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ABSTRACT
With ever-growing popularity of social networks, web and
bio-networks, mining large frequent patterns from a single
huge network has become increasingly important. Yet the
existing pattern mining methods cannot offer the efficiency
desirable for large pattern discovery. We propose Spider-
Mine, a novel algorithm to efficiently mine top-K largest
frequent patterns from a single massive network with any
user-specified probability of 1− ϵ. Deviating from the exist-
ing edge-by-edge (i.e., incremental) pattern-growth frame-
work, SpiderMine achieves its efficiency by unleashing the
power of small patterns of a bounded diameter, which we call
“spiders”. With the spider structure, our approach adopts a
probabilistic mining framework to find the top-k largest pat-
terns by (i) identifying an affordable set of promising growth
paths toward large patterns, (ii) generating large patterns
with much lower combinatorial complexity, and finally (iii)
greatly reducing the cost of graph isomorphism tests with
a new graph pattern representation by a multi-set of spi-
ders. Extensive experimental studies on both synthetic and
real data sets show that our algorithm outperforms existing
methods.

1. INTRODUCTION
Graph data arise naturally in a wide range of applica-

tion domains including bioinformatics, semantic web [2], link
analysis [17] and terrorist-network detection. In both liter-
ature and practice, the terms “graph” and “network” nowa-
days often share the same meaning. We would therefore use
the two terms interchangeably in this paper. It has long been
recognized that graph patterns, often the smaller ones, are
highly useful in many important stages of graph data analy-
sis and graph database management such as indexing [35, 5].
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As a result, a number of efficient algorithms have been de-
veloped to mine frequent patterns in the graph-transaction
setting where the input is a graph database consisting of
a large set of graphs and the support of a pattern is the
number of graphs in the database that contain the pattern,
e.g., [3, 33, 15, 14, 34, 27, 19]. However, the recent years
have seen an ever-growing number of applications on sin-
gle large graphs involving homogeneous or heterogenous at-
tributed nodes with complicated connections, such as social
networks, transportation networks, bio-networks and cyber-
physical networks. Moreover, graph patterns of large sizes
have become increasingly important in many applications
for the following reasons: (I) Large patterns are a natural
result of ever larger graph data. For social network anal-
ysis on a network like that of Facebook or Twitter, it has
been shown that functional communities could reach size up
to ≈ 150 [22], much larger than what can be mined by ex-
isting methods considering the input graph size. Similarly,
for web structure mining in today’s Internet, one should ex-
pect the real web structures mined for any domain to be
fairly complicated. (II) Large patterns are more informative
in characterizing large graph data. For example, in DBLP
co-authorship network, small patterns, e.g., several authors
collaborate on a paper, are almost ubiquitous. As shown in
our experiments, it is only with large patterns could we dis-
cover interesting common collaborative patterns, or distin-
guish distinct patterns, across different research communi-
ties. Take another example from software engineering, large
patterns uncovered from program structure data would re-
veal software backbones which are critical in analyzing large
software packages and understanding legacy systems [4, 8,
28, 26, 23]. Appendix D further discusses the applications
of large network patterns.

Despite the significance of the task, mining large patterns
from single large networks is a hard problem presenting chal-
lenges from a number of aspects. First, the single-graph
setting, which is the focus of this paper, introduces addi-
tional complexity in pattern support computation. Algo-
rithms developed for the graph-transaction setting cannot
be used to solve the single-graph setting due to the com-
plexity of overlapping embeddings. Second, the well-known
difficulties inherent in graph mining, i.e., the exponentially
high combinatorial complexity, only get exacerbated when
the sizes grow significantly larger for both the input graph
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and the output patterns. Our solution to this dilemma is
to mine only the top-K largest patterns by identifying a
manageable set of promising growth paths leading to the
largest patterns probabilistically, and recovering them effi-
ciently. Our approach, which we call SpiderMine, is based
on the concept of r-spider, or spider in short. A spider is a
frequent subgraph with a head vertex u such that all other
vertices of the subgraph are reachable from u by a path up
to length r. The efficiency of SpiderMine comes from the
power of using these spiders to attack the three bottlenecks
in large pattern discovery as mentioned earlier. In partic-
ular, SpiderMine uses random selection of seed spiders and
iterative spider-growth combined with pattern merging to
identify large patterns such that given any user-specified er-
ror threshold ϵ, with probability at least 1 − ϵ, SpiderMine
returns the top-K largest patterns in a single large network.
Our main technical contributions are: (1) We propose the

concept of r-spider. We observe the fact that large pat-
terns share these small components and thus can be obtained
much efficiently by assembling them in a well-designed man-
ner. We also propose a new graph pattern representation
based on spiders to reduce the cost of graph isomorphism
test. (2) We propose a novel and efficient mining algorithm,
SpiderMine, based on the concept of spiders, to mine the top-
K largest patterns from single graphs with user-specified
probability. (3) We conduct extensive experiments on both
synthetic and real data to analyze the performance of Spi-
derMine and demonstrate its superiority over existing meth-
ods in terms of effectiveness and efficiency. With real data,
we also illustrate the application of large patterns in social
network analysis and software engineering.
Road-map. Related work is discussed in Section 2. Section
3 gives the problem setting and formulation. Section 4 pro-
vides an outline of our algorithm and the underlying design
idea. Section 5 presents experimental results on synthetic
data sets. We conclude our paper in Section 6. Appendix
section 7 gives discussion, proof and algorithm details as
well as more extensive experimental results on both syn-
thetic and real data.

2. RELATED WORK
Mining in single-graph setting has not been as well studied

as in graph-transaction setting due to the complexity of sup-
port computation. As we focus on the single-graph setting,
works developed for single graphs are presented with higher
priority. SUBDUE [13] is probably the most well-known al-
gorithm for mining frequent subgraphs in a single graph. It
achieves its efficiency by using approximation and finding
patterns that can compress the original graph by substitut-
ing the patterns with a single vertex. The heuristics used in
SUBDUE makes it hard to find frequent patterns of larger
sizes. As shown in [20] and verified by our experiments,
SUBDUE focuses on small patterns with relatively high fre-
quency and scales poorly as the data size increases. Vanetik
et al. [31] proposed an algorithm to use the maximum num-
ber of edge-disjoint embeddings of a graph pattern as the
measure of its support. A level-by-level approach is used
to mine all frequent subgraphs from a single labeled graph.
The authors only showed the completeness of the mining
result and discussed little on particular heuristics for effi-
ciency improvement other than the downward closure prop-
erty of support. The performance of their algorithm has only
been shown on data of very small scale (around 100 edges).

An algorithm called SEuS was proposed by Ghazizadeh and
Chawathe in [10] which uses a data structure summary to
collapse all vertices of the same label together and prune in-
frequent candidates. This technique is useful at the presence
of a relatively small number of highly frequent subgraphs,
and less powerful at handling a large number of frequent sub-
graphs with low frequency. Our experiments show that SEuS
returns mostly small structures for almost all datasets. Ku-
ramochi and Karypis [21] gave a mining framework to find
the complete set of frequent patterns in a large sparse graph.
Following an enumeration-and-verification paradigm, sub-
graphs of size k are joined for growth only if they share a
certain subgraph of size k − 1, reducing the repeated vis-
its to the same node in the pattern lattice. A structure
called “anchor-edge-list” is used to roughly mark the edge-
disjoint embeddings of a frequent pattern in order to reduce
the cost of graph isomorphism test. While this algorithm
showed good performance on small graphs or large sparse
graphs, mining complete results in general large graphs or
scale-free graphs common in web and social network analysis
is inherently infeasible. SpiderMine therefore strives only to
return the top-K largest patterns and exploits a novel graph
representation by spider-set which not only significantly re-
duces the number of unnecessary graph isomorphism tests
but also provides a compact and efficient way to exactly
store all embeddings of a large frequent pattern. The same
authors of [21] also proposed in [20] an algorithm GREW
to mine incomplete set of subgraph patterns by iteratively
merging subgraphs connected with one or multiple edges.
While GREW could discover some large patterns quickly, no
guarantee is given on the pattern quality in relation to the
complete pattern set. SpiderMine is designed to return the
top-K largest patterns in the input graph with a high prob-
ability of 1 − ϵ for any user-specified error bound ϵ. Note
also that both algorithms in [21] and [20] find only patterns
with edge-disjoint or even vertex-disjoint ([20]) embeddings.
A different yet more general support definition based on
“harmfulness” of an embedding overlapping was proposed
by Fiedler and Borgelt in [9]. SpiderMine adopts this gen-
eral support definition for a wider range of applications. The
authors of [9] proposed MoSS for mining complete patterns
in single graphs, which, as any other algorithm mining for
the complete pattern set, suffers from the same scalability
issue as the input graph size grows.

Although SpiderMine is designed to handle the harder case
of mining in single-graph setting, it can be adapted to graph-
transaction setting with no difficulty. Many efficient algo-
rithms have been developed to find the complete frequent
pattern set, e.g., AGM by Inokuchi et al., [15, 16], FSG
by Kuramochi and Karypis, [19], Borgelt and Berthold, [3],
gSpan by Yan and Han, [33] and FFSM by Huan et al., [14].
All these algorithms suffer from the fact that due to com-
binatorial complexity, the size of the complete pattern set
is exponential even for graphs of moderate sizes. SPIN [27]
and MARGIN [30] find all maximal patterns. Unfortunately,
the number of all maximal patterns could still be too large
to handle as a maximal pattern could in fact be of any size.
In the worst case, all closed patterns could be maximal. As
pointed out in [12], most of the time, what is really needed,
if not at all feasible, is a manageable set of patterns meeting
users’ constraints. ORIGAMI as proposed in [12] is such an
algorithm, which aims to find a representative pattern set.
Our algorithm SpiderMine, on the other hand, serves a dif-
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ferent purpose which is to find a set of large patterns. The
two algorithms cannot replace each other as shown in our ex-
periments, ORIGAMI would return a mixed set of small and
medium-sized patterns at the cost of missing most of the
large distinct patterns. Other works include structural leap
search introduced by Yan et al. [32], which adopts structural
similarity to mine significant graph patterns efficiently and
directly from two graph datasets. Yet the leap search in [32]
follows an edge-by-edge growing strategy, while the merge
operation employed in SpiderMine could jump with multi-
ple edges in the search space, thus significantly shortening
the search time. Large patterns are important in various
domains other than graphs. For example, the problem of
mining large patterns has also been studied in item-set set-
tings [36].

3. PROBLEM FORMULATION
As a convention, the vertex set of a graph G is denoted

by V (G) and the edge set by E(G). The size of a graph P is
defined by the number of edges of P , written as |P |. In our
setting, a graph G = (V (G), E(G)) is associated with a la-
beling function lG : V (G) 7→ Σ,Σ = {ς1, ς2, . . . , ςk}. Graph
isomorphism in our problem setting requires matching of the
labels for each mapped pair of vertices. Our method can also
be applied to graphs with edge labels.

Definition 1. (Labeled Graph Isomorphism) Two
labeled graphs G and G′ are isomorphic if there exists a bi-
jection f : V (G) 7→ V (G′), such that ∀u ∈ V (G), lG(u) =
lG′(f(u)) and (u, v) ∈ E(G) if and only if (f(u), f(v)) ∈
E(G′).

We use G ∼=L G′ to denote that two labeled graphs G and
G′ are isomorphic. Given two graphs P and G, a subgraph
G′ of G is called an embedding of P in G if P ∼=L G′. For a
single graphG and a pattern P , we use eP to denote a partic-
ular embedding of a pattern P , and the set of all embeddings
of P is denoted as E[P ]. We denote as Psup the support set
for a pattern P . In single graph setting, Psup = E[P ] while
in graph transaction setting Psup is the set of graphs of the
database each containing at least one embedding of P . For
a graph pattern P and a vertex v ∈ V (P ), if the shortest
distance between v and any other vertex in V (P ) is at most
r, we say P is r-bounded from v. r is also called the radius
of P . The diameter of a connected graph G is the maximum
over the shortest distances between all pairs of vertices in
V (G), and is denoted as diam(G). In real applications, it
has been recently observed that the diameter of a graph is
often bounded by a constant which is not too large and even
shrinks over time [17]. For example, in DBLP, the effective
diameter, i.e. the 90th percentile distance, is bounded by 9.
In IMDB data, the diameter is bounded by 10 [6]. Effective
methods have also been proposed to gauge the diameter of a
graph with fairly good accuracy [18]. As such we assume a
user-specified upper bound Dmax for pattern diameter and
focus on mining patterns with diameters bounded by Dmax.
We now define our problems in the single graph setting.

Definition 2. [Top-K Large Patterns With Diam-
eter Bound] Given a graph G, a support threshold σ and
a diameter upper bound Dmax, the problem of mining Top-
K Largest Patterns With Bounded Diameter is to mine the
top-K largest subgraphs P of G such that |Psup| ≥ σ and
diam(P ) ≤ Dmax.

Since mining the complete pattern set is infeasible and it
is extremely difficult to obtain the exact solution for the top-
K largest patterns without computing the complete pattern
set, we use a randomized framework to compute the top-K
largest patterns with high probability.

Definition 3. [Approximate Top-K Large Patterns
With Diameter Bound] Given a graph G, a support thresh-
old σ, a diameter bound Dmax and an error threshold ϵ, the
problem of mining Approximate Top-K Largest Patterns
With Bounded Diameter is to mine a set S of K patterns
such that, with probability at least 1 − ϵ, S contains all the
top-K largest subgraphs P of G such that |Psup| ≥ σ and
diam(P ) ≤ Dmax.

4. OUR APPROACH
The challenges of the problem are the following: (1) How

to identify the top-K largest patterns with a high probabil-
ity? and (2) How to quickly reach the large patterns? We
address these two questions in the following subsections.

4.1 Approximate Top­K Large Patterns
As trying all the possible growth paths is unaffordable, we

have to identify a small set of highly potential ones which
would lead to the large patterns with good chance. Our so-
lution is based on the following observation: large patterns
are composed of a large number of small components which
would eventually become connected after certain rounds of
growth. The more of such small components of a large pat-
tern we can identify, the higher chance we can recover it.
Thus, we first mine all such small frequent patterns, which
we call spiders that will be formally defined later. Com-
pared with small patterns, large patterns contain far more
spiders as their subgraphs. It follows that if we pick spi-
ders uniformly at random from the complete spider set, the
chance that we pick some spider within a large pattern is
accordingly higher. Moreover, if we carefully decide on the
number of spiders we would randomly pick, the probability
that multiple spiders within P would be chosen is higher if
P is a larger pattern than a smaller one. We denote the
set of all spiders within P which are initially picked in the
random draw as HP . According to our observation, for any
two spiders in HP , there must be a pattern growth path
such that along the path their super-patterns will be able
to merge. And we are going to catch that as follows. Once
we picked all the spiders, they will be grown to larger pat-
terns in λ iterations where λ will be determined by Dmax.
In each iteration, each spider will be grown in a procedure
called SpiderGrow(), which always expands the current pat-
tern by appending spiders to its boundary such that the
pattern’s radius is increased by r. Also, in each iteration,
two patterns will be merged if some of their embeddings are
found to overlap and the resulting merged pattern is fre-
quent enough. Now for any large pattern P , we have the
following Lemma,

Lemma 1. For any pattern P with diameter upper-bound
Dmax, let SpiderGrow(Q) be a procedure which grows a pat-
tern Q such that the radius of Q is increased by r, then
all patterns growing out of HP which are sub-patterns of P
must have merged into one sub-pattern of P after λ = Dmax

2r
iterations of running SpiderGrow(Q).
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This means that as long as we pick more than one spider
within a large pattern P in the initial random draw, i.e.,
|HP | > 1, we can guarantee we will not miss P by retaining
all the merged patterns. On the other hand, for smaller pat-
terns, the probability that more than one spider within the
pattern get picked in the random draw is much lower than
that of large patterns. As such, keeping only the merged pat-
terns at the end of the iterations would highly likely prune
away patterns that would grow only toward small patterns.
Thus after the pruning, we are left with a small number of
candidates each of which, with high probability, is a sub-
graph of large patterns. We then use SpiderGrow() again to
further extend these candidates until no larger patterns can
be found.

Figure 1: SpiderMine.

To formally present our approach, we first define the con-
cept of a spider. Formally, an r-spider is defined as follows.

Definition 4. [r-spider] Given a frequent pattern P in
graph G and a vertex u ∈ V (P ), if P is r-bounded from u,
we call P an r-spider with head u.

Algorithm 1 SpiderMine

Input: input graph G, error bound ϵ, support threshold σ
diameter bound Dmax, # of patterns returned K

Output: Set of K patterns S
1: S ← ∅;
2: T (G)← InitSpider(G, r, σ);
3: /* mine all patterns of diameter up to 2r;*/
4: Compute M based on T (G), ϵ and K;
5: S ← RandomSeed(T (G),M);
6: /*randomly select M spiders as the seed for growth*/
7: For i = 1 To Dmax

2r
8: S ← SpiderGrow(S, σ);
9: /* grow patterns by spiders and merge when possible*/
10:Prune unmerged patterns from S;
11:Do
12: S ← SpiderGrow(S, σ);
13:Until no new patterns can be found
14:S ← top K largest patterns in S;
15:Return S;

Our algorithm works in the following three stages. An
illustration is given in Figure 1. The main algorithm of Spi-
derMine is shown in Algorithm 1 with all details elaborated
in Appendix. The random drawing size M is an internal
parameter computed according to user-specified K and ϵ,
with details given in the next subsection. The discussion on
setting the spider radius size r is given in Subsection 4.2.

1. Stage I: Mining Spiders
Mine all r-spiders from the input graph G. By the end
of this stage, we know all the frequent patterns up to
a diameter 2r with all their embeddings in G.

2. Stage II: Large Pattern Identification
Randomly pickM spiders from all the spiders obtained
in Stage I as the initial set of frequent subgraphs. The
next step consists of Dmax

2r
iterations. In each iter-

ation, use SpiderGrow() to grow each of the M sub-
graphs by extending its boundary with selected spiders
such that the radius of the subgraph is increased by r.
In each iteration, if we detect that two frequent sub-
graphs, whose embeddings are all previously disjoint,
begin to overlap on some of their embeddings as a re-
sult of growth in this iteration, we would merge them if
the resulting merged subgraph is frequent. Note that
we can avoid pair-wise checking for potential merging
because all patterns grow with spiders as units and we
only have to monitor the same spiders being used by
different patterns to detect overlapping. At the end
of the Dmax

2r
iterations, keep only those frequent sub-

graphs which are generated as a result of merging at
some iteration. Let the set we keep be S. The frequent
subgraphs in S are believed to be subgraphs of large
patterns with high probability.

3. Stage III: Large Pattern Recovery
With high probability, each one of the top-K large
patterns now has some portion of it as a pattern in S.
To recover the full patterns, we grow each subgraph
in S by SpiderGrow() until no more frequent patterns
can be found. All the patterns discovered so far are
maintained in a list sorted by their size. Return the
top-K patterns.

We now show that, in Stage II of SpiderMine, how to
choose M , the number of initial seed spiders, to achieve the
discovery of top-K largest patterns with guaranteed proba-
bility. If more than one spider within a pattern P are chosen
in the random drawing process, we say that P is successfully
identified. We denote as Psuccess the probability that all
the top-K largest patterns are successfully identified. With
proof sketch detailed in the Appendix, we have the following
lemma,

Lemma 2. Given a network G and a user-specified K, we

have Psuccess ≥
(
1− (M + 1)(1− Vmin

|V (G)| )
M
)K

.

Vmin is the minimum number of vertices in a large pat-
tern required by users, usually an easy lower bound that a
user can specify. Now to compute M , we just need to set(
1− (M + 1)(1− Vmin

|V (G)| )
M
)K

= 1 − ϵ and solve for M . It

follows that, once the user specifies K and ϵ, we could com-
pute M accordingly, and then if we pick M spiders initially
in the random drawing process, we are able to return the
top-K largest patterns with probability at least 1 − ϵ. For

example, with ϵ = 0.1, K = 10, and Vmin = |V (G)|
10

, we get
M = 85, which means to return top 10 largest patterns(each

of size at least |V (G)|
10

if any) with probability at least 90%,
we need to randomly draw 85 spiders initially. With the
analysis above, it is not hard to prove the following theo-
rem.

Theorem 1. Given a graph G, the error bound ϵ, the
diameter upper bound Dmax, the support threshold σ and
K, with probability at least 1 − ϵ, SpiderMine returns a set
S of top-K largest subgraphs of G such that for each P ∈ S,
|Psup| ≥ σ and diam(P ) ≤ Dmax.
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4.2 Spider: Leaping Towards Large Patterns
We show why spiders could help recover large patterns

efficiently by the following arguments: (1) Spiders reduce
combinatorial complexity in recovering large patterns, and
(2) Spiders minimize the heavy cost of graph isomorphism
checking.

4.2.1 Reducing Combinatorial Complexity
It is well-known in graph mining that as the pattern sizes

increase, the number of frequent subgraph patterns grows
exponentially. Illustrated in the pattern lattice model, the
patterns of small sizes are the “tip” of the lattice, form-
ing a tiny part of the whole pattern space when compared
with the number of patterns of larger sizes. This leads us
to the following observation — larger patterns are composed
of smaller subgraphs which are shared among all the larger
patterns across the pattern space. If we are able to identify
these smaller components, we can generate larger patterns
with lower combinatorial complexity than in incremental
pattern growth model. An illustrative toy example is given
in Figure 2. In the first row are 6 spiders each of size 10,
denoted by A to F . In the second row are four larger pat-
terns each of which is composed by three spiders from the
first row. We assume a 20% overlapping on average. This
means each larger pattern is of size 10 × 3 × 80% = 24. If
we follow the traditional incremental growth paradigm, we
need 24× 4 = 96 steps to grow these four large patterns. In
SpiderMine, we first mine out the 6 spiders in 10 × 6 = 60
steps, then the four large patterns will be generated by as-
sembling these spiders in 3 × 4 = 12 steps. As such, we
will take 60 + 12 = 72 steps in total. We save 24 steps, a
30% speed-up. Although this is a much simplified example
ignoring all other mining cost such as frequency checking
and so on, it is evident that spiders could be very powerful
in reducing the inherent cost associated with combinatorial
complexity. Moreover, note that the cost for mining the spi-
ders is only a one-time cost. On the other hand, we can
run the remaining stages, i.e., the randomized seed selection
and iterative spider-growth, multiple times to increase the
probability of obtaining the top-K large patterns.

Figure 2: Patterns sharing the same set of spiders.

We note that it is a hard problem to decide what is the
optimal set of subgraphs such that this set is shared by
the most number of larger patterns, thus minimizing the
combinatorial complexity. However, as compared against
traditional incremental growth, it still pays tremendously
to leverage this finding and use subgraphs of small radius
and relatively uniform structure to obtain larger patterns.
How large should we set the spider radius r? A smaller
r means slower growth to large patterns while a larger r
means heavier load on the initial spider mining stage. Em-
pirically, we find that a small r, e.g., r = 1 or r = 2, is a
good trade-off choice which gives better overall mining per-
formance because the quality of the top-K mining result is

largely unaffected when we increase r further as a result of
our probabilistic framework. Experiments on r is given in
the Appendix.

4.2.2 Reducing Graph Isomorphism Checking
For a frequent pattern P and a vertex v ∈ V (P ), the r-

neighborhood of v is a frequent subgraph, and accordingly
an r-spider with head v. We denote an r-spider with head
vertex v as srh[v] and is written as sh[v] for simplicity when
r is fixed. In SpiderMine, each frequent pattern P is asso-
ciated with a spider-set representation, which is denoted as
S[P ] and is defined as a multi-set S[P ] = {sh[v]|v ∈ V (P )}.
For the example shown in Figure 3 (I), the spider-set rep-
resentation of the pattern consists of 8 distinct spiders in
total, with one of the spiders having two embeddings and
therefore 9 spiders in total. This shows the spider-set repre-
sentation is a multi-set. Here we set the radius of the spider
r = 1. The node underlined is the head of the spider. The
spider’s corresponding embeddings are given in the physical
vertex ID. Note that one of the spider has two embeddings.

Figure 3: Spider-Set Representation.

Note that it is natural to maintain the spider-set repre-
sentation for a pattern P in SpiderMine. Initially, a frequent
pattern P is simply a spider randomly chosen from the com-
plete set of all spiders mined from the input graph G. Set
S[P ] = {sh[v]} where v is the head of the chosen spider. For
each u ∈ V (P ), u ̸= v, we run BFS for depth at most r
to compute sh[u] within P , and add sh[u] into S[P ]. This
completes the initial computation for S[P ]. To update S[P ]
when P is extended by a new spider s′ at boundary vertex
u, we merge S[P ] with S[s′] and update those spiders whose
heads are within distance r to the common boundary of P
and s′. The reason to maintain a spider-set representation
for a pattern P is to reduce graph isomorphism test as much
as possible. Here is the observation — If two graphs P
and Q have the same spider-set representation, i.e.,
S[P ] = S[Q], it is with high probability that P ∼=L Q.
Intuitively, as the neighboring spiders overlap each other,
the topological constraints imposed upon each other signif-
icantly limit the flexibility to construct two non-isomorphic
graphs using exactly the same set of spiders. As in Figure 3
(I), it is in fact difficult to construct a graph Q with exactly
the same set of 9 spiders such that Q is not isomorphic to
the graph in the figure.

It is easy to prove the following theorem which shows that
two isomorphic graphs must have the same spider-set repre-
sentation.

Theorem 2. For two graphs P and Q, if P ∼=L Q, then
S[P ] = S[Q].
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With the theorem, we have our Spider-set Pruning: For two
graphs P and Q, if S[P ] ̸= S[Q], then P and Q cannot be
isomorphic. Hence the isomorphic test can be skipped. How-
ever, in general, it is not true for the other direction, i.e.,
two graphs with the same spider-set representation could be
different in terms of graph isomorphism. We have not been
able to show theoretical bounds for the pruning power of
spider-set as a heuristic to reduce the number of graph iso-
morphism tests. In practice, spider-set representation has
always been able to prune away non-isomorphic graphs. We
also note that, as r gets larger, the pruning power will grow
stronger by analysis. Intuitively, the radius of the spiders de-
fines the spiders’ capacity to constrain topology on the local
neighborhood. A larger r corresponds to stronger mutual
structural constraints, as illustrated in Figure 3 (II). The
two graphs (a) and (b) are different. If we set r = 1 then
they will have exactly the same spider-set representation,
which would elude our heuristic for graph isomorphism test.
Yet if we increase r to 2, they will have different spider-set
representation.

5. EXPERIMENTAL RESULTS
In this section, we report our performance study on Spi-

derMine. Due to space limit, we present here some of the
most important results on synthetic data. The Appendix
contains more extensive experimental results on both syn-
thetic and real data.
All experiments are conducted on an Intel(R) Core (TM) 2

Duo 2.53 GHz CPU, and 2 GB of main memory with Ubuntu
10.04. SpiderMine is implemented in Java (OpenJDK 1.6.0),
while the other algorithms (the latest versions of SUBDUE
[13] (version 5.2.1), SEuS [10](version 1.0), MoSS [9] (version
5.3) and ORIGAMI [12]) are all obtained from the original
authors to whom we are greatly thankful.
We have carefully chosen the set of algorithms to be com-

pared based on both our problem setting and the state-of-
the-art in this area. Our goal is to find large frequent pat-
terns from massive networks, especially in large single net-
work setting. As mentioned in Section 2, despite the huge
body of literature in graph mining, there are actually not
many algorithms capable of the mining task in this setting
due to the complication of embedding overlapping and sup-
port computation. The algorithms we selected are all repre-
sentative works each with unique characteristics. SUBDUE
is a classic approximate algorithm on single graphs. SEuS
is a more recent one with improved heuristics. MoSS is the
counterpart of gSpan aiming to mine for the complete pat-
tern set in this setting, which is the state-of-the-art. As we
aimed at a harder problem, we can also handle graph trans-
action setting. gSpan and FFSM cannot run to completion
for most of our data sets as a result of the combinatorial com-
plexity even to enumerate all the patterns. The same result
is expected for other algorithms based on the comparison
given in [24]. ORIGAMI is proposed to solve this problem,
which is also the closest to our approach, and we therefore
only compare against ORIGAMI for transaction setting.

5.1 Synthetic Data

5.1.1 Single­Graph Setting
SpiderMine is experimented on single graphs generated

with two models: (I) the Erdős-Rényi random network model,
and (II) the Barabási-Albert scale-free network model.

GID |V | f d m |VL| Lsup n |VS | Ssup

1 400 70 2 5 30 2 5 3 2
2 400 70 4 5 30 2 5 3 2
3 1000 250 2 5 30 2 5 3 20
4 1000 250 4 5 30 2 5 3 20
5 600 130 4 5 30 2 20 3 2

Table 1: Data Settings.

GID vs GID difference in setting
2 vs 1 GID 2 doubles the average degree
3 vs 1 GID 3 increases the support of small patterns.
4 vs 3 GID 4 doubles the average degree
5 vs 2 GID 5 increases the number of small patterns.

Table 2: Setting Difference.

Random Network.
The Erdős-Rényi model is a well-known model to generate
random graphs. Using the G(n, p) variant, our synthetic sin-
gle graph is constructed by generating a background graph
and injecting into it a set of large patterns as well as a set
of small patterns. We generate 5 different data sets (labeled
GID 1 to 5) with varied parameter settings. The detailed
description of the data sets is given in Table 1. The differ-
ences among the data sets are described in Table 2. The
description of the parameters is given as follows. |V | is the
number of vertices. f is the number of vertex labels. d is
the average degree. |VL| (or |VS |) is the number of vertices
of each injected large (resp. small) pattern. m (or n) is
the number of large (resp. small) patterns injected. Lsup

(or Ssup) is the number of embeddings of each large (resp.
small) pattern injected.

In this comparison, the scale of the synthetic data, e.g.,
the number of vertices, the average degree, has been pur-
posely set small so that all the three algorithms (SUBDUE,
SEuS and MoSS) are able to return results successfully.

Figures 4 to 8 show the distribution of patterns mined by
SpiderMine, SUBDUE, SEuS and MoSS for different parame-
ter settings in Table 1. Overlapping bars indicate the same
pattern size. The minimum support threshold has been set
to a very low value of 2 in all these cases. We have following
observations.

1. SpiderMine. In all 5 cases, SpiderMine successfully re-
turns most of the largest patterns. Note that after
4 patterns of size 30 have been explicitly embedded
into the background graph, the interconnections be-
tween the patterns and the background graph actually
give rise to 10 largest patterns of size 30. Here we set
K = 10, Dmax = 4.

2. SUBDUE. SUBDUE focuses on small patterns that
have relatively high frequency. In Figures 6 and 7,
when the support of each small patterns increases, the
mining result of SUBDUE shifts significantly toward
smaller patterns. Interestingly, this is also true when
the number of small patterns increases, as shown in
Figure 8.

3. SEuS. Due to its node collapsing heuristics, which is
less powerful in handling a large number of patterns
with low frequency, SEuS has mostly generated small
(<= 3) patterns across the five data sets. Hence we
do not consider it further in our runtime comparison
in Figure 10.
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Figure 5: GID 2.
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Figure 6: GID 3.
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Figure 7: GID 4.
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Figure 15: More Small.

Run Time ( seconds )
GID SpiderMine SUBDUE SEuS MoSS
1 0.345667 0.42 0.929 1.673
2 2.279 7.98 116.982 -
3 0.883 3.18 1.539 2.641
4 13.412 17.87 968.671 -
5 4.914 9.74 2.066 -

Figure 16: Runtime Comparison.

4. MoSS. MoSS aims to mine the complete pattern set,
the result of which is a significantly higher runtime
complexity than SpiderMine across all data sets. In
Figure 16 we show the run time of the four algorithms
on the five data sets. Symbol “-” means that MoSS
cannot run to completion for data sets with GID =
2, 4, 5. We aborted a process if it could no complete
within 10 hours. In Figure 9 we decrease the average
node degree to 2 (d = 2, f = 70) for MoSS to finish
execution and further compared the runtime between
the two algorithms.

As it is impossible to compare running time against algo-
rithms mining for the complete pattern set on larger data
sets, in Figure 10 and Figure 11, we compare against an ap-
proximate algorithm and show our own scalability on even
larger ones. For these two figures, we generate a random
graph with an average degree of 3, Dmax set to 10, and la-
bel number set to 100. The minimum support threshold is
set to a low value of 2 to make available as many frequent
large patterns as possible with K = 10. We show perfor-
mance comparison with SUBDUE in Figure 10. It can be
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Figure 17: Scale-free Network Patterns.

observed that as the graph size increases, the running time
of SUBDUE quickly exhibits exponential growth curve while
SpiderMine grows slowly. Figure 11 shows the run time of
SpiderMine as the input graph size in increased up to 40000.
Figure 12 shows the corresponding sizes of the largest pat-
terns discovered. SpiderMine is able to find patterns of size
230 in data graph of size 40000 in less than two minutes.
Scale-free Network.
We use the Barabási-Albert model to generate graphs with
power-law degree distribution. The difference in degree dis-
tribution between a scale-free graph and an random graph
has tremendous impact on the total number of frequent pat-
terns. Even for a scale-free network of a relatively small size,
vertices with high degree could give rise to a huge number of
small patterns. In our experiments, SUBDUE and SEuS can
not run to completion on these scale-free graph data. MoSS
on the other hand returns a set of small patterns. The per-
formance of SpiderMine is shown in Figure 17. The number
of r-spiders with r = 1, mined from such networks, increases
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sharply as the graph size increases. The sizes of the largest
patterns discovered are shown in Figure 13.

5.1.2 Graph­Transaction Setting
As we have discussed in Section 2, the algorithm that is

closest to our mining task in graph transaction setting is
ORIGAMI [12] as both algorithms compute certain subset of
the complete pattern set. Hence we compare with ORIGAMI
in this setting. We construct a graph transaction database
as follows. We use the same Erdős-Rényi model to generate
10 graphs each with 500 vertices and an average degree of
5. The number of labels is set to 65. Five distinctive large
patterns each of 30 vertices are then injected into the graph
database. Figure 14 shows the pattern distribution of the
results by ORIGAMI and SpiderMine. ORIGAMI does capture
some of the large patterns. However, if the data contains
more small patterns as shown in Figure 15 where we injected
100 small patterns each of size 5, ORIGAMI’s result leans
significantly towards smaller ones, missing all the large yet
equally distinctive ones. In fact, the authors of ORIGAMI
mentioned in [12] that, in general, their approach favors a
maximal pattern of smaller size over a maximal pattern of
larger size. This shows that ORIGAMI is not designed to
accomplish our task of finding the top-K largest patterns.

6. CONCLUSIONS
In this paper, we propose a novel and efficient mining

framework SpiderMine for single-graph top-k large pattern
mining problem based on a new concept of r-spider. We
also propose a new graph pattern representation based on
spiders to reduce the cost of graph isomorphism test. By
assembling these spiders, we are able to efficiently discover
top-K large frequent patterns with any user-specified prob-
ability. Experiments demonstrate the efficiency as well as
scalability of our algorithm.
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APPENDIX
A. PROOF SKETCH OF LEMMA 2
Given a pattern P , if a spider s is chosen in a random

spider draw such that s is a subgraph of P , we say P is hit.
We now analyze how to estimate the probability of a pattern
P being hit by a random spider draw, which we denote as
Phit(P ). For a spider s to be a subgraph of P , s must have
one of the vertices of P as its head. Thus the total number
of spiders which are subgraphs of P is the number of spiders
with v ∈ V (P ) as its head. Given a spider s and a vertex
v ∈ V (P ), if there is at least one embedding ŝ of s such that
v is the head of ŝ, we say s is adjacent to v. All the spiders
that are adjacent to v is denoted as Spider(v). As such, we
have

Phit(P ) =

∑
v∈V (P ) |Spider(v)|

|Sall|

where Sall is the set of all spiders mined in the first stage of
the algorithm. We use the average value for all the vertices
to lower-bound the size of Spider(v) for vertices in a large
pattern P . This is based on the following argument — Large
graph patterns usually contain some “ hub” or “ significant”
vertex, which, in most cases, has a much higher degree than
other average vertices in the graph. The number of spiders
adjacent to these kind of vertices is accordingly much greater
than that of others. As the average size of |Spider(v)| for a
vertex v ∈ V (G) can be computed as |Sall|

|V (G)| , we have

Phit(P ) ≥
∑

v∈V (P )
|Sall|
|V (G)|

|Sall|
=
|V (P )|
|V (G)|

We define Pfail(P ) as the probability that at most one
spider within P is chosen in the random drawing process.
As our algorithm shows, if at least two spiders within P
are picked initially, we will be able to identify them at the
end of the growth iterations since they must merge at some
iteration. Consequently, if none or at most one spider within
P is chosen, we will miss the pattern P and that is why we
term it as the probability of failing to discover P .
Let M be the total number of spiders we randomly pick.

When Phit(P ) ≤ 1/2, we have

Pfail(P ) = (1− Phit(P ))M +M · Phit(P )(1− Phit(P ))M−1

≤ (1− Phit(P ))M +M · (1− Phit(P ))M

≤ (M + 1)(1− Phit(P ))M

When Phit(P ) > 1/2, we have similar results as

Pfail(P ) ≤M · Phit(P )(1− Phit(P ))M−1 ≤M · Phit(P )M

If more than one spider within a pattern P are chosen in
the random drawing process, we say that P is successfully
identified. We denote as Psuccess the probability that all the
top-K largest patterns are successfully identified. Let Pi be
the top i-th pattern in descending order. Since the events
that Pi is successfully identified are not independent as one
spider could be a frequent subgraph of multiple patterns,
assuming M is much larger than K and Phit(Pi) ≤ 1/2, 1 ≤
i ≤ K, we have

Psuccess = Prob[
∩

Pi is successfully identified]

≥
K∏
i=1

Prob[Pi is successfully identified]

=

K∏
i=1

(1− Pfail(Pi))

=

K∏
i=1

(
1− (M + 1)(1− Phit(Pi))

M
)

≥
K∏
i=1

(
1− (M + 1)(1− Vmin

|V (G)| )
M

)

=

(
1− (M + 1)(1− Vmin

|V (G)| )
M

)K

B. ALGORITHM DETAILS

Algorithm 2 SpiderGrow

Input: freq. subgraph set S, sup. threshold σ
spider buffers Bufpre, Bufcur

Output: S′

1: S′ ← ∅
2: For each P ∈ S
3: T ← ∅;
4: For each v ∈ B[P ]
5: For each s ∈ Spider(v)
6: Q← SpiderExtend(P, v, s, σ);
7: If SpiderSetCheck(Q)
8: Continue ;/*Q is redundant.*/
9: S′ ← S′ ∪CheckMerge(Q, s,Bufpre, Bufcur);
10: P.pointer ← v.next;
11: T ← T

∪
{Q};

12: Do Until no new pattern is generated
13: P ← the next pattern in T ;
14: If P.ponter = NULL
15: Continue;/*B[P ] have been all checked*/
16: v ← P.pointer;
17: For each s ∈ Spider(v)
18: Q← SpiderExtend(P, v, s, σ);
19: If SpiderSetCheck(Q)
20: Continue ;/*Q is redundant.*/
21: S′ ← S′ ∪CheckMerge(Q, s,Bufpre, Bufcur);
22: If Qsup = Psup

23: Remove P from T ; /*P is not closed*/
24: T ← T

∪
{Q};

25: P.pointer ← v.next;
26: S′ ← S′ ∪T ;
27: Bufpre ← Bufcur;Bufcur ← ∅;
28: Return S′;

This section presents the details of our algorithm. we
focus on the case for r = 1 for simplicity of presentation
and implementation. First we define the boundary vertices
for a spider. Given an r-spider s with head v, the set of
boundary vertices of s is denoted as B[s] and is defined as
B[s] = {u|Dist(u, v) = r, u ∈ V (s)} where Dist(u, v) is the
shortest distance between u and the head v. In practice,
B[s] is implemented as a queue in which all the boundary
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Algorithm 3 SpiderExtend

Input: pattern P , boundary v, spider s, sup. threshold σ
Output: Q
1: Compute NP

v = {e|e is an edge of eP adjacent to v};
2: If NP

v ̸⊂ E[s]
3: Return P ;
4: For each ep ∈ E[P ]
5: For each es ∈ E[s]
6: If NP

v ̸= E(es
∩

eP )
7: Continue;
8: T ← E(es) \ E(ep);
9: For each (u1, u2) ∈ T
10: If u1 ∈ V (P ) or u2 ∈ V (P )
11: FAIL← TRUE;
12: If FAIL = TRUE
13: Continue ;
14: Q← P

∪
(E(s) \NP

v );
15: E[Q]← E[Q]

∪
{ep

∪
es};

16: If |E[Q]| < σ
17: Return P ;
18: Update B[Q];
19: Return Q;

Algorithm 4 CheckMerge

Input: pattern P , spider s, sup. threshold σ
Bufpre and Bufcur

Output: S
1: S ← ∅;
2: If s ∈ Bufpre or s ∈ Bufcur
3: T ← Bufpre[s]

∪
Bufcur[s];

5: For each P ′ ∈ T
6: If P and P ′ can be merged
7: Q← P

∪
P ′

8: Update B[Q];
9: S ← S

∪
{Q};

10: Else
11: Register s and P in Bufcur;
12: Return S;

vertices are sorted lexicographically. In several steps of our
algorithm, we need to examine each member of B[s] once.
As such, a spider s also has an index, s.pointer, pointing to
the current boundary vertex to be examined. s.next links
to the next boundary vertex to be examined, and s.next is
NULL if s is the last member in the queue B[s].
Detailed pseudo-code of SpiderGrow() is given in Algo-

rithm 2. T is a working set to store all the frequent super-
graphs grown out of one pattern. In general, a pattern P
would extends to multiple frequent patterns of larger sizes.
The ”Continue” statement, same as that in C programming,
forces an immediate jump to the loop control statement.
Lines 4 to 13 are to initialize T with a set of frequent pat-
terns each obtained by growing the current pattern P with
a spider extended at one of its boundary vertices. SpiderEx-
tend() is the routine which, given a boundary vertex v and
a spider s headed at v, decides if P can be extended with s
at v to form a larger frequent pattern Q. If so, Q is gener-
ated with corresponding embedding list E[Q], and the list
of boundary vertices B[Q] is adjusted accordingly. In par-

ticular, the proper portion of B[s] will be inserted into B[P ]
to form the correct B[Q]. Details are shown in Algorithm
3. Line 7 is to check if the new pattern Q is a redundant
generation of an existing pattern. Whenever a current pat-
tern P is extended with a new spider s, it will be checked
for possible merging with other patterns by CheckMerge().
If so, the newly merged pattern will be added to the output
result set. Line 10 is to initialize P ’s index pointer to in-
dicate which boundary vertex to examine next. At lines 14
to 29, all frequent patterns that can be grown from P are
generated by spider extension. Line 25 drops the pattern
if it is found to be non-closed, i.e., Q has exactly the same
embeddings as P and P ⊂ Q.

SpiderExtend() is shown in Algorithm 3. To decide if a
current pattern P can be extended with a spider s at v is to
check every embedding of P with s headed at v and see if
both the following conditions are satisfied. Only those sat-
isfying embeddings are counted in the support. (I) Maximal
Overlap. s contains all edges of P that are within distance
1 to v. This is to make sure that no other spider overlaps
more with P than s, and (II) Internal Integrity. s contains
no new edge e connecting two vertices of P . This is to es-
tablish the iteration invariant that each iteration we only
expand the current pattern outward, leaving the internal
part of P intact. Line 6 checks condition (I), and condition
(II) is checked at Lines 8 to 14. The notation es

∩
eP at

Line 6 denotes the overlapping part of two embeddings es
and eP . Line 15 collects all the valid embeddings of Q.

CheckMerge() detects merging whenever a pattern P is
extended with a spider s. In Algorithm 4, we keep two
buffers of spider, Bufpre and Bufcur, to store spiders which
have been used for extension in the previous iteration and
the current iteration respectively. CheckMerge() returns a
set of merged patterns if merging is detected and is valid,
otherwise it returns NULL. Note that when P is extended
with s, it can potentially merge with more than one other
pattern. For each spider s registered in the two buffers,
we also store pointers to the patterns which have used s for
extension for the previous and current iterations. We denote
the list of such patterns as Bufpre[s] and Bufcur[s].

C. EXTENDED EXPERIMENTAL RESULTS

C.1 Synthetic Data
(1) Varied Pattern Distributions. As shown in Table
3, 5 datasets (GID 6 to 10) are designed with increasing
proportion of small patterns. We show in Figure 18 that
SpiderMine is fairly robust against varied pattern distribu-
tions. The results returned by SpiderMine, the top 5 largest
patterns mined sorted in size-decreasing order, is quite con-
sistent. The outlier of GID 9 is due to the incidental overlap-
ping of two injected large patterns resulting in one double-
sized, which in fact demonstrates our mining effectiveness.
Here Dmax is set to 6 with σ = 10 and K = 5.

(2) Varied Dmax. In Figure 19 we show the top 5 largest
patterns mined sorted in size-decreasing order with varied
Dmax and the same setting as GID 7. d stands for Dmax

2
.

As illustrated, in general, SpiderMine is robust with respect
to varied Dmax unless Dmax is too small, which happens
because even if multiple spiders are picked within a large
pattern, the number of iterations is then too small for them
to grow closer to merge if they are fairly apart initially.
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Figure 22: DBLP Example (partial): A Collaborative Pattern Common To Different Research Groups.

(3) Varied r. The value of r mainly affects the running
time of the first stage of mining all the r-spiders, which
grows exponentially with the increase of r. For example, on
one data graph of 600 edges and 30 labels, the runtime is 610
milliseconds when r=1, 2696 milliseconds when r=2, 86696
milliseconds when r=3 and when r=4, the memory ran out
before termination. On the other hand, larger spiders give
faster generation of large patterns in the second stage. Em-
pirically, we find that a small r, e.g., r = 1 or r = 2, is a
good trade-off choice which gives better overall mining per-
formance because the quality of the top-K mining result is
largely unaffected as a result of our probabilistic framework.

(4) Varied ϵ. In general, smaller ϵ leads to longer runtime
as more seed spiders are drawn for growth. However, the
exact rate of efficiency degradation depends on a number
of factors of the input data including the distribution and
the level of prominence of the large patterns, the overall
distribution of closed patterns of various sizes and so on.
For example, on Jeti data, when minimum support = 10,
the runtime is 7.198s when ϵ = 0.45, 7.725s when ϵ = 0.25
and 9.103s when ϵ = 0.05.

C.2 Real Data
We demonstrate with two real data sets the application

of large patterns in social network analysis and software en-
gineering.
DBLP.
DBLP (http://www.informatik. uni-trier.de/∼ley/db/) pro-
vides bibliographic information on major computer science
journals and proceedings. DBLP data contains more than
955000 papers from 418139 distinct authors and 2687 confer-
ences. We selected 600 top conferences covering nine major
computer science areas. Each author in DBLP will be as-
signed to exactly one of the nine areas, which is the one in
which he or she publishes the most papers. We then pick
all the 15071 authors assigned to the “Database and Data
Mining” area. We constructed from DBLP data a co-author
relationship graph in which each vertex is a distinct author.
We give labels to the authors as follows: An author is as-
signed a label “Prolific(P)” if the author published at least
50 papers in the area of Database and Data Mining. The
“Senior(S)” label is assigned to authors with 20 to 49 pa-
pers; “Junior(J)” with 10 to 19 papers and “Beginner(B)”

with 5 to 9 papers. The authors with less than 5 papers are
not considered. We are left with 6762 authors, each repre-
sented by a vertex in the co-author relationship graph G.
There is an edge between two authors v and u if the number
of papers they co-authored exceeds λ% of one author’s total
number of publications where λ is determined by the type
of the authors. Details are omitted here due to space limit.
With these definitions, we obtain an co-author relationship
graph G with 6508 vertices and 24402 edges.

With the minimum frequency support set to be 4 and
K = 20, SpiderMine returned 20 large patterns with the
largest of size 25. Comparison with SUBDUE is shown in
Figure 20. A frequent pattern in the co-author relationship
graph describes pair-wise co-author relationship. It does not
necessarily imply that all authors in a particular embedding
have co-authored the same paper at one time. Rather, it
reveals a collective behaviorial model of a community of au-
thors. Due to the small number of node attribute values,
small patterns are almost ubiquitous, therefore offering lit-
tle analytical power. On the other hand, large patterns pro-
vide insight into (I) finding collaborative patterns common
to different research groups, as shown in Figure 22; and (II)
identifying clusters of researchers based on the discrimina-
tive collaborative patterns unique to a particular group as
shown in Figure 23. In Figure 23, the main pattern, which
is present in all embeddings, is shown in solid lines while the
pattern variant, extra edges each appearing in some embed-
dings, is indicated by dotted blue lines. As we found out, a
discriminative large pattern, together with its variants which
only differ slightly, have all their embeddings (indicated in
Figure 23 by the total number of embeddings) clustered on
a similar group of researchers, thus distinguishing clusters of
researchers with different collaborative patterns. Note that
in Figure 23, not all the author names are shown due to
space limit.
Jeti.
We analyze Jeti [1], a popular full featured open source in-
stant messaging application based on the Jabber (XMPP)
open standard for Instant Messaging and Presence technol-
ogy. Jeti has an open plug-in architecture and supports
many chat features including file transfer, group chat, pic-
ture chat (whiteboard group drawing), buddy lists, dynamic
presence indicators, etc. The application has about 49,000
lines of code, comments, and blank lines. We extracted a
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Figure 23: DBLP Example: Discriminative Collaborative Patterns Distinguishing Different Research Groups.

GID GID=6 GID=7 GID=8 GID=9 GID=10
(|V |, |E|, f) (20490,31255,1064) (31110,47446,1658) (37595,57262,2062) (47410,72149,2610) (56740,86330,3138)

large patterns injected 5 large patterns injected each with 50 vertices, support is varied between 10 to 15

small patterns injected
50 small patterns injected each with 5 vertices

support 5-15 support 10-20 support 15-25 support 20-30 support 25-35

Table 3: GID 6 to 10.

Figure 24: Jeti Pattern Example (partial pattern).

graph from Jeti, where the nodes correspond to methods
and the edges correspond to calling relationships between
the methods. Each node is labeled with the class the cor-
responding method belongs to. There is an edge from node
A to node B, if method A potentially calls method B in the
Jeti’s and relevant Java API’s source code. The graph has
in total 835 nodes, 1,764 edges and 267 labels. The nodes
have an average degree of 2.13 and a maximum degree of 69.
In Figure 21, we show the patterns mined by SpiderMine and
SUBDUE. Minimum support is set to 10. MoSS and SEuS
can not return result with hours of running on this data.
A portion of one of the patterns with the highest sup-

port is shown in Figure 24. There are 3 node labels corre-
sponding to 3 classes namely: java.util.GregorianCalendar,
java.util.Calendar, and java.text.SimpleDateFormat. Each
node in the pattern corresponds to a method from either
GregorianCalendar, Calendar, or SimpleDateFormat class.
Links between the nodes correspond to the call relation-
ships between the methods (i.e., one method calls another).
The pattern shows a tight communication among the vari-
ous methods in the GregorianCalendar class and Calendar
class. Mined patterns like the above could help in identify-
ing design smells (see [25]). Some classes should have a high
cohesion (i.e., a measure of how strongly-related classes are),
while others should have low coupling (i.e., a measure of how
loosely-related classes are) [29]. A class that is a subclass of
another class should have high cohesion, e.g., the Gregorian-
Calendar class and the Calendar class. On the other hand
two unrelated classes should not have too much cohesion.
Indeed it should have low coupling.

D. DISCUSSION & FUTURE WORK
In this section, we illustrate some potential use of large

network patterns in software engineering and social network
study, as well as some future work.

Software Engineering. In software engineering, large pat-
terns could be used to capture the “backbone” of a family
of systems. Many software houses release various variants
of the same product to customize based on individual client
needs. Many of them share many similarities which are the
backbone of the systems. These backbones are typically
quite large and involve invocations of a series of methods
spread across various components.

Mining software backbone would be very useful especially
for understanding legacy system which is usually termed as
program comprehension. Program comprehension has been
estimated to cost up to 50% of software maintenance cost.
Software maintenance cost has been estimated to go as high
as 90% of the total software cost [4, 8, 28]. When the orig-
inal developers leave the team, new developers would need
to learn the existing system often without sufficient docu-
mentation, c.f. [26, 23].

Social Network. Most large patterns are infrequent. There-
fore, it is particularly interesting when a frequent one is
indeed found in social networks. These patterns represent
massive interactive patterns that could shed light into in-
ternal dynamics of social networks. These patterns in turn
could be used to “groom” existing networks by finding “sta-
ble” patterns that could inspire and guide social network
service providers to promote activities that would encour-
age more collaborations among “citizens” of the networks
and reduce the churn rate of the network (c.f., balance the-
orem in social network [11, 7]).

In our future work, we would seek to lift the constraint on
the pattern diameter by designing new algorithms tailored
for patterns with long diameters. A more rigorous complex-
ity analysis of SpiderMine is also on the agenda.
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