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ABSTRACT
Dissemination of time-varying data is essential in many ap-
plications, such as sensor networks, patient monitoring, stock
tickers, etc. Often, the raw data have to go through some
form of pre-processing, such as cleaning, smoothing, etc, be-
fore being disseminated. Such pre-processing often applies
mathematical or statistical models to transform the large
volumes of raw, point-based data into a much smaller num-
ber of piece-wise continuous functions. In such cases, the
necessity to distribute data models instead of raw data may
arise. Nevertheless, model dissemination has received very
little attention so far. In this paper, we attempt to fill this
gap and propose a model-agnostic dissemination framework
that can handle different models in a uniform manner. The
dissemination infrastructure is built on top of a tree-based
overlay network, reminiscent to the ones employed in pub-
lish/subscribe systems, which are known to scale well to the
number of data producers and receivers. To adequately deal
with the vast model variation and receivers’ very different
accuracy requirements on the models, we have developed
optimized model routing algorithms, which are intended to
minimize data traffic and avoid bottlenecks within the dis-
semination network. The extensive experimental evaluation
over a prototype system that we have built shows that our
methods are both effective and robust.

1. INTRODUCTION
In recent years we have witnessed the proliferation of dy-

namic or time-varying data. Examples of such data include
stock market prices, currency exchange rates, patient mon-
itoring data and real-time traffic information. Such time-
varying data usually take the form of (multidimensional)
streams of numerical values and are characterized by their
large volume and the frequent updates on their values.

To facilitate the processing and analysis of time-varying
data, mathematical and/or statistical models built from the
raw values need to be created and disseminated. Those mod-
els serve varying purposes, such as data cleaning (e.g. [22]),
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Figure 1: Piece-wise linear approximation (PCA).

data aggregation (e.g. [5]), identification of important char-
acteristics in the data, e.g. central tendency, spread, skew-
ness, seasonality, trend, outliers, heavy hitters etc (e.g. [6]),
event summarization (e.g. [17]), data anonymization (e.g.
[?]) and value prediction (e.g. [7]). At the same time, many
emerging applications of dynamic data have a large number
of interested parties. The receivers of such data may have
very different information and accuracy requirements. For
example, a stock broker, whose buy/sell decisions heavily de-
pend on precise and up-to-the-minute quotes, demands the
exact stock quotes with very tight accuracy and timeliness
requirements, while a financial observer may be interested
in a model that enables her to analyze long-term market
movements with reasonable degree of accuracy. Meanwhile
a regulatory watchdog may only need the stock quotes that
have diverged significantly from their previously reported
values. Finally, the general public often desires to detect
interesting patterns or trends in such data and be notified
when those patterns or trends occur. Designing an informa-
tion dissemination solution that effectively satisfies all the
aforementioned requirements is a challenging task.

Example 1. As an illustrative example of the diverse re-
quirements that may arise, assume that we need to dissem-
inate models derived from the time-series shown in Figure
1a. Also assume that there exist three end users: the first
and second users are interested in receiving piece-wise lin-
ear approximations (PLAs, see e.g. [15] for a definition) of
the time-series, for the purposes of (a) fast exact similarity
search (as described, for instance, in [14]) and (b) relevance
feedback ([16] respectively). The first user has more strict
accuracy requirements than the second user and requires the
more exact PLA of Figure 1b. The second user, on the other
hand, can receive either of the PLAs shown in Figures 1b
and 1c. Finally, the third user is only interested in identi-
fying the trend of the data sequence within a specified error
threshold and will be content with the PLA of Figure 1d.
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State-of-the-art dissemination infrastructures assume that
the end users or applications are interested in, and can ob-
tain access to, the raw data. However, as hinted above, in
many cases the end users are only interested in mathemati-
cal or statistical models derived from the data. In such cases
sending the actual data may be impractical (e.g. resource
constrained clients may not have the necessary resources to
create those models) or even impossible (e.g. when access to
the raw data is restricted due to cost, privacy or regulatory
restrictions). In such cases, creating the models at the data
source (or an intermediate data aggregator) site and dissem-
inating them to the clients may be the only viable option.
Distributing those models, as opposed to actual data val-
ues, requires a rethink of the dissemination infrastructure as
the content of the data is not available/accessible anymore.
Nonetheless, to the best of our knowledge, no existing work
has so far considered this angle.

In this paper we attempt to fill this gap and devise a
framework for the effective dissemination of mathematical or
statistical data models. As a first cut of the problem, we at-
tempt to design a model-agnostic dissemination framework
that can handle different mathematical or statistical models
in a uniform manner. Such a framework is needed to handle
arbitrary user defined models. We expect more future work
on optimizations for specific models. In summary, we have
made the following contribution in this paper:
• Formulate and tackle the problem of model dissemina-

tion. To the best of our knowledge this is the first work
that describes how to disseminate data models, as op-
posed to raw values, to a large number of interested
parties, with varying accuracy requirements.
• Propose a model-agnostic dissemination framework that

can handle different mathematical or statistical models
in a uniform manner.
• Devise a centrally-controlled routing algorithm that

decreases the volume of transmitted data by exploit-
ing opportunities of model sharing among the data re-
ceivers. Subsequently, we describe methods that per-
form the routing task in a distributed fashion without
sacrificing much of the efficiency of the centralized al-
gorithm.
• Empirically evaluate our algorithms on a prototype,

model-aware dissemination system that we have built.
The results show that our methods can disseminate
the necessary models to the interested parties in a re-
source (in terms of both CPU utilization and network
bandwidth) efficient manner.

The rest of this paper is organized as follows: In Section 2
we give some background information and formally state the
problem that is investigated in this paper. In Section 3 we
describe in detail our proposed solution and we experimen-
tally evaluate the proposed methods in Section 4. Finally,
in Section 5 we present some additional related work and we
conclude the paper in Section 6.

2. PROBLEM FORMULATION
In this section we formulate the problem that we tackle

in this paper and provide necessary background information
to understand our solution. For simplicity of presentation
we restrict our discussion on a single data source. Neverthe-
less our solution makes no such assumption and it can be
applied to multiple (possibly dependent) data sources in a
straightforward manner.

m1
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a3,1r3,1

a2,2r2,2

r2,1

r1,2 a1,2

a2,1
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Figure 2: Models.

2.1 Time-Varying Data and Models
Time-varying data from a data source can be repre-

sented with an infinite univariate time-series, i.e. a sequence
of numerical values measured at successive times of the form
(.., xi, xi+1, .., xi+N , ...). Given a time-series, data receivers
may request the creation of statistical or mathematical mod-
els over a specific finite snapshot of that time-series, T , de-
fined as (xi, xi+1, .., xi+N ), where −∞ < i,N < +∞. We
call T [p : q] = (xp, xp+1 . . . , xq), where p ≥ i and q ≤ i+N ,
a segment of T .

Models. In this paper, we focus on piece-wise mathemat-
ical or statistical models, which divide a time-series snap-
shot, (xi, xi+1, .., xi+N ), into segments and build a model
on top of each segment [15]. Many algorithms, such as [15],
have been proposed to optimize the segmentation of time
series. While our algorithms are applicable to other models,
considering their relative popularity for data management
purposes (e.g. [8, 11]), we mainly evaluate our approach
with piece-wise regression models. A discussion of the ex-
tension of our techniques to the other models is presented
in Appendix D.

Common measures of model accuracy requirements (ar)
include but not limited to:
• Direct value approximation, such as ranges of the form

[v − ε, v + ε], where v is the actual raw value and ε is
the permissible (exact numerical) deviation from that
value.
• Cumulative error measures, such as the mean square

error, distance metrics etc.
• Probability-based accuracy constraints, such as confi-

dence intervals, variance requirements etc.
As explained in the next section, our model dissemination
algorithms make no specific assumption on the definition
of accuracy requirements. The only assumption is that the
accuracy requirements can be quantified as ratio values, i.e.
values among which a total ordering exists. Moreover, this
ordering should reflect the relative accuracy orderings and
the degree of the differences between accuracy requirements.

Public Model Interface. As the dissemination system
is model agnostic, we need to define a generic public interface
that the dissemination system can access. This interface,
will provide the system with the necessary information to
effectively route the models and at the same time hide any
specific internal mechanisms of the individual models.

This interface can capture models that can be represented
as piece-wise functions, which partitions the time-series into
segments each modelled by a function. We make no restric-
tion on the form of the function.
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We denote the models defined by all the users over a given
time-series as M and the ith model as mi. Our solution
requires that a model mi should expose the following infor-
mation and methods to the system:
• Model parameters: for the purposes of computing

the cost of model dissemination, the system has to
know the number and schema (i.e. types) of the indi-
vidual model parameters.
• Model accuracies and valid ranges: each model
mi should be associated with a list of accuracy and
valid range pairs, ARPi = {arpi,1, · · · , arpi,n}, where
arpi,j = (ai,j , Ti,j [pi,j : qi,j ]) and ai,j is the accuracy of
mi within the segment Ti,j [pi,j : qi,j ] of the time-series
T . For brevity, we call Ti,j [pi,j : qi,j ] the valid range of
mi w.r.t. the accuracy ai,j and denote it as ri,j here-
after. Figure 2 shows an example. Here we build three
models to represent the time-series T and there are
two arps for each model mi. For instance, model m1’s
accuracy over the segment r1,1 is a1,1. If ai,j is more
stringent than ai,k, we denote it as ai,j < ai,k. Data
receivers can define their accuracy requirements (ar)
according to their information needs and the models
that they expect. We call a model mi is consistent
with the accuracy requirement arj as long as there ex-
ist an arpi,j such that ai,j ≤ ark. Furthermore, we say
that model mi is applicable to node nk if mi is con-
sistent with ark. As we will see soon, we can leverage
the information of models’ accuracies and valid ranges
to minimize the model dissemination cost.
• Model generators: functions for creating the mod-

els over a time-series with accuracy requirement con-
straints should be provided to the system. As shown
in the later sections, we take use of two functions: (1)
Create models over a time-series T with a particular
accuracy; (2) Determine the valid ranges of given mod-
els based on a particular accuracy. These two functions
will be used by the algorithms described in the next
section to generate the necessary models and minimize
the models to be disseminated through the network.

We will see later in the next section how this interface can
be utilized.

2.2 Model Routing Infrastructure
Our routing infrastructure consists of an overlay network

of N nodes. Those nodes can be either model producers or
model receivers. The model producers collect the raw data
from the data source and generate the data models. Those
nodes are the only nodes that have access to the raw data.
As we explain in the next section, depending on the dissem-
ination method that is employed the model producers may
perform additional (routing related) tasks. The data re-
ceivers, on the other hand, host the end users of the models,
which have specific information and accuracy requirements
and expect models that satisfy those requirements. In ad-
dition to that, the data receivers may forward models to
neighborhood nodes (thus, we also call them router nodes).

Following many existing publish/subscribe systems, the
nodes of the dissemination network are structured into rout-
ing trees [1, 20, 25]. A routing tree could be some sort of
minimum distance tree covering a particular subset of the
dissemination infrastructure. The root of such a tree is a
model producer, while the rest of the nodes are data re-
ceivers. For its construction, appropriate distance measures
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Figure 3: Routing Tree.

such as geographic distance among the nodes, link quality,
network traffic etc may be taken into consideration [20, 25].
When a node (either a model producer or a data receiver)
wants to join, it usually does so heuristically through a close
by node that already belongs to the dissemination network.
Periodically the entire routing structure may be restructured
so that global routing quality requirements, such as load bal-
ancing and maximum throughput for the entire system, are
achieved [25]. In Figure 3 an example of a routing tree is
presented, where a model producer is connected with five
data receivers. Two of the data receivers (DR1 and DR3)
perform model routing as well to the rest of data receivers.

The dissemination of information from model producers
to the receivers is accomplished through messages that are
exchanged among the nodes. The end user requirements
are described with user profiles, which are installed in the
dissemination infrastructure during system bootstrap. De-
pending on the actual message routing method that is em-
ployed in the system, the information that is captured in the
profiles may vary from direct data receiver addressing (e.g.
IP address), indirect data receiver specification (e.g. data
receivers with accuracy requirement stricter or equal to ar),
content-based (e.g. predicates on the disseminated models)
or any combination of those. A routing table is maintained
at each router node, which compactly translates from user
profiles to next hops. As in the case of model producer,
depending on the routing algorithm, additional metadata
information may be maintained at each router node.

2.3 Optimization Problem
A key task of the model routing algorithms is to decide

what models to send to each data receiver. We formalize
this task with the following optimization problem, called
Min-Model-Dissemination , that we attempt to solve in
this paper. Note that, to simplify the problem, we take the
routing structure as the input of our problem and assume it
is constructed by existing algorithms, such as [25].

Min-Model-Dissemination: Given a finite time series
T , a set of models {m1, · · ·mn} over any segment of T , the
accuracy requirement ark of each client node nk, and the
routing structure of the overlay network, choose the set of
models Mk that are applicable to nk, such that the T is to-
tally covered by the valid ranges of the models in Mk and
the total number of models that are sent over the network is
minimized.

In the above statement, we call a set of segments of T ,
{T1, T2, . . . , Ti}, covers T , if their union is equivalent to T .
Furthermore, the Min-Model-Dissemination problem is
an NP-hard problem (Appendix B).

One possible solution would be to minimize the num-
ber of models built for each individual receiver under the
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constraint of the receiver’s accuracy requirement. However
this approach fails to exploit the sharing opportunities of
model dissemination. Consider a simple example that we
disseminate the models over the time-series shown in Fig-
ure 2 to two nodes: ni and its child node nj . Suppose
ari = a1,1 = a2,1 = a3,1, arj = a1,2 = a2,2 = a3,2 and
ari < arj . Then models m1,m2 and m3 can be sent to ni.
One can also see that ni can actually forward m1 and m2

to nj instead of disseminating a different set of models from
the publisher all the way to nj .

To exploit such sharing opportunities, there are two par-
ticular challenges. First, generating the models is a costly
job and hence generating all the possible models is infeasi-
ble. Therefore, we have to selectively generate models that
are more likely to be shared by more nodes. Second, there
might be a lot of data receivers and there could be a large
number of different accuracy requirements. This could also
incur high cost to generate the models as we have to pro-
duce the different valid ranges for different accuracies. An
efficient way to reduce such an overhead is needed.

3. MODEL DISSEMINATION
In this section we describe our model dissemination meth-

ods, which try to explore model sharing, and at the same
time not clutter the data receivers with redundant models.

3.1 Centrally-Controlled Routing
The algorithm assumes that global information on the

structure of the dissemination network as well as the ac-
curacy requirements of each data receiver are available at
the model producer. Thus, the model producer has all the
necessary information to solve the optimization problem de-
scribed in Section 2.3. However, as we explained in that
section, the optimal solution is computationally impracti-
cal to achieve. Consequently, we propose a heuristic way of
generating the required models for each data receiver that
quickly provides a sufficient and viable compromise.

The method identifies a subset of data receivers whose
models, if shared among the rest of the data receivers, have
potential to reduce the amount of information that needs
to be transmitted in the network. We call the accuracy
requirements of those data receivers the vantage accuracies
from now on. Once the vantage accuracies have been chosen
and their consistent (Section 2.1) models have been gener-
ated, the models for the rest of the accuracy requirements
are created by appropriately extending the valid ranges of
those initial models.

The first step of the algorithm is to choose the vantage ac-
curacies. We choose them in such a way that their consistent
models can be re-used for the other accuracy requirements.
To accomplish that, we employ the following simple lemma:

Lemma 1. Suppose a model mi over a time-series T is
consistent (see Section 2.1) with accuracy requirement ark

and [s, e] is the valid range of mi with regard to ark. Then
the same model mi is also consistent with arj in the range
[s− ε1, e+ ε2] as long as ark ≤ arj, where ε1, ε2 ≥ 0.

In the lemma, the relation ≤ signifies that the left side ac-
curacy requirement is more stringent than the right side ac-
curacy requirement. From that lemma, it becomes obvious
that the models created for a data receiver with accuracy
requirement ar can serve any other data receiver whose ac-
curacy is less stringent than ar.

A solution to the problem of choosing the vantage accu-
racies would be to quantitatively characterize and formally
compute the degree of model sharing as a constraint satis-
faction/optimization problem. However, as our experiments
reveal, merely maximizing the degree of model sharing leads
to suboptimal solutions. This is due to the fact that generat-
ing the models for a data receiver with accuracy requirement
arj by extending the ranges of the models consistent with
ari, where (ari ≤ arj), may result in more models than
generating the models for arj from scratch. As a result, an
optimal solution to the choice of vantage accuracies requires
a computationally expensive global optimization process.

We experimented with forming the vantage accuracies in a
heuristic fashion by choosing, for each of the children of the
model producer, the data receiver with the most stringent
accuracy requirement in that branch of the routing tree. The
intuition behind this heuristic is that, for each branch, the
models for the most stringent accuracy requirement in that
branch will have to be generated anyway. Consequently, if
we choose those models as the basis for the creation of the
rest of the models we reuse their computation for free. This
heuristic, although very simple, can achieve, as shown in our
experimental evaluation, considerable model sharing.

Once the vantage accuracies have been chosen and their
consistent models have been generated, the method employs
the previous lemma to create candidate models for the rest of
the accuracy requirements. In particular, for each of those
accuracy requirements, ark, it (a) chooses an appropriate
vantage accuracy arj and (b) extends the valid range of each
model that has been generated for arj as much as possible
with the constraint that the model is consistent with ark.
The chosen vantage accuracy is the one which (a) is more
stringent than ark and (b) maximizes model sharing within
the dissemination network. The lemma ensures that the
expanding is a valid process.

After having identified the the previous models, the algo-
rithm has to prune some of those so that it identifies the
smallest number of models that need to be disseminated
to each data receiver. The reason why pruning is required
is because the range extension that was performed in the
previous step may result in models whose valid ranges may
overlap in arbitrary ways and as a result some of those mod-
els are redundant. This is true if the ranges of the rest of the
models fully cover them. To efficiently solve this problem we
map it to a set covering problem as follows:

Lemma 2. Given the models M over T , to minimize the
number of models that are needed by a receiver with ark, we
have to choose the minimum number of ranges that covers
T from the subset {ri,j |ai,j ≤ ark}.

Although the set-covering problem is known to be NP-hard,
there exists a well-known, greedy-based approximation algo-
rithm [4]. We adopt that algorithm in our implementation.

Once the model creation phase completes, the generated
models are disseminated to the corresponding data receivers
in a batch fashion; during that phase, identical models along
a particular path, are only transmitted once.

3.2 Distributed Routing
As shown in our experimental evaluation, the previous al-

gorithm does a good job in minimizing the number of models
to be routed. Nevertheless it requires the model producer
to eliminate redundant models by solving the set covering
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problem that we described in Section 3.1 for each accuracy
ark. With a large number of accuracies, that might incur a
large computation overhead and hence turn the model pro-
ducer into the bottleneck for the entire system.

We propose to reduce the load of the model producer by
offloading some of the work to the router nodes. In order
to identify what can be delegated we make two observa-
tions: First, the only computations that need to take place
at the model producer are those involving the original data
sequence T . Moreover, once a model has reached a data
receiver nk with accuracy requirement ark, the same model
can be forwarded to any descendant, nj , of that data re-
ceiver, with ark ≤ arj . Such model-recycling opportunities
make forwarding additional models to nk, in order to serve
the aforementioned descendants, unnecessary.

In fact we can do even better than that: as we explained
in the previous section, some of the models that are sent
to the data receiver, ni, may be redundant for any descen-
dant data receiver, nj , with ari ≤ arj . In the centralized
algorithm, redundant model elimination is performed at the
model producer and it requires the ARP list associated with
each model. If a data receiver has this information then it
can perform the elimination, thus saving the set cover com-
putation at the model producer. That information has to be
generated at the data source site, as it requires access to T
and as a results needs to be forwarded to the data receivers.

The routing algorithm begins by generating the valid ranges
at the model producer. Then the producer will perform the
routing to its child nodes. The models that are sent to each
child are chosen based on the strictest accuracy arj in the
subtree of the child. The redundant model elimination algo-
rithm is run to fulfill this task. The similar process is run at
each node once it receives the models from its parent. Note
that if arj happens to be in the vantage accuracies that are
chosen by the producer, we can simply pick those models
that are originally generated based on arj without running
the redundant model elimination algorithm.

3.3 Accuracy Clustering
For applications that have no restrictions on the choice

of accuracy requirements, the system could receive a large
number of different accuracy requirements, {ar}n, and as a
result need to generate a large number of models. That may
incur high overhead in generating and routing those models.

To solve the problem, we propose to partition the ars
into a fixed number of clusters, say N (where N << n). All
the data receivers whose ars are in the same cluster will re-
ceive the same set of models that are generated based on the
strictest ar in the cluster. Thus, each data receiver will get
models that are consistent with their accuracy requirements.

We denote the ith accuracy in the jth cluster as arj
i and

the strictest ar in the jth cluster as sarj . The clustering al-
gorithm attempts to cluster accuracies based on their prox-
imity to each other. To achieve that we compute, for each
cluster, the sum of the differences of each accuracy from the
strictest accuracy in that cluster. Our objective function is
then, the total sum over all clusters, i.e.

P
j

P
i(ar

j
i − sarj)

and the clustering objective is to minimize that function.
Existing clustering algorithms could be adapted to solve

this problem, which has a different objective function in
comparing to existing clustering problems. As the study
of cluster optimization is beyond the scope of this paper, we
adopt a simple and low cost distributed clustering algorithm

in the current implementation of our system. As shown in
the experiment results, such a simple algorithm can already
achieve a great improvement.

The algorithm runs in a bottom up fashion and starts at
each leaf node in parallel. Initially each cluster only contains
one ar value. If the number of clusters is smaller than N ,
then the clusters will be forwarded to the parent node. For
each cluster ci, we only maintain two values: the strictest
ar in the cluster, i.e. sari, and the number of elements in
this cluster, nei. If the number of clusters is larger than N ,
then the algorithm would selectively merge two clusters at
each iteration until the number of clusters is equal to N .

4. EXPERIMENTAL EVALUATION
This section presents our major experimental results. We

prototyped the model dissemination system described in
Section 2.2 in Java 6 using Java RMI for distributed com-
munication. Additional experimental settings and results
can be found in Appendix C.

Routing Methods. We implemented and compared the
following routing methods:
• Compact Model Representation (CMR), i.e. the sim-

ple solution that was described in Section 2.3. This
algorithm tries to minimize the number of models for
each individual receiver. Due to the lack of prior work
we use this as the baseline.
• Centrally Controlled Routing (CCR), which performs

all the routing decisions at the model producer and
was presented in Section 3.1.
• Distributed Routing (DR), which offloads some of the

routing decisions to the router nodes and was described
in Section 3.2.
• Distributed Routing with Accuracy Clustering (DRAC),

which groups the accuracy requirements into a small
number of clusters while still performing distributed
routing decisions and was detailed in Section 3.3.

Data. We used the publicly available sensor measure-
ments from Intel Berkeley Research ([12]). In particular, we
experimented with the temperature data from sensor 45.

Measures. We examined both the resource consumption
at the nodes of the dissemination infrastructure (i.e. model
producer and data receivers) and network usage. To accom-
plish that we have measured:
• Network bandwidth: To estimate the required net-

work bandwidth, we count the total number of unique
models that are routed along all the edges of the rout-
ing tree. Depending on the employed method, some
additional metadata may also be need. The required
space for this additional metadata can be amortized
due to the batching that we employ during the actual
model routing. However for each model we have to
send the potentially large number of parameters (most
of which will require floating point precision). As a re-
sult, those parameters constitute the bulk of the space
requirement. Taking into consideration that the mod-
els within a batch all have the same form, their number
is directly proportional to their space requirements.
• Running time at each node: Our setup consists of

homogeneous, dedicated nodes. As a result by mea-
suring running time of the algorithms (i.e. wall time),
we can estimate the CPU consumption at those nodes.
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Figure 4: Sensitivity to #Receivers.

4.1 Number of Receivers
We first vary the number of data receivers from 100 to

1000, while keeping the other parameters fixed. The results
are shown in Figure 4, where the X axis represents the num-
ber of data receivers.

As shown in Figure 4(a), the Compact Model Represen-
tation (CMR) approach incurs the highest bandwidth con-
sumption (which is represented by the total number of mod-
els sent) in comparison to the other three approaches. The
main reason for this is that although it generates the mini-
mum number of models that are required per data receiver,
those models provide small sharing opportunities with mod-
els of other data receivers. In contrast, the rest of the algo-
rithms make model sharing a principal target.

As shown in the same figure, the difference in bandwidth
consumption becomes larger as the number of data receivers
increases, due to the fact that there are more opportunities
for model sharing with a larger number of receivers.

As expected, the CCR method performs best in mini-
mizing the bandwidth consumption. Nevertheless, the dis-
tributed routing approaches perform only slightly worse, al-
though they can only make local decisions. Those results
show that the distributed routing and accuracy clustering
techniques do not lower much the optimization quality.

Furthermore, as shown in Figure 4(b), although the CCR
method performs the best in terms of bandwidth consump-
tion, it takes a very long running time at the model pro-
ducer, which could, because of that, become a bottleneck of
the system. That is because the algorithm depends on the
model producer to control the entire model routing process.
That entails (a) generating the models and (b) performing
the redundant model elimination step for all the data re-
ceivers which are time-consuming tasks. On the other hand,
the two distributed approaches reduce the producer’s run-
ning time by more than three orders of magnitude over CCR
and up to an order of magnitude over the baseline (CMR)
method. The DRAC approach further improves the pro-
ducer’s performance by reducing the number of accuracy
requirements that the latter has to handle.

Moreover, as shown in Figure 4(c) both distributed ap-
proaches require more computation at the data receivers.
This is because they share the routing decisions with the
model producers. Nevertheless, the more balanced workload
among the model producers and the data receivers help to
avoid potential bottlenecks that may otherwise occur.

Two last observations have to be made from the figures:
(a) the running time of all three of our methods is not greatly
affected by the number of data receivers, while (b) the num-

ber of required models increases linearly with the former
number. Those are very encouraging results as they hint for
the scalability of our methods.

4.2 Sensitivity to Accuracy Requirements
Next we examine how the algorithms perform when we

vary the characteristics of the accuracy requirements (ar).
We first vary the data distribution of the receivers’ accuracy
requirements (ar). The range of possible ar’s is fixed to the
default value (i.e. 1%− 30%) and we use the following data
distributions to generate a data receiver’s ar value:
• MaxZipf: we use a zipf distribution with the param-

eter as 1.1 and the higher end of the accuracy range as
the most popular value. This is to simulate the situa-
tion that most data receivers require low accuracies.
• Guassian: a Gaussian distribution with the median

value in the accuracy range as the mean. This is to
simulate the situation that most data receivers require
a medium accuracy.
• Random: a uniform distribution over the whole range

of accuracies. This is the default in other experiments.
• MinZipf: similar to MaxZipf, except the lower end of

the accuracy range is set as the most popular rather
the higher end. In this case, most data receivers have
high accuracy requirements.

The results are illustrated in Figure 5. From Figure 5(a),
one can observe that when the data receivers have higher ac-
curacy requirements, all the approaches consume more net-
work bandwidth. The CRM again consumes more band-
width than the three proposed approaches and the differ-
ence becomes much larger when the data receivers become
more demanding. The reason is that the demanding data
receivers require the system to disseminate more models and
hence the need to explore model sharing becomes more im-
portant. In addition, as shown in Figure 5(b) and 5(c), the
distributed approaches manage to balance the routing task
load among the model producer and the data receivers and
hence avoid bottleneck.

4.3 Accuracy Requirement Clustering
In the final experiment we examine the system’s sensitiv-

ity to the number of accuracy clusters. For that purpose,
the number of clusters is varied from 1 to 500. The results
are shown in Figure 6. As can be seen from the figure, with
50 clusters, we can reduce the CPU consumption by more
than half and only increase the bandwidth consumption very
slightly. Moreover, the data receivers’ running time is prac-
tically unaffected by the clustering.
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Figure 5: Sensitivity to the Distribution of Accuracy Requirements.
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Figure 6: Sensitivity to the Number of Accuracy Clusters.

5. RELATED WORK
This paper is related to research efforts in the area of

large-scale information dissemination systems as well as the
modeling and processing of time-varying data. We have al-
ready related our work to many previous efforts. In this
section we present some additional reference material.

Publish/Subscribe systems. Information dissemina-
tion is the focus of distributed publish/subscribe systems.
Publish/subscribe [9] is an asynchronous messaging para-
digm, where no direct communication between message pub-
lishers and subscribers takes place. In addition, many efforts
have focused on extending publish/subscribe systems to sup-
port complex data and subscription types [2, 24, 27]. Due
to the advantages of P2P systems in terms of scalability
and fault tolerance, recent efforts have focused on develop-
ing publish/subscribe systems on top of them [21, 10]. Such
techniques can be easily adopted into our system as the lat-
ter does not require any specific message routing structure.

Dynamic Data Dissemination. Conceptually either of
the publish/subscribe or peer-to-peer systems can be used to
disseminate dynamic data. However, the high frequency of
data updates and the large number of data objects pose ex-
tra challenges to its scalability. Therefore, researchers have
studied how to exploit users’ tolerance of data inaccuracy
to reduce the amount of network traffic [18, 19, 20, 26, 25].
Our approach is complementary to those works as it aims
at optimizing the dissemination of models by exploiting op-
portunities of sharing them among the interested parties.

Data Modeling and Processing. In the area of data
acquisition, the use of models to reduce the amount of data
that needs to be transferred from the data source to the base
station [3, 7, 13, 23] has been studies. The basic idea is that
if the base station can use a model to predict the updates of
sensor values, the sensors do not need to send the update.

Models that have been examined include the Kalman Filter
[13], AR models [23], and the multivariate Gaussian distri-
bution [3, 7]. In our work we investigate an orthogonal, yet
related problem, namely that of disseminating data models
to a large number of receivers. In that setting the optimiza-
tion goal is to share models among receivers, as opposed to
the minimization of amount of information gathered from
the data sources.

6. CONCLUSIONS
In this paper, we have introduced the problem of dis-

tributed dissemination of models over time-varying data.
We have proposed the architecture of a large-scale model
dissemination system and solved an important optimiza-
tion problem that has risen, i.e. minimizing the network
bandwidth consumption by exploiting the sharing of mod-
els among receivers. As the number of possible models is
large and the model generation is an expensive task, effec-
tive heuristics have been proposed to selectively generate
models that have good sharing potential.

Additionally, both central and distributed model routing
algorithms have been proposed. As experimentally shown,
although the centralized algorithm performs slightly better
in minimizing bandwidth consumption, it incurs high com-
putation cost at the model producer. The distributed al-
gorithm, on the other hand, successfully shares the routing
task load among all the nodes. Finally, to further limit the
cost of model generation, we proposed to group the accuracy
running time by more than 70% with 1000 receivers.

7. REFERENCES
[1] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.

Design and evaluation of a wide-area event

870



notification service. ACM Transactions on Computer
Systems (TOCS), 19:3:332–383, Aug. 2001.

[2] B. Chandramouli, J. Xie, and J. Yang. On the
database/network interface in large-scale
publish/subscribe systems. In Proc. ACM
International Conference on Management of Data
(SIGMOD), pages 587–598, Chicago, USA, 2006.

[3] D. Chu, A. Deshpande, J. M. Hellerstein, and
W. Hong. Approximate data collection in sensor
networks using probabilistic models. In Proc. IEEE
International Conference on Data Engineering
(ICDE), Atlanta, USA, 2006.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms, 2nd edition,
2001.

[5] G. Cormode, T. Johnson, F. Korn, S. Muthukrishnan,
O. Spatscheck, and D. Srivastava. Holistic udafs at
streaming speeds. In Proc. ACM International
Conference on Management of Data (SIGMOD),
pages 35–46, Paris, France, 2004.

[6] G. Cormode, F. Korn, S. Muthukrishnan, and
D. Srivastava. Diamond in the rough: Finding
hierarchical heavy hitters in multi-dimensional data.
In Proc. ACM International Conference on
Management of Data (SIGMOD), pages 155–166,
Paris, France, 2004.

[7] A. Deshpande, C. Guestrin, S. Madden, J. M.
Hellerstein, and W. Hong. Model-driven data
acquisition in sensor networks. In Proc. International
Conference on Very Large Databases (VLDB), pages
588–599, Newport Beach, USA, 2004.

[8] A. Deshpande and S. Madden. Mauvedb: supporting
model-based user views in database systems. In Proc.
International Conference on Management of Data
(SIGMOD), pages 73–84, 2006.

[9] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Computing Surveys (CSUR), 35:2:114–131,
2003.

[10] A. Gupta, O. Sahin, D. Agrawal, and A. Abbadi.
Meghdoot: Content-based publish/subscribe over
P2P networks. In Proceedings of the 5th
ACM/IFIP/USENIX international conference on
Middleware, page 273, 2004.

[11] S. Ilarri, O. Wolfson, E. Mena, A. Illarramendi, and
P. Sistla. A query processor for prediction-based
monitoring of data streams. In Proc. International
Conference on Extending Database Technology
(EDBT), pages 514–426, Saint Petersburg, Russia,
2009.

[12] Intel Lab Data.
http://db.csail.mit.edu/labdata/labdata.html.

[13] A. Jain, E. Y. Chang, and Y.-F. Wang. Adaptive
stream resource management using kalman filters. In
Proc. ACM International Conference on Management
of Data (SIGMOD), pages 11–22, Paris, France, 2004.

[14] E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and
S. Mehrotra. Dimensionality reduction for fast
similarity search in large time series databases.
Knowledge and Information Systems, 3:3:263–286,
Aug. 2000.

[15] E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An

online algorithm for segmenting time series. In Proc.
IEEE International Conference on Data Mining
(ICDM), pages 289–296, Berkeley, USA, 2001.

[16] E. J. Keogh and M. J. Pazzani. Relevance feedback
retrieval of time series sata. In Proc. ACM
International Conference on Research and
Development in Information Retrieval (SIGIR), pages
183–190, Berkeley, USA, 1999.

[17] J. Kierman and E. Terzi. Constructing comprehensive
summaries of large event sequences. In Proc. ACM
International Conference on Knowledge Discovery and
Data Mining (SIGKDD), pages 417–425, Las Vegas,
USA, 2008.

[18] S. Shah, S. Dharmarajan, and K. Ramamritham. An
efficient and resilient approach to filtering and
disseminating streaming data. In Proc. International
Conference of Very Large Databases (VLDB), pages
57–68, Berlin, Germany, 2003.

[19] S. Shah, K. Ramamritham, and P. J. Shenoy.
Maintaining coherency of dynamic data in cooperating
repositories. In Proc. International Conference of Very
Large Databases (VLDB), pages 526–537, Hong Kong,
China, 2002.

[20] S. Shah, K. Ramamritham, and P. J. Shenoy. Resilient
and coherence preserving dissemination of dynamic
data using cooperating peers. IEEE Transactions on
Knowledge and Data Egnineering (TKDE),
16:7:799–812, july 2004.

[21] W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and
A. Buchmann. A peer-to-peer approach to
content-based publish/subscribe. In Proceedings of the
2nd international workshop on Distributed event-based
systems, pages 1–8, 2003.

[22] T. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao, and
P. Shenoy. Probabilistic inference over rfid streams in
mobile environments. In Proc. IEEE International
Conference of Data Engineering (ICDE), pages
1096–1107, Shanghai, China, 2009.

[23] D. Tulone and S. Madden. Paq: Time series
forecasting for approximate query answering in sensor
networks. In Proc. European Workshop on Wireless
Sensor Networks (EWSN), pages 21–37, Zurich,
Switzerland, 2006.

[24] Y. Zhou, K. Aberer, and K.-L. Tan. Toward massive
query optimization in large-scale distributed stream
systems. In Proc. ACM/IFIP/USENIX International
Conference on Middleware, pages 326–345, Leuven,
Belgium, 2008.

[25] Y. Zhou, B. C. Ooi, and K.-L. Tan. Disseminating
streaming data in a dynamic environment: an
adaptive and cost-based approach. The International
Journal on Very Large Data Bases (VLDB J.),
17:6:1465–1483, nov 2008.

[26] Y. Zhou, B. C. Ooi, K.-L. Tan, and F. Yu. Adaptive
reorganization of coherency-preserving dissemination
tree for streaming data. In Proc. IEEE International
Conference on Data Engineering (ICDE), page 55,
Atlanta, USA, 2006.

[27] Y. Zhou, A. Salehi, and K. Aberer. Scalable delivery
of stream query results. In Proc. International
Conference of Very Large Databases (VLDB), pages
49–60, Lyon, France, 2009.

871



APPENDIX
A. ADDITIONAL ALGORITHM DETAILS

In this section, we will present the additional details of
the algorithms described in Section 3. In particular, pseu-
docodes and their brief description will be presented.

A.1 Centrally-Controlled Routing
The pseudocode of the algorithm to generate the valid

model ranges introduced in Section 3.1 is presented in Algo-
rithm 1. As shown in line 6 of the algorithm, the first step
is to choose the vantage accuracies. Once the vantage ac-
curacies have been chosen and their consistent models have
been generated (lines 7− 10 of algorithm 1), the algorithm
create candidate models for the rest of the accuracy require-
ments.(lines 11− 20 of algorithm 1).

Algorithm 1 Generate Valid Model Ranges.

1: Input: Data T , Accuracy requirements ari, 1 ≤ i ≤ n
2: Output: Models M , Vantage accuracies V A, |V A|< n
3:
4: Pick k vantage accuracies V A, 1 ≤ k < n
5: for each ar ∈ V A do
6: Create models Mar over T ,
7: such that ∀ mi ∈Mar, ai,1 ≤ ar and ri,1 ⊆ T
8: end for
9: for each accuracy ark /∈ V A do

10: Pick accuracy arj ∈ V A
11: for each model mi ∈Marj do
12: ri,l := ri,j and ai,l := arj

13: while ai,l ≤ ark do
14: Expand ri,l

15: end while
16: Insert < ak,l, ri,l > into ARPi

17: end for
18: end for

The centrally-controlled routing algorithm is shown in Al-
gorithm 2.

Algorithm 2 Centrally Controlled Model Routing.

h

1: Input: Data Sequence T , Accuracy requirements {ari}
2: Date Receivers {nk}
3: Output: A set of models Mk for each receiver nk

4:
5: {M,V A} := Generate Valid Model Ranges (T , ari)
6: for each accuracy ark /∈ V A do
7: Compute min cover of T from the range set {ri,j |ai,j ≤

ark}
8: Collect the corresponding models for the selected

ranges into Mk

9: Send model Mk to the receiver nk

10: end for

A.2 Distributed Model Routing
The pseudocode of the distributed model routing algo-

rithm is presented in Algorithm 3. The algorithm begins
by generating the valid ranges at the model producer (lines
7–9) and then the producer will perform the routing to its
child nodes (lines 10–15). Each node in the dissemination

tree will perform a similar procedure when it receives the
models.

Algorithm 3 Distributed Model Routing.

h

1: Input: Data sequence T (only at the producer)
2: Accuracy requirements {ari}
3: Data Receivers {nk}, Model Producer mp
4: Output: A set of models Mk for child receiver nk

5:
6: if this is the producer then
7: {M,V A} := Generate Valid Model Ranges (T , ari)
8: end if
9: for each child node ni do

10: arj := the strictest ar in the subtree of ni

11: Compute min cover of T from the range set
{rx,y|ax,y ≤ arj} {Note that this step can be saved
away if arj is in the vantage accuracies chosen by the
producer}

12: Collect the corresponding models for the selected
ranges into Mj

13: Send Mj to ni

14: end for

A.3 Accuracy Clustering
The pseudocode of clustering accuracies can be seen in

Algorithm 4.

Algorithm 4 Accuracy Clustering.

1: Input: Set of clusters {c1, c2, · · · , ck}
2: The targeted number of clusters N , k > N
3: Output: New set of clusters {c1, c2, · · · , cN}
4:
5: while #clusters > N do
6: Pick clusters ci and cj such that
7: sari ≤ sarj and (sarj − sari) ∗ nej is MIN
8: Merge ci and cj
9: Propagate the clusters to the parent node

10: end while

B. PROBLEM HARDNESS

Theorem 1. The Min-Model-Dissemination problem
is NP-hard.

Proof. If we restrict the Min-Model-Dissemination
problem by ignoring the routing structure, then the problem
becomes finding the minimum number of models applicable
to each node, whose valid ranges completely covers T . This
is equivalent to the set cover problem, which is NP-hard
[4]. Therefore, the Min-Model-Distributed problem is
an NP-hard problem.

C. ADDITIONAL INFORMATION OF THE
EMPIRICAL EVALUATION

In this section, we present additional information for the
experimental evaluation that we performed that we have no
space to present in the paper’s main body.
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C.1 Additional Details of the Experimental
Setup

Data. As mentioned above, we used the publicly available
sensor measurements from Intel Berkeley Research ([12]).
As the default setting, in each round we disseminate the
models derived from 400 sensor readings. We have also var-
ied the number of readings from 100 to 1200. The conclu-
sions are consistent with the experimental results that we
discuss below. We repeated the same set of experiments on
the Adiac dataset from the UCR time series archive [29] and
obtained similar results (omitted due to lack of space).

Workload. As a default setting there exist 500 data re-
ceivers, structured in a balanced routing tree with a default
fan-out of 3. The purpose of using a balanced tree is to easily
control the height of the tree, which as shown later is crit-
ical in the performance of model sharing, by changing the
fan-out. We have also used unbalanced tree structures and
did not find any significant variations in the results. Finally,
when accuracy clustering is required the default number of
clusters is 10.

We use piece-wise polynomial (of varying degree) regres-
sions as our models. The accuracy of a model is the maxi-
mum deviation between the model output and the raw data
values within the valid range of the models.

To set the accuracy requirements for the receivers, we cal-
culate the standard deviation of the values, sd. Then the
accuracy requirement of each receiver is chosen randomly
in the range of [1% · sd, 30% · sd]. Both the distribution
and the range are varied. The random assignment is biased
against our techniques, as we assume no specific clustering
of data receivers based on their data accuracy requirements.
In practice the receivers’ requirements are taken into con-
sideration while creating the routing tree [26, 25], and data
receivers with similar requirements are clustered together so
that the aggregate routing distance is minimized. That can
potentially increase model sharing opportunities.

Prototype System. We have coded the dissemination
infrastructure and the above methods in Java 6 using JAVA
RMI for distributed communication.

Simulation Setup. The experiments were run on a
Linux machine with an Intel Core 2 Quad CPU (3.0GHz)
and 8GB RAM. As our measures are insensitive to whether
the experiments are run in multiple machines or simulated
in one machine we opted for simulating the distributed en-
vironment by running one instance of the system for each
node in the network. We schedule one instance at a time in
order to obtain an accurate running time estimation. By us-
ing simulation we can vary the scale of the experiments and
control the parameters flexibly and in a time-effective way.
Due to page limit, we only present a subset of the results;
additional results can be found in the appendix.

C.2 Degree of Polynomial
In this experiment we vary the degree of the polynomials

that model the data. Note that the purpose of this study
is not to determine which degree is better. Instead, our
primary intention is to examine how the algorithms perform
when different models are employed. We experiment with
degrees from 1 (i.e. which represents linear regression) to 5
and we report the results in Figure 7.

Figure 7(a) shows that, for the data that we used in the
experiments, there are less models to be disseminated with
a higher degree polynomial. Once again, our approaches
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Figure 7: Sensitivity to the Degree of Polynomial.
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Figure 8: Sensitivity to the Range of Accuracy Re-
quirements.
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outperform the baseline algorithm (CMR) consistently for
all the different degrees. Another interesting fact is that,
with higher degree of polynomials, both CCR and DR con-
sume more and more CPU at the producer in comparison
to DRAC. This is because higher degree polynomials are
more complex to compute. Nevertheless, the accuracy clus-
tering that is performed by DRAC reduces the number of
accuracies that are considered at the model producer and
hence keep the computation time low at the producer.

C.3 Range of Accuracy Requirement
In this experiment we vary the range of accuracy require-

ments by varying the higher end of the range and investigate
the effect of that range on the performance of the algorithms.
In particular, we experiment with ranges of [1% − 10%],
[1% − 30%], [1% − 50%], and [1% − 70%] and these per-
centages are in terms of the standard deviation of the test
dataset. Figure 8 shows the results.

The observations from this experiment are similar with
those in the previous experiments and reveal once again
the superiority of the three proposed methods in terms of
both network bandwidth consumption and running time at
each node of the routing infrastructure. One additional
trend worth mentioning is the decreased resource consump-
tion when data receivers become more lenient in their ac-
curacy requirements. This is as expected, because with less
stringent accuracy requirements, the number of models that
needs to be generated is potentially smaller as the same
model can potentially represent a larger segment of the orig-
inal data sequence.

C.4 Fan-out
In the forth experiment we varied the fan-out and hence

the height of the routing tree. The results are shown in Fig-
ure 9(a). The figure shows that, with a higher fan-out, the
CMR has a smaller network bandwidth consumption (how-
ever it is still outperformed by all three of the proposed
algorithms). This trend hints that there is less to gain from
model sharing with a shallow routing tree. Note that the
number of receivers is set to 500. When the fan-out is equal
to 10, there are only 3 levels in the routing tree, which is
balanced. Therefore, as would be expected, the benefit of
model sharing is not as high. In other words, it is more
critical to exploit model sharing with a higher routing tree.

Finally model producer’s and data receivers’ CPU consump-
tion follows the same trend as those observed in previous
experiments.

D. DISSEMINATION OF OTHER MODELS
In this paper, we have focused on piecewise polynomial

approximations of time-varying data as the models to be
disseminated. Nevertheless, any form of linear or non-linear
regression can be easily employed to model a given partition.
Other high level timeseries representations, such as symbolic
(i.e. NLP-based or string based) representations (please see
[28] for a description of such models), can be supported in a
straightforward manner. More specifically, this can be done
by (a) identifying the partitions of the timeseries that will
enable maximum sharing and (b) applying the transforma-
tion on that partition. Another important class of mod-
els pertain to the signal-based analysis of timeseries (such
as wavelet, Fourier and cosine transformations). In such
cases, the timeseries is regarded as a time-varying functions
which are then transformed into (infinite) weighted sums
of some basis functions (i.e. sines and cosines in the case
of Fourier and cosine transformations and wavelets in the
case of wavelets). Subsequently, only the co-efficients of the
most important bases functions are usually maintained. By
identifying those co-efficients that are shared among multi-
ple timeseries and adapting the definitions of accuracies ac-
cordingly, our dissemination techniques may be applied with
minor changes. Finally, a number of classification models,
such as the SVM and various of statistical models (e.g. hid-
den markov models or conditional random fields) have been
extensively used for prediction and classification. Our tech-
niques cannot be easily applied and hence further investiga-
tion needs to be conducted. We plan to study the possibility
to effectively disseminate such models in the future.
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