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ABSTRACT
Given a set of points Q on a road network, an optimal meeting point
(OMP) query returns the point on a road network G = (V, E) with
the smallest sum of network distances to all the points in Q. This
problem has many real world applications, such as minimizing the
total travel cost for a group of people who want to find a location
for gathering. While this problem has been well studied in the Eu-
clidean space, the recently proposed state-of-the-art algorithm for
solving this problem in the context of road networks is still not
efficient. In this paper, we propose a new baseline algorithm for
the OMP query, which reduces the search space from |Q| · |E| to
|V | + |Q|. We also present two effective pruning techniques that
further accelerate the baseline algorithm. Finally, in order to sup-
port spatial applications that involve large flow of queries and re-
quire fast response, an extremely efficient algorithm is proposed to
find a high-quality near-optimal meeting point, which is orders of
magnitude faster than the exact OMP algorithms. Extensive exper-
iments are conducted to verify the efficiency of our algorithms.

1. INTRODUCTION
Applications ranging from location-based services to computer

games require optimal meeting point (OMP) query as a basic oper-
ation. For example, a travel agency may issue this query to decide
the location for a tourist bus to pick up the tourists, so that the
tourists can make the least effort to get to the meeting point. This
is also true for numerous other scenarios such as an organization
that wants to find a place for its members to hold a conference. In
strategy games like WorldofWarcraft, a computer player may need
this query as part of the artificial intelligence program, to decide
the routes of its warriors.

There are two popular ways to define the OMP of a set of points
Q = {q1, q2, . . . , qn}, based on two commonly used cost func-
tions:

• min-sum: Find the point x = arg minx

∑
i d(qi, x), and

• min-max: Find the point x = arg minx maxi d(qi, x),

where d(p1, p2) is the distance between the points p1 and p2. The
metric of distance can be the Euclidean distance (for a Euclidean
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space) or the network distance (for a road network). The network
distance between two points on a road network is the length of the
shortest path connecting them. Figure 1(a) illustrates the idea of
OMPs using a road network with six people at the six black points,
who want to meet together at some location on the road network.
The upward (left) triangle in Figure 1(a) is the min-max OMP, and
the downward (right) one is the min-sum OMP.
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(b) Split Point

Figure 1: Example of OMPs and Split Points.

A min-sum OMP minimizes the total travel distance of all the
people, while a min-max OMP minimizes the elapsed travel time.
For the example in Figure 1(a), the person at the black point on the
left has to walk for 9 km to reach the min-sum OMP, and those on
the right have to wait for him after they reach the meeting point. On
the other hand, all the people will walk for 6 km to get to the min-
max OMP, which is faster than the min-sum one. Note that both
types of OMPs may not be unique in general. For example, for two
people at two different locations on a road network, the min-sum
OMP could be anywhere on the shortest path between them.

As transportation is getting more and more convenient nowa-
days, min-sum OMPs are often preferred over min-max OMPs. Con-
sider a multi-national corporation that plans to hold a meeting to let
all its executive officers in China report to its CEO from the head-
quarter in USA. The ideal location for the meeting is in China since
most of the participants are in China, while the min-max OMP may
be within some European country on the path between USA and
China. If the meeting is held in China, only the CEO from USA
needs to set out earlier to fly to the meeting location, while the
other participants can set out at a later time, and the travel cost is
minimized. On the other hand, if the meeting is held in the min-max
OMP, all the participants have to set out early and the total travel
cost is huge. Therefore, we study the min-sum OMP query in this
paper, and whenever OMP (or optimal meeting point) is mentioned
later, we are referring to the min-sum OMP.

While the OMP query has been extensively studied in the Eu-
clidean space, the state-of-the-art algorithm of processing the query
in road networks is still not efficient. In this paper, we identify
an interesting property of this problem, which greatly prunes the
search space compared with the best-known technique. Two effec-
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Table 1: Summary of Notations.
Notation Meaning
p1, p2 the shortest path between points p1 and p2

p1 ∼ p2 the line segment of an edge with endpoints p1

and p2 (p1 and p2 are on the same edge)

d(�) the length of the path/segment �
sd(p, Q) the sum of distances of point p to the points in

query set Q (Q is omitted when it is clear from
the context)

tive pruning rules are proposed to further accelerate query process-
ing. Finally, in order to support spatial applications that require
fast response, we propose another algorithm to find a high-quality
near-optimal meeting point in considerably less time.

The rest of this paper is organized as follows: Section 2 reviews
the previous studies that are highly relevant to the OMP query.
Then, we introduce our efficient algorithms, describe the underly-
ing idea, and analyze the time complexity in Section 3. Extensive
experiments are presented in Section 4 to show the efficiency of our
algorithms for the OMP queries. Finally, we conclude our paper in
Section 5.

Table 1 summarizes the notations used throughout this paper.

2. RELATED WORK
Like the window query [1] and the various nearest neighbor queries

[9, 11, 6, 12, 5], the OMP query is also fundamental in spatial
databases. The studies of min-sum OMP query in the context of
Euclidean space date back to the 60s–70s [7, 8, 4, 3]. When the
Euclidean distance is adopted as the metric of distance, the OMP
query is called the Weber problem [7], and the OMP is called the
geometric median of the query point set Q.

Cooper [7] extended the Weber problem by posing the problem
of minimizing the weighted sums of powers of the Euclidean dis-
tances, which was further generalized to handle radial cost func-
tions by Reuven Chen [4]. However, it has been shown that no
closed form formula exists for the Weber problem and its general-
izations, and these problems are usually solved by gradient descent
methods, with initial point chosen as the center of gravity of the
query point set Q. Fortunately, the sum of Euclidean distances is a
convex function, since it is the composite of linear-norm-sum func-
tions, all of which preserve convexity [2]. As a result, the gradient
descent method is able to approach the global minimum without
the worry of being stuck at local minimal values.

On the other hand, the OMP query is not well explored in terms
of road networks, where the network distance is adopted as the dis-
tance metric. However, compared with the Weber problem, this
is a more realistic scenario for location-based services. Recently,
[19] proposed a solution to this problem by checking all the split
points on the road network. For a point p on a road network, its
split point on edge (u, v) is defined to be the point x such that
d(p, u) + d(u ∼ x) = d(p, v) + d(v ∼ x) (see Table 1 for the
notations). Figure 1(b) illustrates the idea of split point, where the
dotted curves denote the shortest paths between the end points. The
location marked by the triangle in Figure 1(b) is the split point x of
p on edge (u, v). The shortest path from p to any point on the left
(or right) of x on edge (u, v) passes through u (or v).

It is proved in [19] that an OMP must exist among the split
points, which leads to an algorithm that checks the split point of
each query point in Q on each edge in the road network G =
(V, E), and picks the split point with the smallest sum of network
distances as the OMP. As a result, the search space is |Q| · |E|,

which is huge. Although [19] includes a pruning technique to skip
some split points that are guaranteed not to be an OMP, the search
space after pruning is still very large. Therefore, a novel road net-
work partitioning scheme is proposed in [19] to further prune the
search space, based on the property that the OMP is strictly con-
fined within the partition where all the objects in the query set Q are
located. This leads to the algorithm which first obtains the small-
est partition that encloses all the basic network partitions where the
points in Q belong, and then checks the split points in this partition.

A highly relevant but different type of query is the group near-
est neighbor query [13, 20]. Given two sets of points P and Q,
a group nearest neighbor (GNN) query retrieves the point(s) of P
with the smallest sum of distances to all the points in Q. GNN
queries can be applied, for instance, when n users at locations Q =
{q1, q2, . . . , qn} want to choose a restaurant to have dinner to-
gether, among a set of restaurants at locations P = {p1, p2, . . . , pm}
in the city. The GNN query is different from the OMP query in that
the candidate result locations of the former is the set P while the
candidate result locations of the latter is all the possible locations
on the road network. Therefore, the OMP query is more difficult
than the GNN query due to its infinite search space. The OMP
query is also more general than the GNN query in that it does not
require users to determine the kind of place to meet at in advance.
For a travel agency that needs to decide the location for a tourist
bus to pick up the tourists, the set P does not even exist.

3. ALGORITHM
It is proved in [19] that an OMP must exist among the split

points. As a result, [19] proposed to check all the |Q| · |E| split
points for query set Q on the road network G = (V, E), and to
pick the one with the smallest sum of distances to all the points
in Q as the OMP. However, the |Q| · |E| search space is still very
huge. In Section 3.1, we improve the search space to |V | + |Q| by
proving that V ∪Q must contain an OMP, and propose our baseline
algorithm that only checks all the vertices in V and all the points in
Q, and picks the one with the smallest sum of distances to all the
points in Q as the OMP.

Then, in Section 3.2, we improve the performance of our base-
line algorithm by two online convex-hull-based pruning techniques,
which restrains the search space to a small region of the whole road
network. This region is always smaller than the partition obtained
by [19] that uses the off-line road network partitioning scheme. As
a result, our pruning technique achieves better pruning effect.

To further support spatial applications that involve simultaneous
evaluation over many queries and require fast response, we pro-
pose another algorithm in Section 3.3 that finds a high-quality near-
optimal meeting point in considerably less time.

3.1 Baseline Algorithm
For a query point set Q, the baseline algorithm of [19] treats

all the |Q| · |E| split points in the road network G = (V, E) as
candidates for the OMP. However, it is not necessary to compute
all the split points and evaluate the sums of distances for all of
them. In fact, it is sufficient to consider only the vertices in V and
the points in Q for the OMP, which we prove next:

LEMMA 1. Given a query point set Q, let sd(p) denote the sum
of distances of point p to the points in Q. Suppose that no point in
Q is on edge (u, v) except for the two end points u and v, then for
any point x on edge (u, v), we have sd(x) ≥ min{sd(u), sd(v)}.

PROOF. For a point x on edge (u, v), we denote Qu as the set
of query points whose shortest paths to x pass through u. Accord-
ingly, Qv = Q−Qu is the set of query points whose shortest paths
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Figure 2: Illustration of Lemma 1 and Theorem 1.

to x pass through v. Without loss of generality, let us assume that
|Qu| ≥ |Qv|. Figure 2(a) illustrates this scenario, where the hol-
low points are the query points and the dotted lines are part of their
shortest paths to x.

Now consider the point x′ on edge (u, v) which is δ closer to u
than x. Let Qab (a, b ∈ {u, v}) denote the set of query points that
belong to Qa when the meeting point is x and belong to Qb when
the meeting point is x′. Therefore, we can classify the points in Q
into four disjoint sets: Quu, Qvv , Quv and Qvu.

For these four point sets, we have the following properties:

• ∀p ∈ Quu, d(p, x′) = d(p, x) − δ.
Proof: d(p, x′) = d(p, u) + d(u ∼ x′) = d(p, u) + [d(u ∼
x) − δ] = [d(p, u) + d(u ∼ x)] − δ = d(p, x) − δ.

• ∀p ∈ Qvv , d(p, x′) = d(p, x) + δ.
Proof: d(p, x′) = d(p, v) + d(v ∼ x′) = d(p, v) + [d(v ∼
x) + δ] = [d(p, v) + d(v ∼ x)] + δ = d(p, x) + δ.

• Quv = ∅.
Proof: For any p ∈ Qu when the meeting point is x, we have
d(p, v)+d(v ∼ x′) = d(p, v)+[d(v ∼ x)+δ] > d(p, v)+
d(v ∼ x) ≥ d(p, x) = d(p, u) + d(u ∼ x) = d(p, u) +
[d(u ∼ x′) + δ] > d(p, u) + d(u ∼ x′), which implies
that the shortest path from p to x′ cannot pass through v (i.e.
p �∈ Qv) when the meeting point is x′.

• ∀p ∈ Qvu, d(p, x′) ≤ d(p, x) + δ.
Proof: d(p, x′) ≤ d(p, v) + d(v ∼ x′) = d(p, v) + d(v ∼
x) + δ = d(p, x) + δ.

Therefore, we have

∑
q∈Q

d(q, x) =

( ∑
q∈Quu

+
∑

q∈Qvv

+
∑

q∈Quv

+
∑

q∈Qvu

)
d(q, x)

≥
∑

q∈Quu

[d(q, x′) + δ] +

( ∑
q∈Qvv

+
∑

q∈Qvu

)
[d(q, x′) − δ]

=

( ∑
q∈Quu

+
∑

q∈Qvv

+
∑

q∈Qvu

)
d(q, x′)

+δ(|Quu| − |Qvv| − |Qvu|)
As Quv = ∅, we have

∑
q∈Quv

d(q, x′) = 0. Besides, since

|Qu| ≥ |Qv| when the meeting point is x, i.e. |Quu| + |Quv| ≥
|Qvu| + |Qvv|, we have |Quu| − |Qvv| − |Qvu| ≥ −|Quv| = 0.
According to the above analysis,

∑
q∈Q

d(q, x) ≥
( ∑

q∈Quu

+
∑

q∈Qvv

+
∑

q∈Quv

+
∑

q∈Qvu

)
d(q, x′)

=
∑
q∈Q

d(q, x′)

Thus, we can conclude that sd(x′) ≤ sd(x) for arbitrary x, x′

and δ. If we set x′ to be u, we reach the conclusion that ∀x on
edge (u, v), sd(u) ≤ sd(x). Due to the symmetry of u and v, if

|Qv| ≥ |Qu| we get: ∀x on edge (u, v), sd(v) ≤ sd(x). To sum
up, ∀x on edge (u, v), min{sd(u), sd(v)} ≤ sd(x).

Intuitively, Lemma 1 shows that for any edge on the road net-
work, one of the endpoints is at least as good as any other point on
the edge in terms of the sum-of-distances value. Now, let us take
into consideration the special case where there exist some query
points on an edge, as illustrated by Figure 2(b). By using Lemma 1,
we have the following theorem:

THEOREM 1. Given an OMP query with query point set Q on
a road network G = (V, E), V ∪ Q contains an OMP.

PROOF. For each edge (u, v) that contains some query points on
it, but not at the end points u and v, let us denote these query points
as qi1 , qi2 , . . . , qis, as illustrated in Figure 2(b). We introduce s
dummy vertices pi1 , pi2 , . . . , pis on the edge (u, v), where each
dummy vertex pij , (j = 1, 2, . . . , s) is located at qij .

After the introduction of the dummy vertices for all the edges
that contain some query points on it but not at its end points, we
obtain another road network G′ such that all the query points in
Q are at its vertices. Since the vertex set of G′ is V ∪ Q, we can
conclude that V ∪Q contains an OMP according to Lemma 1.

Theorem 1 is general enough for road networks of any topology,
since its proof (including that of Lemma 1) relies only on the fact
that the road network G is a graph. For example, the edge length
can refer to the travel delay rather than physical distance. In fact,
we can obtain the following more general statement:

THEOREM 2. Given a point set Q = {q1, q2, . . . , qn} on an
arbitrary graph G = (V, E), where each point qi is associated with
a weight wi. If all the weights are integers or rational numbers,
then V ∪Q must contain the point x = arg minx

∑
i wi · d(qi, x).

PROOF. See Appendix A.

Note that the idea of Theorem 1 to find the OMP among V ∪ Q
does not contradict the idea of [19] to find the OMP among the split
points. See Appendix B for a detailed discussion on this point.

Algorithm 1 Baseline Algorithm

1: given a query point set Q on a road network G = (V, E)
2: opt ←− NULL
3: minCost ←− +∞
4: for each q ∈ Q do
5: cost ←−sumOfDistance(q, Q, minCost)
6: if cost < minCost then
7: cost ←− minCost
8: opt ←− q
9: for each v ∈ V do

10: cost ←−sumOfDistance(v, Q, minCost)
11: if cost < minCost then
12: cost ←− minCost
13: opt ←− v
14: return opt

Based on Theorem 1, we design our baseline algorithm (Algo-
rithm 1) to check all the points in Q and all the vertices in V , and
pick the one with smallest sum of network distances to all the points
in Q as the OMP. The function sumOfDistance in Lines 5 and 10
of Algorithm 1 computes the sum of network distances of q (or v)
to all the points in Q, which is detailed in Algorithm 2.

Lines 4–5 in Algorithm 2 return the partially computed value of
the sum of distances for v if it is already larger than minCost. Let
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Algorithm 2 sumOfDistance(v, Q, minCost)

1: sum ←− 0
2: for each q ∈ Q do
3: sum ←− sum + d(v, q)
4: if sum > minCost then
5: return sum
6: return sum

minCost be the smallest sum of distances that is already found
for the time being, then Lines 4–5 act as a pruning step to stop the
computation for v since it cannot be the optimal point. Lines 8
and 11 in Algorithm 1 then automatically filter out such points.

A basic operation in all our algorithms is to obtain the length of
the shortest path between two points p1 and p2, i.e. d(p1, p2), (e.g.
Line 3 in Algorithm 2). Since shortest path computation is not our
focus, we simply run Dijkstra algorithm for each vertex in the road
network, and write all the obtained information into a index file on
the disk. For the details on the construction and organization of our
index file, please refer to Appendix C.

After the shortest path index file is constructed, the length of the
shortest path between two vertices u, v ∈ V on the road network
G = (V, E), i.e. d(u, v), can be obtained by only one I/O opera-
tion, and the shortest path u, v = (p0 = u, p1, p2, . . . , p� = v)
can be obtained by � I/O operations. Further, we can utilize the
above operation to obtain d(p, v) for any point p on the road net-
work and any vertex v ∈ V by two I/O operations, and d(p1, p2)
for any two points p1 and p2 on the road network by at most four
I/O operations. The reasoning of the above statements is presented
in Appendix D. To sum up, only O(1) I/O operations are required
to obtain the the length of the shortest path between two arbitrary
points on the road network, while � I/O operations are required to
obtain a shortest path of length � between two points.

As there are |V | vertices to check (Lines 9–13 in Algorithm 1),
each of which requires O(|Q|) I/O operations to compute the value
of the sum of distances (Lines 2 and 3 in Algorithm 2), the to-
tal number of I/O operations required is O(|Q| · |V |). Similarly,
Lines 4–8 in Algorithm 1 take |Q| · O(|Q|) = O(|Q|2) I/O oper-
ations. To sum up, the time complexity of Algorithm 1 is O(|Q| ·
|V | + |Q|2).

3.2 Pruning Based on Convex Hull
Compared with the split-point-based method in [19], our base-

line algorithm in Section 3.1 has already significantly reduced the
search space of the OMP query. However, there is still room for
the further pruning of the search space when the edge length of the
road networks is based on the physical distance. For example, if all
the query points are in California, then there is no need to check
the vertices in Utah on the road network. Based on this rationale,
[19] cuts the whole road network into partitions, and checks only
those split points that are in the smallest partition enclosing all the
basic network partitions where the query points belong. Consider
the partitioned road network shown in Figure 3(a), where the four
black points are the query points, [19] only checks the split points
in the gray area.

However, the correctness of that pruning technique relies on the
assumption that whenever two roads cross with each other, there is
an intersection vertex at the crossing point. This assumption may
not be true in reality, e.g. when one road is a viaduct or a tunnel.
Appendix E shows an example road network where the pruning
technique of [19] makes mistakes.

Furthermore, the pruning effectiveness of that network partition-
ing scheme is still not sufficient. Referring to Figure 3(a) again, it

(a) Graph Partitioning
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(b) Counterexample of Alg. 3

Figure 3: Illustration of Pruning Techniques.

is intuitive that the optimal meeting point must appear in the region
surrounded by the dotted curve, and it is not necessary to check the
remaining part of the gray area, which is the area checked by the
network partitioning scheme. Besides, there is no strict underlying
principle on how to partition a road network mentioned in [19].

Now, we propose two online convex-hull-based pruning tech-
niques that are more effective. Although our online pruning tech-
niques do not rely on a pre-computed index, they provide higher
efficiency since the dominating factor of the query processing time
is the number of points/vertices to check, and the time of convex
hull computation required by our techniques is negligible.

Before describing our pruning techniques, we first define the for-
mat of a query point q in the query point set Q. Since a query point
on a road network G = (V, E) must be on some edge (u, v) ∈ E,
we define the format of a query point as follows:

DEFINITION 1. Given a road network G = (V, E) and a query
point q on edge (u, v) ∈ E, we define the format of q as the triplet
(u, v, λ) such that −→uq = λ · −→uv.

According to Definition 1, q is at the vertex u when λ = 0, and
at v when λ = 1.

The first phase of our pruning techniques is to collect into a set
P those end points of all the edges which the query points in Q
are on, and then compute the convex hull of the point set P . Al-
gorithm 3 details this process, where convexHull(P ) computes the
convex hull of the point set P using Andrew’s Monotone Chain
algorithm [15], which takes O(|P | log |P |) time.

Algorithm 3 hullPhase1(Q)

1: given a query point set Q on a road network G = (V, E)
2: P ←− ∅
3: for each q = (u, v, λ) ∈ Q do
4: P ←− P ∪ u
5: P ←− P ∪ v
6: return convexHull(P )

The first phase pruning simply checks the points in Q, and the
vertices in the region surrounded by the convex hull computed by
Algorithm 3 to find the optimal meeting point. However, this is not
sufficient, as we are going to illustrate.

Consider the road network in Figure 3(b) where a bridge crosses
over a river. The query points are marked by the triangles. The
convex hull returned by Algorithm 3 is the one drawn with dotted
lines. It is easy to check that v is the OMP, but it is outside of the
region surrounded by the convex hull.

In order to avoid such false negatives in search space pruning,
we propose a second phase of convex hull computation. Suppose
that the convex hull returned by hullPhase1(Q) is represented as
H = (h1, h2, . . . , h�, h1) where the points hi on H are listed in
clockwise order, we find the shortest path for each pair of neigh-
boring points on H , insert all the points on these paths into a set S,
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Algorithm 4 hullPhase2(H)

1: given the convex hull H = (h1, h2, . . . , h�, h�+1 = h1) re-
turned by hullPhase1(Q)

2: S ←− ∅
3: for i = 1 to � do
4: Get the shortest path L between hi and hi+1

5: for each vertex p on L do
6: S ←− S ∪ p
7: return convexHull(S)

and then compute the convex hull of S. The process of the second
phase pruning is detailed in Algorithm 4, where we use our index
file to obtain the shortest path between two vertices in Line 4.

For the previous example in Figure 3(b), the OMP v is now in
the region surrounded by the convex hull returned by Algorithm 4,
since it is on the shortest path between a to b, which are the two
neighboring vertices on the convex hull returned by Algorithm 3.

Let |H| denote the number of vertices on H , and |Lmax| be
the maximum number of points on the shortest path between two
neighboring points on H , then Algorithm 4 takes O(|H| · |Lmax| ·
log(|H| · |Lmax|)) time.

Now, we present Algorithm 5 that first performs our two-phase
online convex hull computation, and then checks only the query
points and the vertices in the region surrounded by the convex hull
to find the OMP.

Algorithm 5 Two-Phase Online Convex-Hull-Based Pruning

1: given a query point set Q on a road network G = (V, E)
2: H ←−hullPhase1(Q)
3: H ′ ←−hullPhase2(H)
4: opt ←− NULL
5: minCost ←− +∞
6: for each q ∈ Q do
7: cost ←−sumOfDistance(q, Q, minCost)
8: if cost < minCost then
9: cost ←− minCost

10: opt ←− q
11: for each v ∈ V that is in the region surrounded by H ′ do
12: cost ←−sumOfDistance(v, Q, minCost)
13: if cost < minCost then
14: cost ←− minCost
15: opt ←− v
16: return opt

If we use only the first phase of convex hull computation, Lines 2
and 3 in Algorithm 5 can be replaced by “H ′ ←−hullPhase1(Q)”.

To support efficient range query evaluation in Line 11 in Algo-
rithm 5, we organize all the vertices in V by a kd-tree. The query
window is the minimum bounding box (MBR) of the convex hull
H ′, and for the vertices in the MBR, a refinement step is performed
to obtain the vertices that are really in the region surrounded by H ′.

�	

���
�

��
�

Figure 4: Points Inside/Outside the Convex Hull.

We check whether a vertex is inside the region surrounded by
the convex hull using the following property: given three points
p1 = (x1, y1), p2 = (x2, y2) and p3 = (x3, y3), let us define
ccw(p1, p2, p3) = (x2 − x1) ∗ (y3 − y1)− (x3 − x1) ∗ (y2 − y1)
(or simply ccw). The angle p1p2p3 is in counter-clockwise order if
ccw > 0, in clockwise order if ccw < 0, and p1, p2 and p3 are on
the same line if ccw = 0. To judge whether a point p is inside or
on the boundary of the region surrounded by a convex hull H ′, we
have the following theorem:

THEOREM 3. A point p is inside or on the boundary of the re-
gion surrounded by a convex hull H ′, if and only if for any edge
(p0, p1) on H ′ where p0 and p1 are listed in clockwise order, ccw(p0,
p1, p) ≤ 0.

Since the result convex hull H ′ returned by Andrew’s Mono-
tone Chain algorithm is a stack of points on H ′ that are pushed
in counter-clockwise order, for some point p, we pop each edge
(p0, p1) on H ′ (in clock-wise order) and check ccw(p0, p1, p).
Figure 4 illustrates the process. As long as we find ccw > 0 for
an edge on H ′, p is outside the region surrounded by H ′ and thus
pruned. Otherwise, we need to check p. Let |H ′| denote the num-
ber of vertices on H ′, then this check takes O(|H ′|) time.

Algorithm 5 is able to find the OMP on almost all real road net-
works except for very unusual cases as illustrated in Appendix E.
Actually, we have done extensive experiments on the road network
datasets of 46 states in US [21], and the dataset of “city of Old-
enburg” (OL) [22]. Altogether 1700 randomly generated OMP
queries are performed on each dataset. Algorithm 5 only fails to
return the OMP in 5 of the 79900 queries in total, and the sum-of-
distances values of these result meeting points are all within 0.1%
more than the smallest sum-of-distances value.

3.3 Fast Greedy Algorithm for OMP Queries
Although the convexity property of the “sum of Euclidean dis-

tances” function no longer holds for the sum of network distances,
the breach of this property is not significant since both types of
distances are defined over a metric space.
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Figure 5: “Sum of Distances” Values at All Network Vertices.

For example, Figure 5 shows the values of the sums of network
distances at all the vertices (represented by (X , Y )-coordinates) in
the road network of the OL dataset for an OMP query. Warmer ver-
tex color represents larger sum-of-distances value. From the shape
of the function, we can observe that “convexity” is preserved to a
great extent. One can easily obtain the same observation for ar-
bitrary query point sets on road networks. Inspired by this obser-
vation and the gradient descent methods of [7, 8], we propose a
greedy algorithm as shown in Algorithm 6, where we denote the
sum-of-distances value of a vertex u as sd(u), and the set of neigh-
boring vertices of u as NB(u).
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Algorithm 6 Greedy Algorithm

1: given a query point set Q on a road network G = (V, E)
2: Compute the center of gravity of Q as (xc, yc)
3: Obtain the vertex vnn that is nearest to (xc, yc) by a nearest

neighbor query on the vertex kd-tree
4: opt ←− vnn

5: repeat
6: min ←− arg minu∈NB(opt) sd(u)
7: if sd(min) > sd(opt) then
8: return opt
9: else opt ←− min

Algorithm 6 first computes the center of gravity (xc, yc) of the
query point set Q (Line 2), which is the common choice of the
initial point for the gradient descent methods of the Weber problem.
As our initial point should be a vertex rather than an arbitrary point
in the 2D space, Algorithm 6 picks the vertex that is closest to
(xc, yc) as the initial point (Line 3) by a nearest neighbor query on
the vertex kd-tree. In each iteration, Algorithm 6 finds the neighbor
min of the current vertex opt that has the smallest sum of distances
among all the neighbors (Line 6). If the neighbor min has a smaller
sum of distances than the current vertex opt, we update the current
vertex to be min (Line 9). Otherwise, Algorithm 6 terminates and
the current point is returned (Line 8).

As we will see in Section 4, although Algorithm 6 may get stuck
in a local optimal point (i.e. all its neighbors have larger sums of
distances), its sum-of-distances value is very close to the minimum
value. More importantly, Algorithm 6 is often able to find the ex-
act OMP and runs orders of magnitude faster than the algorithms
described in Sections 3.1 and 3.2. Thus, the algorithm is extremely
suitable for large-scale query processing in real time, and the upper
bound estimation of sum-of-distances for accelerating location con-
straint evaluation in applications such as those mentioned in [19].

4. EXPERIMENTS
In this section, we evaluate the performance of our algorithms for

the OMP queries by using the road network datasets of 46 states in
US from [21], and the datasets of “city of Oldenburg” (OL) and
“California” (CA) from [22]. Table 2 in the Appendix describes
31 of the datasets we use, which contains the number of nodes and
edges in each dataset. The datasets of the remaining states in US
from [21] are not used either because their sizes are too small, or
because the datasets are composed of many small connected com-
ponents. We require that all the vertices belong to the same com-
ponent since we randomly generate OMP query points on the road
networks. Appendix F details the experimental platform configura-
tion and the preprocessing of the datasets.

For each dataset, we generate queries by imposing a rectangu-
lar window on the dataset, and all the query points are randomly
generated on the part of the road network in the window. Let W
denote the distance between the x-coordinates of the leftmost ver-
tex and the rightmost vertex on the road network, and H denote
the distance between the y-coordinates of the highest vertex and
the lowest vertex on the road network. We parameterize the size
of a window by the parameter α(< 1) so that the window has size
αW×αH . Appendix G presents the details of our query generator.

The configuration of a query set Q can be represented as a triple
(α, Np, Nw), where Nw denotes the number of windows used to
generate the query set, Np denotes the number of query points
generated in each window, and α decides the size of each win-
dow (which is αW × αH). The total number of query points is

|Q| = Np × Nw. We introduce the parameter Nw to generate
query sets whose query points belong to several groups, and the
points in each group are close to each other. For each dataset and
each query set configuration, we randomly generate 100 query sets
for evaluation.

We implemented the split point checking algorithm proposed
in [19], denoted as Split (SP), for experimental comparison. For
fairness of comparison, we use our pre-computed shortest path in-
dex for the shortest path computations required by Split.

Besides Split (SP), in the sequel, we denote our baseline al-
gorithm as Baseline (BL), the algorithm that uses only the first
phase of convex-hull-based pruning as HullWindow (HW), the one
that uses two-phase convex-hull-based pruning as HullWindow2
(HW2), and the greedy algorithm as Greedy (GD).

To fully utilize the pruning in Lines 4–5 of Algorithm 2, we can
use the result of Greedy to initialize the current minimum sum-of-
distances value of the other algorithms, i.e. Line 3 of Algorithm 1
and Line 5 of Algorithm 5. We denote the algorithm versions that
use Greedy for initialization by appending an apostrophe to the
original algorithm names, e.g. Baseline becomes Baseline’ (BL’).

We evaluate the performance of our algorithms based on the fol-
lowing four criteria: (1) query processing time; (2) the sum-of-
distances ratio of the other algorithms to Baseline; (3) the number
of steps (i.e. iterations) of Greedy; and (4) the number of times that
each algorithm finds the exact OMP among the 100 queries (for
each configuration on each dataset). The reported value of the first
three criteria are averaged over the 100 queries.

Due to the space limitation, we only show our results on the
“CA” and “OL” datasets from [22], and the overall results of the
47 datasets in this section. Appendix H shows part of the results on
all the datasets, and the complete results are available online 1 2.

4.1 Effect of the Window Size of Query Sets
Figure 6(a) (Figure 7(a)) shows the average execution time of

our algorithms (over 100 queries) for different window sizes (de-
termined by α), where we set Nw = 1 and Np = 20 for each query.
We can see that Split takes the most time, Baseline the second most,
HullWindow2 the third, HullWindow the fourth, and finally Greedy.
In all our experiments, Split is found to be stably around an order
of magnitude slower than our most expensive algorithm Baseline,
which is better than our expectation due to its pruning rule. Be-
sides, initialization using Greedy does improve the performance of
the algorithms, and the improvement on OL is more obvious than
that on CA. While the query processing time increases with the
increment of window size for the other algorithms, Greedy shows
rather stable performance for all values of α, and usually takes tens
of milliseconds. On the average of the 47 datasets in this set of ex-
periments, HullWindow2 runs 2.14 times faster than Baseline, and
Greedy runs 142.02 times faster than HullWindow2.

Let sd(u, Q) denote the sum-of-distances value of vertex u for
query set Q. As Baseline guarantees to return the OMP opt, for
some other algorithm that returns the meeting point v, we define its
sum-of-distances ratio to be sd(v, Q)/sd(opt, Q)− 1. Figure 6(b)
(Figure 7(b)) shows the average sum-of-distances ratio of our al-
gorithms. We can see that HullWindow2 always returns the OMP,
while HullWindow may return a near-optimal meeting point when
α < 40%. The result of Greedy is less optimal but the sum-of-
distances ratio is always within 3.5%.

Figure 6(c) (Figure 7(c)) shows the average number of iterations
run by Greedy for different window sizes, and Figure 6(d) (Fig-

1http://www.cse.ust.hk/∼yanda/datasets/part1.pdf
2http://www.cse.ust.hk/∼yanda/datasets/part2.pdf
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Figure 6: Effect of the Window Size of Query Sets on the CA Dataset.
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Figure 7: Effect of the Window Size of Query Sets on the OL Dataset.
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Figure 8: Effect of the Number of Query Points on the CA Dataset.
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Figure 9: Effect of the Number of Query Points on the OL Dataset.
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Figure 10: Effect of Multiple Windows on the CA Dataset.
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ure 7(d)) shows the number of times that the algorithms return the
exact OMP among the 100 queries. HullWindow2 always returns
the OMP, while HullWindow returns the OMP for over 90% of the
queries, the percentage of which reaches 100% as α increases to
40%. On the other hand, Greedy manages to return the OMP for
only a small fraction of the queries, and the percentage goes down
with the increment of α.

4.2 Effect of the Number of Query Points
Figures 8 (Figures 9) (a)–(d) show the results of our algorithms

for different query set sizes (Np = 2i, i ∈ {1, 2, . . . , 7}). In this
set of experiments, we set Nw = 1 and α = 40%. From Figures 8
(Figures 9) (a) and (d), we can obtain similar observations as in
Section 4.1. We find that HullWindow2 can be tens of times faster
than Baseline for small Np, but the gap reduces to only several
times when Np becomes larger. On the average of the 47 datasets
in this set of experiments, HullWindow2 runs 5.88 times faster than
Baseline, and Greedy runs 54 times faster than HullWindow2.

We can see from Figure 8(b) (Figure 9(b)) that the average sum-
of-distances ratio of Greedy gets smaller as there are more query
points in the query set, which stabilizes at between 1% and 1.5%
when |Q| ≥ 60. Figure 8(c) (Figure 9(c)) shows that Greedy re-
quires more iterations when |Q| becomes larger.

4.3 Effect of Multiple Windows
In this set of experiments, we study the scenario where the query

points belong to several groups, and the points in each group are
close to each other. Specifically, we study the case where there are
two groups and each group contains 10 query points. We set Nw =
2, Np = 10, and vary the parameter α to see the performance of
our algorithms for different window sizes.

Figures 10 (Figures 11 in the Appendix) (a)–(d) show the results
of our algorithms for different query set sizes (determined by Np).
We find that the performance of all the algorithms are quite stable:
As α increases, the query processing time does not increase, the
sum-of-distances ratio decreases, and the number of iterations of
Greedy increases. On the average of the 47 datasets in this set of
experiments, HullWindow2 runs 2.51 times faster than Baseline,
and Greedy runs 129.9 times faster than HullWindow2.

Among the OMP 79900 queries in total, HullWindow2 only fails
to return the OMP for 5 queries, and the sum-of-distances ratio of
these result meeting points are all within 0.1%. Therefore, Hull-
Window2 is a good alternative to Baseline, especially for small
query sets. Greedy is over two orders of magnitude faster than
the other algorithms, and usually takes only tens of milliseconds.
Besides, its sum-of-distances ratio is usually around 3%. There-
fore, the meeting point returned by Greedy is of high quality, and
Greedy is the most practical method to support large-scale meeting
point queries on real-world spatial database servers.

5. CONCLUSION
In this paper, we study the optimal meeting point query that re-

turns the point on a road network G = (V, E) with the smallest
sum of network distances to all the query points in a given query set
Q. Our baseline algorithm substantially reduces the search space
of the OMP query from |Q| · |E| to |V | + |Q| according to the
spatial property established in Theorem 1. We also design an ef-
fective two-phase convex-hull-based pruning technique to further
prune the search space. Finally, we develop an extremely efficient
greedy algorithm to find a high-quality near-optimal meeting point
instead of an exact OMP. The efficiency of this algorithm makes it
the most practical choice for spatial applications that involve large
flow of queries and require fast response as the top priority.
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Figure 11: Effect of Multiple Windows on the OL Dataset.

Table 2: DataSet Description
data vertex # edge # data vertex # edge # data vertex # edge # data vertex # edge #

CA 21048 21693 FL 6879 7303 LA 5886 6133 NY 7503 7766

OL 6105 7035 GA 6757 7038 MA 1530 1595 OH 4738 4986

AR 7454 7695 IA 4833 5168 MD 1222 1270 OK 6877 7300

AZ 11050 11381 ID 8108 8310 ME 4536 4656 PA 6384 6619

CO 9796 10175 IL 6117 6520 MI 5928 6198 RI 203 212

CT 923 958 IN 4300 4592 MN 7718 8184 SC 2868 2966

DE 250 257 KS 5615 6054 MO 9500 9889 SD 6733 7165

DR 10513 10738 KY 4745 4952 MS 6022 6297

APPENDIX
A. PROOF OF THEOREM 2

Theorem 2: Given a point set Q = {q1, q2, . . . , qn} on an
arbitrary graph G = (V, E), where each point qi is associated with
a weight wi. If all the weights are integers or rational numbers,
then V ∪Q must contain the point x = arg minx

∑
i wi · d(qi, x).

PROOF. It is straightforward to convert the rational number
weights into integer weights with the same weight distribution among
all the points in Q. For example, suppose Q = {q1, q2, q3}, w1 =
0.15, w2 = 1.11 and w3 = 0.8, then we can re-assign the weights
to be w1 = 15, w2 = 111 and w3 = 80. Clearly, this transforma-
tion does not change the result point x.

Now, let us assume that all the weights are integers, and we re-
place each point qi with wi new points at the same location of qi,
each of which has weight 1. The resulting new query point set Q′

can be treated as unweighted, and thus Q′∪V contains x according
to Theorem 1. It is straightforward to see that the transformation
from Q to Q′ does not change the result point x, and the loca-
tions in Q′ is exactly the locations in Q. Therefore, Theorem 2 is
proved.

B. DISCUSSION ON THEOREM 1 AND
SPLIT-POINT-BASED OMP ALGORITHM

Theorem 1 states that we can find an OMP among the vertices
and query points, while [19] states that we can find an OMP among
the split points. Although the two methods seems to be contradic-
tory, they are both correct because (1)OMP may not be unique, and
(2)OMP can be both a split point and a vertex.

The first reason is easy to understand: consider a query point set
Q = {q1, q2}, then any point on the shortest path p1, p2 can be the
OMP, including all the split points and vertices on p1, p2.

Now let us discuss the second reason. For a point p on a road
network, its split point on edge (u, v) is defined by [19] to be the
point s such that

d(p, u) + d(u ∼ s) = d(p, v) + d(v ∼ s) (1)

� �
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Figure 12: Four Cases for Split Points.

However, this definition is only suitable for the scenario that p
is not on (u, v), which can be further divided into three cases il-
lustrated by Figure 12(a)–(c) where the dotted curves denote the
shortest paths:

• Case 1: p, v does not pass through u, and p, u does not
pass through v (Figure 12(a)). In this case, the split point s
exists due to the fact that the road network is a metric space,
i.e. d(p, u) + d(u ∼ v) ≥ d(p, v) and d(p, v) + d(u ∼ v) ≥
d(p, u). If we represent an arbitrary point x on (u, v) using
lx = d(u ∼ x), we can see that d(p, x) is a piecewise linear
function to lx on (u, v) which consists of two different linear
functions defined on [0, ls] and [ls, lv].

• Case 2: p, v passes through u (Figure 12(b)). In this case,
the split point is vertex v, as can be checked using Equa-
tion (1). For an arbitrary point x on (u, v), d(p, x) = d(p, u)+
lx is a function linear to lx.

• Case 3: p, u passes through v (Figure 12(c)). In this case,
the split point is vertex u, as can be checked using Equa-
tion (1). For an arbitrary point x on (u, v), d(p, x) = d(p, u)−
lx is a function linear to lx.

When p is on (u, v) (Figure 12(d)), we define p to be the split
point s so that d(p, x) = |ls− lx| is still a piecewise linear function
delimited by s.

Therefore, for each query point p and a point x on (u, v), d(p, x)
is a piecewise linear function delimited by the split point s. Since
the sum-of-distances value

∑
p∈Q d(p, x) is the sum of piecewise

linear functions delimited by the split points, it achieves the mini-
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mum or maximum at the split points on (u, v). This establishes the
correctness of the split point checking method in [19].

Note that for the cases illustrated by Figures 12(b)–(d), the split
points belong to V ∪Q which are those checked by Theorem 1. In
fact, our experiments show that the vast majority of the OMPs re-
turned by the split point checking method in [19] belong to Cases 2
and 3. Although both methods are proved to be correct, our method
checks |V |+ |Q| candidate points, which is much smaller than the
|Q| · |E| split points computed and checked by [19].

C. SHORTEST PATH INDEX BETWEEN
VERTICES

Since the definition of OMP on a road network is directly built
on shortest paths, we construct a disk-based index file to acceler-
ate the shortest path computation between two vertices on the road
network. Shortest path computation is actually the basic operation
of many queries on the road network [19, 16, 10, 14, 5]. While
a lot of efficient online algorithms have been proposed [14, 5] for
shortest path computation on road networks, [16] presents a nice
off-line index for shortest path computation on road networks. As
road networks seldomly change, off-line indices are usually viable
and more effective in shortening query execution time.

As shortest path computation is not our main focus, we simply
run Dijkstra algorithm for each vertex in the road network, to com-
pute d(v1, v2) for each pair of vertices v1 and v2. The result is a 2D
array, which is written to a file. During query processing, to obtain
d(v1, v2), we set the file pointer to the location where it is stored
and read the value. Therefore, only one I/O operation is required to
obtain d(v1, v2).

To find the shortest path between two vertices, we maintain an-
other disk-based index which is also built by the Dijkstra algorithm,
together with the shortest path length index mentioned above. Be-
sides the length of the shortest path from vertex v1 to v2, the Dijk-
stra algorithm also reports the vertex before v2 on the shortest path
from v1 to v2, which can be used to find the shortest path by go-
ing back iteratively. We store another 2D array Path on the disk,
which is appended at the end of shortest path length index in the
index file, where Path[v1][v2] stores the first vertex after v1 that
is on the shortest path from v1 to v2. Algorithm 7 shows the way
to find the shortest path L between v1 and v2, which takes � I/O
operations, where � denotes the length of L.

Algorithm 7 shortestPath(v1, v2)

1: given two vertices v1 and v2

2: L ←− ∅
3: v ←− v1

4: while v �= v2 do
5: Append v to L
6: v ←− Path[v][v2]
7: Append v to L
8: return L

Note that the more sophisticated methods for shortest path com-
putation mentioned in the beginning of Appendix C can also be
used, since our algorithms for the OMP query do not have specific
requirement on the shortest path computation.

D. SHORTEST PATH COMPUTATION BE-
TWEEN ARBITRARY POINTS

The length of the shortest path from a query point q on edge
(u, v) to a vertex p is computed as d(q, p) = min{d(q ∼ u) +

d(u, p), d(q ∼ v) + d(v, p)}, which requires two I/O operations
from the index.

The length of the shortest path from a query point q on edge
(u, v) to another query point q′ on edge (u′, v′) is computed as
d(q, q′) = min{d(q ∼ u) + d(u, u′) + d(u′ ∼ q′), d(q ∼ u) +
d(u, v′) + d(v′ ∼ q′), d(q ∼ v) + d(v, u′) + d(u′ ∼ q′), d(q ∼
v) + d(v, v′) + d(v′ ∼ q′)}, if q and q′ are on different edges,
which requires four I/O operations from the index.

If q and q′ are on the same edge, then according to the triangu-
lar inequality of the road network edges, the shortest path length
d(q, q′) = d(q ∼ q′), which requires no I/O operation.

E. COUNTEREXAMPLES
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Figure 13: Counterexamples.

Figure 13(a) shows an example where the road network parti-
tioning scheme of [19] fails to obtain the OMP. Let us assume that a
query point is at each vertex in the set S = {u, p1, p2, p3, p4, p5, v},
and that the edge (u, v) cuts the graph into two partitions. Since all
the query points belong to one partition (below (u, v)), the parti-
tioning scheme of [19] will not check the vertex w (above (u, v)).
However, by simple reasoning, we can see that w is the OMP.

Our two-phase online convex-hull-based pruning technique is
able to find the OMP for the above example. This is because p1

and p2 are two neighboring points on the convex hull of the point
set S, and the shortest path between them is (p1, w, p2). As a re-
sult, w will be included in the second phase for further checking.

However, our technique may also have some limitation in some
extreme cases. Consider the example road network in Figure 13(b),
where we assume that a query point is at each vertex in the set
S′ = {u, p1, p2, p3, p4, v, s}. In the first phase pruning, we obtain
the convex hull of S′, which contains u, s and v. In the second
phase pruning, w will then not be included as none of the three
shortest paths between the points in {u, v, s} goes through w. As
a result, w is not checked by our technique, although it is easy to
check that w is the OMP.

We assume in the above example that the query point at u is rep-
resented as on an edge other than (u, w) (See Definition 1), e.g.
(u, s), since otherwise, w will be included in the first phase. There
is a similar assumption for v. Note that the intermediate point(s) be-
tween pi and w is also important for the construction of the coun-
terexample, since otherwise, pi is represented as on edge (pi, w)
and w will be included. As real road networks are usually of regu-
lar structure rather than the weird topology as given in Figure 13(b),
we claim in this sense that our two-phase online convex-hull-based
pruning technique is able to find the OMP on almost all real road
networks.

F. EXPERIMENTAL SETTING AND
DATASET PREPROCESSING

All the experiments are done on a computer with Intel(R)
Core(TM) i5 CPU and 4GB memory. All our programs are written
in JAVA, and run in Eclipse on Windows 7 Enterprise.
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We use the road network datasets of 46 states in US from [21],
and the datasets of “city of Oldenburg” (OL) and “California” (CA)
from [22] for experiments. As the “CA” dataset is contained in both
sources, we only use the one from [22] for the experiment. Since
we randomly generate OMP query points on the road networks, if
two query points are in two different connected components, they
can never reach each other and the OMP does not exist. Therefore,
we require that all the vertices belong to the same component, and
do not use the datasets of the remaining states in US from [21] that
are composed of many small connected components.

While the datasets from [22] are directly usable, the datasets
from [21] are in E00 file format. We use the “Global Mapper”

software3 to convert the datasets into readable raw data files. After
merging the duplicate vertices, we get the largest connected com-
ponents of each dataset (which usually contains over 99% of the
original vertices). The preprocessed datasets are available from

http://www.cse.ust.hk/˜yanda/datasets/roadData.rar

G. QUERY GENERATOR
To generate a query point in a window, we find all the edges of

the road network that intersect with the window, and randomly pick
an edge from them. After picking the edge, we randomly generate
a query point on the segment of the edge that is in the window.

To generate a query set for window parameter α, we randomly
position a αW × αH rectangular window in the whole 2D space
for the road network. If there are less than ε edges covered by the
window, we drop it and generate a new window. This process is
repeated until a window with at least ε edges is generated, and then
we generate |Q| query points using the method described in the
previous paragraph. The parameter ε is used to avoid generating a
window in a sparse area of the space of the road network, and is set
to 20 throughout our experiments.

H. ADDITIONAL EXPERIMENT RESULTS
Due to the space limitation, in Section 4, we only show our ex-

perimental results on two of the 47 datasets, i.e. CA and OL. As
the complete results still contain too many entries to be put in the
appendix, we make them available online:

• The running time of our various algorithms and the number of
steps executed by Greedy under different query configurations
on all the datasets are recorded at:

http://www.cse.ust.hk/˜yanda/datasets/part1.pdf

• The sum-of-distance ratio of our various algorithms and the
percentage of queries for which each algorithm returns the
exact OMP (OMP percentage) under different query configu-
rations on all the datasets are recorded at:

http://www.cse.ust.hk/˜yanda/datasets/part2.pdf

In the sequel, we show part of our results on sum-of-distance
ratio and OMP percentage for 31 of the datasets in all the 3 set of
experiments we conduct. In the following tables, r(.) in the table
heads denotes the sum-of-distance ratio of the algorithm, and o(.)
denotes the OMP percentage of the algorithm.

• Table 3 shows our results for the experimental setting in Sec-
tion 4.1 when α = 20% and α = 100%.

• Table 4 shows our results for the experimental setting in Sec-
tion 4.2 when Np = 2 and Np = 128

• Table 5 shows our results for the experimental setting in Sec-
tion 4.3 when α = 20% and α = 40%

3http://www.globalmapper.com

Table 3: Effect of the Window Size of Query Sets.
data α r(HW ) r(HW2) r(GD) o(HW ) o(HW2) o(GD)
CA 20% 0.094% 0% 1.788% 98% 100% 58%
CA 100% 0% 0% 3.225% 100% 100% 7%
OL 20% 0.147% 0% 0.878% 94% 100% 59%
OL 100% 0% 0% 0.732% 100% 100% 32%
AR 20% 0% 0% 1.374% 100% 100% 66%
AR 100% 0% 0% 2.156% 100% 100% 22%
AZ 20% 0.018% 0% 1.525% 96% 100% 69%
AZ 100% 0% 0% 2.124% 100% 100% 22%
CO 20% 0% 0.067% 1.558% 100% 99% 55%
CO 100% 0% 0% 2.082% 100% 100% 20%
CT 20% 0.02% 0% 0.358% 96% 100% 69%
CT 100% 0.004% 0% 1.459% 99% 100% 74%
DE 20% 0.021% 0% 0.601% 99% 100% 66%
DE 100% 0% 0% 0.084% 100% 100% 85%
DR 20% 0.03% 0% 1.192% 98% 100% 64%
DR 100% 0% 0% 1.649% 100% 100% 36%
FL 20% 0.103% 0% 1.439% 95% 100% 57%
FL 100% 0% 0% 3.598% 100% 100% 3%
GA 20% 0.032% 0% 1.985% 97% 100% 67%
GA 100% 0% 0% 1.352% 100% 100% 45%
IA 20% 0.039% 0% 1.554% 98% 100% 61%
IA 100% 0% 0% 1.306% 100% 100% 24%
ID 20% 0.179% 0% 1.021% 90% 100% 58%
ID 100% 0.002% 0% 3.571% 99% 100% 14%
IL 20% 0.002% 0% 1.59% 99% 100% 65%
IL 100% 0% 0% 1.191% 100% 100% 19%
IN 20% 0% 0% 1.78% 100% 100% 63%
IN 100% 0% 0% 2.254% 100% 100% 17%
KS 20% 0.069% 0% 1.597% 97% 100% 61%
KS 100% 0% 0% 1.318% 100% 100% 18%
KY 20% 0.072% 0% 1.215% 95% 100% 59%
KY 100% 0% 0% 2.6% 100% 100% 15%
LA 20% 0.074% 0% 1.189% 97% 100% 65%
LA 100% 0% 0% 1.807% 100% 100% 57%
MA 20% 0.106% 0% 0.425% 94% 100% 75%
MA 100% 0% 0% 1.498% 100% 100% 44%
MD 20% 0.016% 0% 0.606% 95% 100% 58%
MD 100% 0% 0% 1.645% 100% 100% 39%
ME 20% 0.109% 0% 1.144% 97% 100% 72%
ME 100% 0% 0% 2.758% 100% 100% 25%
MI 20% 0.144% 0% 1.254% 97% 100% 59%
MI 100% 0% 0% 4.746% 100% 100% 10%
MN 20% 0.031% 0% 0.834% 99% 100% 64%
MN 100% 0% 0% 1.659% 100% 100% 17%
MO 20% 0.001% 0% 1.483% 99% 100% 60%
MO 100% 0% 0% 1.999% 100% 100% 9%
MS 20% 0.058% 0% 1.013% 97% 100% 74%
MS 100% 0% 0% 2.452% 100% 100% 24%
MT 20% 0.478% 0% 1.815% 89% 100% 53%
MT 100% 0% 0% 1.83% 100% 100% 30%
NC 20% 0.177% 0% 1.311% 93% 100% 59%
NC 100% 0% 0% 1.744% 100% 100% 27%
ND 20% 0% 0% 1.149% 100% 100% 56%
ND 100% 0% 0% 1.548% 100% 100% 19%
NE 20% 0.078% 0% 1.342% 96% 100% 60%
NE 100% 0% 0% 1.713% 100% 100% 19%
NH 20% 0.007% 0% 0.546% 97% 100% 73%
NH 100% 0% 0% 1.929% 100% 100% 41%
NJ 20% 0.093% 0% 0.187% 97% 100% 76%
NJ 100% 0% 0% 2.381% 100% 100% 26%
NM 20% 0.003% 0% 0.862% 99% 100% 70%
NM 100% 0% 0% 2.053% 100% 100% 19%
NV 20% 0% 0% 1.846% 100% 100% 63%
NV 100% 0% 0% 3.179% 100% 100% 32%
NY 20% 0.257% 0% 1.227% 93% 100% 61%
NY 100% 0% 0% 2.348% 100% 100% 17%
OH 20% 0.04% 0% 1.281% 98% 100% 64%
OH 100% 0% 0% 2.799% 100% 100% 25%
OK 20% 0.101% 0% 0.864% 97% 100% 59%
OK 100% 0% 0% 1.29% 100% 100% 21%
PA 20% 0.086% 0% 0.937% 94% 100% 63%
PA 100% 0% 0% 2.749% 100% 100% 15%
RI 20% 0% 0% 1.646% 100% 100% 54%
RI 100% 0% 0% 0.711% 100% 100% 69%
SC 20% 0.01% 0% 0.193% 99% 100% 83%
SC 100% 0% 0% 1.233% 100% 100% 50%
SD 20% 0% 0% 0.66% 99% 100% 71%
SD 100% 0% 0% 1.312% 100% 100% 27%
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Table 4: Effect of the Number of Query Points.
data Np r(HW ) r(HW2) r(GD) o(HW ) o(HW2) o(GD)
CA 2 0% 0% 4.62% 51% 100% 18%
CA 128 0% 0% 1.231% 100% 100% 42%
OL 2 0% 0% 4.671% 64% 100% 31%
OL 128 0% 0% 1.311% 100% 100% 47%
AR 2 0% 0% 3.942% 57% 100% 18%
AR 128 0% 0% 1.764% 100% 100% 48%
AZ 2 0% 0% 5.112% 56% 100% 15%
AZ 128 0% 0% 2.203% 100% 100% 48%
CO 2 0% 0% 3.568% 47% 100% 15%
CO 128 0% 0% 1.951% 100% 100% 45%
CT 2 0% 0% 6.89% 68% 100% 42%
CT 128 0.004% 0% 0.84% 99% 100% 72%
DE 2 0% 0% 728% 81% 100% 70%
DE 128 0% 0% 0.094% 100% 100% 56%
DR 2 0% 0% 3.643% 57% 100% 12%
DR 128 0% 0% 1.267% 100% 100% 58%
FL 2 0% 0% 3.042% 49% 100% 23%
FL 128 0.054% 0% 1.593% 99% 100% 45%
GA 2 0% 0% 2.883% 57% 100% 16%
GA 128 0% 0% 1.354% 100% 100% 50%
IA 2 0% 0% 2.751% 65% 100% 34%
IA 128 0% 0% 0.909% 100% 100% 54%
ID 2 0% 0% 8.708% 50% 100% 18%
ID 128 0.412% 0% 1.487% 88% 100% 54%
IL 2 0% 0% 4.753% 66% 100% 24%
IL 128 0% 0% 1.687% 100% 100% 47%
IN 2 0% 0% 4.089% 66% 100% 28%
IN 128 0% 0% 2.222% 100% 100% 42%
KS 2 0% 0% 2.152% 66% 100% 23%
KS 128 0% 0% 0.837% 100% 100% 52%
KY 2 0% 0% 2.623% 59% 100% 22%
KY 128 0.088% 0% 1.881% 95% 100% 48%
LA 2 0% 0% 21.9% 63% 100% 24%
LA 128 0.035% 0% 1.155% 97% 100% 54%
MA 2 0% 0% 2.955% 61% 100% 30%
MA 128 0.001% 0% 0.424% 99% 100% 77%
MD 2 0% 0% 2.334% 59% 100% 35%
MD 128 0% 0% 0.665% 100% 100% 64%
ME 2 0% 0% 3.832% 68% 99% 21%
ME 128 0% 0% 1.305% 100% 100% 59%
MI 2 0% 0% 3.576% 56% 100% 28%
MI 128 0.046% 0% 1.068% 99% 100% 55%
MN 2 0% 0% 2.751% 64% 100% 23%
MN 128 0.018% 0% 1.828% 99% 100% 40%
MO 2 0% 0% 7.438% 56% 100% 13%
MO 128 0% 0% 2.482% 100% 100% 32%
MS 2 0% 0% 6.329% 51% 100% 20%
MS 128 0% 0% 2.15% 100% 100% 45%
MT 2 0% 0% 3.046% 51% 100% 8%
MT 128 0% 0% 1.845% 100% 100% 39%
NC 2 0% 0% 4.936% 65% 100% 26%
NC 128 0.021% 0% 1.32% 99% 100% 53%
ND 2 0% 0% 4.965% 70% 100% 31%
ND 128 0% 0% 0.8% 100% 100% 54%
NE 2 0% 0% 2.548% 58% 100% 23%
NE 128 0% 0% 0.997% 100% 100% 51%
NH 2 0% 0% 1.454% 55% 100% 40%
NH 128 0% 0% 0.336% 100% 100% 81%
NJ 2 0% 0% 3.946% 71% 100% 42%
NJ 128 0% 0% 0.626% 100% 100% 71%
NM 2 0% 0% 3.594% 47% 100% 18%
NM 128 0% 0% 1.602% 100% 100% 42%
NV 2 0% 0% 3.234% 54% 100% 14%
NV 128 0% 0% 1.372% 100% 100% 55%
NY 2 0% 0% 4.904% 58% 100% 27%
NY 128 0.009% 0% 1.131% 98% 100% 43%
OH 2 0% 0% 2.82% 59% 100% 26%
OH 128 0% 0% 2.128% 100% 100% 47%
OK 2 0% 0% 2.071% 61% 100% 24%
OK 128 0% 0% 0.6% 100% 100% 49%
PA 2 0% 0% 3.725% 55% 100% 21%
PA 128 0% 0% 1.342% 100% 100% 55%
RI 2 0% 0% 8.71% 86% 100% 70%
RI 128 0% 0% 0.315% 100% 100% 71%
SC 2 0% 0% 3.999% 62% 100% 30%
SC 128 0% 0% 0.872% 100% 100% 58%
SD 2 0% 0% 3.862% 68% 100% 22%
SD 128 0% 0% 0.524% 100% 100% 60%

Table 5: Effect of Multiple Windows.
data α r(HW ) r(HW2) r(GD) o(HW ) o(HW2) o(GD)
CA 20% 0.023% 0% 2.974% 91% 100% 17%
CA 40% 0.012% 0% 2.615% 98% 100% 24%
OL 20% 0.23% 0% 2.594% 82% 100% 31%
OL 40% 0.028% 0% 1.583% 98% 100% 26%
AR 20% 0.033% 0% 1.789% 94% 100% 34%
AR 40% 0% 0% 1.41% 100% 100% 45%
AZ 20% 0.08% 0% 3.424% 95% 100% 25%
AZ 40% 0% 0% 2.088% 100% 100% 34%
CO 20% 0.01% 0% 3.246% 95% 100% 18%
CO 40% 0% 0% 2.42% 100% 100% 34%
CT 20% 0.321% 0% 1.819% 70% 100% 37%
CT 40% 0.201% 0% 2.103% 89% 100% 59%
DE 20% 0% 0% 0.103% 93% 100% 64%
DE 40% 0% 0% 0.164% 100% 100% 70%
DR 20% 0.017% 0% 2.154% 94% 100% 33%
DR 40% 0% 0% 2.245% 100% 100% 42%
FL 20% 0.237% 0% 2.95% 70% 100% 20%
FL 40% 0.13% 0% 2.531% 85% 100% 19%
GA 20% 0.058% 0% 2.554% 95% 100% 31%
GA 40% 0% 0% 1.989% 100% 100% 42%
IA 20% 0.026% 0% 1.876% 95% 100% 26%
IA 40% 0% 0% 0.925% 100% 100% 40%
ID 20% 0.335% 0% 3.103% 63% 100% 19%
ID 40% 0.448% 0% 3.011% 81% 100% 29%
IL 20% 0.067% 0% 2.188% 96% 100% 23%
IL 40% 0% 0% 2.217% 100% 100% 28%
IN 20% 0.038% 0% 1.887% 95% 100% 28%
IN 40% 0.002% 0% 1.76% 99% 100% 35%
KS 20% 0.022% 0% 1.506% 93% 100% 19%
KS 40% 0% 0% 1.001% 100% 100% 37%
KY 20% 0.223% 0% 2.915% 85% 100% 34%
KY 40% 0.019% 0% 2.033% 99% 100% 42%
LA 20% 0.212% 0% 3.598% 68% 100% 22%
LA 40% 0.041% 0% 2.312% 92% 100% 38%
MA 20% 0.097% 0% 1.42% 84% 100% 28%
MA 40% 0.013% 0% 1.736% 99% 100% 43%
MD 20% 0.221% 0% 1.263% 83% 100% 41%
MD 40% 0% 0% 2.04% 100% 100% 51%
ME 20% 0.062% 0% 2.597% 88% 100% 28%
ME 40% 0% 0% 1.485% 100% 100% 48%
MI 20% 0.191% 0% 5.801% 65% 100% 24%
MI 40% 0.226% 0% 3.97% 78% 100% 28%
MN 20% 0.039% 0% 1.956% 94% 100% 22%
MN 40% 0% 0% 1.709% 100% 100% 36%
MO 20% 0.046% 0% 3.844% 87% 100% 12%
MO 40% 0% 0% 3.094% 100% 100% 24%
MS 20% 0.034% 0% 2.742% 95% 100% 22%
MS 40% 0% 0% 2.212% 100% 100% 38%
MT 20% 0.063% 0% 2.582% 90% 100% 19%
MT 40% 0% 0% 2.178% 100% 100% 27%
NC 20% 0.13% 0% 2.842% 82% 100% 18%
NC 40% 0.06% 0% 2.195% 96% 100% 42%
ND 20% 0.024% 0% 1.684% 94% 100% 30%
ND 40% 0% 0% 1.083% 100% 100% 44%
NE 20% 0.019% 0% 2.185% 97% 100% 21%
NE 40% 0% 0% 1.53% 100% 100% 40%
NH 20% 0.131% 0% 2.838% 86% 100% 32%
NH 40% 0.016% 0% 1.699% 98% 100% 50%
NJ 20% 0.09% 0% 1.436% 86% 100% 36%
NJ 40% 0% 0% 2.208% 100% 100% 45%
NM 20% 0.047% 0% 2.632% 95% 100% 18%
NM 40% 0% 0% 2.052% 100% 100% 31%
NV 20% 0.031% 0% 2.689% 92% 100% 21%
NV 40% 0% 0% 2.146% 100% 100% 48%
NY 20% 0.014% 0% 2.324% 93% 100% 25%
NY 40% 0% 0% 1.457% 100% 100% 34%
OH 20% 0.045% 0% 2.919% 90% 100% 23%
OH 40% 0.006% 0% 3.057% 99% 100% 28%
OK 20% 0.026% 0% 1.648% 90% 100% 33%
OK 40% 0% 0% 1.204% 100% 100% 32%
PA 20% 0.134% 0% 2.301% 87% 100% 28%
PA 40% 0% 0% 2.032% 99% 100% 33%
RI 20% 0.078% 0% 1.078% 88% 100% 62%
RI 40% 0.007% 0% 0.474% 98% 100% 63%
SC 20% 0.023% 0% 2.615% 94% 100% 29%
SC 40% 0% 0% 1.059% 100% 100% 53%
SD 20% 0.005% 0% 1.056% 97% 100% 36%
SD 40% 0% 0% 1.459% 100% 100% 39%
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