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ABSTRACT

As the world becomes more interdependent and computing grows
more collaborative, there is a need for new abstractions and tools to
help users work together. We recently introduced entangled queries
—a mechanism for information exchange between database queries
[6]. In this paper, we introduce entangled transactions, units of
work similar to traditional transactions that however do not run in
isolation, but communicate with each other via entangled queries.

Supporting entangled transactions brings about many new chal-
lenges, from an abstract model to an investigation of the unique sys-
tems issues that arise during their implementation. We first intro-
duce a novel semantic model for entangled transactions that comes
with analogues of the classical ACID properties. We then discuss
execution models for entangled transactions and select a concrete
design motivated by application scenarios. With a prototype sys-
tem that implements this design, we show experimental results that
demonstrate the viability of entangled transactions in real-world
application settings.

1. INTRODUCTION

Empty-handed I entered the world
Barefoot I leave it.

My coming, my going —

Two simple happenings

That got entangled. — Kozan Ichikyo.

In twentieth century data processing practice, programs and pro-
cesses were largely solitary entities. Each operated individually to
achieve a given task. Physical systems needed to handle multiple
simultaneous processes, so the research community developed pro-
tection mechanisms to prevent interference. In the database com-
munity, this work culminated in the concept of a transaction. Such
a classical transaction represents a discrete unit of data processing
work as reflected in the ACID properties of atomicity, consistency,
isolation, and durability: it provides the conceptual properties of
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being executed completely or not at all, of preserving database con-
sistency as it runs, of running without interference from other trans-
actions, and if committing, making its changes persistent.

However, in recent years data processing programs have become
interdependent by design. For example, web services frequently
interact and coordinate to carry out tasks spanning enterprises [4].
Coordination is now needed in domains ranging from course en-
rollment [8] and travel planning [6] to online social games such as
Farmville, where gameplay is fundamentally collaborative. The co-
ordination strategies used in these games are similar to those found
in more “serious” application domains such as managing charity
donations with gift matching [3] and auctions [10]. With Farmville
now attracting over fifteen million users each day, data-driven co-
ordination has become big business, and it is here to stay.

We recently started to take first steps towards the problem of
supporting data-driven coordination [7, 6]. We introduced entan-
gled queries, a mechanism that admits a limited form of interac-
tion between database queries by automatically coordinating —
not on events or conditions, but on the choice of common values
between the queries. However, most real-world data management
applications that involve coordination require not just queries, but
a transaction-like abstraction that covers larger units of work. As
an example, assume that two friends, Mickey and Minnie, wish to
travel to Los Angeles on the same flight and stay at the same hotel.
Their arrival date is flexible, but their departure date is fixed. They
start by jointly selecting a suitable flight. Once they know the flight
number, and consequently their date of arrival in Los Angeles, they
will try to make joint hotel reservations. With existing mechanisms,
they can use entangled queries to coordinate on the choice of the
flight and then on their choice of hotel. These queries, however,
need to be embedded within a larger code unit that Mickey and
Minnie separately execute and populate with their constraints such
as the class of the hotel or airline restrictions. Once both their in-
dividual entangled transactions have been submitted, the system
needs to match them up, execute the associated logic, and guaran-
tee “transaction-like” semantics for this execution.

Research Challenges. What are these entangled transactions?
How do they relate to entangled queries and to classical transac-
tions? First, in order to define what we even mean by entangled
transactions we need a clean semantic model which must capture
both the fact that each entangled transaction represents a logical
unit of work on its own, and that this work is dependent on in-
put from other transactions in the system. Furthermore, the input
from other transactions is not arbitrary; it is restricted to what can
be achieved with entangled queries. This means entangled trans-



actions have different semantics than nested transactions [9] and
Sagas [5], where arbitrary communication is permitted between the
components of a single unit of execution, or cooperative transaction
groups [11], where such communication is regulated through com-
plex custom policies. They are also different from split-transactions
[12] as the components are defined statically and matched into a
larger execution unit at runtime, and not the other way around.

The entangled transaction model must extend to transactions that
contain more than one entangled query. Indeed, Mickey and Min-
nie’s travel planning example requires entangled transactions with
several entangled queries: the number of nights for the hotel reser-
vation depends on the arrival date, which is not known until they
have chosen a flight. This means Mickey and Minnie need to use
separate entangled queries to coordinate on the flight and the hotel.

The semantics of classical transactions is closely tied to the ACID
properties; it is appropriate to understand what analogues of these
can be expected to hold for entangled transactions. For entangled
transactions, isolation is clearly relaxed, but we also do not want to
throw out the baby with the bathwater — that is, completely give up
on the advantages and convenience of isolation between transac-
tions. Our need to relax isolation is motivated by the novel seman-
tics of entangled transactions, not by performance considerations
as with relaxations of classical isolation [2]. Therefore, it appears
isolation should be relaxed only “as far as necessary” to permit
controlled communication through entangled queries.

Formalizing the above intuition is an interesting problem in its
own right, but it is not sufficient for a full treatment of entangled
isolation. It is also necessary to deal with the fact that when en-
tangled transactions run, they see more of the system’s state than
classical transactions do. A transaction that receives an answer to
an entangled query becomes aware of the existence of another en-
tangled transaction in the system. Since the ultimate goal of isola-
tion is to ensure that each transaction sees a consistent system state
during execution, entangled isolation requires a consistent view of
both the database and the concurrent processes.

Defining consistency preservation for entangled transactions is
nontrivial. Intuitively, Mickey and Minnie’s transactions still ap-
pear to be coherent units of work; neither one of them should indi-
vidually introduce inconsistencies in the database if implemented
and executed correctly. However, neither can execute by itself, so
formalizing this intuition is not straightforward.

Even once a semantic model of entangled transactions is in place
and we understand how the ACID properties extend to them, the
details of a full execution model are far from obvious. Returning to
Mickey and Minnie, suppose Minnie’s transaction aborts after the
two friends have chosen and booked a flight; the corrective action
to be taken is not immediately clear. Also, it is likely that the two
transactions may not arrive in the system simultaneously; if one of
them has to wait for the other, it is important to ensure usability
of the system by other transactions in the interim. Designing an
execution model to handle issues like the above in a principled way
raises many research questions.

Last but not least, entangled queries are not useful until they are
supported in a real system that can be deployed in practice. Design-
ing the architecture of such a system and combining it with existing
DBMS functionality presents deep systems challenges.

Our contributions. In this paper, we lead the reader into the
new world of entanglement. First, we review our building block of
entangled queries (Section 2). We then introduce a model of entan-
gled transactions that comes with analogues of the classical ACID
properties. Our model permits trading off isolation to achieve greater
concurrency, albeit at the cost of some loss of consistency, resulting
in the definition of isolation levels for entangled transactions (Sec-
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tion 3). Second, we discuss execution models for entangled trans-
actions. We outline the major design issues involved and present a
specific model that we found especially suitable for our motivating
application scenarios (Section 4). Third, we outline the challenges
that arise when implementing a system supporting entangled trans-
actions. We present the architecture of our prototype implementa-
tion of entangled transactions within the Youtopia system (Section
5). The prototype is implemented at the middle tier, and as such
can be used with any existing DBMS. Experiments with our proto-
type show that the overheads associated with supporting entangled
transactions are acceptable for real-world use.

2. ENTANGLED QUERIES

Entangled queries are expressed in extended SQL as follows:

SELECT select_expr

INTO ANSWER tbl_name [, ANSWER tbl_name]
[WHERE where_answer_condition]

CHOOSE 1

The WHERE clause is a standard condition clause that may re-
fer to both database and ANSWER relations. The ANSWER relations
are not database tables; they serve only as names that are shared
among queries and permit entanglement. As in our previous work
[6], the WHERE-clause is restricted to contain only select-project-
join queries.

To continue with our example from the introduction, suppose
Mickey wants to travel to Los Angeles on the same flight as Minnie.
He can express this with the entangled query below.

SELECT ‘Mickey’, fno, fdate INTO ANSWER Reservation
WHERE fno, fdate IN

(SELECT fno, fdate FROM Flights

WHERE dest=‘LA’)
AND (‘Minnie’, fno, fdate) IN ANSWER Reservation
CHOOSE 1

The name Reservation refers to a conceptual relation which
collects the answers to all the queries relating to flight bookings.
The SELECT clause specifies Mickey’s own expected answer, or, in
other words, his contribution to the answer relation Reservation.
This is a tuple containing the constant Mickey, the flight number
and the date of the booking. The existence of Mickey’s answer,
however, is conditional on two requirements, which are given in the
WHERE clause. First, the flight’s destination must be Los Angeles.
Second, the answer relation must also contain a tuple with the same
flight number and date but Minnie as the passenger name. The
CHOOSE 1 at the end of the query specifies that the system should
choose only one flight, even if more than one might be suitable.

Now suppose Minnie actually wants to fly with Mickey, but she
wants to fly only on United. Her query is as follows:

SELECT ’'Minnie’, fno, fdate INTO ANSWER Reservation
WHERE fno, fdate IN
(SELECT fno, fdate
FROM Flights F, Airlines A WHERE
F.dest=‘LA’ and F.fno = A.fno
AND A.airline = ‘United’ )
AND (‘Mickey’, fno, fdate) IN ANSWER Reservation
CHOOSE 1

When the system receives the two queries, it answers both of
them simultaneously in a way that ensures a coordinated choice
of flight. If the database is as shown in Figure 1 (a), the system



Flights Airlines
fno fdate  dest fno  airline |
122 May 3 LA 122 United
123 May4 LA 123 United
124 May 3 LA 124  USAir
235 May 5 Paris 235  Delta
(a)
Mickey’s query Minnie’s query
answer tuple: R(‘Mickey’, 122, May 3) satisfies R(‘Minnie’, 122, May 3)

answer relation

constraint: R(‘Minnie’, 122, May 3) satisfies  R(‘Mickey’, 122, May 3)

(b)
Figure 1: (a) Flight database (b) Mutual constraint satisfaction.

nondeterministically chooses either flight 122 or 123 and returns
appropriate answer tuples. Figure 1 (b) shows the mutual constraint
satisfaction that takes place in answering for 122; the relation name
Reservation is abbreviated as R. Neither Mickey nor Minnie sees
the other’s answer, but each of them is guaranteed that all answer
constraints have been met.

After Mickey and Minnie receive answers to their queries, each
of them can book a seat on the flight and date specified. The above
queries are simplified; in practice, they would perform more work
such as verification of seat availability.

Section A in the Appendix gives an overview of the semantics
of entangled queries; for more details, see our previous work [6].
The semantics makes use of the notion of a grounding for each en-
tangled query. To compute a grounding essentially means to eval-
uate of the portion of the WHERE clause which does not refer to an
ANSWER relation. This identifies the set of acceptable answers for
each individual query; for Minnie’s query, for example, it would
identify that only answers involving flights 122 or 123 are suitable.
Answering a set of entangled queries involves choosing an accept-
able answer for each individual query such that the corresponding
individual answers all satisfy the appropriate constraints.

3. ENTANGLED TRANSACTIONS

In this section, we introduce our model for entangled transac-
tions and discuss the new meaning of the ACID properties in the
presence of entanglement.

3.1 Syntax and Semantics
Entangled transactions have the following syntax.

BEGIN TRANSACTION [WITH TIMEOUT duration]

[SQL standard syntax | entangled_query | ROLLBACK]*
entangled_query

[SQL standard syntax | entangled_query | ROLLBACK]*
COMMIT

Figure 2 shows a transaction that Mickey might run to coordinate
with Minnie on a flight and a hotel in Los Angeles, as discussed
in the introduction. The table Hotels contains information about
hotels, including a hotel id (hid) and location attribute. FlightRes
and HotelRes are the answer relations for flight and hotel booking
coordination, respectively. HotelRes has attributes for customer
name, hotel id, arrival date, and number of nights.

An entangled transaction is specified by the code enclosed within
BEGIN TRANSACTION and COMMIT. In addition to the functionality
offered by an ordinary transaction, an entangled transaction also
contains one or more entangled queries. Calls to evaluate an entan-
gled query are blocking: the transaction does not proceed until the
entangled query receives an answer. The programmer may directly
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BEGIN TRANSACTION WITH TIMEOUT 2 DAYS;

SELECT ‘Mickey’, fno, fdate AS @ArrivalDay
INTO ANSWER FlightRes
WHERE fno, date IN

(SELECT fno, fdate FROM Flights

WHERE dest=‘LA’)
AND (‘Minnie’, fno, fdate) IN ANSWER FlightRes
CHOOSE 1;

-- (Code to perform flight booking omitted)
SET @StayLength = ‘2011-05-06’ - @ArrivalDay;

SELECT ‘Mickey’, hid, @ArrivalDay, @StayLength
INTO ANSWER HotelRes
WHERE hid IN

(SELECT hid FROM Hotels

WHERE location=‘LA’)
AND (‘Minnie’, hid, @ArrivalDay, @StayLength) IN
ANSWER HotelRes
CHOOSE 1;

-- (Code to perform hotel booking omitted)

COMMIT;
Figure 2: Example entangled transaction.

bind the values returned by an entangled query to host variables by
specifying AS @varname next to the appropriate value in the query;
this can be seen in the example above with @ArrivalDay.

Because of the blocking calls to evaluate entangled queries, we
associate a timeout parameter with each entangled transaction.
This parameter limits the maximum time that this transaction may
“wait” in the system for its entanglement partner(s). If a particular
entangled query within the transaction is unable to succeed before
the timeout expires, then the entire transaction is unable to com-
plete. An error is thrown and must be handled by the application
code. Entangled query failure is a relatively complex phenomenon
that can happen for several reasons, not just the absence of a part-
ner. Section B in the Appendix contains a more in-depth discussion
of this issue and how it impacts transaction execution.

From a programmer’s perspective, entangled queries have an ad-
ditional advantage beyond allowing information exchange: They
provide explicit synchronization points between transactions. This
can be useful if the programmer knows the code of other transac-
tions in the system. Once an entangled query is answered, a trans-
action can assume that all entanglement partners have executed
the code preceding their corresponding entangled queries. For in-
stance, if Minnie manages to coordinate with Mickey’s transaction
on a hotel, she knows that he has already booked his flight.

3.2 Consistency

We now present extensions of the ACID properties to entangled
transactions. Consistency and isolation are particularly affected by
entanglement, so we start by treating each of them in turn.

Classically, consistency is an abstract property of databases which
transactions preserve by the following assumption:

AssumptioN 3.1  (CoNSISTENCY). Every transaction, if executed
by itself on an initially consistent database, will produce another
consistent database.

The motivation behind this assumption is that an individual trans-
action is a logical and self-contained unit of work. A correct im-



plementation of such a transaction will never deliberately create
data inconsistencies, except perhaps temporarily in the middle of
its execution. The only time consistency of the final database is not
guaranteed is if the initial database was inconsistent as well.

Assumption 3.1 is used to infer global consistency guarantees
for the execution of a set of transactions. Suppose the permissi-
ble concurrent executions are constrained in such a way that every
individual transaction sees (i.e. reads) a consistent version of the
database as it runs. Then, the above assumption allows us to infer
that any set of concurrent transactions, run on an initially consistent
database, will produce another consistent database.

To formulate an analogous guarantee for entangled transactions,
we need an equivalent of Assumption 3.1. The key is deciding what
constitutes a logical and self-contained unit of work; this is non-
trivial for an entangled transaction as it cannot execute by itself.

Three candidates for units of work are individual entangled trans-
actions, groups of transactions that entangle during execution, and
non-entangled portions of individual entangled transactions. With
respect to the example shown in Figure 2, the first option would
correspond to Mickey’s transaction, the second to Mickey and Min-
nie’s transactions, and the third to the two non-entangled code seg-
ments that are executed between entangled queries. The first option
maintains the closest correspondence between entangled transac-
tions and classical transactions; it is the one we use in this paper,
and we leave the others as future work.

It is not obvious what it means for an individual entangled trans-
action to constitute a unit of work, given that a transaction like the
one in Figure 2 is unable to run and complete by itself. However,
intuitively, the only information this transaction needs “from the
outside” is answers to the two entangled queries so that it knows
which flight and which hotel to book. As long as Mickey’s transac-
tion is executed in the system alongside some process that provides
this information, it will be able to complete correctly. This other
process could be Minnie’s transaction, but it could also in principle
be a “query answering oracle” whose only functionality is to create
Mickey’s answer tuples.

We formalize the notion of an entangled query oracle as follows.

DeriniTION 3.2 (ENTANGLED QUERY ORACLE). An entangled que-
ry oracle O is a process that executes alongside an entangled trans-
action t. Whenever t poses an entangled query, the oracle generates
an answer and returns it to t. The oracle has no direct effect on the
database’s state, i.e. it performs no writes.

The above definition deliberately does not constrain the kinds of
answers that the oracle may supply to r. However, these answers
should clearly simulate those received in true entanglement.

DErniTION 3.3 (VALID ORACLE ANSWER). Suppose a transaction
t executes with an oracle O and poses an entangled query q at a
time when the state of the database is D. An answer to q returned
by the oracle is valid if it directly corresponds to a grounding of q
on D.

DeriniTION 3.4 (VALID ORACLE EXECUTION). Suppose a transac-
tion executes alongside an oracle O. If the oracle returns a valid
answer to each entangled query, the entire execution is valid.

This allows us to formulate the following consistency assump-
tion for entangled transactions.

AssumpTION 3.5  (ORACLE CONSISTENCY). Suppose an entangled
transaction executes by itself on an initially consistent database,
using an entangled query oracle to obtain answers to the entan-
gled queries it poses, and suppose the execution is valid. Then the
execution will produce another consistent database.
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This assumption is close in spirit to Assumption 3.1. It states
that an entangled transaction will produce consistent “output” —i.e.
a set of database writes that together do not violate consistency —
as long as it is presented with consistent “input” —i.e. a consistent
view of the data and valid answers to its entangled queries. This
assumption holds for Mickey’s transaction and is likely to hold for
typical transactions in most realistic settings.

As with classical transactions, Assumption 3.5 can be used to in-
fer a consistency guarantee for the execution of a set of entangled
transactions. To this end, we again need to constrain the permissi-
ble concurrent executions so that each transaction is guaranteed to
receive consistent “input”. That is, we need to define isolation for
entangled transactions, and it is to this issue that we turn next.

3.3 Isolation

Classical isolation is motivated by the need to provide each trans-
action with a consistent view of the database as it runs. As dis-
cussed, this together with Assumption 3.1 guarantees that the final
database produced by a set of concurrent transactions is consistent.

An elegant way to define classical isolation is in terms of seri-
alizability, i.e. equivalence of an execution schedule to a serial ex-
ecution schedule with the same transactions. In a serial schedule,
Assumption 3.1 guarantees that each transaction does indeed see
a consistent view of the database, so serial execution is a suitable
gold standard for consistency. Equivalently, classical isolation can
be defined as the avoidance of certain execution anomalies such as
dirty reads and unrepeatable reads [2].

For entangled transactions, serializability is not directly applica-
ble. However, we can use our entangled query oracles to define
oracle-serializability, that is, equivalence to a schedule where the
entangled transactions execute serially alongside an oracle. We can
also formulate an anomaly based definition of isolation based on
the classical anomalies and some new entanglement-related ones.

We have developed both an anomaly based and an oracle-seriali-
zability based definition of entangled isolation and proved a theo-
rem that relates them to each other. Due to space constraints, we
give only a high-level overview of each of these contributions here;
the full formal treatment is found in the Appendix, Section C.

3.3.1 Anomaly-based definition

We first outline our anomaly-based definition of entangled iso-
lation. Anomalies are pathological phenomena where a transaction
observes an inconsistent view of the system state as it runs. If no
such anomalies occur during execution, then by Assumption 3.5,
we know that the final database produced after the execution of a
set of entangled transactions is consistent. We begin by introducing
the anomalies which are unique to entangled transactions. Classi-
cal anomalies such as dirty reads and unrepeatable reads can also
happen in the entangled setting and must be avoided.

Widowed transactions To execute correctly and preserve con-
sistency, entangled transactions need more than just a consistent
view of the database. They need a consistent view of the entire
system state, insofar as they have access to it. For classical transac-
tions, the only accessible system state is the database. However, an
entangled transaction ¢ that has received an answer to an entangled
query knows something else: it knows that there is another process
running alongside it. If this other process subsequently aborts, #’s
view of the system may become inconsistent.

Consider for example the scenario in Figure 3 a), where Mickey
runs the transaction in Figure 2 and Minnie runs a symmetric trans-
action containing the query from Section 2. The transactions suc-
cessfully entangle on both the flight and hotel queries. However,
while performing the hotel booking, Minnie’s transaction aborts.
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Figure 3: Entangled isolation anomalies: (a) Widowed transac-
tion (b) Unrepeatable quasi-read.

Mickey’s transaction may still in principle be able to complete its
hotel booking; however, Mickey would be booking a room based
on the assumption that Minnie is traveling with him, and this may
no longer be true. Mickey’s transaction is widowed due to the abort
of its entanglement partner. The widowed transaction anomaly is
our first isolation anomaly which is unique to the entangled setting.

The additional system state visible to entangled transactions can
be made explicit using the ANSWER relations. For simplicity, assume
there is just one such relation. The transactions perform operations
on this relation during entangled query answering. The answering
process starts with a set of simultaneous writes by all transactions
to the ANSWER relation — each transaction writes its corresponding
answer tuple. Next, each transaction receives a guarantee that its
partner’s answer tuple is in the ANSWER relation — that is, the trans-
action performs an implicit read on the ANSWER relation. The reads
are again performed simultaneously by all transactions.

The above discussion makes it clear why widowed transactions
are a problem: two transactions that entangle perform a dirty read
of each other’s writes to the ANSWER relation. If one later aborts,
the other’s view of the ANSWER relation becomes inconsistent.

Unrepeatable quasi-reads The second new class of isolation
anomaly is associated with the entangled query answering process
itself, or more precisely with the computation of groundings for
the queries. As explained in Section 2, the evaluation of a set of
entangled queries conceptually begins by grounding each query.
The actual evaluation algorithm does not need to operate in this
way, but groundings are a useful tool for analysis. A grounding is
aread on the database that corresponds to the portion of the WHERE
clause of an entangled query that does not refer to any ANSWER
relation. Two queries that entangle may ground on the same data;
for example, Mickey and Minnie’s flight entangled queries both
ground on the F1lights table by selecting all flights to Los Angeles.

If groundings are not handled carefully, anomalies can occur due
to interference. To see an example of this, start with Mickey and
Minnie’s queries from Section 2 and consider the execution sched-
ule shown in Figure 3 b). Minnie’s query grounds on both Flights
and Airlines, whereas Mickey’s grounds only on Flights. Mic-
key receives flight number 122 as an answer. He decides to check
which flights are operated by United, to gain a better understand-
ing of the options from which his answer was chosen. However,
between the time that Mickey gets the entangled query answer and
the time he reads Airlines himself, Donald adds a new flight with
number 125 operated by United. Clearly this creates a problem for
Mickey. Mickey does not perform a classical unrepeatable read,

because he only reads Airlines once. The key to understanding
this anomaly is that Minnie has read the same table prior to en-
tanglement; intuitively, there has been some information flow from
the Airlines table to Mickey’s transaction during the answering
of his entangled query. His subsequent explicit read of Airlines
therefore shows him information that is inconsistent with his prior
knowledge of this relation.

This and other similar anomalies can be formalized using the
notion of a quasi-read, which models the information flow that oc-
curs through entangled query answering. In our example, we say
that Minnie’s grounding read on Airlines was also a quasi-read
by Mickey’s transaction on the same table. It is now clear that
Mickey has indeed performed an unrepeatable read on Airlines:
a quasi-read before Donald’s write and a normal read afterwards.
Consequently, we introduce unrepeatable quasi-reads as the sec-
ond class of anomalies which is unique to entangled transactions.
This includes all anomalies involving two reads on the same object
by the same transaction, at least one of which is a quasi-read, and
where the object changes value between the reads.

Entangled isolation Our anomaly-based definition of entangled
isolation prohibits widowed transactions and unrepeatable quasi-
reads, as well as all classical isolation anomalies; that is, an ex-
ecution schedule is entangled-isolated if it exhibits none of these
anomalies. The definition is presented formally in the Appendix,
Section C.2; it uses the notion of a conflict graph which tracks op-
eration conflicts between transactions to exclude both the classical
anomalies and unrepeatable quasi-reads. As in the classical case, it
is possible to relax this definition to admit lower isolation levels by
permitting a specific subset of the above anomalies to occur.

3.3.2  Oracle-serializability based definition

The key idea behind oracle-serializability is to compare a given
execution schedule to a schedule where the same entangled trans-
actions are executed serially alongside a suitable query oracle. The
oracle answers need to be consistent across transactions; if Mickey’s
transaction executes first and receives 122 as the answer to its flight
query, Minnie’s transaction should also receive 122 as an answer to
the corresponding query when it executes later.

As explained in Section C.3 in the Appendix, the oracle is con-
structed in a custom way for each schedule o. It essentially “stores”
the entangled query answers that each transaction received in o and
returns them verbatim at the appropriate point during serial execu-
tion, whether or not these answers are valid (as per Definition 3.3).

We define a schedule o to be oracle-serializable if there is some
serial order of the transactions in o for which execution with the
above oracle is valid and yields the same final database as o~ when
run on the same starting database. This definition is the entangled
equivalent of classical final-state serializability.

The following theorem is our main result and relates both of our
definitions of isolation. It is proved in the Appendix, Section C.4.

THEOREM 3.6. Any schedule that is entangled-isolated is also
oracle-serializable.

As expected, the serialization order for the oracle execution must
be consistent with the conflict graph.

3.3.3 Enforcing Isolation

To enforce isolation for entangled transactions, a system must
prevent widowed transactions and unrepeatable quasi-reads, in ad-
dition to the classical isolation anomalies. Widowed transactions
can be avoided by enforcing group commits: if two transactions
entangle, both must either commit or abort. This pairwise require-
ment induces a requirement on groups of transactions that have en-



tangled with each other directly or transitively: all transactions in
such a group must either commit or abort. As for repeatability of
quasi-reads, it can be enforced for example using an appropriate
locking protocol. In a system that uses Strict 2PL, Donald’s write
in Figure 3 b) would not have been possible, as Minnie’s transaction
would have held a read lock on the Airlines table until commit.

3.4 Atomicity and Durability

Because we have identified individual entangled transactions as
our basic unit of work in the system, we can define atomicity and
durability based on their classical equivalents. For atomicity, each
entangled transaction must execute to completion or be rolled back.
For durability, if an entangled transaction commits, its database
writes must be persistent despite any system failures.

The above are the minimal atomicity and durability requirements
which the system must enforce at all times. Stronger guarantees
are sometimes possible. For example, at isolation levels that disal-
low widowed transactions, all groups of transactions that entangle
together are guaranteed to execute atomically. Moreover, once a
transaction commits, both its changes and the changes of all its en-
tanglement partners are durable.

4. EXECUTION MODEL

With the semantic model for entangled transactions in place, we
turn to the challenges and performance tradeoffs associated with
execution models. There is no single best execution model for en-
tangled transactions; the final choice depends on the requirements
of the application. In this section, we highlight the tradeoffs and
propose a solution suited to realistic scenarios like travel planning.

Interactivity. One of the first key characteristics of an applica-
tion is whether the transactions are interactive or non-interactive,
or both. Interactive transactions are created by users online, state-
ment by statement. Subsequent statements are constructed dynam-
ically, based on the result of earlier operations. An interactive user
may be willing to wait a few minutes for his or her entangled query
to find partners and return results. If results are not forthcoming,
then the user may decide to abort or issue another command. This
interactive model is suited, for example, to social games.

However, in other scenarios such as travel planning, users who
want to coordinate will most likely not issue their queries simul-
taneously and wait for answers at the computer. A non-interactive
model is a better fit here: users can be expected to issue entire en-
tangled transactions at once and specify an appropriate timeout. If
no partner is found before the timeout expires, then the transaction
aborts and is removed from the system. In this paper, we present
an execution model for non-interactive transactions; exploring the
unique issues associated with interactivity is future work.

Concurrency Control Protocol. As discussed in Section 3,
several different isolation levels may be appropriate for entangled
transactions. The choice of level is up to the system designer and
depends on the application’s consistency requirements. Whatever
the isolation level(s) to be used, the execution model must include
a suitable protocol to enforce them.

For scenarios such as collaborative travel planning, a high level
of isolation is desirable to ensure consistency of the underlying
database. Full isolation can be achieved by enforcing group com-
mits and using a standard strict two-phase locking protocol. This
protocol has the additional advantage of admitting isolation relax-
ations, if desired, by altering the length of time locks are held.

Scheduling. The system needs a policy for handling transac-
tions that cannot currently be matched with entanglement partners.
The best choice of policy depends on whether the transactions are
interactive and on the isolation level desired. The discussion be-
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low makes the assumption that we are working with noninteractive
transactions and that we desire full entangled isolation as defined
in Section 3.3.

A naive policy where each transaction blocks at each entangled
query until it has found a partner is impractical. This blocked trans-
action may need to hold locks while it waits, unacceptably delay-
ing the progress of other transactions in the system. One solution
is to limit the time for which an entangled query blocks. If a part-
ner does not arrive within a limited time frame, the transaction is
aborted and restarted.

It is possible to take this idea further and organize the execution
of transactions in discrete batches or runs. Each run is an execution
of a set of transactions chosen by the scheduler. If an entangled
transaction arrives in the system while a run is ongoing, it is sus-
pended and added to a pool of dormant transactions. Designing
an optimal scheduling policy is nontrivial. A simple policy is to
schedule runs with a particular frequency, and include in a run all
transactions present in the dormant pool. The frequency can be ex-
plicitly given as a time interval, or it can depend on the arrival rate
of new transactions. For example, the system may schedule a new
run once ten new transactions have arrived.

When a transaction is scheduled in a run, all classical queries
and updates that precede the first entangled query are executed. At
this point, the transaction blocks. Eventually, all transactions in the
run either block, abort or reach the ready to commit state. Now,
the system evaluates all pending entangled queries. If an entangled
query receives an answer, the transaction is notified and resumes
execution. The run terminates when each transaction has either
aborted, reached the ready to commit state, or blocked on an entan-
gled query and is unable to proceed. Transactions that are ready to
commit and satisfy the group commit constraints (if applicable) are
committed. Blocked transactions are aborted and returned to the
dormant pool for execution in subsequent runs.

To illustrate run-based transaction scheduling, we walk through
an example execution of three entangled transactions. The first is
Mickey’s transaction from Figure 2, and the second is a symmetric
transaction by Minnie who wants to coordinate with Mickey. The
third transaction follows the same structure, but it involves Donald
who is interested in coordinating with Daffy.

Suppose Mickey’s and Donald’s transactions arrive in the system
first. The scheduler creates the first run that includes these two
transactions only. The first piece of code in each transaction is the
respective flight booking entangled query. Neither transaction is
able to progress; therefore, the system immediately aborts the run
and returns both transactions to the dormant transaction pool.

Now, Minnie’s transaction arrives in the system and is placed
in the pool. The scheduler creates a second run containing all
three transactions. The execution of this run is shown in Figure 4.
Mickey and Minnie’s transactions are able to execute their first en-
tangled query; they proceed to their respective flight booking code.
Donald’s entangled query does not receive an answer, so his trans-
action blocks.

Once Mickey and Minnie complete their flight booking, their
transactions reach the hotel entangled queries. These are submitted
for evaluation together with Donald’s flight query, which has not
received an answer yet. Again, Mickey and Minnie receive answers
and are able to proceed, while Donald does not.

Eventually, Mickey and Minnie both reach a state where they are
ready to commit, pending their partner’s commit. Donald’s transac-
tion, however, is still blocking on the flight query. The system rec-
ognizes that no-one can proceed further and takes action. Mickey
and Minnie’s transactions are allowed to commit, while Donald’s
is aborted again and returned to the dormant transaction pool.
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Figure 4: Example run of three transactions.

Persistence and Recovery. Entangled transactions come with
atomicity and durability requirements, as outlined in Section 3.4.
It is therefore necessary to ensure correct crash recovery. Stan-
dard algorithms must be suitably modified to handle the additional
entanglement-related recovery challenges.

In processing entangled transactions, the system maintains ad-
ditional state to keep track of the transactions that are currently in
the system and awaiting partners. It also may be keeping track of
who has entangled with whom in order to enforce group commits.
This state must be made persistent to ensure correct crash recov-
ery. Further, the recovery algorithm must be entanglement-aware.
For example, if two transactions entangle and only one manages to
commit prior to a crash, both must be rolled back during recovery.

S. IMPLEMENTATION

In this section, we discuss our prototype implementation for the
entangled transaction management component in the Youtopia sys-
tem and present the results of our experimental evaluation.

5.1 Prototype

Our prototype implements entangled transaction support in the
middle tier, as shown in Figure 5. This design makes it easy to port
current applications without any significant change to the DBMS
or the interface. Alternately, entangled transactions could be imple-
mented within the DBMS itself, which has the potential to improve
performance through deep optimizations of the entanglement logic;
investigating this alternate architecture is future work.

The prototype is a component within our Youtopia system; it is
implemented as a Java application over a MySQL database (ver-
sion 5.5.0) using the InnoDB engine. It provides an API for clients
to manage and query the database, with the added functionality
of answering entangled queries and managing entangled transac-
tions. Youtopia users submit transactions (entangled and classical)
through a front-end interface. Youtopia executes classical trans-
actions as-is and sends query results back to the client; entangled
transactions are handled by our custom component.

The prototype supports the execution model discussed in Sec-
tion 4. It handles non-interactive transactions and uses a run-based
scheduling protocol for execution. During runs, entangled queries
are evaluated using the algorithm described in [6].

Transactions can be executed at different isolation levels. For full
entangled isolation, the system enforces group commits to prevent
widowed transactions and uses Strict 2PL — implemented using the
DBMS’ lock manager — to prevent all other isolation anomalies.
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In our implementation, the middleware is stateless. All relevant
system state is serialized and stored in the database to achieve per-
sistency. This allows us to leverage the recovery algorithms imple-
mented in the DBMS to ensure correct crash recovery.

5.2 Evaluation

In our experiments, we set out to measure the overhead associ-
ated with supporting entangled transactions relative to two other
abstractions: classical transactions and non-transactional code con-
taining entangled queries. We also wanted to investigate the trade-
offs associated with the design decisions described in Section 4.

5.2.1 Experimental Setup

All our experiments were set in the travel scenario discussed
throughout the paper and used a workload of simulated entangled
transactions that modeled the output of a front-end social travel ap-
plication. We created a set of users with friendship relations based
on the Slashdot social network data [1]. Each transaction was gen-
erated by choosing a user and expressing his or her intent to co-
ordinate on flight and/or hotel bookings with a set of friends; for
examples, see Section D in the Appendix. Each transaction con-
tained a single entangled query, except where indicated otherwise.

In MySQL, as in most commercial database systems, the amount
of concurrency is restricted by the maximum permissible number of
connections rather than the computational capacity of the system.
This is because only a single transaction may run per connection.
We worked within these constraints for the purpose of our exper-
iments. By default, we used 100 concurrent connections, and we
examined experimentally the impact of varying that number.

We ran all experiments on a 2.13Ghz Intel Core i7 CPU with
4GB of RAM; the reported values are averages over 3 runs. The
standard deviation was less than 2% in each experiment. All exper-
iments involved 10000 (ten thousand) transactions which were run
to completion.

5.2.2 Results

Concurrency. In the first experiment, we varied the number
of concurrent connections to MySQL from 10 to 100 and inves-
tigated the performance of six different workloads. As mentioned,
we wanted to compare entangled transactions (Entangled-T) to
non-entangled transactions in which users make travel bookings
based on existing bookings by their friends (Social-T). Our third
workload, NoSocial-T, contained individual travel booking trans-
actions — that is, transactions that made no reference at all to the
activity of the user’s friends. In addition, for each of the above
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Figure 6: Scalability of Youtopia.

three workloads, we generated a corresponding non-transactional
workload that used the same code without enclosing it within a
transaction block. The non-transactional workloads are identified
by the suffix -Q instead of -T. A further discussion of these work-
loads, including examples, is found in the Appendix, Section D.

For simplicity, all workloads were generated to ensure that all
transactions within a single run would be able to coordinate. That
is, transactions were submitted in batches designed so that each
transaction would find a coordination partner within the same batch.

Figure 6(a) shows the results. The time taken to execute any
given set of transactions was observed to be inversely proportional
to the number of concurrent connections for all three transactional
workloads. Although the time taken by Entangled-T was always
marginally higher compared to NoSocial-T (and Social-T), the
difference was roughly equal to the difference is execution time
between Entangled-Q and NoSocial-Q (and Social-Q). This
shows that entangled transactions do not impose significant addi-
tional overhead relative to classical transactions, except for the ex-
tra time needed for the actual evaluation of entangled queries.

Pending Transactions. The first experiment was engineered so
that all concurrently submitted entangled transactions would find
coordination partners and commit. However, this may not be true
in real life. We therefore ran a second experiment where the num-
ber of pending transactions remaining at the end of a run, p, was
nonzero and varied from 10 to 100. This was achieved by submit-
ting the transactions in carefully designed batches to ensure that
each run contained p transactions without coordination partners.

We used three different run scheduling policies with different run
frequencies f. We set f in terms of the arrival rate of new trans-
actions in the system and varied it from 1 (start a new run after a
single new transaction arrives) to f = 50 (start a new run after fifty
new transactions arrive).

Figure 6(b) shows the results. As expected, using higher run
frequencies had a negative impact on execution time. Moreover,
increasing p caused a linear increase in the total execution time.
However, this increase was much slower when the run frequency
was lower. Clearly, the optimal run frequency for a given workload
depends on the expected value of p.

Entanglement Complexity. Our last set of experiments in-
vestigated the impact of varying the complexity and structure of
the entanglement between transactions. The intuition is that with
more complex entanglement structure and more entangled queries
per transaction, entanglement may be harder to achieve and trans-
actions may abort more frequently before succeeding.

The specific parameters we varied were the number of entangled
queries per transaction and the structure of the coordination. We
considered two complex coordination structures. In the Spoke-hub
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structure, a single transaction with multiple entangled queries en-
tangles with a different partner on each query. The Cyclic struc-
ture is even more complex and involves a cyclic set of entanglement
dependencies between a set of entangled transactions.

On all the above workloads, we ran experiments with a run fre-
quency f of 1 and 50. Figure 6(c) gives the results. Increasing
the number of entangled queries per transaction increases the to-
tal execution time; however, the slope is very small. This suggests
that increasing entanglement complexity does not have a significant
negative performance impact.
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APPENDIX
A. ENTANGLED QUERIES

This section briefly overviews the semantics of entangled queries.

For more details, see [6].

The semantics of entangled queries is best explained using an
intermediate representation that uses a Datalog-like syntax. In this
representation, a query has the form

{C} H — B

where C and H are conjunctions of relational atoms over answer re-
lations and B a conjunction of relational atoms over database (non-
answer) relations. B, H and C are the body, head and postcondition
of the query, respectively. Each atom may contain constants and
variables. Any variables that appear in H or C must also appear in
B (a range-restriction requirement).

For an entangled query in extended SQL, H corresponds to the
SELECT INTO clause in an obvious way. B and C correspond to in-
formation in the WHERE clause. C specifies all the conditions on ten-
tative relations from the WHERE clause. B specifies the conditions
on database relations from the WHERE clause, as well as serving to
bind variables that are used in H and C.

As an illustration, Figure 7 (a) is the intermediate representation
of Mickey and Minnie’s queries from Section 2. The relation names
are abbreviated in the same way as in the original SQL queries.

From the point of view of a single entangled query, evaluation
is a process that returns an answer, i.e. a single row from the ap-
propriate answer relation. From the point of view of the system,
evaluation always involves a set of entangled queries, and the goal
is to populate the answer relation in a way that respects all queries’
coordination constraints. This process is described next; for cor-
rectness, it is necessary to ensure that the underlying database is
not changed while it is being carried out.

Grounding the queries: Entangled query answering makes use
of two concepts — valuations and groundings. If q is a query in the
intermediate representation and the current database is D, a valua-
tion is simply an assignment of a value from D to each variable of
q. For example, on the database in Figure 1 (a), Mickey’s query has
three valuations: x can be mapped to either 122, 123 or 124. Every
valuation of a query is associated with a grounding, which is g itself
with the variables replaced by constants following the valuation.

Let Q be the set of queries to be evaluated in an entangled man-
ner. We denote by G the set of all groundings of the queries on
the database (G need not explicitly be materialized in evaluation).
Figure 7 (b) shows the set G obtained by grounding Mickey and
Minnie’s queries on the database in Figure 1 (a). The bodies of the
groundings are no longer needed, so we discard them.

Finding the answers: At a high level, the evaluation is a search
for a subset G’ C G such that G’ contains at most one grounding of
each query and the groundings in G’ can all mutually satisfy each
other’s postconditions. That is, if all the heads of the groundings in
G’ were combined into a set, this set would contain all the postcon-
ditions. Any set of groundings satisfying this property is called a
coordinating set. Once such a G’ is found, the evaluation produces
an answer relation which consists of the union of all the head atoms
in G’ (the answer may consist of more than one relation — this will
happen if the head atoms refer to more than one relation, i.e. more
than one ANSWER relation is mentioned in the SQL queries).

In the example, the initial set G is as shown in Figure 7 (b).
Groundings 1 and 4, as well as groundings 2 and 5, are suitable
coordinating subsets G’. Either of them may be used to generate
the answer relation and return answers to the respective queries.

895

{R(Minnie, x,y)} RMickey,x,y) =1 F(x,y,LA)
{R(Mickey,z,w)} R(Minnie,z,w) :—; F(z,w,LA) A A(z,United)
(@

1:  {R(Mickey, 122,May 3)} R(Minnie, 122, May 3)
2:  {R(Mickey, 123,May 4)} R(Minnie, 123, May 4)
3:  {R(Mickey, 124,May 3)} R(Minnie, 124, May 3)
4: {R(Minnie, 122,May 3)} R(Mickey, 122, May 3)
5: {R(Minnie, 123,May 4)} R(Mickey, 123, May 4)
(b)
Figure 7: (a) Intermediate representation of queries (b)

Grounded queries.

It is possible that for some queries ¢, the G’ chosen will not con-
tain any groundings of ¢. It is also possible that some queries in Q
cannot be answered for other reasons; for instance, the algorithm
in [6] requires all query sets to satisfy a property called safety, and
queries that directly cause safety violations are not answered. Such
failures in query answering are left for the programmer to handle
in an application-appropriate manner.

B. ENTANGLED QUERY FAILURE

As mentioned in Section A, it is possible for the system to eval-
uate an entangled query but return an empty answer or determine
that the query is unanswerable. The question arises of how this
should be handled in an entangled transaction. In classical trans-
actions, there is a meaningful distinction between the case of an
empty query answer and a query that is unanswerable due to an
error or exception. In the former case transactions can typically
proceed, but in the latter they are usually aborted.

Such a distinction makes sense for entangled transactions as well.
Intuitively, if a query found an entanglement partner but the two
queries together could not be answered in a way that satisfied all
constraints, this is different from the case where a query did not
even find a partner. In the former case, the transaction should prob-
ably proceed, in the latter it should probably wait for the query to
be retried. It remains to classify all possible cases of entangled
query “failure” on either side of this dichotomy. We argue that any
criterion used to define true query failure — i.e. a situation where
a query cannot proceed — should be independent of the underlying
database. That is, a given set of entangled queries should either fail
on all databases or succeed on all databases. This is consistent with
the philosophy behind the classical distinction discussed above — a
query that receives an empty answer on one database may receive
a nonempty one on another, and therefore an empty answer is not
in itself a “pathological” phenomenon that would require an abort.

One concrete proposal for making this distinction for entangled
queries, if using the evaluation algorithm from [6], is the follow-
ing. If an entangled query ¢ was used to formulate a combined
query and this query was evaluated, but returned an empty result,
this is considered query success and the transaction can proceed.
Otherwise, if no combined query including g was formulated, g
has failed and the transaction must wait.

C. FORMALIZING ISOLATION

In this section, we formalize the presentation of entangled isola-
tion from Section 3.3. Our presentation does not handle predicate
reads explicitly, nor does it deal with schedules produced in sys-
tems using explicit data versioning. The entire discussion that fol-
lows can be extended to handle predicate reads with suitable addi-



tional formalism [2]. We have chosen not to present this extension
here as it requires significant additional notation and is orthogonal
to our main focus, which is the unique meaning of isolation for en-
tangled transactions and specifically the differences between entan-
gled and classical isolation. Multiversion settings come with their
own unique challenges — as in the case of classical transactions —
and we leave their treatment as future work.

C.1 Transaction schedules

Operations A schedule for entangled transactions is very similar
to a schedule for ordinary transactions and contains the familiar
read, write, abort and commit operations, denoted R, W, A and C
respectively. The only two differences pertain to entangled query
processing: certain reads are distinguished as grounding reads and
the schedules make use of an additional operation — entanglement.

Entangled query processing begins by grounding the queries.
This can be done individually or through a combined query as in
[6]. To remain implementation-independent, we model the more
general case where each query grounds separately. Each grounding
is a set of reads; we distinguish these as grounding reads and denote
them as RY rather than just R. Technically, the grounding reads are
not performed by the transaction itself, but by the system on behalf
of the transaction. Nonetheless, they clearly represent information
flow from the database into the transaction; we therefore associate
grounding reads with the transaction posing the entangled query,
rather than with a special “system” process.

The next step in entangled query evaluation is to find a set of
groundings that satisfy each other’s postconditions, i.e. to construct
the answer relation. We model this with an explicit entanglement
operation, denoted E. We assign each entanglement operation a
unique identifier, and associate each entanglement operation with
the set of identifiers of the transactions that receive answers, de-
noted as 77, where k is the identifier of the entanglement operation.
To introduce notation by example, if transactions 1 and 3 partici-
pate in entanglement operation 7, this is denoted as EZJ

Validity constraints An entangled transaction execution sched-
ule is a sequence of read, write, entangle, commit and abort op-
erations. Obviously it is possible to construct sequences of such
operations that do not correspond to any possible real transaction
execution. This means that we need a notion of valid schedules —
sequences of operations that are constrained to match the semantics
of entangled transactions. The constraints involved are straightfor-
ward; however, for completeness we present them next.

First, for every transaction i, a valid schedule may contain at
most one of {A;,C;}. Indeed, we find it helpful to require that
it contain exactly one of these, thus ensuring we work with com-
plete schedules (histories) only. Second, for every transaction i that
aborts or commits, the abort or commit operation must be the last
operation by i. Third, if a transaction i performs a grounding read
R?(x) on some object x, then the schedule must contain either a
subsequent entanglement operation involving i or a subsequent A;.
Fourth, consider the interval between a grounding read by transac-
tion i and the next entanglement or abort operation by i that fol-
lows it (such an operation must exist by the previous requirement).
During that interval, i may not perform any operations other than
additional grounding reads. This is because entangled query evalu-
ation calls are blocking: i cannot proceed with subsequent reads or
writes until entanglement occurs and it receives answers.

Schedules We can now formally define (valid) schedules for en-
tangled transactions.

DeriniTion C.1 - (ScHEDULES). A schedule is a sequence of the
following operations: read, write, abort, commit, and entangle,
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where each operation is tagged with one or more transaction identi-
fiers, and the sequence satisfies the validity constraints listed above.

An example schedule is as follows:

RY ()RS V)R3(2)E| , Wi () Wa(w)C, C>C

In this schedule, transaction 1 grounds on x, then 2 grounds on
y. 3 performs a normal read on z, after which 1 and 2 and entangle
together based on their grounding reads. Finally, 1 and 2 perform a
write to z and w respectively. All three transactions commit.

When a schedule o is executed on a database, the final database
produced reflects exactly the writes of all the committed transac-
tions in o, in the order in which these writes occurred in o-. We
assume that the entangled query evaluation algorithm is determin-
istic, i.e. always returns the same answers when processing the
same set of queries on the same database. This implies that when-
ever o runs on the same starting database, it produces the same
final database. Lifting this assumption is possible but would make
the presentation that follows more complex.

C.2 Anomaly-based entangled isolation
We now formalize our anomaly-based isolation definition.

C.2.1 Preliminaries

Quasi-reads Suppose two transactions i and j perform ground-
ing reads on two different objects, say x and y respectively, and
entangle immediately afterwards. Although i has not directly read
y and j has not directly read x, there has been some information
flow from each object to each transaction through entanglement.
As discussed, we model this information flow through quasi-reads.
Whenever a transaction performs a grounding read on an object, all
of its partners in the subsequent entanglement operation are consid-
ered to perform a simultaneous quasi-read on the same object. We
denote a quasi-read by R. In the pathological case where a transac-
tion performs a grounding read but there is no subsequent entangle-
ment operation (i.e. the transaction aborts instead), no quasi-reads
are associated with that grounding read.

Given an entangled transaction schedule, it is straightforward to
identify which grounding reads are associated with quasi-reads by
other transactions and to add in the quasi-reads explicitly. Con-
cretely, our example schedule can be rewritten as follows:

(RlG(X)Rzg(x))(Rg(Y)R]Q(Y))Rs(Z)Ell,zWl @Wa(w)C1C>C

The brackets surrounding a set of operations denote that the op-
erations occur simultaneously. Often they will not be necessary as
the timing of the quasi-reads will be clear.

In the remainder of this section, we use the word schedule to
refer to valid entangled transaction schedules in which the quasi-
reads are made explicit. The unqualified term read refers to any
read operation including a grounding read or quasi-read.

Conflicts Given a schedule o, we can compute a conflict graph
for the committed transactions in o. This is a graph where the nodes
correspond to transaction identifiers and edges are added based on
conflicting operation pairs on the same object. A pair of operations
on the same object by two different transactions i and j are con-
flicting if at least one is a write. If the operation by i occurs in the
schedule first, we add an edge from i to j in the conflict graph.

It is important to realize that the graph is defined only for those
transactions that commit; we only place restrictions on anomalies
that affect committed transactions. This allows reasoning about
schedules that exhibit correct isolation, but could not have been



generated by preventative (pessimistic) concurrency control imple-
mentations. For a further discussion of this issue, see [2].
C.2.2 Entangled isolation

The following three requirements on schedules o~ can be used to
rule out isolation anomalies.

REQUIREMENT C.2
be acyclic.

(No cycLes). The conflict graph for o must

REQUIREMENT C.3  (NO READ-FROM-ABORTED). If i is a transac-
tion that aborts and j a transaction that commits, o may not con-
tain the sequence of operations Wi(x) ... R;(x)

REQUIREMENT C.4  (NO WIDOWED TRANSACTIONS). If 0 contains
an entanglement operation associated with transactions i and j,
then it may not contain both A; and C;.

Requirements C.2 and C.3 are sufficient to rule out classical
isolation anomalies and unrepeatable quasi-reads, as the latter are
made explicit in the schedule. Note also that when two transactions
ground on the same object and entangle based on that grounding,
Requirement C.2 guarantees that they see the same version of this
object; as explained in Section A, this is necessary for correct en-
tangled query answering. If the transactions were to ground on
different versions of the same object and entangle, this would be an
instance of an unrepeatable quasi-read.

We now formally define entangled isolation.

DEeriNiTION C.5  (ENTANGLED ISOLATION). A schedule is entangled-
isolated if it satisfies Requirements C.2, C.3 and C.4.

C.3 Oracle-serializability

Classical serializability compares a given execution schedule to
a schedule where the same transactions execute serially. We formu-
late an entangled analogue of this where each transaction executes
alongside an oracle. We can then reason about equivalence between
an entangled schedule and its oracle-serializations.

C.3.1 Oracle construction

Suppose we are given a schedule o; we explain how to construct
an oracle O, that enables serial execution of the transactions in o
on a given starting database D. The oracle is customized to o and
to D, but not to any serialization order of the transactions in o-.

To build the oracle, identify all the entanglement operations in
o and create a procedure in the oracle that corresponds to each of
these operations. In any serial schedule involving the transactions
in o, this entanglement operation will correspond to a number of
oracle calls by the individual transactions, and the appropriate or-
acle procedure will be invoked each time. For example, suppose
transactions i and j entangle in an operation Ef.‘j, and the entangled
queries involved were g; and g;. The oracle contains a procedure
specific to E,k, This procedure will be invoked twice in any serial
execution — once when i executes and poses ¢;, and once when j
executes and poses ¢;.

The procedure to handle an entanglement operation E* is as fol-
lows. By observing ¢’s execution on D, we can keep track of the
actual answers returned at each entanglement operation EX. The
answers can be recorded in a data structure Ans; which is a map
from 77 to the set of answers, so that Ans;(i) is the answer entan-
glement operation k returns to transaction i. The oracle makes use
of the answer set Ans; directly; when answering the query posed
by transaction i, it simply returns Ans(i). Therefore, by construc-
tion, it is guaranteed that the oracle returns consistent answers to
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all corresponding entangled queries, as the answers in Ans are as-
sumed to be consistent. On the other hand, the oracle answers are
not guaranteed to be valid according to Definition 3.3. This means
that invalid executions (Definition 3.4) for some transactions may
be possible with O, .

C.3.2 Oracle-serializations of schedules
We now define an oracle-serialization of a schedule o.

DEeriNITION C.6  (ORACLE-SERIALIZATION). Let 0 be an entangled
schedule run on a starting database D and O, the entangled ora-
cle for o and D as described above. An oracle-serialization of o
on D is a schedule generated when the committed transactions in
o are totally ordered in some way and each transaction executes
individually alongside O, in this order. We use os(o) to denote an
oracle-serialization of o.

Oracle-serializations include only the committed transactions in
o this is consistent with our formalization of entangled isolation.
Note also that oracle-serializations of o~ will in general not contain
the exact same operations as o itself. Specifically, the entangled
transactions no longer perform grounding reads or quasi-reads. For
instance, consider our entangled schedule example from before:

R ORC(ORS MRE(MR(E] , Wi (2)Wa(w)C1C2Cs

Suppose we serialize this schedule in the order 3, 1,2 on some
database D. The serialization is as shown below; O} denotes an or-
acle call by transaction / with the same entangled query that it posed
in entanglement operation m in o. We have not listed the specific
answers returned by the oracle, so the below can more correctly be
considered a template for an oracle-serialization of o.

R3(2)C30{ W (2)C1 0, W>(w)C>

The grounding reads for the entangled queries posed by trans-
actions 1 and 2 are no longer there. This is unsurprising, as the
schedule represents reads and writes fo the database, whereas now
the entangled queries are answered without any reference to the
database, solely based on the set of answers stored in the oracle.

C.3.3 Oracle-serializability

We now define oracle-serializability — the analogue of final-state
serializability for entangled transactions.

DerniTioN C.7  (ORACLE-SERIALIZABILITY). An entangled sched-
ule o is oracle-serializable if there is some serialization order of
the transactions in o such that for all starting databases D, the
oracle-serialization of o in that order on D is a valid execution
and yields the same final database as o

Note that although the oracle required for serialization depends
on the starting database the serialization order does not.

C.4 Entangled isolation guarantees

In this section, we give the proof of Theorem 3.6, that is, we
argue that any schedule which is entangled-isolated is also oracle-
serializable.

Proor. Start with any entangled-isolated schedule o~ and com-
pute its conflict graph. Choose any total ordering of the transac-
tions in o~ consistent with a topological sort on the graph; such an
ordering must exist as the graph is acyclic by Requirement C.2.
Choose an arbitrary D and let os(o) be the oracle-serialization of o
on D with respect to that order. We must show that:



(1) the execution of os(c) on D is valid, and

(2) the final database produced is the same as that produced by o
itself executing on D.

To prove (1), we need to show that at the time the oracle returns
Ansi(i) to transaction i, the state of the database is such that Ans; (i)
is valid. To do so, we introduce a technical device we call validat-
ing reads. Intuitively, suppose some process were to monitor the
execution of os(o) and actually ground each entangled query be-
fore the oracle answers it, in order to perform a validity check. For
the purpose of this proof, we explicitly introduce such validating
reads into the schedule os(o) and associate them with the transac-
tion that asked the original entangled query. Consider our example
oracle serialization from above:

R3(2)C30] W, (2)C103Wa(w)Cs
With validating reads (denoted as R") added, this becomes
R3(z)C3R) (x)0} W1 (2)C1 R} ()03 Wa(w)C

For every validating read in os(0), there is a grounding read in o
by the same transaction on the same object, and vice versa. In fact,
suppose we could show that every validating read in os(o) sees
the same value as the corresponding grounding read in o. Then
we could guarantee that all oracle answers are valid and point (1)
follows. This is because the oracle answers are exactly the answers
in Ansy, and these were computed based on the result of the actual
grounding reads in 0.

Before we prove the above statement about validating and ground-
ing reads, consider how we might prove point (2). Suppose we add
a dummy transaction at the end of both o and os(o) that reads ev-
ery object mentioned in o It suffices to show that this transaction
reads the same values in both schedules.

We show both (1) and (2) by proving the stronger statement that
every read in os(o), including validating reads and reads by the
dummy transaction, sees the same value as the corresponding read
in 0. We prove this using an inductive argument similar to that
used for classical conflict-serializability. We make (an entangled
equivalent of) the standard determinism assumption — if a transac-
tion sees the same values for its reads and entangled query answers,
and if the process that provides the entangled query answers does
not abort, then the transaction will produce the same writes.

The first transaction in the serialization order in os(o-) sees the
same values as it did in o, because in ¢ its reads depended only on
the original values and the results of its own writes; otherwise, it
would have had an incoming edge in the conflict graph and could
not have been serialized first. It also receives the same entangled
query answers as it did in o, by construction. Finally, in both sched-
ules, it has an entanglement “partner” that does not abort — a real
transaction in o that commits due to requirement C.4, and the or-
acle in os(o). Consequently, by the determinism assumption, it
produces the same writes as before. As our inductive step, con-
sider the nth transaction in os(o), and suppose it reads object x. In
o, this transaction cannot have seen writes to x from any aborted
transactions, since that would violate Requirement C.3. Consider
all committed transactions in ¢ that wrote to x before the current
transaction read it. All such transactions must have been serialized
earlier in os(0), since the serialization ordering follows the conflict
graph. The writes of each of these transactions are the same as in
o by the inductive hypothesis, and they were serialized in the same
order as in o because the conflict graph keeps track of write-write
conflicts. It follows that the nth transaction in os(o-) also reads the
same values as it did in . Since it also receives the same entangled
query answers, the determinism assumption can be applied to infer
that it makes the same writes as it didino. [
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D. EXAMPLES

In this section we present several examples that we used in our
experiments. We created a set of users with friendship relations
based on the Slashdot social network data [1].

The schema for our system is as follows:

Reserve(uid, fid)

Friends(uidl, uid2)
Flight(source, destination, fid)
User(uid, hometown)

The first workload (No-Social) simulates individual travel book-
ing transactions. It queries the user table to get the source home-
town, followed by a query to find flights from this source to the
destination. Finally, it makes a reservation for the user.

BEGIN TRANSACTION;
SELECT @uid, @hometown FROM User WHERE uid=36513;
SELECT @fid FROM Flight WHERE source=@hometown
AND destination=’FAT’;
INSERT INTO Reserve (uid, fid)
VALUES (@uid, @fid);
COMMIT;

The second workload (Social) also gives a list of friends who
live in the same hometown and might be flying. This information
is additional to the normal flight reservation.

BEGIN TRANSACTION;
SELECT @uid, @hometown FROM User WHERE uid=36513;
SELECT uid2 FROM Friends, User as ul, User as u2
WHERE Friends.uidl=@uid

AND Friends.uid2=u2.uid

AND ul.uid=@uid

AND ul.hometown=u2.hometown
LIMIT 1;
SELECT @fid FROM Flight WHERE source=@hometown

AND destination=’FAT’;
INSERT INTO Reserve (uid, fid)
VALUES (@uid, @fid);

COMMIT;

The third workload (Entangled) checks if a particular friend is
also trying to coordinate with the user to make flight reservations.

BEGIN TRANSACTION WITH TIMEOUT 2 DAYS;
SELECT @hometown FROM user WHERE uid=45747;
SELECT 36513 AS @uid, ’CAT’ AS @destination
INTO ANSWER Reserve
WHERE (36513, 45747) IN
(SELECT uidl, uid2 FROM

Friends, User as ul, User as u2
Friends.uid1=36513
Friends.uid2=45747
ul.uid=36513
u2.uid=45747
ul.hometown=u2.hometown)

"PHF’) IN ANSWER Reserve

WHERE

AND

AND

AND

AND

AND (45747,
CHOOSE 1;

SELECT @fid FROM Flight WHERE source=@hometown

AND destination=@destination;

INSERT INTO Reserve (uid, fid)
VALUES (@uid, @fid);
COMMIT;



