
Serializable Snapshot Isolation for Replicated Databases
in High-Update Scenarios

Hyungsoo Jung†
University of Sydney

Hyuck Han∗
Seoul National University

Alan Fekete†
University of Sydney

Uwe Röhm†
University of Sydney

†{firstname.lastname}@sydney.edu.au ∗hhyuck@dcslab.snu.ac.kr

ABSTRACT
Many proposals for managing replicated data use sites run-
ning the Snapshot Isolation (SI) concurrency control mech-
anism, and provide 1-copy SI or something similar, as the
global isolation level. This allows good scalability, since only
ww-conflicts need to be managed globally. However, 1-copy
SI can lead to data corruption and violation of integrity con-
straints [5]. 1-copy serializability is the global correctness
condition that prevents data corruption. We propose a new
algorithm Replicated Serializable Snapshot Isolation (RSSI)
that uses SI at each site, and combines this with a certifi-
cation algorithm to guarantee 1-copy serializable global ex-
ecution. Management of ww-conflicts is similar to what is
done in 1-copy SI. But unlike previous designs for 1-copy se-
rializable systems, we do not need to prevent all rw-conflicts
among concurrent transactions. We formalize this in a theo-
rem that shows that many rw-conflicts are indeed false pos-
itives that do not risk non-serializable behavior. Our pro-
posed RSSI algorithm will only abort a transaction when it
detects a well-defined pattern of two consecutive rw-edges
in the serialization graph. We have built a prototype that
integrates our RSSI with the existing open-source Postgres-
R(SI) system. Our performance evaluation shows that there
is a worst-case overhead of about 15% for getting full 1-
copy serializability as compared to 1-copy SI in a cluster of
8 nodes, with our proposed RSSI clearly outperforming the
previous work [6] for update-intensive workloads.

1. INTRODUCTION
In 1996, a seminal paper by Gray et al. [15] showed that

there were performance bottlenecks that limited scalability
of all the then-known approaches to managing replicated
data. These approaches involved a transaction performing
reads at one site, performing writes at all sites, and ob-
taining locks at all sites. This led to a busy research area,
proposing novel system designs to get better scalability. In
2010, in a reflection [19] on winning a Ten-Year-Best-Paper
award, Kemme and Alonso identified some important as-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

pects of this work. Among these is the value of Snapshot
Isolation (SI) rather than serializability. SI is widely avail-
able in DBMS engines like Oracle DB, PostgreSQL, and Mi-
crosoft SQL Server. By using SI in each replica, and deliver-
ing 1-copy SI as the global behavior, most recent proposals
have obtained improved scalability, since local SI can be
combined into (some variant of) global 1-copy SI by han-
dling ww-conflicts, but ignoring rw-conflicts. This has been
the dominant replication approach, in the literature [10, 11,
12, 13, 23, 27].

While there are good reasons for replication to make use
of SI as a local isolation level (in particular, it is the best
currently available in widely deployed systems including Or-
acle and PostgreSQL), the decision to provide global SI is
less convincing. Global SI (like SI in a single site) does not
prevent data corruption or interleaving anomalies. If data
integrity is important to users, they should expect global (1-
copy) serializable execution, which will maintain the truth
of any integrity constraint that is preserved by each trans-
action considered alone.

Thus in this paper, we propose a new replication algo-
rithm that uses sites running SI, and provides users with a
global serializable execution.

Recently, Bornea et al. [6] proposed a replica management
system that uses sites running SI, and provides users with a
global serializable execution. They use an essentially opti-
mistic approach (following the basic principles from [17]) in
which each transaction is performed locally at one site, and
then (for update transactions) the writeset and readset are
transmitted (by a totally ordered broadcast) to remote sites
where a certification step at the end of the transaction can
check for conflicts between the completing transaction and
all concurrent committed transactions; if a conflict is found,
the later transaction is aborted. All the designs that offer SI
as global isolation level, must do essentially the same checks
to prevent ww-conflicts; the extra work for 1-copy serializ-
ability lies in preventing rw-conflicts. Bornea et al. follow
this approach in a middleware-based design, with readsets
calculated by the middleware from analysis of SQL text, in
order to reduce transmission cost. We refer to this conflict
management approach, of aborting an update transaction
when it has a rw- or ww-conflict with a committed concur-
rent transaction, as the “conflict-prevention with read-only
optimisation” approach (abbreviated as CP-ROO). Our pa-
per offers a more subtle approach, that looks at pairs of
consecutive conflict edges in order to reduce the number of
unnecessary aborts; as a trade-off however, we must also cer-
tify read-only transactions, and so our technique is suited to

783



cases of high update rate (as we demonstrate in the evalua-
tion). These cases are not well treated by existing replication
strategies which focus instead on read-mostly environments,
and they scale badly when updates are common.

A similar issue was previously studied in single-site DBMS
concurrency control. Theory from Adya [1] as extended by
Fekete et al. [14] showed that checking each rw-conflict in an
SI-based system gives many unnecessary aborts (“false pos-
itives”) in situations where non-serializable execution will
not arise even in presence of a rw-conflict; instead, non-
serializable execution only arises from a pair of consecutive
rw-conflicts within a cycle in the serialization graph. Cahill
et al. [7] used this to propose Serializable Snapshot Isola-
tion (SSI), a concurrency control mechanism that is a mod-
ification of an SI-based (single site) engine. SSI guarantees
serializable execution, with performance close to that of SI
itself (note that a pair of consecutive edges is much less fre-
quent than a single edge, so SSI has far fewer aborts than a
standard optimistic approach). In this paper we do a similar
thing for a replicated system, with SI as the mechanism in
each site, and 1-copy serializability as the global property of
executions. We prevent ww-conflicts in the same way as 1-
copy SI designs, and we prevent certain pairs of consecutive
rw-conflicts.

Contributions of This Work. We prove a new the-
orem that gives a sufficient condition for 1-copy serializ-
able execution, based on absence of ww-conflicts between
concurrent transactions, and absence of certain patterns of
consecutive rw-conflicts. We propose a concurrency con-
trol algorithm that applies the theorem, to abort trans-
actions during a certification step when these situations are
found. We design and implement a prototype system
called Postgres-RSSI, using this algorithm, as a modification
of the existing Postgres-R(SI) open source replication sys-
tem. Our prototype uses a combination of existing ideas, to
be quite efficient. In particular, we use a carefully-arranged
mechanism for total-order broadcast of the transaction com-
pletion messages, including the writesets, and dependency
information about rw-conflicts. That is, we avoid send-
ing potentially large readsets in messages. We measure
the performance of our prototype and show that there
is not too much degradation compared to (non-serializable)
designs like Postgres-R(SI), and that (when updates trans-
actions are frequent) we do significantly better than a design
that prevents all rw-conflicts between update transactions.
Paper Road Map. In Section 2 we summarize related

research. Section 3 has the theorem that is a sufficient con-
dition for global serializability, and we give the correspond-
ing concurrency control algorithm; in Section 4 we describe
the details of the efficient certification, without transmitting
readsets. Section 5 presents the implementation details of
our prototype, and in Section 6 we evaluate its performance.
Section 7 concludes.
Acknowledgements. This work was supported by re-

search grant DP0987900 from the Australian Research Coun-
cil.

2. BACKGROUND
The field of transaction management, and its subfield of

replica management, is extensive; authoritative coverage can
be found in the texts by Weikum and Vossen [26] and by
Kemme et al. [20], respectively. This section points only to
some especially close work on which we build.

Snapshot Isolation. Snapshot Isolation (SI) is a method
of multiversion concurrency control in a single DBMS engine
that ensures non-blocking reads and avoids many anomalies.
SI was described in Berenson et al. [5] and it has been im-
plemented in several production systems including Oracle
DB, PostgreSQL and Microsoft SQL Server. When SI is the
concurrency control mechanism, and each transaction Ti be-
gins its execution, it gets a begin timestamp bi. Whenever
Ti reads a data record x, it does not necessarily see the lat-
est value written to x; instead Ti sees the version of x that
was produced by the last to commit among the transactions
that committed before Ti started and also modified x (there
is one exception to this: if Ti has itself modified x, it sees
its own version). Owing to this rule, Ti appears to run on a
snapshot of the database, storing the last committed version
of each record at bi. SI also enforces another rule on writes,
called the First-Committer-Wins (FCW) rule: two concur-
rent transactions that both modify the same data record
cannot both commit. This prevents lost updates in a single
site DBMS.

The theoretical properties of SI have been studied ex-
tensively. Berenson et al. [5] showed that SI allows some
non-serializable executions. Adya [1] showed that in any
non-serializable execution of SI, the serialization graph has
a cycle with two consecutive rw-edges. This was extended
by Fekete et al. [14], who found that any non-serializable
execution had consecutive rw-edges where the transactions
joined by the edge were concurrent with one another. Our
new theorem is similar in format to those in [1, 14], but
with different side-conditions that are suited to a replicated
system.

This theory has been used to enforce serializability based
on SI mechanisms. In Fekete et al. [14] and in Alomari
et al. [2], compile-time analysis of conflicts was used to
modify the application code so that all executions are seri-
alizable. Cahill et al. [7] instead proposed a modified mech-
anism, called Serializable Snapshot Isolation (SSI), that can
be coded in the DBMS engine; this checks at run-time for
the consecutive rw-edges, and aborts a transaction as needed
to prevent non-serializable executions. Being in a single
DBMS, [7] can detect conflict edges directly in lock tables,
while (being in a system with replicas) we need to transmit
information about writesets from node to node.

Replication. The traditional approach to replica man-
agement involves read one copy, write all copies (ROWA).
Gray et al. [15] identified a series of performance hazards
that locking-based database replication could face. This
inspired much work on system designs to reduce the per-
formance bottlenecks. These are classified by three design
criteria; whether an approach is based on changes to the
database kernel or by middleware that uses (nearly) unmod-
ified single node DBMS engines for the replicas; whether up-
dates are allowed at any site, or only at a “master” primary
site, and whether transaction propagation to other replicas
is done eagerly (as part of commit processing) or lazily after
the commit. Kemme et al. [18] proposed a kernel-based,
multi-master and eager replication protocol, which makes
use of an available group communication system to guaran-
tee a total order delivery which allows sites to remain con-
sistent (so, 1-copy serializability can be ensured). Improved
performance came from doing the database processing at
one site only, and applying efficient primary-keyed write op-
erations at other sites [17], with a certification to prevent

784



conflicts, that was done consistently at all sites. Using sites
that provide SI as concurrency control, and giving one-copy
SI rather than serializability, allows a great improvement
in performance, since only ww-conflicts need be considered
in certification. This was done by Wu et al. [27], and the
implementation of this, called Postgres-R(SI) has continued
as an open-source project. It serves as the baseline of our
prototype system.

Most recent work has focused on middleware designs, as
explained in [19]. This began with MIDDLE-R [24] which
supports 1-copy serializability for sites using locking, de-
pending on a priori knowledge on which data partitions a
particular application program would access. Lin et al. [23]
provide 1-copy SI as the global isolation level, for sites us-
ing SI locally; this approach allows the middleware to ig-
nore the readsets. Various session properties are given by
different designs, for example Elnikety et al. [13] provide
GSI, in which the snapshot of transaction T may be earlier
than that containing all transactions that commit before T
starts. Improved performance came with moving durability
to the middleware [11], and adding load balancing and fil-
tering [12]. Daudjee et al. [10] proposed a lazy-propagation
design that ensures a strong session property; they evaluated
its correctness using simulation and compared the costs to
designs giving other variants of SI. A simpler design is possi-
ble with a master-slave design as in Ganymed [25] where all
updates happen at one primary site; this has other benefits
in allowing heterogeneity in the hardware and software of
the slaves.

A new work by Bornea et al. [6] achieves 1-copy serial-
izability from sites with SI locally. This is a middleware
design, where the middleware uses program analysis to de-
termine the predicates involved in SELECT statements, as
a proxy for the readsets. The certification step, like that
in [24], uses an approach where any detected ww-edge or
rw-edge among update transactions leads to the abort of
one of the transactions involved. The main differences be-
tween our new work and [6] are the overall architecture (ker-
nel modifications with a broadcast that is integrated with
the dependency checks, rather than a middleware layer that
adds a separate certifier site and a proxy to act as a ve-
neer over each unmodified replica DBMS), the way read-
sets are obtained (modification of the kernel to remember
which records are read, rather than predicate analysis of
SQL code), and the cases where a transaction must abort to
avoid non-serializable execution (two consecutive rw-conflict
edges among arbitrary transactions, rather than a single
conflict edge among update transactions).

3. ENSURING 1-COPY SERIALIZABILITY
In the following, we describe a concurrency control al-

gorithm that provides 1-copy serializable executions for a
replicated system where each node runs at SI. In particular,
we developed a new theorem that gives a sufficient condition
for 1-copy serializable execution. We also give the high-level
account of our algorithm, that uses the theorem as its foun-
dation.

3.1 Notation
For simplicity, we assume that all events in the distributed

system occur in a total order; effectively, we assume that
some logical clock is operating. Thus the history of the
system can be given as a sequence of events. Since the indi-

vidual nodes are using SI, they keep versions of each item.
We use the notation that Xi represents the version of item
X produced by user transaction Ti (during the user-level
event Wi(Xi)). When Ti reads item X, it will return the
value from some version, produced by some transaction. If
the read by Ti returns the version produced by Tj , we write
this event as Ri(Xj). We also include in the history the
beginning and the completion (commit or abort) event for
each transaction; we write bi for the event when Ti starts
executing, ci for the commit point of Ti, and ai for its abort
point. The version order for versions of item X will be the
order of the commit events of the transactions that produce
the versions.

We associate three important numbers, which we call times-
tamps, with each transaction. The timestamps in our sys-
tem are counters, which “tick” once at each transaction that
attempts to commit. We use the symbol ≺ for “less than”
among timestamps (or � when equality is allowed). Be-
cause our architecture sends transaction completion through
a total-order broadcast mechanism, the commit-timestamp
of any transaction is just its position in the broadcast total
order. We write commit(Ti) for the commit-timestamp of
Ti. The begin-timestamp begin(Ti) captures the most recent
commit that has occurred at the site where Ti runs, when
Ti starts to execute. Because each site uses SI, this means
that each read in Ti sees the version that includes all writes
by transactions whose commit-timestamp is up to, and in-
cluding, the begin-timestamp of Ti. Clearly begin(Ti) ≺
commit(Ti).

We also define a latest-snapshot-version timestamp lsv(Ti),
which gives the highest commit-timestamps among the trans-
actions whose versions of items are accessed by Ti. If we
simplify by ignoring blind writes, so each transaction reads
an item before writing it, this is just the maximum commit-
timestamp among the versions that are read by Ti. Notice
that lsv(Ti) � begin(Ti), but the equality may or may not
occur, depending on whether there is any item in the in-
tersection of readset(Ti) and writeset(Tj), where Tj is the
transaction such that commit(Tj) = begin(Ti), that is, Tj is
the most recently committed transaction at the node when
Ti starts running.

As usual in multiversion concurrency theory, we consider
a serialization graph SG(h) with three types of dependency

edges. We have a ww-dependency edge Ti
ww−→ Tj when there

is a data item X, such that Ti writes a version Xi, and Tj

writes a version Xj that is later in the version order than

Xi. We have a wr-dependency edge Ti
wr−→ Tj when there

is a data item X such that Tj contains the event Rj(Xi),
so that Tj reads a version produced by Ti. Finally, we have

an anti-dependency (also called rw-dependency) Ti
rw−→ Tj ,

when there is an item X such that Ti reads a version Xk

which is earlier in the version order than Xj written by Tj .
That is, any serialization must place Ti ahead of Tj , since
Ti did not see the effects of Tj on item X.

Within the category of anti-dependency edges, we give
special attention to those which form what we call a de-
scending structure. This is formed in certain cases when
there are three transactions connected by successive anti-
dependency edges.

Definition 3.1 (Descending structure). Consider
three transactions Tp, Tf , and Tt. We say that these form
a descending structure, with Tp as peak-transaction, Tf as

785



follow-transaction, and Tt as trailing transaction, when there
are the following relationships:

• there are anti-dependency edges
Tp

rw−→ Tf , and Tf
rw−→ Tt,

• lsv(Tf ) � lsv(Tp), and

• lsv(Tt) � lsv(Tp)

3.2 Theory
Our concurrency control algorithm is based on enforcing

a sufficient condition for 1-copy serializability, expressed in
the following theorem.

Theorem 3.1. Let h be a history over a set of transac-
tions, such that one can assign to each transaction Ti an
event snapshot i that precedes bi, obeying the following three
conditions.

• Read-from-snapshot If h contains Ri(Xj) then h
contains cj preceding snapshot i, and whenever h con-
tains Wk(Xk) for some committed transaction Tk 6=
Tj, then either ck precedes cj, or else ck follows snap-
shot (Ti).

• First-committer-wins If h contains both Wi(Xi) and
Wj(Xj), then it is not possible that ci occurs between
snapshot(Tj) and cj.

• No-descending-structure The serialization graph
SG(h) does not contain a descending structure among
transactions that all commit.

Then h is 1-copy serializable.

For a proof of Theorem 3.1, readers are referred to Ap-
pendix A, but we remark on how Theorem 3.1 relates to
other results.

The read-from-snapshot condition deals with wr-edges.
it holds automatically in any system that runs SI at each
replica, sends each transaction to be performed at one replica,
and then propagates the updates to other replicas in commit-
order (whether this order comes from a total-order broad-
cast, or by having all updates at a single primary site). This
is because we can choose the event snapshot(Ti) to immedi-
ately follow the commit of the last transaction whose com-
mit was received at the appropriate node before Ti begins its
execution. That is, the timestamp begin(Ti) is the highest
commit-timestamp of any transaction that commits before
the event snapshot i.

The first-committer-wins condition deals with ww-edges.
The isolation level GSI (generalized snapshot isolation, [13])
is defined exactly as the combination of condition read-
from-snapshot and first-committer-wins; thus systems like
Postgres-R(SI) or Tashkent, which offer GSI, do so by en-
forcing the first-committer-wins check in a certification step,
based on knowledge of each transaction’s writeset.

To ensure serializability, one must also worry about read-
sets and how they lead to rw-edges. The recent work [6]
uses a condition called “no read impact” that constrains
each rw-edge. It states that if h contains Rj(Xi), then it
is not possible that ci occurs between snapshot(Tj) and cj .
The power of our no-descending-structure condition is that
it looks for pairs of consecutive rw-edges, which should be
much less frequent than single rw-edges. In this regard, note

that Adya [1] already showed that the absence of consecu-
tive rw-edges is sufficient for serializability in systems based
on SI (and the result holds immediately for GSI as well);
the novelty of condition no-descending-structure lies in the
extra aspects concerning the lsv timestamps.

3.3 Concurrency Control Algorithm
One can use Theorem 3.1 for a family of concurrency con-

trol algorithms that each achieves 1-copy serializability from
replicas that provide SI. We follow the standard model for
ROWA-replication, with each transaction submitted at one
node, and performed locally there; then the modifications
made are sent to all replicas, in a consistent order. At
each replica, a certification check occurs, and if the trans-
action can commit, its modifications are installed through
a “remote transaction”. Certification is done using Theo-
rem 3.1: a transaction will be allowed to commit provided
that first-committer-wins and no-descending-structure are
both valid.1 To implement this idea, we need to make sure
that at certification, each node has the information it needs.
For checking first-committer-wins, the node needs informa-
tion on the writeset of the current transaction, and the write-
sets of the previously committed ones. This is the same
check as done for replication that gives GSI as the isolation
level (as in [27, 13]), and the information is naturally avail-
able since the writesets need to be propagated anyway for
installation at remote nodes.

The core challenge, in finding an efficient implementation
of an algorithm in the family based on Theorem 3.1, is the
management of readset information and lsv-timestamps, so
that certification can check for a descending structure. We
have modified the kernel to track the set of ids of items that
are read by each transaction.2 A naive approach would cap-
ture the readset and propagate it in the broadcast comple-
tion message (just like the writeset) but this is unrealistic in
practice, since readsets may be extremely large, and the cost
of sending them around would be excessive. For example,
consider a transaction which calculates an aggregate over a
large table; the readset is every row in the table. Instead,
the algorithm that we present in this paper keeps readset in-
formation only at the local node where a transaction runs.

As each node has readsets for the transactions that are lo-
cal at a node, it can determine rw-edges involving any other
transaction when learning of the completion of that other
transaction. It is this set of edges that we will share with
each node for use in certification. This means that we do not
simply use a black-box total-order broadcast to propagate a
transaction completion message; instead, we integrate shar-
ing the rw-edges with the ordering and broadcast, so that
as part of the communication, the rw-edges can be collected
from all nodes. Fortunately, the LCR broadcast protocol
[16] visits each node around a ring structure, when infor-
mation can be collected, before visiting each node again to
deliver the message in order. Thus we have designed our
system with a component GDCP, described in detail be-

1We remark that when a descending structure is found, the
transaction that aborts will always be whichever completes
last among the three; this could be the peak, the follow
or the tail transaction. This contrasts with the centralized
algorithm of Cahill et al. [7] which tries to abort the middle
“pivot” of the three.
2In our implementation, we only track records that are actu-
ally read; to prevent phantoms, one will also need to include
next-keys when scanning.

786



low, that follows LCR and collects rw-edge information (as
well as lsv information). When the certification check occurs
each node has the information needed, and so each node can
test for a descending structure, and each will reach the same
decision to commit (or to abort) a transaction.

4. GLOBAL DEPENDENCY CHECKING
One of challenges in implementing RSSI lies in the con-

sistent retrieval of global dependency information among
concurrent transactions. We approach this problem from a
different perspective and propose a global dependency check-
ing protocol (GDCP). A standalone process that carries out
RSSI-related work is deployed, called a replication manager.
GDCP has two notable features; it does not need to prop-
agate an entire readset and it also reduces the amount of
comparisons done at each node in dependency checking.

The basic principle is, for a local transaction Ti, a replica-
tion manager sends a writeset of Ti, along with a list of trans-
action IDs that have an incoming anti-dependency from Ti,
instead of sending the entire readset. A replication manager
checks only the presence of an outgoing anti-dependency
from its local readsets to writesets of other transactions,
and it piggybacks that information on writesets and for-
wards writesets to other replicas. This rather simple tech-
nique not only makes all replicas retrieve complete depen-
dency information, but also is pivotal in reducing redundant
dependency checking.

To ensure data consistency, replicated databases deploy
uniform total order broadcasting. Our choice is to imple-
ment the LCR protocol [16] inside a replication manager.
LCR is especially targeted for replicated databases and can
be better for this than generic group communication sys-
tems, Spread [3] and JGroup [4].

4.1 GDCP
GDCP implements LCR straightforwardly and builds the

dependency checking protocol on top of LCR. Algorithm 1
describes the pseudo-code of GDCP, and implicit in this
pseudo-code is the manipulation of vector clocks for the
uniform total order delivery (refer to [16] for details). The
important invariant that GDCP preserves, is to acquire all
anti-dependency information created from transactions with
an earlier total order than a transaction checked. As a
step toward such an invariant, GDCP requires four types
of transactional logs, two of which are subsets of the other
sets. As shown in Algorithm 1, Tc is a transactional log for
all committed transactions including both local and remote
transactions, while Tp is a log for all pending transactions.
Tl,c and Tl,p are subsets of Tc and Tp, respectively. Both
point to local committed/pending transactions. For discus-
sion on dealing with garbage logs, readers are referred to
Appendix C.2.3.

The first stage of GDCP starts when a replication man-
ager receives a readset (Ri) and a writeset (Wi) from a local
database. Using these sets, a replication manager creates a
protocol message that should convey the following contents:
a writeset, outgoing anti-dependency information from Ri to
the writesets of committed/pending transactions (i.e., Df,c

and Df,p from Tc and Tp) and incoming anti-dependency
information from the readsets of local committed/pending
transactions to Wi (i.e., Dt,c and Dt,p from Tl,c and Tl,p).
Circulating Df,c and Df,p in a ring topology informs other
replicas of Ti’s outgoing anti-dependency information, while

we collect incoming anti-dependency information from other
replicas by distributing Dt,c and Dt,p.

In a protocol message, carriers for incoming dependency
information have different data types (i.e., a pair Dt,c and a
set Dt,p). In principle, the latest lsv of a transaction having
a rw-edge to Ti is vital to our SSI theory, so a pair type
of Dt,c satisfies the principle by carrying one pair from all
committed transactions. By contrast, pending transactions
are not confirmed yet to be delivered (some are aborted by
our SSI concurrency control), and this requires us to keep all
candidate pairs in a set Dt,p until their delivery decision is
made. Any transaction belonging to above sets (or the pair)
must have an earlier commit timestamp (or vector clock)
than the current transaction (line 1-5 of gdcpBroadcast).
Once the protocol message is created, we check presence of a
descending structure. If the current transaction is involved
in a non-serializable case with committed transactions, then
it should be aborted immediately. Otherwise, a replication
manager starts forwarding the protocol message to its suc-
cessor (line 6-10 of gdcpBroadcast).

A replication manager, upon receiving a protocol message
for a transaction Ti from its predecessor, executes different
routines based on the contents of the received protocol mes-
sage. For convenience, we put a pair of special characters
(⊥, ⊥) in Dt,c whenever we detect a cycle.

• Remote writeset without a cycle. If a protocol mes-
sage has a remote writeset without a cycle mark (i.e.,
Dt,c 6=(⊥,⊥)), a replication manager first checks whether
Wi has either an anti-dependency from the readsets of
local committed transactions, or any cycle with them.
If a replication manager finds an anti-dependency from
local committed transactions, then it updates that in-
formation in Dt,c only if the lsv of its local committed
transaction is later than the existing one, because the lat-
est lsv of Tin is the most important criterion in detecting
presence of a descending structure. Besides checking de-
pendency, if a replication manager detects a cycle, then
it marks that information on Dt,c with (⊥,⊥) and stops
checking (line 3-8 of the first Rreceive). When checking
an anti-dependency from local pending transactions, we
only consider transactions that have an earlier commit
order (vector clock) than that of Ti as by the invari-
ant enacted. Whenever a replication manager detects
an anti-dependency, it appends that information to Dt,p

(line 9 of the first Rreceive).

After completing dependency checking, a replication man-
ager reflects all incoming and outgoing dependency in-
formation of Ti (Df,c, Df,p, Dt,c and Dt,p) to its local
pending log Tp, updating its own global dependency in-
formation. Then, it forwards the protocol message to its
successor. Consequently, the protocol message conveys
two types of anti-dependency information, one for the
readset and the other for the writeset (line 10-11 of the
first Rreceive).

• Remote writeset with a cycle. If a protocol mes-
sage has a remote writeset with a cycle mark, then a
replication manager forwards the protocol message to its
successor immediately (line 12-13 of the first Rreceive).

• Local writeset. When a replication manager receives
its own protocol message, it starts the second circulation
of the protocol message with “Decide” to let other repli-
cas make a decision for Ti based on the obtained depen-

787



Algorithm 1 Pseudo-code of GDCP

Wi and Ri: a writeset and a readset of transaction Ti.
Tc: a log for committed transactions.
Tp: a log for pending transactions.
Tl,c: a log for local committed transactions (Tl,c ⊂ Tc).
Tl,p: a log for local pending transactions (Tl,p ⊂ Tp).

Df,c: a set of (TID, lsv) pairs in Tc, having
rw
99K from Ti.

Df,p: a set of (TID, lsv) pairs in Tp, having
rw
99K from Ti.

Dt,c: a pair of (TID, lsv) in Tl,c, having
rw
99K to Ti.

Dt,p: a set of (TID, lsv) pairs in Tl,p, having
rw
99K to Ti.

SSInon: non-serializable cases, i.e., {descending structure,
ww
99K}.

procedure gdcpBroadcast(Wi, Ri)

1: Df,c ←{(j, lsvj)|(Ti
rw
99K Tj)

∧
Tj ∈ Tc};

2: Df,p ←{(j, lsvj)|(Ti
rw
99K Tj)

∧
Tj ∈ Tp};

3: lsvm ← max{lsvj |(Tj
rw
99K Ti)

∧
Tj ∈ Tl,c};

4: Dt,c ←(m, lsvm);

5: Dt,p ←{(j, lsvj)|(lsvm ≺t lsvj)
∧

(Tj
rw
99K Ti)

∧
Tj ∈ Tl,p};

6: if {Df,c

⋃
Dt,c} has a case in SSInon then

7: send “abort” to a local database immediately;
8: else
9: Tl,p ← Tl,p

⋃
[Wi,Df,c,Df,p,Dt,c,Dt,p,⊥];

10: Rsend <Wi,Df,c,Df,p,Dt,c,Dt,p,⊥> to successor;

upon Rreceive <Wi,Df,c,Df,p,Dt,c,Dt,p,⊥> do
1: if Wi /∈ Tl,p

∧
Dt,c 6=(⊥,⊥) then /* remote writeset */

2: Tp ← Tp
⋃

[Wi,Df,c,Df,p,Dt,c,Dt,p,⊥];

3: for all Tk ∈{Tj |(Tj
rw
99K Ti)

∧
Tj ∈ Tl,c} do

4: if Dt,c.lsv < lsvk then Dt,c ← (k, lsvk);
5: if (k, lsvk) ∈ Df,c then /* a cycle is detected */
6: Dt,c ←(⊥,⊥); /* (⊥,⊥) means Ti has a cycle */
7: break;
8: end for

9: Dt,p ← Dt,p
⋃
{(j, lsvj)|(cj ≺t ci)

∧
(Dt,c.lsv ≺t lsvj)∧

(Tj
rw
99K Ti)

∧
Tj ∈ Tl,p};

10: update Tp with Df,c, Df,p, Dt,c and Dt,p;
11: Rsend <Wi,Df,c,Df,p,Dt,c,Dt,p,⊥> to successor;
12: else if Wi /∈ Tl,p

∧
Dt,c ==(⊥,⊥) then /* Wi has a cycle */

13: Rsend <Wi,Df,c,Df,p,Dt,c,Dt,p,⊥> to successor;
14: else /* Wi ∈ Tl,p; Wi is a local writeset */
15: if Dt,c==(⊥,⊥) then /* Ti has a cycle */
16: Tl,p ← Tl,p−[Wi,Df,c,Df,p,Dt,c,Dt,p,⊥];
17: send “abort” to a local database for Ti; /* early abort */
18: Rsend <Wi,Df,c,Df,p,Dt,c,Dt,p,“Decide”> to successor;
19: gdcpDeliver();

upon Rreceive <Wi,Df,c,Df,p,Dt,c,Dt,p,“Decide”> do
1: if Wi ∈ Tl,p then /* Wi is a local writeset */
2: update Ti ∈ Tl,p with “Decide”;
3: else /* remote writeset */
4: Tp ← Tp

⋃
[Wi,Df,c,Df,p,Dt,c,Dt,p,“Decide”];

5: Rsend <Wi,,Df,c,Df,p,Dt,c,Dt,p,“Decide”> to successor;
6: gdcpDeliver();

procedure gdcpDeliver ()
1: while Tp.first==<Wi,Df,c,Df,p,Dt,c,Dt,p,“Decide”> do
2: if Ti ∈ Tl,p then /* local writeset */
3: Tl,p ← Tl,p−[Wi,Df,c,Df,p,Dt,c,Dt,p];
4: if Ti is not involved in a case in SSInon then
5: send “commit” to a local database for Ti;
6: Tl,c ← Tl,c

⋃
[Wi,Df,c,Df,p,Dt,c,Dt,p];

7: else
8: send “abort” to a local database for Ti;
9: else /* remote writeset */
10: Tp ← Tp−[Wi,Df,c,Df,p,Dt,c,Dt,p];
11: if Ti is not involved in a case in SSInon then
12: send Wi to a local database to update;
13: Tc ← Tc

⋃
[Wi,Df,c,Df,p,Dt,c,Dt,p];

14: end while

dency information. If the protocol message contains a
cycle mark, a replication manager sends an “abort” mes-
sage to its local database immediately. After sending the
protocol message to a successor, a replication manager
calls gdcpDeliver to check whether the first writeset in
Tp has the “Decide” mark, so a replication manager can
decide for the writeset. The remaining replicas, upon
receiving an explicit “Decide” message, can make a de-
cision for remote or local writesets based on aggregated
dependency information. We will see how gdcpDeliver
makes a decision (line 1-6 of the second Rreceive).

In gdcpDeliver, we consider a writeset in Tp, having the
earliest total order. If the first writeset is not marked with
“Decide”, gdcpDeliver should return without processing
other writesets queued in Tp due to the total order delivery.
In contrast, if the writeset has the “Decide” mark, we now
can decide whether to deliver or discard the writeset based
on the global dependency information conveyed in the pro-
tocol message. The case we abort the current transaction
is when the current transaction is involved in one of non-
serializable cases and other involved transactions could be
(or were already) delivered earlier than the current trans-
action. If the decision is made for a local writeset, a repli-
cation manager sends a “commit” or “abort” message back
to a local database. Otherwise, we send the writeset to a
local database for updating. gdcpDeliver keeps processing
queued writesets having the “Decide” mark likewise until it
encounters a writeset without the mark. This ensures the
uniform total order delivery (line 1-14 of gdcpDeliver).

For additional details of GDCP, which explains an execu-
tion of the protocol with an example transaction schedule,
readers are referred to Appendix B.

5. SYSTEM ARCHITECTURE
We implemented a research prototype that integrates RSSI

into Postgres-R, a replicated PostgreSQL server that uses SI
as concurrency control, inspired by Wu et al. [27], and that
it is maintained as an open source project.

Our system design is following two design principles: firstly,
we strive for high overall system performance (in terms of
throughput) by an efficient implementation of RSSI. This re-
quired some non-trivial engineering efforts to minimize the
overhead of RSSI compared to traditional SI-based replica-
tion. Secondly, we are interested in a modular system design
that would allow for smooth adaptation of RSSI into exist-
ing database systems. We hence implement all SSI-related
data structures and algorithms inside a dedicated replication
manager that is separated from the DBMS. This minimizes
the changes needed to the underlying database engine while
being readily portable to any SI-based database system. Ap-
pendix C gives a detailed discussion of our Postgres-RSSI
implementation.

6. PERFORMANCE EVALUATION
In the following, we report on the results of an experimen-

tal performance analysis of RSSI, in which we quantify its
overhead and scalability behavior as compared to state-of-
the-art SI-based replication approaches from the literature.

6.1 Evaluation Setup
The experiments were conducted on a database server

cluster with eight nodes, each with a 3.2GHz Intel Pentium
IV CPU and 2GB RAM under RedHat Enterprise Linux
version 4 (Linux kernel 2.6.9-11), and interconnected with
a Gigabit Ethernet network. We compare our design with

788



two others, which use the same overall system architecture
(kernel-based replication and log-based writeset handling,
taken from the open-source implementation of Postgres-R,
with GDCP instead of Spread for total-ordered broadcast)
but have different conflict management algorithms. The
baseline we call RSI, using ww-conflict management for 1-
copy SI [27]. The other systems give serializability: RSSI is
our system, and CP-ROO aborts every detected rw-conflict
but does not globally certify read-only transactions (this is
the certification approach used by Bornea et al. [6]). All
databases are configured with default settings.

6.2 TPC-C Workload
As a starting point, we ran a series of experiments based

on the TPC-C++ benchmark3 in order to evaluate the ef-
fectiveness and scalability of the different certification rules.
As it turns out, such a realistic workload has so few SI
anomalies so that all three approaches achieve the same
performance and scalability with no measurable difference,
regardless whether they provided 1-copy SI or 1-copy seri-
alizability (as does our RSSI). We have placed these results
in Appendix D.2.

6.3 Synthetic Workload
Next, we want to focus on the performance impact of our

RSSI concurrency control, especially comparing the over-
head of RSSI and CP-ROO approaches. We hence created
a simple synthetic micro-benchmark called ssibench with
numerous read-write conflicts between a query transaction
and an update transaction, or among update transactions.
Appendix D.1.1 gives detailed explanation of ssibench.

In the following, we use a fixed number of 8 replicas and
we vary the multiprogramming level from 80 to 640, with
all clients trying to execute transactions as fast as possible
without think time in between. All plotted points in Fig-
ure 1 are the average of 5 runs, each run consists of 1 minute
ramp-up period and 1 minute measurement period. We vary
the portion of read-only transactions from 0% up to 100% to
explore performance characteristics for RSSI and CP-ROO.
In RSSI, all transactions can be involved in a cycle so that
any of them can be a victim when non-serializable cases
are detected. Meanwhile, CP-ROO is only concerned with
rw-edges among update and insert transactions. Obviously,
RSSI has an advantage of detecting non-serializable cases
in a finer-grained way while it has the overhead of check-
ing upon all types of transactions. In contrast, CP-ROO
has a merit of allowing all read-only transactions to com-
mit without certification, but it has a shortcoming of seeing
only a single rw-edge, instead of multiple edges. Our exper-
imental results show a performance spectrum that captures
representative characteristics of the two concurrency control
algorithms. Note that in all experiments, except the 100%
read-only workload, RSI allows executions that are not se-
rializable.

Figure 1-(a) shows results under 100% write-intensive work-
load, where all transactions in all concurrency control al-
gorithms have to pass through GDCP for certification. In
this scenario, we could measure serializable concurrency con-
trol overhead and compare false positive abort rate between
RSSI and CP-ROO. Throughput graphs of RSI and RSSI
slowly increase as MPL grows, whereas CP-ROO is already

3TPC-C++ has the same schema as TPC-C but adds a new
transaction type Credit Check to induce SI-anomalies [7].

4

5

6

7

8

9

10

in
 (
x1
00
0)

0

1

2

3

4

5

6

7

8

9

10

80 160 240 320 400 480 560 640

Tx
n
s/
m
in
 (
x1
00
0)

MPL

RSSI  CP‐ROO RSI 

6

8

10

m
in
 (
x1
00
0)

WW(RSSI)

WW(CP‐ROO)

DS(RSSI)

RW(CP‐ROO)

0

2

4

6

8

10

80 160 240 320 400 480 560 640

A
b
o
rt
s/
m
in
 (
x1
00
0)

MPL

WW(RSSI)

WW(CP‐ROO)

DS(RSSI)

RW(CP‐ROO)

(a) 0%RO-100%W

6

8

10

12

in
 (x
10
00
)

0

2

4

6

8

10

12

80 160 240 320 400 480 560 640

Tx
n
s/
m
in
 (x
10
00
)

MPL

RSSI  CP‐ROO RSI 

6

8

10

m
in
 (
x1
00
0)

WW(RSSI)

WW(CP‐ROO)

DS(RSSI)

RW(CP‐ROO)

0

2

4

6

8

10

80 160 240 320 400 480 560 640

A
b
o
rt
s/
m
in
 (
x1
00
0)

MPL

WW(RSSI)

WW(CP‐ROO)

DS(RSSI)

RW(CP‐ROO)

(b) 25%RO-75%W

8

10

12

14

16

18

in
 (x
10

00
)

0

2

4

6

8

10

12

14

16

18

80 160 240 320 400 480 560 640

Tx
n
s/
m
in
 (x
10

00
)

MPL

RSSI  CP‐ROO RSI 

4

5

6

7

m
in
 (
x1
0
0
0
)

WW(RSSI)

WW(CP‐ROO)

DS(RSSI)

RW(CP‐ROO)

0

1

2

3

4

5

6

7

80 160 240 320 400 480 560 640

A
b
o
rt
s/
m
in
 (
x1
0
0
0
)

MPL

WW(RSSI)

WW(CP‐ROO)

DS(RSSI)

RW(CP‐ROO)

(c) 50%RO-50%W

15

20

25

30

in
 (
x1
00

0)

0

5

10

15

20

25

30

80 160 240 320 400 480 560 640

Tx
n
s/
m
in
 (
x1
00

0)

MPL

RSSI  CP‐ROO RSI 

3

4

5

m
in
 (
x1
00
0)

WW(RSSI)

WW(CP‐ROO)

DS(RSSI)

RW(CP‐ROO)

0

1

2

3

4

5

80 160 240 320 400 480 560 640

A
b
o
rt
s/
m
in
 (
x1
00
0)

MPL

WW(RSSI)

WW(CP‐ROO)

DS(RSSI)

RW(CP‐ROO)

(d) 75%RO-25%W

60

80

100

120

n 
(x
10

00
)

0

20

40

60

80

100

120

80 160 240 320 400 480 560 640

Tx
ns
/m

in
 (x
10

00
)

MPL

RSSI  CP‐ROO RSI 

(e) 100%RO-0%W

Figure 1: Throughput and abort rates of ssibench

with three tables, each has 100K items, at RSI,
RSSI and CP-ROO. Abort causes are denoted as
WW (ww-conflict), DS (descending structure) and RW
(read impact). RO and W stand for read-only and
write transactions.

789



saturated and decreased slowly. When MPL is 80, the abort
rate of CP-ROO is three times higher than RSSI; most
aborts are due to rw-conflicts (i.e., read impact in [6]). As
MPL increases up to 640, we can observe the widening per-
formance gap between RSSI and CP-ROO; CP-ROO still
has very high abort rate at MPL=640, while RSSI could
lessen the effect of false positive abort since it checks pres-
ence of the descending structure. In a write-intensive work-
load, which has cycles and all types of conflicts, the finer-
grained dependency checking of RSSI could be much better
than the coarser-grained checking of CP-ROO.

In Figure 1-(b), (c) and (d), we run experiments under
workloads that have varying proportions of read-only trans-
actions. When read-only transactions are involved, we can
see the trade-off of merits and shortcomings of two meth-
ods; in particular, as the portion of read-only transactions
increases, we could see a cross-over point where CP-ROO
starts to outperform RSSI. With 25% read-only, Figure 1-
(b) shows that CP-ROO narrows the performance gap with
RSSI by committing read-only transactions immediately. The
throughput of CP-ROO also scales slowly as MPL grows.
As we increase the portion of read-only transactions up to
50% (i.e., Figure 1-(c)), both RSSI and CP-ROO deliver
almost the same throughput although CP-ROO still has a
higher abort rate than RSSI. Here the performance gain ob-
tained by the advantage of RSSI balances the overhead of
the algorithm. Figure 1-(d) shows that the optimization
of CP-ROO, that avoids checks for read-only transactions,
is beneficial when the workload is dominated by read-only
transactions; here CP-ROO outperforms RSSI whose certi-
fication overhead for read-only transactions is evident. We
note that CP-ROO still has a higher abort rate for write
transactions than RSSI.

In Figure 1-(e), we measured the throughput when the
workload consists of only read-only transactions, where all
algorithms are serializable under this scenario. In this ex-
periments, RSI and CP-ROO show almost the same perfor-
mance since no certification is needed, but RSSI still has
the certification overhead and shows the overhead in the fig-
ure accordingly. The large performance gap when MPL is
small (i.e., 80) is because queries and readsets are not fully
pipelined yet in this stage. As MPL grows, readsets fully
saturate the GDCP network and this narrows the perfor-
mance gap with other two algorithms.

Appendix D.1.2 provides the breakdown of GDCP over-
head under the same synthetic workloads.

7. CONCLUSION
This paper presented a new approach to global serializable

execution over replicated databases using SI. We introduced
(and proved) a clear criterion that is sufficient for 1-copy se-
rializability, based on absence of ww-conflicts and on absence
of certain patterns of two consecutive rw-conflicts. Based on
this theorem, we developed our RSSI algorithm that allows
to efficiently check for the absence of those transactional
patterns in replicated databases. We incorporated our ap-
proach into the Postgres-R(SI) system. RSSI was shown
to perform very well in a variety of cases with high update
rates, by avoiding unnecessary aborts from false positives
as found in the CP-ROO approach that prevents single rw-
edges. For a TPC-C workload, RSSI can achieve 1-copy

serializability for replicated databases with no performance
degradation.

8. REFERENCES
[1] A. Adya. Weak consistency: a generalized theory and

optimistic implementations for distributed transactions. PhD
thesis, MIT Lab for Computer Science, 1999.

[2] M. Alomari, A. Fekete, and U. Röhm. A robust technique to
ensure serializable executions with snapshot isolation DBMS.
In Proccedings of ICDE 2009, pages 341–352, 2009.

[3] Y. Amir, C.Danilov, M.Miskin-Amir, J.Schultz, and J.Stanton.
The Spread Toolkit: Architecture and Performance. Technical
Report CNDS-2004-1, Johns Hopkins University, April 2004.

[4] B. Ban. JGroup – a Toolkit for Reliable Multicast
Communication. http://www.jgroup.org, 2007.

[5] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ANSI SQL isolation levels. In
Proceedings of SIGMOD 1995, pages 1–10, 1995.

[6] M. A. Bornea, O. Hodson, S. Elnikety, and A. Fekete. One-copy
serializability with snapshot isolation under the hood. In
Proceedings of ICDE 2011, pages 625–636, 2011.

[7] M. J. Cahill, U. Röhm, and A. Fekete. Serializable isolation for
snapshot databases. ACM TODS, 34(4):1–42, 2009.

[8] M. Castro and B. Liskov. Practical Byzantine fault tolerance
and proactive recovery. ACM TOCS, 20(4):398–461, 2002.

[9] E. Cecchet, G. Candea, and A. Ailamaki. Middleware-based
database replication: the gaps between theory and practice. In
Proceedings of SIGMOD 2008, pages 739–752, 2008.

[10] K. Daudjee and K. Salem. Lazy database replication with
snapshot isolation. In Proc. of VLDB06, pages 715–726, 2006.

[11] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent: uniting
durability with transaction ordering for high-performance
scalable database replication. In EuroSys, pages 117–130, 2006.

[12] S. Elnikety, S. Dropsho, and W. Zwaenepoel. Tashkent+:
memory-aware load balancing and update filtering in replicated
databases. In Proc. of EuroSys 2007, pages 399–412, 2007.

[13] S. Elnikety, W. Zwaenepoel, and F. Pedone. Database
replication using generalized snapshot isolation. In Proceedings
of SRDS 2005, pages 73–84, 2005.

[14] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha.
Making snapshot isolation serializable. ACM TODS,
30(2):492–528, 2005.

[15] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of
replication and a solution. In SIGMOD, pages 173–182, 1996.

[16] R. Guerraoui, R. R. Levy, B. Pochon, and V. Quéma.
Throughput optimal total order broadcast for cluster
environments. ACM TOCS, 28(2):1–32, 2010.

[17] B. Kemme and G. Alonso. Don’t be lazy, be consistent:
Postgres-R, a new way to implement database replication. In
Proceedings of VLDB 2000, pages 134–143, 2000.

[18] B. Kemme and G. Alonso. A new approach to developing and
implementing eager database replication protocols. ACM
TODS, 25(3):333–379, 2000.

[19] B. Kemme and G. Alonso. Database replication: a tale of
research across communities. PVLDB, 3(1):5–12, 2010.

[20] B. Kemme, R. Jiménez-Peris, and M. Patiño Mart́ınez.
Database Replication. Morgan and Claypool, 2010.

[21] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. ACM TOCS,
27(4):1–39, 2009.

[22] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals
problem. ACM TOPLAS, 4(3):382–401, 1982.

[23] Y. Lin, B. Kemme, M. Patiño Mart́ınez, and R. Jiménez-Peris.
Middleware based data replication providing snapshot isolation.
In Proceedings of SIGMOD 2005, pages 419–430, 2005.

[24] M. Patiño Mart́ınez, R. Jiménez-Peris, B. Kemme, and
G. Alonso. MIDDLE-R: Consistent database replication at the
middleware level. ACM TOCS, 23(4):375–423, 2005.

[25] C. Plattner, G. Alonso, and M. T. Özsu. Extending DBMSs
with satellite databases. VLDB Journal, 17(4):657–682, 2008.

[26] G. Weikum and G. Vossen. Transactional Information
Systems: Theory, Algorithms, and the Practice of
Concurrency Control and Recovery. Morgan Kaufmann, 2001.

[27] S. Wu and B. Kemme. Postgres-R(SI): Combining replica
control with concurrency control based on snapshot isolation.
In Proceedings of ICDE 2005, pages 422–433, 2005.

790



R1

R2

R3

r(1)T1

w(1)T2

w(2)
T3

rw
rw

<2,-,-,->3

(a) Round 1

r(2)

1 -
1

3 2

2 1
2

1 -

3 2
-

2 1

(b) Round 2

R1

R2R3

R1

R2R3

Example schedule
Time

1 -
1

3 2

T2T1

2 1 T2T1

3 2
-

2 1
1 -

2 1
2

1 -

T3T2 rw

3 2 T3T2

lsv3 < lsv2 < lsv1

TID WS
RS

Legend:

TID WS

(local)

(remote)

l,p

r,p

l,p

r,p

l,p

r,p

l,p

r,p

Tl,p

Tr,p

l,p

r,p

<WS , f,p , t,p ,->
(GDCP msg)

<-,-,-,->1

<1,-,-,->2

<1,-,-,->2

<2,-,-,->3

<-,-,-,->1

c1 < c2 < c3

(c) Round 3

R1

R2R3

2 1
2

1 -

T3T2

3 2 T3T2

l,p

r,p

<1,-,(1,lsv1),->2

<2,-, (2,lsv2),->3

<-,-,-,->1

rw

rw

rw

T2T1
T2T1

(d) Round 4

R1

R2R3

3 2
-

2 1

1 -

2 1
2

1 -
3 2 T3T2

l,p

r,p

l,p

r,p

<1,-,(1,lsv1),``Decide >2

<2,-,(2,lsv2),``Decide >3

<-,-,-,``Decide >1

T3T2
T2T1 D

Decide

T3T2

Decide

Decide

C

D C

1 -
1

3 2
2 1 T2T1

l,p

r,p

Decide

Decide

D

Decide

(e) Round 5

R1

R2R3

1 -
1

3 2

2 1

3 2
-

2 1

1 -

2 1
2

1 -
3 2

l,p

r,p

l,p

r,p

l,p

r,p

<1,-,(1,lsv1),``Decide >2

<2,-,(2,lsv2),``Decide >3

<-,-,-,``Decide >1

A

C

DecideDecide

Decide

C

A C

C

C

A

D : Decide
C : Commit
A : Abort

T2T1 C

T2T1

T3T2
T2T1

T2T1 C
T3T2
T3T2
T2T1

T3T2

T2T1

T3T2
T2T1

T3T2

T3T2

T2T1
T2T1

T2T1

1 -
1

3 2

2 1

l,p

r,p
D

T2T1 C
T3T2
T3T2
T2T1

3 2
-

2 1

1 -

l,p

r,p

T3T2

T3T2

D

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw
rw

rw

rw
rw

rw

rw

rw
rw

rw

rw

rw

rw
rw

rw

rw
rw

rw

rw
rw

rw

rw

Figure 2: Global dependency checking protocol (GDCP) with an example schedule.

APPENDIX
A. PROOF OF THEOREM 3.1

In order to prove Theorem 3.1, we first establish a lemma
about the relationships of the various timestamps along the
three types of edges.

Lemma A.1. Let h be a history over a set of transac-
tions, such that one can assign to each transaction Ti an
event snapshot i preceding bi and obeying the two conditions
reads-from-snapshot and first-committer-wins. Suppose that
h contains both ci and cj, and that SG(h) contains an edge
Ti −→ Tj. Then we have

• If Ti
wr−→ Tj, then commit(Ti) � lsv(Tj)

• If Ti
ww−→ Tj, then commit(Ti) � lsv(Tj)

• If Ti
rw−→ Tj, then begin(Ti) ≺ commit(Tj).

Proof. If Ti
wr−→ Tj , then h contains the event Rj(Xi)

for some item X. That is, Xi is one of the versions read
by Tj , and so Ti is among the transactions whose commit-
timestamps are considered in forming lsv(Tj). Since lsv is
chosen as the largest timestamp among those considered, we
have commit(Ti) � lsv(Tj).

If Ti
ww−→ Tj , then there is an item X such that h contains

Wi(Xi) and Wj(Xj), and the version order places Xi before
Xj . That is, ci precedes cj . By first-committer-wins, ci
precedes snapshotj . Thus Xi is one of the versions accessed
by Tj , and so Ti is among the transactions whose commit-
timestamps are considered in forming lsv(Tj). Since lsv is
chosen as the largest timestamp among those considered, we
have commit(Ti) � lsv(Tj).

If Ti
rw−→ Tj , then there is an item X such that Ti reads

a version Xk which is earlier in the version order than Xj

written by Tj . That is, Ti does not see the version Xj . By
condition read-from-snapshot, we see that snapshot i pre-
cedes cj . That is, in terms of timestamps, begin(Ti) ≺
commit(Tj).

Proof Of Theorem 3.1. For contradiction, suppose that
h is not 1-copy serializable. Thus there must exist a cy-
cle among the committed transactions in the serialization
graph SG(h). Consider in this cycle, the transaction Tp

with the highest value for lsv(Tp). In traversing the cy-
cle, consider the two transactions visited immediately after
Tp, call these Tf and Tt. That is, the cycle contains edges
Tp −→ Tf −→ Tt.

Now, the choice of Tp as having the largest lsv means that
lsv(Tf ) � lsv(Tp), and lsv(Tt) � lsv(Tp). We claim that
each of the two edges following from Tp is a rw-edge (and
thus the pair of edges forms a descending structure, con-
tradicting the hypothesis that the graph has no descending
structure).

All that remains is to prove the claims. To prove that
Tp

rw−→ Tf , we show that the edge cannot be ww nor wr. If
either were the case, Lemma A.1 would give commit(Tp) �
lsv(Tf ), and since lsv(Tp) ≺ commit(Tp), we would deduce
lsv(Tp) ≺ lsv(Tf ) contradicting the choice of Tp. Now,

knowing that Tp
rw−→ Tf , we use the third part of Lemma A.1

to see that begin(Tp) ≺ commit(Tf ), and therefore lsv(Tp) ≺
commit(Tf ). To prove that Tf

rw−→ Tt, we show that the edge
cannot be ww nor wr. If either were the case, Lemma A.1
would give commit(Tf ) � lsv(Tt), and we could combine
this with the above fact lsv(Tp) ≺ commit(Tf ), to show
lsv(Tp) ≺ lsv(Tt), contradicting the choice of Tp to have
maximal lsv in the cycle. This completes the proof of the
claims, and thus the proof of the theorem.

791



B. GDCP DETAILS

B.1 Execution of GDCP
In order to better understand the design of GDCP let us

explain the execution of GDCP with an example schedule
shown in Figure 2. Suppose that there are three replicas
R1, R2 and R3 with their own local transactions T1, T2 and
T3, where lsv3 ≺t lsv2 ≺t lsv1 and c1 ≺t c2 ≺t c3. The
three transactions are concurrent and ready to commit. To
simplify the example, we assume the absence of committed
transactions in all replicas, so our focus is on four fields in
a protocol message; <WS, Df,p, Dt,p, msg>. For conve-
nience, Tr,p denotes a transactional log for remote pending
transactions, like what Tl,p represents local pending trans-
actions.

At the onset of commit, three replicas have information
for their local transaction. In round 1, all replicas create
and send their protocol message to their successor, and at
the same time receive a message from their predecessor. Af-
ter updating Tr,p, replicas check an anti-dependency from a
local readset to the received writeset, but cannot find any in
this round (Figure 2-(a)). In round 2, all writesets convey no
information and are forwarded to proper successors. A repli-
cation manager performs dependency checking over a newly
received writeset and updates Tr,p for the received remote
writeset. Replicas R1 and R2 detect anti-dependencies and
store the anti-dependency information in Dt,p of the corre-
sponding protocol messages (Figure 2-(b)).

In round 3, upon receiving their local protocol message, all
replicas acknowledge the end of the first circulation of the
local writeset in the ring topology, so they need start the
second circulation of the protocol message with “Decide”.
Then all replicas call gcdpDeliver to check the possibility
of delivering their local writeset. Among replicas, only R1

can deliver the local writeset since T1 has the earliest total
order among three transactions. The other two replicas only
mark “Decide” in their local writeset and wait until all other
remote writesets would be checked in total order (Figure 2-
(c)).

In round 4, all writesets circulate the ring topology with
“Decide” and updated dependency information. Upon re-
ceiving these writesets, R2 can safely deliver two writesets
for T1 and T2 in total order, whereas R1 and R3 have to
wait another round for the protocol messages for T2 and
T1, respectively (Figure 2-(d)). In round 5, all replicas ob-
tain complete dependency information and uniformly decide
which writeset has to be discarded and which one needs to
be delivered; in particular, the writeset for T3 has to be dis-
carded because it is involved in a descending structure of T2

and T3 is the last to commit (Figure 2-(e)).
As we learn from the example, all participating repli-

cas uniformly decide for all writesets based on the same
global dependency information conveyed in circulated pro-
tocol messages, strictly abiding by the invariant of GDCP.
We omit a correctness proof for GDCP in this paper due to
the space limitation.

C. IMPLEMENTATION DETAILS OF RSSI

C.1 RSSI Replication Manager
The key component of our RSSI architecture in Figure 3

is the Replication Manager whose main purpose is to run
GDCP. It interacts with the local database to receive (or

deliver) writesets either for consistent database update or
for global dependency checking. The replication manager
exchanges messages with the local database instance in two
cases: first, when the local database is ready to commit, it
transfers both a readset and a writeset of a transaction to the
replication manager. Upon the receipt of these tuple sets,
the replication manager sends the writeset using GDCP to
the other replicas while keeping the readset for dependency
checking. The second case is when the replication manager
delivers to the local database a serializable writeset for up-
dating. The existing PostgreSQL components do not need
to maintain any dependency information, rather all the in-
formation is kept in the replication manager. For efficient
event handling, the replication manager is multi-threaded,
and the communication to/from the local database is using
shared memory communication.

GDCP

WS & RS

Extraction

Commit
or

Abort

Postmaster

Local
Backend

Client

PostgreSQL

Postgres-R(SSI)

Replication
Manager

Replication
Manager

Local
Backend

D
ep

en
de

nc
y

Ch
ec

ki
ng

WS

D
ep

en
de

nc
y 

Ch
ec

ki
ng

Deliver or Discard

Early
Abort

Figure 3: The architecture of Postgres-RSSI.

C.1.1 Data Structures
Postgres-RSSI’s replication manager maintains two data

structures for global dependency checking of each transac-
tion: a transaction log and a tuple lookup table. To make
these data structures succinct and efficient, we represent
both tuples and transactions with fixed-sized formats; we
use an integer format for a transaction ID and 160 bits of
SHA-1 (or similar) hash digest of (relation name, primary
key) for an unique tuple ID.

TupleID Read Txns
Write Txns

1 NILL

N/A NILL
NILL

7

N/A NILL
NILL

N/A NILL
NILL

11

N/A NILL
NILL

TIDts(b) TIDts(b)
TIDts(b) TIDts(b)

12367 109101
10167

12191

Tuple Lookup Table

8976

9789
9189

TID ReadSet
WriteSet

89 NILL

91

97 NILL

101 NILL

109 NILL

121 NILL

123 NILL

TupleID

Committed Txn Log
ts(c)

1

7

11
11

7
11

TupleIDts(c)
TupleIDts(c)

76

89

67

91
67

101

789

TupleIDts(c)

176

9176

Dep. type
TID : ts(b)

-
-

IN B-rw
97 : 89

OUT B-rw
91 : 76

-
-
-
-
-
-
-
-

TupleID Read Txns
Write Txns

lsv

TID RS
WS

TupleIDc
TupleIDc

IN-rw 
lsvin

OUT-rw
lsvout

TupleIDc
TupleIDc

c:lsv

(a) Transaction log entry

(b) Tuple lookup table entry

TID c
lsv TID c

lsv TID c
lsv TID c

Figure 4: Transaction log and lookup table entries.

The transaction log has two roles: firstly, it provides anti-
dependency information for each committed/pending trans-
action; secondly, it is used for garbage-collecting entries
in the tuple lookup table (discussed in Appendix C.2.3).
As shown in Figure 4-(a), each log entry contains infor-
mation about the presence of incoming and outgoing anti-
dependencies (IN -rw, OUT -rw) and the corresponding latest-
snapshot-version timestamps for those anti-dependencies
(lsvin, lsvout), as well as the transaction’s readset (RS)
and writeset (WS). Log entries are updated either when

792



Update
1->2

Update
3->1

Update
2->3

Insert
3->1

Insert
1->2

Insert
2->3

Read
1

Read
2

Read
3

Figure 5: Static dependency graph for ssibench,
with rw-conflicts shown as dashed edges and ww-
conflicts shown in bold. There is a wr-edge not
shown that revereses each rw-edge. Read i means
that a read-only transaction reads items from
ssibench-i. Update/insert transactions are denoted
as name i → j: a name transaction reads from
ssibench-i and updates/inserts rows in ssibench-j.

the replication manager receives the dependency informa-
tion conveyed inDf,c andDf,p of remote transaction’s proto-
col message, or when the local replication manager updates
the log by its own local transaction during GDCP.

The replication manager also maintains a tuple lookup ta-
ble to efficiently detect anti-dependencies from/to a given
readset/writeset. This lookup table is organised as an in-
verted index: each tuple entry points to a linked list of pairs
of transaction IDs and the corresponding snapshot version
(lsv), which read or updated that tuple. To further improve
the lookup performance, the TID list is sorted by lsv, and
the tuple lookup table itself is organised as a hash-based
index table. The entry format of the tuple lookup table is
shown in Figure 4-(b).

C.1.2 Failure and Recovery
In this paper, we concentrate on giving an overview how

RSSI can recover from simple stop-failures. We expect that
more complex failure models such as Byzantine Fault Tol-
erance (BFT) [22] can be dealt with by adapting one of the
existing solutions [8, 21]. If a stop-failure happens at any
replica, RSSI first shuts down the group and then recovers
the replicated databases from any data inconsistency. Inside
a single database instance, we rely on the recovery mecha-
nism of the underlying database for data consistency, while
consistent recovery across replicas is guaranteed by copying
data from a master replica that has the most up-to-date
database among all replicas. After setting up a new ring
topology, the replicas then initiate operation again.

C.2 Implementation Details
In the following, we take a closer look at some important

implementation details of our Postgres-RSSI prototype.

C.2.1 Writeset Handling
There are two common ways to represent and handle write-

sets: trigger-based replication systems capture logical SQL
statements, while log-sniffer based approaches ship some
form of log entries. RSSI follows the later approach by rep-

resenting transaction writesets as a collection of tuple logs of
PostgresSQL. This approach has several advantages over the
statement-based writeset handling: firstly, log-based write-
set handling is typically faster than statement-level writesets
as it bypasses any SQL handling routines; but in particular,
it guarantees deterministic updating while statement-based
methods fail in cases where the original query contains an
update operation with non-deterministic value [9].

C.2.2 Resolving Conflicts
An important issue in replicated databases is resolving

conflicts either between local and remote transactions, or
solely among remote writesets. Note that this issue is in-
dependent of the method for handling writesets. When a
conflict occurs between remote and local transactions, RSSI
gives higher priority to remote writesets over local ones be-
cause they passed already global dependency checking; if a
local transaction already has an exclusive lock on a tuple
that a remote writeset needs to update, the remote transac-
tion forces a local transaction to immediately abort. When
conflicts occur among remote writesets, our solution is to
serialize the execution for remote writesets by their total
order, so no conflicting writesets can be executed concur-
rently. We only allow remote writesets to run in parallel if
their writesets do not overlap with each other. Although
parallel updates allow different update ordering for remote
writesets, appearing a violation of the uniform total order
guarantee, a mapping table from a local TID to a global
commit order preserves the correctness.

C.2.3 Collecting Garbage Entries
Since the replication manager’s data structures reside in

memory for efficiency, we must garbage-collect entries in
both the transaction log and the tuple lookup table. For
cleaning up obsolete entries, we need a staleness criterion.
The staleness criterion indicates the entry point before which
we could recycle all preceding log entries. In a single sys-
tem, the log entry for a transaction Ti can be safely removed
when there is no pending transaction that starts before Ti

commits. In distributed systems, all replication managers
have different staleness values.

We avoid running consensus on a staleness point. Each
replica has a bookkeeping variable to trace a staleness value,
so a replica sends its staleness value to all members when-
ever the staleness value is updated. The staleness value is
an earliest begin timestamp of pending transactions. Upon
receiving a new staleness value from others, a replication
manager takes the oldest of all those received from replicas,
and allows clean up of all preceding log entries before this
oldest point. When removing log entries, the replication
manager can efficiently clean up table entries by checking
the readset and writeset arrays of a log entry.

C.3 Limitation
Although our theory can be applied to any system, the

architecture presented here may not perform well if replicas
are far apart (e.g., on a WAN). The high cost of propagating
updates in long delay networks is the main performance bot-
tleneck. Such an embarrassingly distributed database might
need completely different architectures and algorithms. In
future we will explore a practical solution for data manage-
ment services in cloud platforms, where consistency across
data centers is a concern.

793



7

8

9

RSSI (1S) CP ROO (1S) RSI (1S) RSSI (2S)

CP ROO (2S) RSI (2S) RSSI (4S) CP ROO (4S)

RSI (4S) RSSI (8S) CP ROO (8S) RSI (8S)

5

6

7

8

9
n
(x
1
0
0
0
)

RSSI (1S) CP ROO (1S) RSI (1S) RSSI (2S)

CP ROO (2S) RSI (2S) RSSI (4S) CP ROO (4S)

RSI (4S) RSSI (8S) CP ROO (8S) RSI (8S)

3

4

5

6

7

8

9
T
x
n
s/
m
in
(x
1
0
0
0
)

RSSI (1S) CP ROO (1S) RSI (1S) RSSI (2S)

CP ROO (2S) RSI (2S) RSSI (4S) CP ROO (4S)

RSI (4S) RSSI (8S) CP ROO (8S) RSI (8S)

1

2

3

4

5

6

7

8

9
T
x
n
s/
m
in
(x
1
0
0
0
)

RSSI (1S) CP ROO (1S) RSI (1S) RSSI (2S)

CP ROO (2S) RSI (2S) RSSI (4S) CP ROO (4S)

RSI (4S) RSSI (8S) CP ROO (8S) RSI (8S)

0

1

2

3

4

5

6

7

8

9

5 10 20 30 40 50 60 70 80 100 120 140 160 200 240 280 320 400 480 560 640

T
x
n
s/
m
in
(x
1
0
0
0
)

MPL

RSSI (1S) CP ROO (1S) RSI (1S) RSSI (2S)

CP ROO (2S) RSI (2S) RSSI (4S) CP ROO (4S)

RSI (4S) RSSI (8S) CP ROO (8S) RSI (8S)

0

1

2

3

4

5

6

7

8

9

5 10 20 30 40 50 60 70 80 100 120 140 160 200 240 280 320 400 480 560 640

T
x
n
s/
m
in
(x
1
0
0
0
)

MPL

RSSI (1S) CP ROO (1S) RSI (1S) RSSI (2S)

CP ROO (2S) RSI (2S) RSSI (4S) CP ROO (4S)

RSI (4S) RSSI (8S) CP ROO (8S) RSI (8S)

(a) Throughput

15

20

25

m
in
(x
1
0
0
)

RSSI (1S) CP ROO (1S) RSI (1S) RSSI (2S)

CP ROO (2S) RSI (2S) RSSI (4S) CP ROO (4S)

RSI (4S) RSSI (8S) CP ROO (8S) RSI (8S)

0

5

10

15

20

25

5 10 20 30 40 50 60 70 80 100 120 140 160 200 240 280 320 400 480 560 640

A
b
o
rt
s/
m
in
(x
1
0
0
)

MPL

RSSI (1S) CP ROO (1S) RSI (1S) RSSI (2S)

CP ROO (2S) RSI (2S) RSSI (4S) CP ROO (4S)

RSI (4S) RSSI (8S) CP ROO (8S) RSI (8S)

(b) Abort rate

Figure 6: Throughput and abort rates of TPC-C++ with varying number of replicas and MPL for RSI, RSSI
and CP-ROO.

D. EXPERIMENTAL DETAILS

D.1 Synthetic Workload

D.1.1 Synthetic Micro-benchmark
The synthetic micro-benchmark uses three tables called

ssibench-{1, 2, 3} with one non-null integer and ten vari-
able sized character columns; the integer value is a primary
key. Each of the three tables is populated with randomly
chosen 100K items. To measure the serializable concurrency
control overhead, we use three types of queries: a query
transaction (read-only), an update transaction and an in-
sert transaction. All three transactions read a predefined
number of consecutive rows starting at a randomly selected
row. An update(or insert) transaction updates (or inserts)
a predefined number of rows chosen from a uniform random
distribution of the identifiers. To create cycles, we config-
ured update/insert transactions to have the following access
rules; if a transaction reads items from ssibench-i, then
update/insert rows from/to ssibench-j, where j=i+ 1 mod

3. The static dependency graph for ssibench is depicted in
Figure 5.

D.1.2 GDCP Overhead
To provide insight on the GDCP behavior in the RSSI

architecture, we measured average elapsed time spent dur-
ing the execution of a successful transaction, compared to
the sum of time spent in the GDCP code at the differ-
ent nodes. Due to space limitation, we present the results
with MPL=560 (high load condition) and 8 replicas under
ssibench. Table 1 shows this breakdown. The relative ratio
of GDCP overhead to the lifetime of a transaction is between
13% and 30%, except the case where a workload consists of
100% read-only transactions. The interesting result is that if
a workload contains write transactions, the lifetime of read-
only transactions is significantly elongated, as the portion
of write transactions increases. We conjecture this may be
due to an increased amount of dependency information for
read-only transactions, but more investigation is needed.

Read Only Read-Insert Read-Update

R:W=0:100

R:W=75:25

R:W=50:50

R:W=25:75

Txn Time GDCP Time Txn Time Txn Time

N/A N/A

GDCP Time GDCP Time

2397 ms
408 ms

(17%)
3853 ms

514 ms

(13%)

2335 ms
718 ms

(30%)
2619 ms

709 ms

(27%)
3915 ms

807 ms

(20%)

2151 ms
555 ms

(25%)
2397 ms

611 ms

(25%)
3740 ms

650 ms

(17%)

1791 ms
407 ms

(22%)
2028 ms

411 ms

(20%)
2019 ms

466 ms

(23%)

R:W=100:0 500 ms
379 ms

(75%)
N/A N/A N/A N/A

Txn Type

Workload

Table 1: The breakdown of transaction execution
time measured under synthetic workloads. Numbers
in parenthesis give the relative ratio of time spent
during GDCP operations to the entire lifetime of a
transaction.

D.2 The TPC-C++ Benchmark
We also ran a series of experiments based on a more tra-

ditional database benchmark. We are interested in the scal-
ability of our RSSI approach with increasing cluster size.
Since Fekete et al. [14] formally proved that TPC-C is se-
rializable when run at snapshot isolation, Cahill et al. [7]
proposed TPC-C++ in order to evaluate the effectiveness
and overhead of avoiding SI anomalies. We use TPC-C++
and conduct experiments. We run experiments from 1 server
to 8 servers by varying MPL from 5 to 640. Plotted points
are also the average of 5 runs with 1 minute ramp-up period
and 1 minute measurement period.

Figure 6 shows the throughput and abort rate for three
algorithms. Note that TPC-C++ is not designed to create
numerous cycles as we have in ssibench. The breakdown of
aborts is not presented in this paper, but is similar to what
is found in [7]. We observe the performance scalability un-
der an update-intensive workload with very low probability
of having non-serializable cases. As the number of servers
increases, the throughput behavior of all three algorithms is
the same as we could expect. As we can see in Figure 6(b),
most of aborts are ww-conflicts, not non-serializable errors.

794


