

2. SM1 is therefore much more
efficient than storing each snapshot explicitly. For example, the
total size of our Wikipedia graphs (if they are stored independently)
is 45GB while it is about 4.5GB under SM1.
For very large EGSs, we need to compress the data further for

more efficient processing. For an evolving graph sequence, we
observe that successive snapshots are typically very similar. Let
D(Gi, Gi−1) = (E+

i , E−

i), where E+
i = E(Gi)− E(Gi−1) and

2The sizes of the delta sets depend on the α threshold value used (see Sec-
tion 2.1). We will further discuss the effect of α later in Section 4.

730

Dataset FBFRIEND YOUTUBE WIKIPEDIA FBWALL
Graph Type undirected undirected directed directed

Vertex Information user user article user
Edge Information friendship friendship hyperlink message

Number of Snapshots 365 203 365 365
Snapshot Frequency daily daily daily daily
|V | of First Snapshot 26,249 1,004,777 1,352,623 18,859
|V | of Last Snapshot 61,096 3,223,643 1,870,709 42,859
|E| of First Snapshot 251,251 8,782,672 19,956,191 90,694
|E| of Last Snapshot 905,552 37,048,190 39,953,145 188,869

Average ges 99.824% 99.644% 99.905% 99.752%

Table 1: Statistics of real datasets.

E−

i = E(Gi−1)−E(Gi), be the changes made to snapshot Gi−1

to obtain the next snapshot Gi (i.e., E(Gi) = E(Gi−1) ∪ E+
i −

E−

i). From our real datasets, we observe that the size of the set
of edge changes D(Gi, Gi−1) is on average just 1/10 the size of
Δ(Gi, G∩). Hence, representing an EGS in terms of the D’s is
much more space efficient than in term of the Δ’s. We thus con-
sider another storage model SM2:
SM2 (C) = {G∩,Δ(G∪, G∩),Δ(G1, G∩),D(Gi, Gi−1)|2 ≤ i ≤ k}.

It is obvious that we can obtain G∩, G∪ and Δ(G1, G∩) from
the first three elements of SM2. In order to apply the lemmas for
solution verification and fixing, we need to recover the other delta
sets (Δ(Gi, G∩) for 2 ≤ i ≤ k) as well. We note that

Δ(Gi, G∩) = Δ(Gi−1, G∩) ∪E+
i −E−

i . (4)

(See Appendix B.) And hence, Δ(Gi, G∩) can be obtained from
Δ(Gi−1, G∩) and D(Gi, Gi−1). By induction, all Δ(Gi, G∩)’s
can be recovered under SM2 to apply our lemmas.
Compared with SM1, SM2 results in a much smaller storage re-

quirement. Note that, under SM2, decompression is needed (using
Equation 4) to recover Δ(Gi, G∩) before some of the lemmas can
be applied. For example, in shortest-path query processing on an
EGS, this decompression should be done right before line 10 in Al-
gorithm 1. For large EGSs, however, the savings in I/O cost due to
a much smaller data size under SM2 and the possibility of storing
the data in main memory far outweighs the penalty of the additional
decompression overheads.
Further compression can be achieved by exploiting inter-cluster

redundancy. We note that in our real datasets, the G∩’s of succes-
sive clusters are somewhat similar too. Instead of storing theG∩ of
a cluster C, we can store the difference between it and Gp∩, where
Gp∩ is “the G∩ of the preceding cluster.” In our experiment, we
enhance the storage model SM2 by this extension and we use it as
the storage model for our FVF algorithm. We call the resulting
storage model SM-FVF:

SM -FVF (C) =

{D(G∩, Gp∩),Δ(G∪, G∩),Δ(G1, G∩),D(Gi, Gi−1)|2 ≤ i ≤ k}.

For the Wikipedia dataset, the storage needed under SM-FVF is
387MB, which is 0.86% of the size of the uncompressed data.
Recall that the baseline algorithm applies a graph algorithm (e.g.,

BFS) on each individual snapshot graph. It does not require any
G∩’s or G∪’s. The most compact storage model for the baseline
method is to store the differences between successive snapshots.
We call this storage model (for Baseline) SM-BL:

SM -BL(C) = {G1,D(Gi, Gi−1)|2 ≤ i ≤ k}.

4. EXPERIMENTAL EVALUATION
We evaluate the FVF framework on both real datasets (Table 1)

and synthetic datasets. In the experiments, we use BFS and Dijk-
stra’s algorithm as SPA/SSSP for unweighted graphs and weighted

graphs, respectively. We compare the performance of our FVF
framework with the baseline algorithm (Baseline), which executes
the corresponding graph algorithm (e.g., BFS/Dijkstra’s) on every
snapshot. Appendix D.1 details the experiment platform.

4.1 Shortest-Path
Performance Study (Real Data). We first report the performance
of the baseline algorithm and the FVF algorithm on three unweight-
ed real datasets, namely FBFRIEND, YOUTUBE,WIKIPEDIA.3 The
properties of the real datasets are given in Table 1. For example,
FBFRIEND is an EGS of 365 daily snapshots of the Facebook (New
Orleans) friendship graph, all taken in the year 2008. A graph ver-
tex represents a Facebook user and an edge connects two users (ver-
tices) if they are friends in Facebook. We store the snapshot graphs
under the storage models proposed in Section 3. The storage re-
quirements of the highly-compressed datasets are listed in Table
2. (Recall that Baseline employs SM-BL, while FVF employs SM-
FVF.) From the table, we see that both storage models result in
very compact data (at most several hundred megabytes), which is
a reasonable size for main memory processing. The graphs in all
datasets are evolving, and in general, they grow with time. For
all real datasets, the average values of ges (graph edit similarity)
between consecutive snapshots are very high (> 99%), indicating
that successive snapshots in the EGSs are indeed very similar to
each other. Therefore, we set the default similarity threshold α to a
large number, 0.95, in clustering the snapshots in an EGS. (We will
study the effect of α later.) The preprocessing times of FBFRIEND,
YOUTUBE, and WIKIPEDIA data (which include the time for clus-
tering snapshots and constructing G∩’s and G∪’s) are 1 second,
115 seconds, and 26 seconds, respectively.
Table 2 shows the averages of some measurements obtained by

executing 500 random queries on the datasets. From the table, we
can see that processing queries on an EGS is indeed an expensive
operation if the inefficient baseline algorithm is used. For example,
processing a query on FBFRIEND and WIKIPEDIA requires running
SPA 365 times and the average query processing times are 3.1 and
104 seconds, respectively4. The last column of Table 2 (Speedup)
shows that FVF significantly outperforms the baseline algorithm
— it runs 5.4 times (YOUTUBE), 7.7 times (WIKIPEDIA), and 9.1
times (FBFRIEND) faster than the baseline algorithm.
We further break down FVF’s execution time into a few key com-

ponents. These include the times spent on (a) decompressing graph
data (Decompress Time), (b) finding representative solutions from
representative graphs (Find Time), (c) verifying whether a repre-
sentative solution is a solution of a snapshot, and if not, attempt-
ing to fix it (Verify-and-Fix, or VF Time), and (e) running SPAs
on graphs whose solutions cannot be determined by the lemmas
(Residual-SPA Time). We note that, under FVF, it is very likely
that the solution for a snapshot can be deduced by the lemmas. In
that case, no SPA needs to be executed on the snapshot, and we say
that the SPA is pruned. Table 2 column (d) shows the percentage
of SPAs pruned by the lemmas: 100% × (1−(total number of SPA
executed for 500 random queries / number of graphs in EGS ×
500)). From the experimental results, we can see that the “invest-
ment” of the FVF algorithm has a very good “return” — times (b)
and (c) can be considered as the “time investment” of FVF. In re-
turn, more than 95% of the SPAs that would have to be executed on
snapshots are avoided. This explains the significant speedup FVF
achieves over Baseline.
3Data available at http://socialnetworks.mpi-sws.org
4The query-processing time is so much larger for WIKIPEDIA because the
Wikipedia snapshot graphs are much larger than those of FBFRIEND (see
Table 1).

731

EGS Storage Average Query Time — Baseline Average Query Time — FVF SpeedupSM-BL SM-FVF (i) Decompress (ii) SPA Total (a) Decompress (b) Find (c) VF (d) Pruned SPA (%) (e) Residual-SPA Total
FBFRIEND 12.4MB 25.6MB 0.09s 3.00s 3.10s 0.08s 0.13s 0.05s 97.04% 0.08s 0.34s 9.1
YOUTUBE 217.8MB 481.6MB 2.33s 50.36s 52.68s 1.59s 4.70s 1.48s 95.88% 1.96s 9.73s 5.4
WIKIPEDIA 202.5MB 387.1MB 2.48s 101.55s 104.04s 3.60s 2.97s 3.61s 96.83% 3.25s 13.46s 7.7

Table 2: Experimental Results (Real Unweighted Datasets); α = 0.95.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

Similarity threshold (α)

Nu
mb

er
 of

 cl
us

ter
s

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Similarity threshold (α)

Tim
e (

se
c)

FVF
Find Time
VF Time
Residual−SPA Time
Decompression Time

0.4 0.5 0.6 0.7 0.8 0.9 1
50

60

70

80

90

100

Similarity threshold (α)

%
 of

 S
PA

 pr
un

ed

0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

Similarity threshold (α)

Sp
ee

du
p

(a) Number of Clusters (b) Query Time∗ (c) % of SPA Pruned (d) Speed Up

Figure 5: Vary similarity threshold α (FACEBOOK FRIENDSHIP). ∗Figure 13a shows a zoomed version.

0.8 0.85 0.9 0.95 0.98
75

80

85

90

95

100

Similarity threshold (α)

%
 o

f S
PA

 p
ru

ne
d

ε = 0.1
ε = 0.2
ε = 0.3
ε = 0.4
ε = 0.5

0.8 0.85 0.9 0.95 0.98
0

1

2

3

4

5

6
6.5

Similarity threshold (α)

Sp
ee

du
p

ε = 0.1
ε = 0.2
ε = 0.3
ε = 0.4
ε = 0.5

(a) % of SPA Pruned (b) Speed Up

Figure 6: Vary α (FACEBOOK WALL).

As discussed in Section 2.1, the similarity threshold α controls
the clustering result and so it plays an important role in the FVF
framework. We have conducted an experiment using the FBFRIEND
dataset in which we varied α’s value. Figure 5 shows the results5.
Recall that α is a similarity requirement between G∪ and G∩ of a
cluster. A larger α implies that snapshots in a cluster have to be
more similar. This results in more clusters (Figure 5a) with fewer
snapshots in each cluster. Figure 5b shows the query processing
time of FVF, with a time breakdown of its key components. As
α increases, we see that Find Time increases. This is because there
are more clusters under a larger α and thus there are more represen-
tative graphs (G∩’s and G∪’s) on which FVF runs SPA to obtain
representative solutions. The Find Time curve, therefore, shares a
similar shape with the curve in Figure 5a. With a larger α, the
representative graphs of a cluster are more similar to the snapshots
in the cluster. It is therefore more likely that the solutions on the
snapshots can be deduced through verification and fixing by apply-
ing the lemmas. Figure 5c shows that more SPAs on snapshots are
pruned when α increases. This also explains why the Residual-
SPA Time decreases when α increases (Figure 5b). The VF Time
and theDecompression Time are relatively small for the FBFRIEND
dataset. Verification-and-fixing is performed by applying the lem-

5α starts at 0.4 because there is only one cluster at α = 0.4. Further
reducing α, therefore, has no effect.

mas, which involves mostly inexpensive operations except for the
two SPAs that are occasionally executed on G∪ (lines 17-18 of
Algorithm 1). This cost is not too expensive because only about
10% of the time do we need to run the two SPAs (for α = 0.95),
and when they are needed, they are done only once for the whole
cluster. The overall speedup is shown in Figure 5d. We observe
that FVF is about 2 times faster than Baseline in the worst case
(α = 0.4) in which all graphs in the EGS are grouped into one
single cluster. The optimal case occurs when α = 0.92 for which
the speedup is 9.8.
Similar results are observed from the experiments on the other

two real datasets (figures are omitted for space reasons). For ex-
ample, the optimal values of α for YOUTUBE and WIKIPEDIA
are 0.90 and 0.96, respectively. For YOUTUBE, FVF achieves a
speedup of 2.7 (worst-case) to 5.8 (optimal α); For WIKIPEDIA,
the speedup ranges from 2.7 (worst-case) to 8.1 (optimal α). We
remark that although some fine-tuning is needed to determine the
optimal α value, it is not critical that the optimal value be used. For
example, Figure 5d shows that we can obtain a significant 4-time
speedup even a far-from-optimal α (say 0.7) is chosen.
We have also evaluated our FVF framework using an EGS with

weighed graphs, FBWALL. The EGS contains 365 directed graphs.
Graph vertices represent Facebook users, the weight w(a, b) of an
edge (a, b) gives the number of messages user u has posted on user
v’s wall in the past year. The pre-processing time is 48 seconds.
Figure 6 shows the results of the experiments in which we vary
the similarity threshold α with different tolerance ε values. The
results show that the behavior of FVF is very similar to that for the
unweighted case (Figures 5c and d). In general, FVF achieves a
speedup of at least two times over the baseline algorithm (which
runs Dijkstra’s algorithm on each snapshot). When we vary the
tolerance ε from 0.1 to 0.5, the average speedup increases. The
best α is observed around 0.94, which shows that the optimal α
value is quite insensitive to the tolerance.

4.2 Summary of Other Experimental Results
Due to space constraints, we put the experimental results on syn-

thetic data and processing closeness centrality queries in the ap-
pendix. For the synthetic data experiments (Appendix D.2), we
have implemented a synthetic data generator for creating EGSs

732

with different properties (e.g., with different graph sizes, evolving
ratios). The conclusion drawn from the synthetic data experiments
of varying the similarity threshold α is consistent with that of the
real data experiments above. When we vary (i) the number of snap-
shots, (ii) the graph size, (iii) the evolving rate, (iv) the average
degree, and (v) the ratio of edge insertions and deletions between
successive snapshots, FVF consistently outperforms Baseline in all
cases. For experiments on closeness centrality queries (Appendix
D.3), FVF registered 2 to 10 times speedup over the baseline ap-
proach (which runs SSSP on each snapshot).

5. RELATED WORK
In recent years, a plethora of work has focused on efficient meth-

ods of managing and querying vast volumes of large graphs. One
branch of work on graph query processing focuses on efficient al-
gorithms and data structures for evaluating distance-based queries
(e.g., shortest-path queries) and reachability queries [6] on a very
large graph. For example, in order to efficiently evaluate shortest-
path queries, various shortest-path indices have been developed
(e.g., [15, 16, 19]). With those indices, a shortest-path query could
be evaluated without accessing vertices that are irrelevant to the
results. Other than building indices, some algorithms precompute
distance information from the input graph so as to carry out goal-
directed search at run-time (e.g., [5, 10]). Those techniques are de-
signed to support efficient query processing on a single large graph
(e.g., a single snapshot of a social network) but not a collection
of graphs. Our FVF framework indeed can incorporate those al-
gorithms. For example, if precomputed distance information such
as “landmarks” [5] is available, we could choose a goal-directed
shortest-path algorithm such as A* algorithm instead of Dijkstra’s
algorithm as our SPA. Since our experimental results show that the
FVF framework is able to prune more than 95% of SPAs, a signif-
icant speedup against baseline is still expected, no matter BFS or
another algorithm is used as the SPA.
A graph database D is usually used when a collection of graphs

is available. However, graph databases usually support graph queries
(e.g., sub/super-graph query) only. A sub-graph query [12, 17]
specifies a query graph Gq and retrieves all graphs in D that con-
tainGq . A super-graph query [18] can be defined in a similar fash-
ion. The crux of efficient processing of graph queries on a graph
database is to determine which graphs inD satisfy the query with-
out accessing the graphs in D that do not belong to the result. In
order to achieve that, the filtering-and-verification framework is of-
ten used. The principle of the filtering-and-verification framework
is to build an index structure to index the features of each graph;
and use the index to filter irrelevant graphs during query processing.
While our FVF framework has similar favor with the filtering-and-
verification framework because both target to minimize the number
of expensive graph operations during query processing (e.g., we
aim to reduce the number of BFS/Dijkstra’s executions while [12,
17, 18] aim to reduce the number of graph isomorphism testings),
they are very different. For example, the answer of an EGS query
essentially involves all graphs in the EGS, which is not the case in
answering a graph query on a graph database.
Processing queries on an EGS is different from processing queries

on a time-dependent graph [4]. A time-dependent graph is a graph
whose nodeset is fixed and edge weights are defined by a time-
dependent function. Thus, it cannot fully capture a dynamic world
because its graph structure does not evolve over time. Furthermore,
queries on a time-dependent graph only finds answers from a par-
ticular snapshot. In contrast, we are interested in queries that find
answers on all snapshots. Processing queries on EGSs is also dif-
ferent from mining evolving graph streams [9]. The work in [9] fo-

cuses on mining sub-graphs that undergo significant changes over
a (small) window of consecutive graphs. In this work, we focus
on processing queries on the whole historical collection of snap-
shot graphs. Our work is also different from the work on query
processing on dynamic graphs (e.g., [2]), which focuses on effi-
cient methods that update the shortest path trees when a graph has
changed. So, when applied to an EGS, that algorithm is still nec-
essary to be invoked once per snapshot. Finally, we are aware of
work related to graph measurements on dynamic graphs (e.g., [8]).
These studies focus on “what” kind of graph measures should be
used in dynamic networks instead of “how” such measures could
be efficiently computed.

6. CONCLUSIONS
In domains like social networks, data evolution could be cap-

tured by a sequence of graphs. Graphs of this kind are usually
large, numerous, and gradually evolving. We capture these evolv-
ing graphs in Evolving Graph Sequences (EGSs). In this paper, we
demonstrated that interesting information can be obtained by pos-
ing queries on the various EGSs and we discussed how to store and
query them. Our experimental results show that interesting infor-
mation can be unveiled from EGSs and queries could be efficiently
evaluated using our techniques.

7. REFERENCES
[1] A. L. Barabási and R. Albert. Emergence of scaling in random networks.

Science, 286:509–512, 1999.
[2] E. Chan and Y. Yang. Shortest path tree computation in dynamic graphs. IEEE

Transactions on Computers, 58(4):541–557, 2009.
[3] D. G. Corneil, M. Habib, and C. Paul. Diameter determination on restricted

graph families. In In WG 98. 24th International Workshop on Graph Theoretic
Concept in Computer Science, pages 192–202. Springer, 1998.

[4] B. Ding, J. X. Yu, and L. Qin. Finding time-dependent shortest paths over large
graphs. In EDBT, pages 205–216, 2008.

[5] A. V. Goldberg and C. Harrelson. Computing the shortest path: A* search
meets graph theory. In SODA, pages 156–165, 2005.

[6] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a high-compression indexing
scheme for reachability query. In SIGMOD Conference, pages 813–826, 2009.

[7] R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of online social
networks. In KDD, pages 611–617, 2006.

[8] K. Lerman, R. Ghosh, and J. H. Kang. Centrality metric for dynamic networks.
In Proceedings of the Eighth Workshop on Mining and Learning with Graphs,
pages 70–77, 2010.

[9] Z. Liu and J. X. Yu. Discovering burst areas in fast evolving graphs. In DASFAA
(1), pages 171–185, 2010.

[10] J. Maue, P. Sanders, and D. Matijevic. Goal-directed shortest-path queries using
precomputed cluster distances. ACM Journal of Experimental Algorithmics,
14:2:3.2–2:3.27, 2009.

[11] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and B. Bhattacharjee.
Growth of the Flickr social network. In SIGCOMM Workshop on Social
Networks (WOSN’08), pages 25–30, 2008.

[12] D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and applications of tree
and graph searching. In In Symposium on Principles of Database Systems,
pages 39–52, 2002.

[13] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution of
user interaction in Facebook. In SIGCOMM Workshop on Social Networks,
pages 37–42, 2009.

[14] S. Wasserman and K. Faust. Social Network Analysis: Methods and
Applications. Cambridge Univ. Press, 1994.

[15] F. Wei. Tedi: efficient shortest path query answering on graphs. In SIGMOD
Conference, pages 99–110, 2010.

[16] Y. Xiao, W. Wu, J. Pei, W. W. 0009, and Z. He. Efficiently indexing shortest
paths by exploiting symmetry in graphs. In EDBT, pages 493–504, 2009.

[17] X. Yan, P. S. Yu, and J. Han. Graph indexing based on discriminative frequent
structure analysis. ACM Trans. Database Syst., 30(4):960–993, 2005.

[18] S. Zhang, J. Li, H. Gao, and Z. Zou. A novel approach for efficient supergraph
query processing on graph databases. In EDBT, pages 204–215, 2009.

[19] P. Zhao and J. Han. On graph query optimization in large networks. PVLDB,
3(1):340–351, 2010.

733

APPENDIX
A. PSEUDO-CODE
Algorithm 2: The Clustering Algorithm.

Input : EGS = {G1, · · · , Gn}, Similarity threshold α
Output: Clusters {C1, · · · , Cj}, Representative graphs

{(G1
∩, G

1
∪), · · · , (G

j
∩, G

j
∪)}

1 j ← 1;Cj ← {G1};G
j
∩ ← G1;G

j
∪ ← G1

2 for i ← 2 to n do
3 Gj

∩

′

← Gj
∩ ∩Gi;G

j
∪

′

← Gj
∪ ∪Gi

4 if ges(Gj
∩

′

, Gj
∪

′

) ≥ α then
5 Cj ← Cj ∪ {Gi};G

j
∩ ← Gj

∩

′

;Gj
∪ ← Gj

∪

′

6 else // start building the next cluster
7 j ← j + 1;Cj ← {Gi};G

j
∩ ← Gi;G

j
∪ ← Gi

8 end
9 end
10 return {C1, · · · , Cj} and {(G1

∩, G
1
∪), · · · , (G

j
∩, G

j
∪)}

B. ILLUSTRATION FOR EQUATION 4
E G� E G� E G�

E Gi-1 E Gi E Gi-1 E Gi E Gi-1 E Gi
Gi-1 G� Gi-1 G� Ei+ Gi G� Ei+ Ei-

C. UPDATEDLEMMASFORSUPPORTING
WEIGHTED GRAPHS

Revised defintions
w∩(e) = maxGi∈C wi(e) for each edge e ∈ G∩

w∪(e) = minGi∈C wi(e) for each edge e ∈ G∪

Δ(Gi, G∩) = {e ∈ Gi|(e ∈ G∩) ∨ (wi(e) < w∩(e)/(1 + ε))}
For each edge e = (p, q) ∈ Δ(Gi, G∩),Γ(e) = δ∪(u, p) + wi(e) + δ∪(q, v)

Revised lemmas
LEMMA 1 If δ∪(u, v) = ∞ then v is not reachable from u in every snapshot Gi ∈ C.
LEMMA 2 If δ∩(u, v)/(1 + ε) ≤ δ∪(u, v), then P̃∩(u, v) is a solution for Gi ∈ C.

LEMMA 3 If each edge e ∈ P̃∪(u, v) exists in Gi and wi(e) ≤ (1 + ε)w∪(e),
then P̃∪(u, v) is a solution for Gi.

LEMMA 4 If Γ∗

i = mine∈Δ(Gi,G∩){Γ(e)} ≥ δ∩(u, v)/(1 + ε),
then P̃∩(u, v) is a solution for Gi.

LEMMA 5 If ∃e = (p, q) ∈ Δ∗(Gi) such that each edge e′ ∈ P̃∪(u, p) ∪ P̃∪(q, v) exists in
Gi and wi(e

′) ≤ (1 + ε)w∪(e
′), then P̃∪(u, p)||e||P̃∪(q, v) is a solution for Gi.

D. FURTHER EXPERIMENTAL DETAILS

D.1 Experiment Setting
All algorithms are implemented in C++. All experiments are run

on a Linux machine with 2.83GHz Dual Core Intel(R) with 4GB of
memory.

D.2 Experiments on Synthetic Graphs
We run experiments on synthetic datasets to further evaluate our

algorithm. We first describe an EGS data generator and then we
discuss how the various properties of the data affect our algorithm’s
performance.
Our synthetic EGS is modeled after typical social networks. The

generated snapshot graphs follow some properties of social net-
work graphs, e.g., they are scale-free, evolving, and growing. Our
EGS generator takes five parameters:
• d: the average vertex degree.
• V : the number of vertices in the first snapshot.
• n: the number of snapshots in the EGS.
• ir : we add ir × V vertices to a snapshot to generate the next

α d V n ir k
0.95 15 100,000 500 0.3% 4

Table 3: Default values used in synthetic data experiments.

snapshot.
• k: the ratio |E+|/|E−|, where E+ and E− are the sets of edges
added to and removed from a snapshot to generate the next snap-
shot, respectively.
To generate an EGS, we first use the BA model [1] to generate

a scale-free graph6 G1 with V vertices and an average degree d.
Then, we repeat the following procedure to generate subsequent
snapshot graphs.
1. Add ir × V new vertices to the current snapshot. For each
new vertex v, we generate m = d

2(1−1/k)
edges. For each such

edge e, one end-point of e is v, and the other end-point is randomly
chosen from the vertices of the current snapshot according to the
BAmodel. That is, a vertex with a larger degree has a higher chance
of being chosen.
2. Randomly remove ir×V ×m

k
edges from the graph.

We can show that the graphs generated according to the above
procedure (1) are scale-free and (2) have the same degree distri-
bution (and hence the same average vertex degree). Due to space
limitation, we omit the proofs in this paper.
Next, we present a sensitivity study on the algorithms’ perfor-

mance by varying six variables. These variables and their default
values are listed in Table 3. The default values and the ranges over
which we will vary the variables are chosen to mimic real datasets.
When we vary one variable, the other variables are fixed at their
default values. Similar to the experiment on real datasets, 500 ran-
dom queries are used to obtain the average query-processing times
of the algorithms.

D.2.1 Varying Similarity Threshold (α)
Figure 7 shows the effect of varying the similarity threshold α.

The results are consistent with those obtained from the experiments
on real datasets. To reiterate, snapshots in a cluster are more similar
under a larger α, and so FVF is more effective in pruning SPAs
(Figure 7c). This leads to a lower Residual-SPA Time (Figure 7b).
On the other hand, a larger α results in more clusters (Figure 7a).
This leads to a larger Find Time (Figure 7b). In the experiment, the
optimal α value is 0.95, at which FVF achieves a 6.5 times speedup.
Even with a non-optimal α, the speedup is still significant (e.g., the
speedup is 3.4 at α = 0.7).

D.2.2 Varying Number of Snapshots (n)
Figure 8 shows the effect of varying the number of snapshots n

in an EGS. First, increasing n results in more clusters (Figure 8a)
simply because there are more graphs in the EGS. With a fixed α
value, clusters remain α-bounded7 at the same level. The prun-
ing effectiveness of FVF therefore remains more or less the same
over different values of n (Figure 8c). Since graphs are growing
at a constant rate, increasing n also makes the graphs bigger, par-
ticularly for those that appear in the later part of the EGS. Hence,
a larger n implies more and bigger graphs. This double impact
results in a quadratic growth in the algorithms’ execution times
(Figure 8b), mostly because the total amount of time spent on SPA
grows quadratically w.r.t. n. For large n (say 2,000), the graphs are

6A graph is scale-free if the distribution of the vertices’ degrees follows a
power law: P (t) ∝ 1/tγ , where P (t) is the probability that a vertex has a
degree t, and γ is a constant. Following [1], we set γ = 3.
7See Definition 3.

734

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

Similarity threshold (α)

Nu
mb

er
 of

 cl
us

ter
s

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Similarity threshold (α)

Tim
e (

se
c)

FVF
Find Time
VF Time
Residual−SPA Time
Decompression Time

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
70

75

80

85

90

95

100

Similarity threshold (α)

%
 of

 S
PA

 pr
un

ed

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

Similarity threshold (α)

Sp
ee

du
p

(a) Number of Clusters (b) Query Time∗ (c) % of SPA Pruned (d) Speed-up

Figure 7: Vary α (Synthetic Data). ∗Figure 13b shows a zoomed version.

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

Number of snapshots

Nu
mb

er
 of

 cl
us

ter
s

0 1000 2000 3000 4000 5000
0

5

10

15

20

25

30

35

40

Number of snapshots

Tim
e

(h
un

dr
ed

 se
co

nd
s)

FVF
Find Time
VF Time
Residual−SPA Time
Decompression Time

0 1000 2000 3000 4000 5000
90

92

94

96

98

100

Number of snapshots

%
 of

 S
PA

 pr
un

ed

0 1000 2000 3000 4000 5000
2

4

6

8

10

12

14

16

18

20

Number of snapshots

Sp
ee

du
p

(a) Number of Clusters (b) Query Time (c) % of SPA Pruned (d) Speed-up

Figure 8: Vary n (Synthetic Data).

0.5 1 1.5 2
x 105

0

2

4

6

8

10

12

14

16

V

Nu
mb

er
 of

 cl
us

ter
s

0.5 1 1.5 2
x 105

0

0.5

1

1.5

2

2.5

3

3.5

V

Tim
e (

se
c)

FVF
Find Time
VF Time
Residual−SPA Time
Decompression Time

0.5 1 1.5 2
x 105

90

92

94

96

98

100

V

%
 of

 S
PA

 pr
un

ed

0.5 1 1.5 2
x 105

0

1

2

3

4

5

6

7

8

V

Sp
ee

du
p

(a) Number of Clusters (b) Query Time (c) % of SPA Pruned (d) Speed-up

Figure 9: Vary V (Synthetic Data).

5 10 15 20 25
0

2

4

6

8

10

12

14

16

Average degree

Nu
mb

er
of

clu
ste

rs

5 10 15 20 25
0

0.5

1

1.5

2

Average degree

Tim
e (

se
c)

FVF
Find Time
VF Time
Residual−SPA Time
Decompression Time

5 10 15 20 25
90

91

92

93

94

95

96

97

98

99

100

Average degree

%
 of

 S
PA

 pr
un

ed

5 10 15 20 25
0

1

2

3

4

5

6

7

8

Average degree

Sp
ee

du
p

(a) Number of Clusters (b) Query Time (c) % of SPA Pruned (d) Speed-up

Figure 10: Vary d (Synthetic Data).

735

0 0.4% 0.8% 1.2% 1.6% 2%
0

5

10

15

20

25

30

35

ir

Nu
mb

er
of

clu
ste

rs

0 0.4% 0.8% 1.2% 1.6% 2%
0

2

4

6

8

10

ir

Tim
e (

se
c)

FVF
Find Time
VF Time
Residual−SPA Time
Decompression Time

0 0.4% 0.8% 1.2% 1.6% 2%
90

91

92

93

94

95

96

97

98

99

100

ir

%
of

SP
A

pru
ne

d

0 0.4% 0.8% 1.2% 1.6% 2%
0

1

2

3

4

5

6

7

ir

Sp
ee

du
p

(a) Number of Clusters (b) Query Time (c) % of SPA Pruned (d) Speed-up
Figure 11: Vary ir (Synthetic Data).

1.5 2 2.5 3 3.5 4 4.5 5
10

15

20

25

30

35

40

k

Nu
mb

er
 of

 cl
us

ter
s

1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

k

Tim
e (

se
c)

FVF
Find Time
VF Time
Residual−SPA Time
Decompression Time

1.5 2 2.5 3 3.5 4 4.5 5
90

91

92

93

94

95

96

97

98

99

100

k

%
of

SP
A

pru
ne

d

1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

k

Sp
ee

du
p

(a) Number of Clusters (b) Query Time (c) % of SPA Pruned (d) Speed-up
Figure 12: Vary k (Synthetic Data).

so numerous and big that the time spent on executing SPA becomes
a dominating factor. Since the objective of FVF is to reduce the
number of SPA executions, a dominating SPA cost makes the ad-
vantage of FVF more pronounced. This results in a larger speedup
(Figure 8d). On the other hand, when n is small, the cost of SPA
is not so dominating. The advantage of FVF in SPA reduction is
watered down by other costs, such as Decompression Time. The
speedup at small n is thus less significant.

D.2.3 Varying Graph Size (V)
Figure 9 shows the effect of varying V , the number of vertices

of the first snapshot graph. With the same number of snapshots and
same k and ir values, we get similar clusters and so the number of
clusters stays the same as V varies (Figure 9a). Similar to varying
n, increasing V makes the graphs larger. Since the runtime of SPA
is linear w.r.t. graph size and the number of snapshots remains un-
changed, the query-processing time of FVF increases linearly with
V . With a fixed α, the pruning effectiveness of FVF is very sta-
ble (Figure 9c). Also, we see that the speedup achieved by FVF
increases with V because the time spent on executing SPA is be-
coming more dominating due to bigger graphs. This increase in
speedup, however, is not as drastic as that shown in Figure 9d be-
cause here we do not get the “double impact” factor we mentioned
in Section D.2.2.

D.2.4 Varying Average Degree (d)
Figure 10 shows the effect of varying the average degree d of

the snapshots in the generated EGS. Changing d does not affect
the clustering result and so the number of clusters (Figure 10a) and
FVF’s pruning effectiveness (Figure 10c) do not change much with
d. A larger d, however, implies more edges and thus larger graphs.
Hence, the query-processing time of FVF increases with d (Fig-
ure 10b). The speedup FVF achieves decreases as d increases (Fig-
ure 10d). This is because we store the graphs using adjacency lists.
A larger degree implies longer lists in the data structure. During
decompression, a snapshot graph is reconstructed from the previ-

ous one (see e.g., Section 3 Equation 4). In that process, the data
structure has to be traversed to locate edges to be deleted. A larger
d thus implies a longer Decompression Time (Figure 10b). This
increase in decompression overhead dwarfs the savings FVF gains.

D.2.5 Varying Insertion Rate (ir)
Figure 11 shows the effect of varying the insertion rate ir of the

snapshots in the generated EGS. A higher insertion rate means suc-
cessive snapshots are less similar. With α fixed, the similarity re-
quirement of the clusters remain the same. As a result, fewer graphs
can be grouped into the same cluster before the α-boundedness re-
quirement is violated. Hence, the clusters are smaller and there are
more of them (Figure 11a). As k is fixed, a larger ir implies larger
snapshot graphs. However, FVF’s pruning effectiveness stays rel-
atively stable (Figure 11c) because clusters remain α-bounded at
the same level. The speedup FVF achieves drops slightly as ir
increases (Figure 11d). This is because with more clusters (Fig-
ure 11a), there are moreG∪’s andG∩’s and the Find Time overhead
becomes higher (Figure 11b).

D.2.6 Varying Edge Insertions and Deletions Ratio
(k)

Figure 12 shows the effect of varying k, the ratio of edge inser-
tions and deletions, in the generated EGS. Here the insertion rate
ir is fixed. So, a larger k means there are fewer edge deletions and
successive snapshots are more similar. With the similarity thresh-
old (α) fixed, more graphs can be grouped into the same cluster
before the α-roundedness requirement is violated. As a result, the
clusters are larger, and there are fewer of them (Figure 12a). The
execution time of FVF decreases with k (Figure 12b). The rea-
son is that with fewer clusters, there are fewer G∪’s and G∩’s, and
the Find Time overhead becomes lower (Figure 12b), which also
explains why the speedup increases (Figure 12d). FVF’s pruning
effectiveness stays relatively stable (Figure 12c) because clusters
remain α-bounded at the same level.

736

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

Similarity threshold (α)

Tim
e (

se
c)

FVF
Find Time
VF Time
Residual−SPA Time
Decompression Time

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

2

2.5

Similarity threshold (α)

Tim
e (

se
c)

FVF
Find Time
VF Time
Residual−SPA Time
Decompression Time

(a) Zooming Figure 5b (b) Zooming Figure 7b
Figure 13: Zooming in Figures 5b and 7b (α starts from 0.7).

0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

Similarity threshold (α)

%
 of

 S
SS

P
pr

un
ed

0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

Similarity threshold (α)

Sp
ee

du
p

(a) % of SSSP Pruned (b) Speed Up
Figure 14: Vary α (Centrality queries, FBFRIEND).

D.3 Experiments on Computing Centrality
We have conducted experiments on the FBFRIEND EGS. Figure

14 shows the results of the experiments in which we vary the sim-
ilarity threshold α with ε = 1%. For example, when α = 0.95,
our FVF framework pruned many SSSP and registered a 10.2 times
speed-up over the baseline approach. We found that cc(u) satisfied
the error tolerance 71% of the time, and the revised answer cc(u)′
satisfied the error tolerance 90% of the time. When we vary the er-
ror tolerance ε from 0.5% to 5% (α = 0.95), the average speedup
increases from 6 to 15 (detailed figures are omitted for space rea-
sons).
E. DETERMINING GRAPH DIAMETER
Given a vertex u in a graph G∗, the eccentricity of u, denoted

by ecc∗(u), is the greatest distance between u and any other ver-
tex. That is, ecc∗(u) = maxv∈G∗

δ(u, v). The diameter of G∗

(dm(G∗)) is the largest eccentricity of any vertex in G∗. That is,
dm(G∗) = maxu∈G∗

ecc∗(u). A vertex u that gives the largest
eccentricity is called a peripheral vertex.
To determine dm(Gi) of a snapshot graph Gi, one can run an

all-pairs shortest paths (APSP) algorithm on Gi to determine the
longest shortest-path inGi. This takesO(V 3) time using the Floyd-
Warshall algorithm, which is too expensive for large graphs. Al-
ternatively, one can apply the 2-sweep algorithm (2SA) [3] to ob-
tain an approximate answer. Given a vertex x, let Fi(x) be the
set of vertices that are the farthest away from x in Gi (i.e., ∀y ∈
Fi(x), δi(x, y) = ecci(x)). Note that Fi(x) can be computed
by running an SSSP on Gi. 2SA randomly picks a seed vertex
w ∈ Gi, finds a u ∈ Fi(w) and then a v ∈ Fi(u). The diameter
of the graph is estimated by ecci(u) = δi(u, v). The idea is that
hopefully u is a peripheral vertex (because it is the farthest away
from the seed) and so dm(Gi) = ecci(u). One can improve the
accuracy of the answer by repeating the procedure with other seeds.
We can use the FVF framework to speed up 2SA when it is ap-

plied to a cluster C of k snapshots. The idea is to compute Fi(x)
not on each individual snapshot, but on G∪ and G∩. We have
proved the following theorem:

THEOREM 1. Given a vertex x, if ecc∪(x) = ecc∩(x), then
F∩(x) ∩ F∪(x) = ∅ and ∀y ∈ F∩(x) ∩ F∪(x), we have, y ∈
Fi(x) ∀1 ≤ i ≤ k.

Given a seed vertex w, we first run SSSP on both G∪ and G∩ to
determine F∪(w) and F∩(w) (and thus ecc∪(w) and ecc∩(w)).
Theorem 1 tells us that if ecc∪(w) = ecc∩(w), then any u ∈
F∪(w) ∩ F∩(w) (which is guaranteed to exist) is a farthest vertex
from w in all the snapshots. Hence, we need only 2 (instead of k)
SSSP, one on G∪ and one on G∩, to find a peripheral vertex u for
all the k snapshots in the cluster. We have conducted experiments
on the FBFRIEND EGS and we found that when α = 0.95, the
condition ecc∪(x) = ecc∩(x) holds about 50% of the time. Our
FVF approach can thus significantly speed up the 2SA algorithm.

F. CASE STUDY
In this section we report a case study that demonstrates how in-

teresting analytical queries can be answered by EGS processing.
Figure 1 shows how the shortest-path distance between two users
7058 and 7871 in the Facebook friendship graph changed over a
one-year period before they finally became friends. This plot is
obtained by running the shortest-path query (7058, 7871) over the
FBFRIEND EGS. From the plot, we see that the two users were dis-
connected before snapshot #178. After that, they got closer grad-
ually until they were linked up at snapshot #365. The result of
this EGS query reveals four key moments (#178, #186, #304, #365)
during the users’ friendship development at each of which their dis-
tance was shortened by a hop. The query thus helps us pinpoint on
the part of the EGS data to drill into in order to better understand
what events have occurred at those moments. Consequently, we
retrieve the shortest paths found by our FVF algorithm at the four
key moments:

Key moment Shortest-path connecting users 7058 and 7871
#178 7058→ 346→ 9256→ 9264→ 7871
#186 7058→ 3011→ 7098→ 7871
#304 7058→ 51385→ 7871
#365 7058→ 7871

After the key moments are found, we can analyze how friendship
evolves by retrieving the preceding moment of each key moment.
Take the key moment #186 as an example. We retrieve all shortest-
paths between users 7058 and 7871 in snapshot #185 and one of
them is:

7058→ 3011→ 7098→ 36931→ 7871

Comparing this shortest path with the one in snapshot #186, we
observe that the distance is shortened because of the occurrence of a
short-circuiting bridge between users 7098 and 7871 (Figure 2(b)).
This observation is found in all the other key moments (#178, #304,
#365) of this query. To verify whether short-circuiting is really so
predominant, we issued 100 more random shortest-path queries on
the EGS and found that 84% of the path-shortening development
fall into the short-circuiting bridge case and the rest fall into the
disjoint path case (Figure 2(a)).
We remark that the case study above would not have been pos-

sible if we find shortest paths only on a single snapshot instead of
on a complete EGS. This shows that our FVF framework provides
a powerful tool for evolving graph analysis.

Acknowledgments
Eric Lo was supported by Grant PolyU 525009E from Hong Kong
RGC. Reynold Cheng was supported by the Research Grants Coun-
cil of Hong Kong (RGC Project HKU 711309E). We would like to
thank the reviewers for their insightful comments.

737

