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ABSTRACT

Traditionally, recommender systems have been “hand-built”, im-
plemented as custom applications hard-wired to a particular rec-
ommendation task. Recently, the database community has begun
exploring alternative DBMS-based recommender system architec-
tures, whereby a database both stores the recommender system data
(e.g., ratings data and the derived recommender models) and gener-
ates recommendations using SQL queries. In this paper, we present
a comprehensive experimental comparison of both architectures.
We define a set of benchmark tasks based on the needs of a typical
recommender-powered e-commerce site. We then evaluate the per-
formance of the “hand-built” MultiLens recommender application
against two DBMS-based implementations: an unmodified DBMS
and RecStore, a DBMS modified to improve efficiency in incre-
mental recommender model updates. We employ two non-trivial
data sets in our study: the 10 million rating MovieLens data, and
the 100 million rating data set used in the Netflix Challenge. This
study is the first of its kind, and our findings reveal an interest-
ing trade-off: “hand-built” recommenders exhibit superior perfor-
mance in model-building and pure recommendation tasks, while
DBMS-based recommenders are superior at more complex recom-
mendation tasks such as providing filtered recommendations and
blending text-search with recommendation prediction scores.

1. INTRODUCTION
Research and development of recommender systems has been

an exciting and vibrant field for over a decade, having produced
proven methods for “preference-aware” computing. The purpose
of a recommender system is to help users identify interesting, per-
sonalized items or content from a large search space. For exam-
ple, recommenders have successfully helped users find books and
media of interest from a massive inventory base (Amazon [20]),
news items from the Internet (Google News [12]), and personal-
ized movie suggestions (Netflix [25], Movielens [22]). Tradition-
ally, recommender systems have been “hand-built”, implemented
as custom software stacks hard-wired to the particular recommen-
dation task at hand. In terms of scalability, these systems assume
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all data fits in memory, sometimes sacrificing accuracy (i.e., recom-
mendation quality) for speed if data sizes require out-of-memory
computation [29].

Researchers from the data management community have re-
cently begun exploring alternative architectures for recommender
systems that leverage the capabilities of a database management
system (DBMS). In these approaches, the DBMS both stores the
recommender system data and generates recommendations. Many
popular recommendation methods can be implemented using an
unmodified DBMS using only SQL [18], and by modifying the
database storage engine, the DBMS adapts well to both the up-
date and query-intensive online environments that deploy recom-
mender systems [19]. Furthermore, implementation of a recom-
mender within the DBMS instantly leverages indexing, query op-
timization, and query execution constructs that have proven to be
an efficient and scalable solution for many data-driven tasks. This
“DBMS-based” approach runs counter to traditional recommender
system architectures that implement recommendation logic outside
a persistent data storage system such as a DBMS.

Given these disparate but capable approaches to implement-
ing recommender systems, i.e., the “hand-built”, the unmodified
DBMS, and modified DBMS architectures, it is natural to won-
der how each system performs under realistic workloads. Our pa-
per addresses this topic by presenting an experimental study of ap-
proaches to building recommender systems. Our study involves the
comparison of three approaches: (1) a hand-built architecture using
the MultiLens recommendation engine [21, 24], (2) an unmodified

DBMS using the PostgreSQL database, and (3) RecStore [19], a
PostgreSQL database engine modified to perform efficient incre-
mental updates to the recommender model (used to generate rec-
ommendations).

To measure the useful performance of each architecture, we de-
fine a rich set of six benchmark tasks based on the needs of modern
recommender-powered e-commerce scenarios. Our tasks test many
recommender performance aspects, and were created based on our
experience with real-world recommender systems such as Movie-
Lens [22]. Since our goal is to test relative performance of system
architectures, we run our benchmark tasks on each architecture us-
ing a single recommendation technique: item-based collaborative
filtering [29], a popular recommendation method used widely in
both academic and commercial systems (e.g., Amazon [20]). Our
tasks, however, are in no way limited to item-based CF, and easily
apply to a wide array other recommendation techniques. Further-
more, our study employs two real, large-scale data sets: the Movie-
Lens [23] and Netflix prize [26] data sets.

No previous work has performed such a rigorous study of rec-
ommender system performance. Most evaluations have focused on
recommendation quality rather than system performance [1, 10,
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9, 16]. In their 2004 detailed evaluation of recommender sys-
tems [16], Herlocker et al. state:

“We have chosen not to discuss computation performance of rec-

ommender algorithms. Such performance is certainly important,

and we expect there to be future work on the quality of time and

memory-limited recommendations.”

We have yet to see a comprehensive performance evaluation of rec-
ommender system architectures to date1. This paper fills that void.

The goal of this work is to provide an objective understanding of
the performance implications of each measured architecture when
run on a query workload and data set likely to be found in real-
world e-commerce contexts. The aim is for our results to spur
discussion of interesting topics that bridge both the database and
recommender system communities. Our results reveal an inter-
esting trade-off. Both the unmodified DBMS and RecStore are
faster than the hand-built architecture at performing complex rec-
ommendation tasks, such as producing filtered recommendations
(e.g., recommend movies released before a given year) and blend-
ing text-search and recommendation ranking scores. The hand-
built approach is more efficient at performing pure recommenda-
tion tasks, such as producing unfiltered recommendation results
and predicting a user’s interest in a given item. Meanwhile, the
hand-built approach is very efficient at building a collaborative fil-
tering model. The unmodified DBMS perform poorly at this build
task, while RecStore exhibits tolerable performance between the
hand-built and DBMS approaches.

The rest of this paper is organized as follows. Section 2 pro-
vides an overview of recommender systems and the details of item-
based collaborative filtering. Section 3 introduces our benchmark
tasks. Section 4 details the system architectures used in this study.
Section 5 provides the results of our experimental benchmark, fol-
lowed by a summary discussion in Section 6. Finally, Section 7
concludes this paper. The appendix contains further discussion of
architectural comparisons, as well as implementation details for our
experiments.

2. OVERVIEW OF THE

RECOMMENDATION PROCESS
In this section, we first describe the general purpose of recom-

mender systems, followed by a presentation of item-based collab-
orative filtering, the recommendation technique used in our experi-
ments.

2.1 Recommender Systems
A recommender system is an information agent that provides

suggestions for items likely to be of interest to the user [10]. This
broad definition is due to the large number of disparate strategies
for recommending items. For instance, Burke et al. classifies rec-
ommender system into five classes based on their recommendation
strategy [10]. The traditional and most popular strategy is collabo-
rative filtering (CF) [20, 28].

The CF approach assumes a set of n users U = {u1, ..., un}
and a set of m items I = {i1, ..., im}. Each user uj expresses
opinions about a set of items Iuj

⊂ I. We assume users express
opinions through a numeric ranking (e.g., an integer on scale of
1 through 5), however unary/binary ranking is also possible (e.g.,
hyperlink clicks, Facebook “likes” [14]). Given a querying user
uq , CF produces a set of recommended items Ir ⊂ I that uq is
predicted to like the most.

1Sarwar, et al. did analyze recommender throughput [29], though
to determine parameter settings for a hand-built recommender.
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Figure 1: Item-based model generation.

2.2 ItemBased Collaborative Filtering
This section describes the details of item-based CF. We chose

item-based CF for our experiments due to its popularity and
widespread adoption in commercial systems (e.g., Amazon [20]).
Thus, we believe it most accurately reflects a real-life e-commerce
recommendation scenario for our benchmarks ( though our bench-
mark tasks are generic enough to support any recommendation
technique). Item-based CF that consists of two phases: model-

building and recommendation generation. We describe the details
of each phase below.

2.2.1 Model Building

Item-based collaborative filtering builds a model that stores, for
each of the m items I in the database, a list L of similar items.
Given two items ip and iq , we can derive their similarity score
sim(ip, iq) by representing each as a vector in the user-rating space,
and then use a similarity function over the two vectors to compute
a numeric value representing the strength of their relationship. Fig-
ure 1 depicts this item-based model-building process. Conceptu-
ally, we can represent the ratings data as a matrix, with users and
items each representing a dimension, as depicted on the left side of
Figure 1. The similarity function, sim(ip, iq), computes the simi-
larity of vectors ip and iq using their co-rated dimensions. In our
example uj and uk represent the co-rated dimensions. Finally, we
store ip, iq , and sim(ip, iq) in our model, as depicted on the right
side of Figure 1.

Many similarity scoring measures have been proposed [29] (e.g.,
Pearson correlation, cosine distance). We use the cosine distance
as our similarity measure in the experiments due to its widespread
adoption. Given two item vectors ip and iq , the cosine distance is
defined as:

sim(ip, iq) =
~ip · ~iq

‖~ip‖‖~iq‖
(1)

It is common practice to truncate the item-based model by stor-
ing, for each similarity listL, only the k items with highest similar-
ity score, where k is much smaller than the total number of items.
Truncation has been observed to have minimal impact on the qual-
ity of recommendations [29].

2.2.2 Recommendation Generation

Given a querying user uq , recommendations are produced by
computing uq’s predicted rating P(uq ,i) for an item i [29]:

P(uq ,i) =

∑
l∈L

sim(i, l) ∗ ruq ,l∑
l∈L

|sim(i, l)|
(2)

Before this computation, we reduce each similarity list L to con-
tain only items rated by user uq . The prediction is the sum of ruq,l,
the user’s rating for a related item l ∈ L weighted by sim(i,l), the
similarity of l to candidate item i, then normalized by the sum of
similarity scores between i and l. The user receives as recommen-
dations the top-n items ranked by P(uq ,i).
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3. BENCHMARK TASKS
It is important in systems-related fields to objectively evaluate

architectural approaches to both understand their limitations and
benefits and advance the field in general. In this section we de-
scribe a set of six rich benchmark tasks to objectively evaluate the
performance of recommender system architectures. In proposing
these tasks, we aim to capture a wide array of common functional-
ity typical in recommender-powered e-commerce scenarios.

We have designed these tasks to be independent of the under-
lying recommendation technique. They are therefore suitable for
end-to-end performance evaluations of any recommender algorithm
implementation. In this section, we describe each task generically
in terms of its basic functionality and objective. Later, in our exper-
iments (Section 5), we describe each task’s implementation specific
to our data sets (MovieLens and Netflix), recommendation tech-
nique (item-based CF), and architectural approaches.

Initialization. The objective of initialization is to prepare the
recommender system for “live” use. For most systems, initializa-
tion means building a recommender model based on previous rat-
ings or purchase history of a user base.

Pure recommend. This task simulates a user navigating to an
e-commerce site (e.g., Netflix), where they receive a set of recom-
mendations from the system on a home page. The objective of this
task is to produce for the user a set of n recommended items. This
tasks tests the system efficiency in executing the common top-n
recommendation process.

Filtered recommend. This task models the user requesting rec-
ommendations for only a specific set of items (e.g., comedy movies
released after 1990). The objective of this task is to produce a set
of n recommended items that match one or more constraints placed
on the item metadata (e.g., movie year). This task tests the system
efficiency in querying item metadata and producing a set of n fil-
tered recommendations.

Blended recommend. This task models our system user re-
questing recommendations based on a free-text search. The ob-
jective of this task is to produce a set of n recommended items us-
ing the average of the item recommendation score and text-search
score. This task tests the system’s ability to efficiently incorporate
IR-based scoring techniques into its recommendation process.

Item prediction. This task models our system user navigating
to a specific target item (e.g., movie, book), whereby the recom-
mender system guages the user’s interest in the item. The objective
of this task is to generate the user’s predicted rating for the target
item. This task tests the system performance in producing predic-
tions for a single item.

Item update. This task models a new item being added to the
system. The objective of this task is to get the item into circulation
as a recommendation candidate as soon as possible after users start
rating it or customers start buying it. For most systems, this task
will require incorporating the item’s ratings or purchase history into
the recommender model built originally by the initialization task.

4. RECOMMENDER SYSTEM

ARCHITECTURES
This section provides an overview of the three different recom-

mender system architectures tested in this paper, namely an un-
modified DBMS, RecStore (a modified DBMS), and the hand-built
MultiLens system. It is important to note that each system provides
the same end result, as each implements the same recommendation
method (item-based CF from Section 2). For further discussion
and a non-experimental comparison of the advantages and disad-
vantages of each architecture, please see Appendix A.

SELECT R1.mid as item,

R2.mid as rel_item,

SUM(R1.rating * R2.rating)/

   (sqrt(sum(R1.rating*R1.rating))*

   sqrt(sum(R2.rating*R2.rating))

   +100) as sim

FROM Ratings R1, Ratings R2

WHERE R1.itemId <> R2.itemId AND

      R1.userId = R2.userId

GROUP BY R1.itemId,R2.itemId;

(a) Item-item cosine model generation (b) Recommendation generation

--Find movies rated by REC_USER_X

CREATE TEMP TABLE usrXMovies AS

SELECT R.mid as itemId, R.rating

          as rating

FROM Ratings R

WHERE R.uid = REC_USER_X;

--Generate predictions

SELECT M.itm as Candidate Item,

SUM(M.sim * U.rating)/         

          SUM(M.sim) as Prediction

FROM Model M, usrXMovies U

WHERE M.rel_itm = U.itmId AND

M.itm NOT IN (select itmId

                  FROM usrXMovies)

GROUP BY M.itm ORDER BY Prediction

LIMIT N;

Figure 2: Collaborative filtering SQL examples.

4.1 An Unmodified DBMS
A standard database management system is perfectly capable

of implementing a very wide spectrum of recommendation meth-
ods [18]. This section provides an overview of how to use a DBMS
to implement an item-based recommender system, labeled DBMS

in our experiments. We chose PostgreSQL as our DBMS due to its
superior performance in initial tests versus other open-source so-
lutions, though the techniques we discuss apply to any relational
database.

Data storage. Ratings data is stored in a relation Rat-
ings(userId, itemId, rating), where userId and itemId represent
unique ids of users and items, respectively. We store the model us-
ing a three-column table model(item, rel itm, score). Any item
or user metadata (e.g., movie titles, user information) are stored in
separate relations.

Model building. Standard SQL is sufficient to build collabora-
tive filtering models within the DBMS. For example, Figure 2a de-
picts an SQL query that creates the item-based cosine model. This
query computes the cosine score for item pairs (i.e., Equation 1).
Note that this query involves a self-join over the Ratings relation,
which can be rather large.

Recommendation generation. Recommendation generation
can also be implemented using standard SQL, thus leveraging the
full power of the query optimizer. Figure 2b provides the SQL
for generating movie predictions for a user X using the weighted
sum method from Equation 2. For presentation clarity, we provide
two separate queries, though the entire query can be nested. The
first query finds movies the user has rated (which can also be pre-
computed or maintained by the system), while the second query
performs a weighted sum prediction over the reduced item-based
cosine model to produce recommendations.

4.2 RecStore: A Modified DBMS
Typically in collaborative filtering, the model-building phase is

performed offline, while the recommendation generation phase is
performed online. In previous work, we built RecStore [19], a
database storage engine module that supports a completely online

collaborative filtering process. RecStore enables fast incremen-
tal updates to the recommender model, while still supporting ef-
ficient recommendation queries. The basic idea behind RecStore is
to maintain an intermediate store containing intermediate statistics
sufficient to compute similarity scores in the collaborative filtering
model. RecStore also maintains a model store, which is the materi-
alized collaborative filtering model itself. Upon receiving a ratings
update, RecStore uses the intermediate store to quickly update the
affected scores in the model store.

From a query-writing perspective, RecStore hides details of its
internal maintenance strategies, and exposes the model to the query
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processor as a relational table. Thus, the SQL queries introduced in
Section 4.1 can remain unchanged in a RecStore-enabled DBMS.

Through tuning, RecStore adapts to different system workloads
(e.g., update or query-intensive workloads) to realize an efficiency
trade-off between updates and query processing. For instance, Rec-
Store can store only intermediate statistics, and not the full materi-
alized model (the model store). This configuration has the advan-
tage of lower storage and update overhead and fast updates, since
the materialized model is not maintained or updated. However,
query processing in this configuration is at a disadvantage, since
the model similarity scores must be generated at query runtime
from the intermediate statistics. It was experimentally shown that
various RecStore strategies outperform existing DBMS approaches
(using regular and materialized views) in both query and update
efficiency on a real recommender workload [19].

In this paper, our experiments contain an implementation of Rec-
Store using two internal maintenance strategies. (1) The maintain-
all strategy maintains both the intermediate and model store, la-
beled RecStore MA in our experiments. (2) The intermediate-only
strategy maintains the intermediate store but not the model store,
labeled RecStore MI in our experiments. We don’t present all de-
tails of RecStore here. However, our extended technical report [19]
provides the technical details of RecStore.

4.3 MultiLens: The HandBuilt Approach
For our hand-built recommender, we used a customized version

of the MultiLens collaborative filtering implementation [21, 24], la-
beled MultiLens in our experiments. While the MultiLens engine
implements a suite of different recommendation methods, our ver-
sion has been fine tuned to focus on the needs of item-based collab-
orative filtering using cosine similarity. In this vein, MultiLens im-
plements a multi-threaded model builder, as well as a hand-coded
matrix library for storing the ratings data and item-based cosine
model in memory. This library creates an array of pointers for each
row in a matrix. Each pointer references a compressed array repre-
senting the non-null data for that row. Each entry in the compressed
array is stored as a primitive float type. We chose MultiLens due
to its superior performance in initial tests when compared to other
general-purpose hand-built systems (e.g., Apache Mahout [3]).

MultiLens also interfaces with an underlying DBMS (the same
PostgreSQL database used in theDBMS approach) through a JDBC
layer. The DBMS and MultiLens interact for two main reasons:
(1) Ratings storage. MultiLens loads ratings from the database
to build its in-memory model. (2) Metadata Queries. MultiLens
queries item metadata stored in the database to produce filtered rec-
ommendations (e.g., recommend only movies released after 1990)
as well as recommendations blended with text-search scores.

5. PERFORMANCE EXPERIMENTS
This section presents our performance experiments results for

our benchmark tasks tested on three recommender architectures
presented in Section 4. We first describe our experimental environ-
ment. We then present performance results along with discussion
for each benchmark task.

As RecBench aims to measure the relative performance of dif-
ferent system architectures, we selected a single algorithm (item-
based CF) which is widely used in both academic and commercial
recommender systems (based on our experience and conversations
with practitioners) and varied only the system architecture and im-
plementation platform. Our tasks are in no way limited to item-
based CF, as they can apply to other recommendation techniques;
we consider evaluating performance of different recommendation
techniques on varying architectures important future work.
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Figure 3: Initialization task.

5.1 Experimental Environment
Data sets. The data sets we employ in our experiments come

from two real movie recommendation applications. (1) The Movie-
Lens [23] data set consisting of 10Mmovie ratings and (2) The data
set from the Netflix Challenge [26] consisting of 100M movie rat-
ings. Appendix B provides detailed statistics and schemas for both
data sets.

Implementations. Both DBMS-based approaches were imple-
mented in PostgreSQL 8.4, while MultiLens was built and run us-
ing Java 1.6.0. Appendix B provides in-depth implementation de-
tails for each architecture.

System details. All experiments were done on a 4-way 3.0GHz
Intel Xeon system with 48GB of RAM and a 300GB SCSI disk
running Ubuntu 8.04. Our data was stored on a 236GB ext3 file
system. Our performance metric is elapsed wall clock time nec-
essary to perform each benchmark task. We perform three runs of
each task. The times reported for each task are the average for a
series of runs over a randomly selected set of users and/or items
from the data; we describe the details of user/item selection within
the writeup for each task.

5.2 Benchmark Experiments
This section provides the results of our experimental evaluation

for our three architectures implementing item-based collaborative
filtering [29]. We use the following parameter values for item-
based collaborative filtering, which have been experimentally shown
to produce quality recommendations [29]. (1) Similarity list size,
the amount of similar items stored for each item in the model, is set
to 75. (2) Neighborhood size, the number of similar items used in
calculating a prediction (Equation 2), is set to 30.

The workload we use consists of the benchmark tasks described
in Section 3. For each task, we briefly describe how it is imple-
mented in each architecture. We then discuss and compare the re-
sults for each architecture. For all tasks except the first and final
tasks, we omit the results of the RecStore MA approach, as its per-
formance is exactly the same as the unmodified DBMS approach
since both implementations perform query processing over a fully
materialized model table.

5.2.1 Task 1: Initialization

This task represents the necessary initialization process to get the
recommender system running. For item-based collaborative filter-
ing, initialization involves building the item-based model.

SQLCommands: The DBMS implementation generates the ini-
tial item-based cosine model using the SQL given in Figure 2a.
Meanwhile, both RecStore approaches build the model by incre-
mentally updating their intermediate statistical representation of the
model. For the RecStore MA approach, the materialized model is
also incrementally updated using the intermediate statistics.

Hand-built implementation: MultiLens builds an item-based
cosine model using a parallelized algorithm that builds the similar-
ity matrix in row blocks, allowing multiple blocks to be computed
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in parallel. For each row (an item), it retrieves all users who rated
that item and builds the similarity list from the other items they
have rated. The model builder uses three compute threads, leaving
a processor free for the database to serve ratings requests. The JVM
is limited to 32GB of heap size; this is sufficient to build the Netflix
model.

Results and Discussion: The results for the initialization task
for the MovieLens and Netflix data sets are given in Figures 3(a)
and 3(b), respectively. The hand-built architecture clearly outper-
forms the DBMS-based approach. For the MultiLens data, the
hand-built approach is 71 times faster than the DBMS, represent-
ing almost two orders of magnitude. For the Netflix data, the hand-
built approach is 4.5 times faster than the DBMS. Meanwhile, both
RecStore approaches improve upon the unmodified DBMS. The in-
termediate statistics maintained by RecStore help similarity score
generation immensely. The RecStore MA strategy is less efficient
than the RecStore MI strategy due to the extra step in updating the
materialized model.

The large disparity between the unmodified DBMS and Multi-
Lens architectures reveals the databases drawback in performing
matrix/array computations. For this task, building the item-based
model essentially requires a series of vector distance computations
over all items in the user rating space (Equation 1). Databases are
ill-equipped to perform matrix/array computations efficiently. As
affirmed by [30], databases and the relational model are an unnatu-
ral fit for applications requiring a matrix or array data model. The
only way to perform this task using SQL is to perform a self-join
involving both an anti and equi-join over the massive ratings ta-
ble, followed by a group-by aggregation to perform the cosine dis-
tance computation, as depicted in Figure 2a. Of course, this task
could be implemented as a database user-defined function (UDF),
providing more control over the model building algorithm. How-
ever, our objective for these experiments is to adhere strictly to an
SQL-based implementation platform for the DBMS implementa-
tion. On the other hand, MultiLens is well-equipped to build the
item-based model for two reasons: (1) The model-build algorithm
is tuned specifically for vector distance computations, and (2) The
algorithm is built to compute different sections of the item-based
model in parallel.

An interesting factor in this result, however, is the relative per-
formance degradation of MultiLens (i.e., 71 to 18 times improve-
ment) as the rating data set size increases by an order of magnitude.
Examination of the DBMS query plan for building the model indi-
cates that it is primarily performing merge joins and sorts over the
ratings table. Our benchmark results suggest that while the DBMS
model build is using an algorithm asymptotically superior to the
MultiLens algorithm. For the database the build is O(R lg R) com-
pared to O(R2/U ) forMultiLens, whereR, I , andU are the number
of ratings, items, and users, respectively. The DBMS performance
constants render it slower than the hand-built recommender in prac-
tice. This asymptotic benefit, however, could account for the dra-
matic change in relative performance between the MovieLens and
NetFlix data sets. While we are unsure what is causing this ef-
fect, one possible explanation is that the simple caching MultiLens
performs in its database access layer is not scaling as well as the
database to Netflix-scale loads.

5.2.2 Task 2: Pure Recommend

This task assumes we have a user U logging into our movie rec-
ommendation system to find movies to add to her rental list. Upon
logging in, U sees on her homepage a set of N recommendations.
The goal of this task is to perform a straightforward top-N recom-
mendation for U .
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Figure 4: Pure recommend results.

The computational overhead for this task is correlated with the
number of items a user has rated (see Section 2.2.2). Thus, we se-
lect users for this experiment as follows. We first break the users
into quartiles based on the number of movies each user has rated.
We then randomly choose k users from each quartile, where k

equals approximately 2.5% of all users in the data. The times re-
ported in this experiment are an average over each user quartile.
We omit the results for the RecStore MA strategy, as these results
are the same as the unmodified DBMS approach (i.e., the DBMS
performs query processing over a fully materialized model table).

SQL Commands: Both DBMS implementations generate rec-
ommendations using the SQL given in Figure 2b, where the user
rating table has been pre-computed. For the RecStore MI approach,
model values must be generated at run-time using the model’s in-
termediate statistical representation.

Hand-built implementation: MultiLens performs the recom-
mendation generation steps described in Section 2.2.2, using its
custom matrix library to store the model. MultiLens computes all
recommendations for a user; picking only the top N merely trun-
cates this list and does not save computation time.

Results and Discussion: Figures 4(a) and 4(b) give the results
for this pure recommend task for the MovieLens and Netflix data
sets, respectively. As expected, recommendation efficiency is pos-
itively correlated to the size of the quartile, as larger quartiles re-
quire processing of more user-rated items to generate recommen-
dations.

The hand-built architecture is more efficient than all DBMS-
based approaches across the board. There are two main reasons
for the performance difference between the DBMS and MultiLens.
First, and most prominent, is that the DBMS-based execution strat-
egy that produces recommendations is simply less efficient than the
hand-built approach. For this task, PostgreSQL chooses an optimal
index-only query plan to perform selection over the Ratings and
model tables. However, the DBMS is forced to join the results of
both operations and then perform a group-by to generate prediction
scores for the recommendation candidate items. MultiLens, on the
other hand, performs prediction much more efficiently due to its
custom in-memory storage of the recommender model. Model re-
duction is performed quickly, while similarity score computation is
a streamlined weighted sum operation using two arrays: one stor-
ing the item similarity list and the storing the user’s previous ratings
for the item.

The second reason for the better relative performance of Mul-
tiLens is overhead in data size. For the DBMS, the interface be-
tween operators executing the query plan is the tuple. These tu-
ples require small, but non-trivial, book-keeping overhead. When
matched against the “lean and mean” MultiLens implementation
that stores primitive float entries in its model, the processing time
required to handle tuple overhead becomes a factor.
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Figure 5: Filtered recommend results.

5.2.3 Task 3: Filtered Recommend

Assume now that our system user U was not inspired by any of
the recommendations produced by the previous recommend task
(Section 5.2.2). Upon further thought, user U decides that she only
wants recommendations for recent comedies. This prompts the user
to tell the system to only recommend comedy movies released af-
ter 1990. This filter task is so named as it requires the system to
produce the top-N recommendations results for only items filtered
by boolean constraints given by the user.

SQL Commands: This task requires a slight modification to
the SQL used in the pure recommend task (Section 5.2.2), where
we must add selection constraints over the movies relation to find
comedies released after 1990, and join these results with the model
relation to ensure only these movies are returned as recommenda-
tions. Appendix B provides the SQL for this task.

Hand-built implementation: MultiLens supports filtering rec-
ommendations with a client-provided candidate list. The operation
is the same as for the pure recommend task, except that the similar-
ity lists for the user’s rated items are pruned to only contain items
matched by the filter. We build the candidate list with a database
query that generates a list of movie IDs using the same movie se-
lection constraints as the SQL for the DBMS-based approach and
provide this list to MultiLens.

Results and Discussion: Figure 5 provides the results for the
filtered recommend task for both the MovieLens and Netflix data.
We report the average time to produce a single recommendation
for each user quartile, and again see a correlation between larger
quartiles and higher processing time.

The DBMS-based architecture exhibits superior performance to
the hand-built architecture. The reason for this relative perfor-
mance is that the DBMS-based approach can integrate the filter
as selection in its query execution plan, while the hand-built ap-
proach cannot. The database is able to take advantage of the given
constraints by performing selection over the movies relation, and
pipelining these results into a join against the model table. Since
the selection factor is high, this operation “pushed down” in the
query plan, and effectively limits the amount of candidate items
processed by the rest of the query. Meanwhile, MultiLens exe-
cutes this task in two parts. It first asks the database for the movies
matching the constraints, which involves both query processing and
data transfer overhead. It then performs recommendation genera-
tion and intersects these two answer sets.

Comparing the DBMS-based approaches, we see that the Rec-

Store MI approach is less efficient than the unmodified DBMS and
RecStore MA approaches, as was also observed in the pure recom-
mend task. As we will see throughout the rest of the experiments,
the RecStore MI is always outperformed in query processing by the
unmodified DBMS and RecStore MA approaches. This is because
RecStore MI must always calculate model similarity scores on de-

mand from its intermediate statistics, while the other approaches
keep the model scores materialized.
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Figure 6: Blend recommend results.

5.2.4 Task 4: Blended Recommend

Our system user U now realizes that in addition to recent come-
dies, she also wants to watch a sci-fi movie. Instead of using
boolean constraints, however, she wants to receive recommenda-
tions based on a free text search for “Alien”.

The difference between this task and the filtered recommend task
(Section 5.2.3) is that text search is fuzzy, producing a similarity
score representing the relevance of the text data to the query. For
this task, the text search score is blended with the recommendation
score to produce a final aggregate score. The movies returned to
the user are the Top-N recommendations with the highest blended
score. The blend function we use is the average of both scores. In
practice, the choice of the blend function makes little performance
difference; we could have used other similar functions without af-
fecting performance results.

Our text data is a set of free-text tags concatenated with the “di-
rector” and “starring” attributes of the movies data. For the Netflix
data, the text search is performed over the title attribute, as this is
the only text data available. Details of our data sets are covered in
Appendix B.

SQL Commands: The SQL commands for this task involves a
join on the movie id attribute between the result of two subqueries:
one for text search and the other to produce recommendation can-
didates. The scores from these joined results are then blended (i.e.,
averaged in this case). Appendix B provides the SQL for this task.

Hand-built implementation: MultiLens queries PostgreSQL to
produce text-search scores using the same SQL-based text-search
constraints used in the DBMS-based approach. It then generates a
recommendation list as in the pure recommend task. It then walks
through the results list and computes the finalN recommendations
using the average of the recommendation score and text search
score.

Results and Discussion: The results for this task are given in
Figure 6 for the MovieLens and Netflix data sets, again broken
down by user quartile. The unmodified DBMS and RecStore MA

approaches exhibit superior performance over the hand-built ap-
proach. Again, text search integration in query execution is the key
to the efficiency of the DBMS-based architecture.

For the DBMS-based approach, the text-search query is literally
“built into” its query execution, and the DBMS takes full advan-
tage of this fact. In PosgreSQL, as with most databases, text-search
results with a score of 0 (i.e., do not match the query) are not re-
turned. Thus, for the DBMS-based approach, the text-search sub-
query acts as a reduction factor in the join against the subquery pro-
ducing the recommendation prediction scores, meaning the amount
of data actually used in the averaging (i.e., blend) computation by
the database remains small. On the other hand, the MultiLens ar-
chitecture must wait for the database to both perform text-search
and send the answer back before performing the blend computa-
tion. This overhead is the main reason for the inferior performance
of MultiLens.
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Figure 7: Item prediction results.

5.2.5 Task 5: Item Prediction

After being presented with a list of recommendations, our system
user U is ready to start looking into the details of specific movies.
This task simulates U navigating to a specific item I to view movie
details. The job of the recommender system is to tell the U how
much she will like the movie by predicting her rating for I (using
Equation 2).

For this task, we created item quartiles based on rating count in
the same manner as the user quartiles (Section 5.2.2). The higher
quartiles imply more “popular” (i.e., highly rated) items. We ran
this experiment performing prediction for each user quartile against
each item quartile, averaging each user-item quartile pair. We re-
port results for each user quartile matched against the first and last
item quartiles, as these results represent the two extremes in terms
of computational complexity for the prediction task.

SQL Commands: The SQL commands for this task is similar to
the SQL used in the pure recommend task (Section 5.2.2), except
we must only perform rating prediction for a single target item.
Appendix B provides the SQL for this task.

Hand-built implementation: MultiLens computes a prediction
by walking overU ’s rating list and computing the weighted average
using the items U has rated that have item I in their similarity lists.

Results and Discussion: Figure 4(a) and 7(b) give the results for
the predict task run against the MovieLens and Netflix data, respec-
tively. For the Netflix data, the hand-built approach is more effi-
cient at prediction for most user-item quartile combinations. There
is a difference, however, between the runs that match the user quar-
tiles against the smallest item quartile i1, and the runs that match
the user quartiles against the largest item quartile i4. In the latter
set of runs, the DBMS-based approach exhibits better performance
than the hand-built approach for the final run matching the largest
user quartile u4 against the largest item quartile i4. This is be-
cause, for the larger item quartiles with popular items, it is more
likely that a user will have already rated a target item I . Thus, the
DBMS-based approach will not execute the majority of its query
due to the NOT EXIST clause returning false in the prediction SQL
query. MultiLens performs prediction regardless of the user having
already rated the target item. However, MultiLens can easily be
changed to shortcut its predictions upon finding I is already rated,
and we expect that MultiLens will be more efficient than the DBMS
when this is the case. Experiments for the MovieLens data exhibit
similar results, withMultiLens outperforming the DBMS-based ap-
proach for all user quartiles matched with item quartile i1, while
both approaches exhibit similar performance for item quartile i4.

5.2.6 Task 6: Update

This task involves introducing a new item to the recommender
system. The goal is to quickly inject the item into circulation as a
recommendation candidate. For item-based collaborative filtering,
we achieve this goal by incorporating user ratings for this new item
into the model as soon as possible. To simulate updates, this task
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Figure 8: New item update results.

first builds a model, holding out all ratings for 20 items from each
of the second and third item-quartiles computed for the item predic-

tion task. We then add the ratings for these missing items into the
system one-by-one. Results are reported per quartile as the average
time to incorporate each item into the recommender model.

SQL Commands: For the unmodified DBMS approach, we im-
plement a trigger to update the stored recommender model accord-
ing to the SQL given in Figure 2a. Meanwhile, the RecStore ap-
proach uses customized code to incrementally update the recom-
mender model. Upon receiving an update, both the RecStore MI

and RecStore MA approaches update stored intermediate statistics
for the item-based cosine model. The RecStore MA approach then
uses the update to the intermediate statistics to incrementally up-
date its model store.

Hand-built implementation: MultiLens currently does not sup-
port introduction of new items to an existing recommender model.
Therefore, a complete model rebuild is necessary to bootstrap the
new item. After the item is added, the similarities can be incremen-
tally updated, but this will be dominated by the rebuild time.

Results and Discussion: Figure 8 gives the results for the update
task for the MultiLens data set (relative performance is similar for
the Netflix data). The unmodified DBMS approach incurs the most
overhead in updating the model. Upon receiving an update, this
approach must recalculate all affected model entries from scratch

using the rating data. Both the Recstore MA and RecStore MI ap-
proaches improve the update performance of the DBMS by at least
an order of magnitude. The intermediate statistics maintained by
RecStore clearly help in incrementally updating the model. Com-
paratively, RecStore MI is more efficient than RecStore MA due to
not having to perform the extra step in updating the model store.
However, as we observed in previous experiments, RecStore MI is
less efficient than RecStore MA in query processing. MultiLens
currently does not support incremental updates to the item-based
recommender model when an item does not previously exist in the
system. Since MultiLens must completely rebuild the model to in-
corporate new items, its performance on this task will be equivalent
that of the initialize task. Recomputing the model incorporates all
new items, however, so its cost can be amortized over all items
added to the inventory since the last build.

6. DISCUSSION
Our experimental results reveal an interesting trade-off. The

“hand-built” recommender architecture is more efficient at straight-
forward recommendation tasks (i.e., pure recommend and single-
item prediction). For these tasks, the hand-built architecture had
the obvious advantage of an implementation hard-wired to the spe-
cific recommendation technique, e.g., optimized in-memory stor-
age, state-of-the-art algorithmic implementation. Meanwhile, the
DBMS-based architecture is at a disadvantage for these tasks due
to its general-purpose nature, e.g., book-keeping overhead for tu-
ples, query execution using generic operators.

917



The DBMS recommender architecture, however, outperforms the
hand-built approach at more complex recommender tasks involving
filtered recommendations and blending text-search scores with rec-
ommendation scores. In our experiments, this performance ben-
efit was due to the DBMS supporting the advanced search fea-
tures (e.g., text search, selection predicates) as built-in operators,
thus being able to self-optimize for the advanced recommendation
queries. Meanwhile, the hand-built recommender exists at the mid-
dleware layer and requires the overhead of communicating with
a third-party application (e.g., PostgreSQL through JDBC) in or-
der to perform the advanced search and filter operations. Building
and maintaining the recommender model poses a substantial chal-
lenge for DBMS-based recommenders; this problem can be greatly
reduced by extending the DBMS with direct support for recom-
mendation tasks (e.g., update support from RecStore). Appendix A
provides further discussion comparing these architectures.

Our results also suggest that both architectures stand for further
improvement. An interesting direction for DBMS-based recom-
menders could explore the creation of a “recommend” operator to
improve performance of simple recommendation tasks. Semanti-
cally, this operator could take as input a model relation, and pro-
duce ecommendations based on a given recommendation method.
In fact, work in this area has already begun with the FlexRecs
framework [18] that proposes three operators capable of evaluating
myriad different recommendation techniques. In general, the oper-
ator approach has proven beneficial for other preference methods.
For instance, the skyline [8] and top-k [11] operators outperform
their respective SQL implementations by orders of magnitude.

Meanwhile, hand-built architectures implemented at the middle-
ware layer fall short in more complex recommendation tasks since
they rely on an outside systems (e.g., database, text-search engines)
to help produce results. The data transfer and missed optimization
opportunities for such tasks introduces non-trivial overhead. Thus,
an interesting research direction could explore pushing frequently-
used filtering tasks into the hand-built recommender architecture.

In addition to improving each individual architecture, another
interesting line of work is to build a performance-optimized hybrid
recommender architecture. This work would combine principals
from both hand-built and DBMS-based recommenders to investi-
gate the optimal level (e.g., middleware, internal DBMS) to place
certain architectural components of the recommender system (e.g.,
model building, recommendation generation, filtering). We equate
such an approach to past work that explored building hybrid archi-
tectures that coupled a DBMS with both text-search [2, 17] and
XML [4, 6, 13] functionality.

The benchmarks in this paper open up an interesting line of fu-
ture work evaluating recommender system performance. We high-
light two interesting directions below that can make use of our
benchmark tasks. Though not an exhaustive list of directions, these
proposals elucidate the interesting research space in evaluating rec-
ommender architectures. (1) Multi-user experimental workloads.
Our experiments only evaluated single-user queries as a first step
in understanding performance characteristics of different recom-
mender architectures. An interesting line of future work would be
to evaluate multi-user workloads, e.g., measuring throughput as the
level of concurrency changes. We equate such an extension to prior
work in single-user database benchmarks [5] extended to multi-user
environments [7]. (2)Different recommendation techniques. In this
work, we chose to experimentally evaluate recommender system
architectures using a single recommendation technique (item-based
collaborative filtering). An interesting line of future experimental
work could test the performance of different recommendation tech-
niques on varying system architectures.

7. CONCLUSION
This paper provides the first benchmark for evaluating perfor-

mance of recommender system architectures. Our benchmark tasks
model the needs of a typical recommender-powered e-commerce
scenario. In our experiments, we evaluated the following three rec-
ommender system architectures using our benchmark tasks with
the MovieLens and Netflix data sets: (1) an unmodified DBMS,
(2) RecStore, a DBMS customized to efficiently handle recom-
mender model updates, and (3) MultiLens, a hand-built recom-
mender system. Our experimental results reveal that “hand-built”
systems exhibit superior performance in model-building and pure
recommendation tasks, while the DBMS-based approaches are su-
perior at more complex recommendation tasks such providing fil-
tered recommendations. In light of our benchmarks and results, we
highlight interesting research directions at the intersection of rec-
ommender systems and data management.
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APPENDIX

This appendix supplements the content of the main body of the
paper as follows. Appendix A provides a comparison of the rec-
ommender system architectures tested in this paper. Appendix B
provides further implementation details for our experiments.

A. ARCHITECTURAL COMPARISONS
In this section, we compare and contrast the recommender sys-

tem architectures tested in this paper. We aim to flesh out the ad-
vantages and disadvantages of architectural features that cannot be
measured by experimental numbers.

A.1 Flexibility
Flexibility refers to the ability of the system to adapt to non-

trivial changes in the requirements of a recommender application.
For example, a book/music website may decide to use a different
recommendation method, or make their current method more inter-
active by allowing users to specify constraints on which books or
music they receive as recommendations. Having a more flexible
architecture implies such changes are easier to implement.

Recent work has shown that the DBMS approach is at an advan-
tage to the hand-build approach in terms of flexibility [8]. Due to
its declarative interface and general query execution infrastructure,
adding constraints or changing the recommendation method is rel-
atively straightforward. For example, using our SQL example in
Figure 2b, filtering item-based recommendations requires simply
adding constraints to the WHERE clause of the SQL query. Exam-
ples of real-world constraints are “only recommend movies from a
given genre” or “for items with same prediction scores, recommend
those with higher profit margins”. Furthermore, changing the rec-
ommendation method from item-based to user-based collaborative
filtering [28] requires us to only reverse the item Ids (itmId) and
user Ids (usrId) in Figure 2a in order to find neighborhoods of sim-
ilar users. These changes in the hand-built approach would require
non-trivial system modifications.

Hand-built recommender systems are usually “lean-and mean”,
using only the ids of the user-item matrix for fast in-memory rec-
ommendation computation. These systems usually do not store
extra metadata on items or users (e.g., titles, names), thus adding
constraints would require both importing the metadata as well as
programming custom filters for each necessary constraint. Also,
creating a new recommendation method within the hand-built ar-
chitecture will usually require re-writing the recommendation logic
from scratch.

A.2 Query Processing
The difference in query processing strategies between each rec-

ommender architecture is vast. The DBMS, being a general data
management platform, can take advantage of decades of research
on query processing and optimization. The DBMS composes its ex-
ecution strategy using simple relational operators. Multiple execu-
tion strategies are possible, thus the DBMS is capable of configur-
ing an optimal (or close-to-optimal) query execution plan based on
available indexes and statistical summaries of attributes in the un-
derlying relations. The DBMS is also scalable for out-of-memory
operations, and has been a proven solution for scalable processing
of large data sets. However, if most query processing is memory-
bound, the DBMS is at a disadvantage as it organizes data into
pages and tuples, which both require book-keeping overhead not
present in a hand-built application.

Meanwhile, hand-built recommender systems are hard-wired to
a single execution strategy. The hand-built architecture takes full

advantage of domain-specific optimizations, such as custom in-
memory storage techniques that work in concert with specialized
recommendation generation algorithms. Furthermore, these cus-
tom storage techniques and algorithms can easily port to more ex-
otic architectures such as map-reduce nodes to increase scalability;
a task more difficult for the well-entrenched DBMS architecture.
The hand-built approach is also harder to tune for data sets which
do not fit in main memory, as it must either re-implement disk-
based algorithms or rely on the operating system’s virtual memory
paging algorithm. In some cases this pitfall may be aided by data
access facilities provided by a computational framework such as
Hadoop’s Hbase [15].

A.3 Architectural Integration
DBMS-based and hand-built recommender implementations in-

tegrate differently with varying application infrastructures. The
availability of both strategies is itself beneficial, as it allows system
architects to implement the recommendation logic where it makes
most sense for their application. The DBMS architecture places
the recommendation logic in the data storage layer, while a hand-
built recommender resides at the middleware layer. Developers and
architects can therefore place the recommender in various layers
based on system load, hardware capabilities, or other application
demands and constraints.

B. EXPERIMENT DETAILS
In this section, we provide details of the data sets used in our

experiments. We also discuss the implementation details for each
architecture we evaluated in our experiments.

B.1 Data Sets
This section provides details of the data sets used in the experi-

mental study presented in Section 5
MovieLens. The MovieLens data consists of three parts:

• Movies(movieId [integer], title [text], genres [text], release-
Date [date], directedBy [text], starring [text]): contains data
on 10681 movies. The genres field is a comma-delimited
string containing standard genre descriptions (e.g., Comedy,
Drama), while the starring field contains a comma-delimited
list of actor names starring in the film.

• Ratings(userId [int], movieId [int], rating [int], timestamp
[date/time]): contains 10M ratings for 69878 users over
10681 movies. Each entry is marked with a timestamp repre-
senting when the user rated the movie.

• Tags(userId [int], movieId [int], tag [text], timestamp

[date/time]): contains 10K movie tags. The tag field con-
tains a single user-defined string for a movie, where a user is
allowed to tag a movie multiple times.

Netflix. We also use the data set from the Netflix Challenge [26]
consisting of 100M movie ratings. The Netflix data consists of two
parts:

• Movies(movieId [integer], title [text], releaseYear [date]):
contains data on 17,770 movies from the Netflix rental site.

• Ratings(userId [int], movieId [int], rating [int], timestamp
[date/time]): contains 100M ratings for 480,189 users over
17,770 movies with a schema similar to the MovieLens data.

B.2 Architecture Implementation Details
This section discusses the implementation details for each archi-

tecture evaluated in our experiments. We first discuss the Multi-
Lens hand-built implementation. We then discuss the unmodified
DBMS and RecStore implementations, respectively.
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B.2.1 MultiLens Implementation

We built and ran the MultiLens implementation in Java 1.6.0p14
for x86 64. The model builder loads data on-demand from the rat-
ing and metadata tables in the same PostgreSQL database as we
used for the DBMS tests. The Java-PostgreSQL JDBC interface
implements some caching to reduce database re-fetches, similar to
that done by any standard JDBC-based application.

B.2.2 DBMS Implementation

We implemented the database approach using the PostgreSQL
8.4 open-source DBMS [27]. Data is stored in relations accord-
ing to the schemas discussed previously in Section B.1. For
the Movies relation, a B+ tree index is built over the attributes
movieId. The Ratings contains two B+ tree indices: one clustered
on (movieId,rating) and one unclustered on (userId,rating). For
the MovieLens data we built two B+ tree indices: one clustered
over (movieId,tags) and one unclustered over (userId,tags). Post-
gres shared memory is set to 2GB for all tasks, and fsync is disabled
to avoid forward syncing for write-ahead logging. We used the de-
fault settings for all other Postgres tuning parameters.

In addition to the SQL provided for benchmark tasks 1 and 2 in
Figure 2, we provide below the SQL used for benchmark tasks 3
through 5:
Task 3 - Filtered Recommend:
SELECT M.itm as Candidate Item,

SUM(R.sim * U.rating)/ SUM(R.sim) as Prediction

FROM Model M, usrXMovies U, movies MV

WHERE MV.releaseDate > 1990 AND

MV.genre SIMILAR TO ’%Comedy%’ AND

M.itm = MV.mid AND

M.rel_itm = U.itemId

GROUP BY M.itm ORDER BY Prediction DESC

LIMIT N;

Task 4 - Blended Recommend:
SELECT T.mid, (T.rank + R.rank)/2 as combRank

FROM (SELECT mid, max(ts_rank_cd(to_tsvector(tag), query))

as rank

FROM tags, to_tsquery(’Alien’) query

WHERE mid NOT IN (select itemId from usrXMovies) AND

query @@ to_tsvector(tag)

GROUP BY mid) T,

(SELECT M.itm as mid,

SUM(R.sim * U.rating)/SUM(R.sim)

FROM Model M, userXMovies U

WHERE M.rel_itm = U.itmId AND

M.itm NOT IN (select itmId FROM usrXMovies)

GROUP BY M.itm) R

WHERE T.mid = R.mid

ORDER BY combRank DESC

LIMIT 10;

Task 5 - Item Prediction: While similar to the SQL for the pure
recommend task (Section 5.2.2), this query only performs a rating
prediction for a single target item. We also add a NOT EXISTS
clause in the first query that creates a NULL user-movies table if
we find that our user U has already rated a target item I . This
ensures that the query will not compute unnecessary predictions in
the second SQL query.

CREATE TEMP TABLE usrXMovies AS

SELECT R.mid as itemId, R.rating as rating

FROM Ratings R

WHERE R.userId = U AND

NOT EXISTS (SELECT mid FROM Ratings

WHERE userId=U AND movieId=I);

SELECT M.itm as Candidate Item,

SUM(R.sim * U.rating)/ SUM(R.sim) as Prediction

FROM Model M, usrXMovies U, movies MV

WHERE M.rel_itm = U.itemId AND

M.itm = I

GROUP BY M.itm ORDER BY Prediction DESC

LIMIT N;

B.2.3 RecStore Implementation

The RecStore prototype is implemented between the storage en-
gine and query processor of the PostgreSQL database. As men-
tioned in Section 4.2, our experiments test two variants of the
RecStore framework, the maintain-all (abbr. RecStore MA) and
maintain-intermediate (abbr. RecStore MI) strategy. For both
strategies, an intermediate store is maintained that contains suf-
ficient statistics to help incrementally update the recommender
model. These statistics represent a “deconstructed” cosine score
(Equation 1), whereby vector lengths and dot-products are stored as
separate pieces. The RecStore MA strategy also maintains a model
store, which is a materialized table storing the item-based model.
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