
Optimal Schemes for Robust Web Extraction

Aditya Parameswaran
Stanford University

adityagp@cs.stanford.edu

Nilesh Dalvi
Yahoo! Research

ndalvi@yahoo-inc.com

Hector Garcia-Molina
Stanford University

hector@cs.stanford.edu

Rajeev Rastogi
Yahoo! Labs Bangalore
rrastogi@yahoo-inc.com

ABSTRACT
In this paper, we consider the problem of constructing wrappers
for web information extraction that are robust to changes in web-
sites. We consider two models to study robustness formally: the
adversarial model, where we look at the worst-case robustness of
wrappers, and probabilistic model, where we look at the expected
robustness of wrappers, as web-pages evolve. Under both models,
we present efficient algorithms for constructing the provably most
robust wrapper. By evaluating on real websites, we demonstrate
that in practice, our algorithms are highly effective in coping up
with changes in websites, and reduce the wrapper breakage by up
to 500% over existing techniques.

1. INTRODUCTION
Several websites use scripts to generate HTML populated with

information from structured backend databases, including shop-
ping sites, entertainment sites, academic repositories, library cat-
alogs, as well as form-based websites. The structural similarity
of script-generated webpages makes it possible for information ex-
traction systems to use simple rules to extract information from all
the webpages in the website. Such rules are called wrappers, and
the problem of inducing wrappers from labeled examples has been
extensively studied [2, 10, 6, 16, 5, 1, 7]. The information thus
extracted may then be used to recreate parts or all of the database.

As an example, we can use wrappers to extract information about
restaurants and reviews from multiple aggregator sites like Yelp
(yelp.com) and Zagat (zagat.com). Once a wrapper is learnt for
each site, it can be used to obtain a continuous feed of new reviews
and restaurants added to the sites, as well as keep up-to-date restau-
rant information such as hours of operation and phone numbers. As
another example, comparison shopping websites use wrappers to
continuously obtain a feed of product listings from a large number
of merchant websites. Since wrappers can frequently be generated
with relatively few labeled examples, wrappers have become a suc-
cessful and even dominant strategy for extracting information from
script-generated pages.

Wrapper Breakage Problem : As wrappers rely heavily on the
structure of the webpages to extract data, they suffer from a funda-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

24,592Title: Godfather Runtime 118min

td td td td

table

div

body

title

head

tdtd

table

div

html

Godfather

[class=’content’]

[width=80%]

Votes

Figure 1: An HTML Webpage.
mental problem: the underlying webpages frequently change, and
even very slight changes cause the wrapper to break and require
them to be re-learned.

To illustrate, we reproduce an example from [17] in Figure 1,
that represents an XML document tree of a script-generated movie
page. If we want to extract the number of votes, we can use an
XPath such as the following:

W1 ≡ /html/body/div[2]/table/td[2]/text() (1)

However, there are several small changes that can break this wrap-
per, e.g. if the first div is deleted or merged with the second div,
a new table or tr is added under the second div, the order of
Votes and Runtime is changed, a new font element is added, and
so on.

Wrapper breakage has been widely acknowledged as a problem
in several empirical studies [7, 13, 14, 15]. From our own experi-
ence with a large scale industrial information extraction system at
Yahoo! Research [18], we observed that wrappers learnt without
robustness considerations had an average life of 2 months, with 1
out of every 50 wrappers breaking every day on average.

Thus, in order to deal with wrapper breakage, there is a need to
manually re-label (i.e., provide the locations on the page contain-
ing the structured information of interest) the webpages fairly often
and to re-learn the wrapper using the newly labeled data. This is a
laborious and costly process.
Prior Work on Robustness : Myllymaki and Jackson [7] observed
that certain wrappers are more robust than others, and in practice,
can have significantly lower breakage. For instance, the following
two XPaths can be used as an alternative toW1 in Eq. (1) to extract
the number of votes.

W2 ≡ //div[@class=’content’]/*/td[2]/text()

W3 ≡ //table[@width=’80%’]/td[2]/text()

Intuitively, these wrappers exploit more “local” information than
W1, and are immune to some of the changes that break W1. Myl-
lymaki and Jackson constructed robust wrappers manually, and left
open the problem of learning such rules automatically. The first
formal framework to capture the notion of robustness of wrappers
was recently proposed by Dalvi et al. [17]. They define a model

980

Figure 2: Overview of our approach.
to capture how webpages evolve over time, and the model can be
used to evaluate the robustness of wrappers, such as the ones above,
in a principled way. However, while their techniques enable us to
choose between a set of alternative XPaths by evaluating their ro-
bustness, the problem of constructing the most robust wrapper was
left open. This problem is the focus of our work.

Our Problem : In this work, we consider the problem of construct-
ing wrappers with provably optimal robustness. In constructing a
robust wrapper, the choice of the language used to express wrap-
pers plays an important factor. For instance, if we go beyond simple
XPath rules, one might start from a set of complementary XPaths
that extract the same information, and use majority voting. The re-
sulting wrapper will break only if more than half of the XPaths fail.
Thus, with more powerful languages, such as a set of complemen-
tary XPaths, we can derive more robust wrappers. In this paper, we
pose the following question: what is the most robust wrapper for a
given set of webpages without any constraint on the representation
language?

Our Approach : To illustrate our approach, consider Figure 2,
which illustrates the tasks of a wrapper learning system. The web-
site at time t = 0 consists of a set of pages {w1, · · · , wn}, out of
which a small subset of pages are labeled (i.e., the locations of the
information of interest has been provided by a human annotator),
say {w1, · · · , wk} for k < n. The website at t = t1 consists of
the new versions w′1, . . . , w′n of w1, . . . , wn respectively.

There are two extraction tasks involving wrappers: (A) extrac-
tion from the rest of the website wk+1, . . . , wn by generalizing
from the k labeled examples w1, . . . , wk, and (B) extraction from
a future version of the websitew′1, . . . , w′n by being robust to struc-
tural changes. The previously proposed approaches [7, 17] obtain
wrappers, written in some specific language, that work for both
tasks (A) and (B).

However, the two extraction scenarios (A) and (B) are very dif-
ferent, and impose different robustness and performance require-
ments on wrappers. In scenario (A), the website contains thou-
sands or millions of pages with similar structure; thus, we need
wrappers that are extremely fast and have the ability to withstand
small structural variations within pages. Any standard wrapper al-
gorithm [2, 10, 6, 16, 5, 1] can be used to solve task (A).

In contrast, since page structure can change significantly over
time, scenario (B) requires highly robust wrappers capable of with-
standing much larger structural changes. In order to solve task (B),
we proceed in two steps: Given a new version w′1, . . . w′n of the
website, for each labeled page w1, . . . , wk in the old version of the
website, we compare the wi to w′i to determine the location of the
label in w′i. Subsequently, once we have the labels of w′1, . . . , w′k,
we can train any standard wrapper algorithm (that we used to solve
task (A)) to extract from w′k+1, . . . , w

′
n. Note that only the first

step involving label transfer needs to be highly robust. Addition-
ally, we can trade off performance to achieve higher robustness in
this step since labels are transferred for only a small number of

labeled pages. Furthermore, this label-transfer procedure is rela-
tively space-efficient since we only need to maintain a small num-
ber of labeled pages of the old version (i.e., w1, . . . , wk, instead of
w1, . . . , wn.)

Thus, in order to tackle the robustness issue in task (B), we sim-
ply need to focus on the problem of labeling a new version of a
webpage given a labeled old version. For this problem, we can
look at a webpagew holistically to obtain a robust wrapper specific
to the page, rather than relying on generalized site-level features
written in some wrapper language. As a result, we are able to de-
sign wrappers that achieve a substantially higher robustness. We
call this the page-level robust wrapper problem.
Page-level Wrapper Robustness : The problem is formally de-
fined in Section 2, and is the focus of this paper. We are given a
page w along with the locations of the labeled nodes, and we want
to extract the information from a future version of w. We consider
a change model that captures how webpages evolve over time by
looking at the likelihood of all possible changes. Change models
for webpages have been previously proposed [17], along with algo-
rithms for learning models based on archival data. Given a model,
we give algorithms to construct a wrapper that gives the most likely
locations of the labels in the new version. We consider two differ-
ent notions of robustness : probabilistic robustness, that looks at
wrappers that are most likely to work in the future in expectation,
and adversarial robustness, that looks at wrappers that are most
likely to work in the future in the worst-case.
Summary of our contributions :

1. We propose a new approach to wrapper robustness, using
page-level robust wrappers, enabling us to construct opti-
mally robust wrappers independent of the wrapper language.

2. We analyze our algorithms formally, and show that they are
provably optimal under certain models of changes. We define
two models, probabilistic and adversarial. We show that we
can construct optimal wrappers under both models efficiently
in PTIME. We prove that computing the robustness of these
optimal wrappers is NP-Hard.

3. For both models of change, we also provide an estimate of
our confidence in the extraction, which can be effectively
used to identify candidate websites for retraining of wrap-
pers. This is a novel feature of our approach, as no existing
wrappers provide confidence or reliability estimates.

4. We conduct experiments on real websites, and demonstrate
that our algorithms are highly effective in practice in coping
up with changes in websites. We reduce the breakage rate
of wrappers by a factor of up to 5 over traditional wrappers,
leading to a significant reduction in the cost of maintaining
wrappers. In addition, our confidence estimates provide a
very good indication as to when our extraction may be incor-
rect.

Organization : The paper is organized as follows. In Section 2,
we formally define the page-level wrapper robustness problem. We
give the solution to the adversarial case in Section 3 and the proba-
bilistic case in Section 4. Our experimental evaluation is presented
in Section 5. Additional related work can be found in Appendix E.

2. PROBLEM DEFINITION
Ordered Labeled Trees : Let w be a webpage. We represent w as
an ordered, labeled tree corresponding to the parsed HTML DOM
tree of the webpage. As an example, consider Figure 1, represent-
ing the HTML of an IMDB page. The children of every node are

981

ordered, (e.g., in Figure 1, the node corresponding to head is or-
dered before the node corresponding to body among the children
of the root) and every node has a label from a set of labels L (e.g.,
the root has a label html). The label of a node essentially indicates
the type of the node.

In addition, the nodes at the leaves are text nodes (depicted in
Figure 1 as text in gray). For instance, the first leaf has textual
content “Title”. Since we are primarily interested in structural
changes, for our algorithms we replace all HTML text nodes with
nodes having special label “TEXT”. (In Appendix B.4.1, we de-
scribe some extensions that we use to leverage the textual content
information in addition to structure.)

We define two webpages w1 and w2 to be isomorphic, written as
w1 ≡ w2, if they have identical structure and labels, i.e. there is a
bijection b between the nodes in w1 and w2 that respects labels and
order. Two nodes n1 ∈ w1 and n2 ∈ w2 are said to be isomorphic
(n1 ≡ n2), if w1 ≡ w2 and n1 and n2 are mapped to each other
under the bijection.

We assume that each webpage w has a distinguished node d(w)
containing the textual information of interest, e.g., the node con-
taining the number of votes on an imdb.com movie page. For
ease of presentation, we assume that there is a single distinguished
node in each page. Appendix C describes how our techniques can
be used to handle multiple distinguished nodes, e.g., extracting the
list of actors in a movie page.

Edit Operations : We are interested in modeling the scenario when
the webpages undergo structural changes. Each change is one of
three edit operations: insertion of a node (i.e., insert a node x as a
child of another node y, and assign some subsequence of y’s chil-
dren as x’s children,) deletion of a node (i.e., delete node x and
assign all of x’s children as its parent’s,) and substitution of the
label of a node.

Each edit operation takes an ordered labeled tree and creates a
new ordered labeled tree, i.e., the labels and structure of the new
tree are the same as in the old tree, except for the single node that
was edited (either inserted, deleted, or substituted). Thus, apart
from one node that may have been inserted or deleted, there is an
implicit mapping between the old and new versions of the nodes
in the two trees. Furthermore, these mappings can be “composed”
across various edits, effectively providing a mapping between the
first and last trees for a sequence of edit operations. Note that the
only nodes in the first tree that do not have a mapping are those
that are deleted at some point in the sequence of edits, and the only
nodes in the last tree that do not have a mapping are those that were
inserted at some point in the sequence of edits.

A sequence s of edit operations is defined to be an edit script.
We let s(w) denote the new version of the webpage obtained by
applying the operators in s in sequence to w. We use s(n), n ∈ w,
to denote the node in s(w) that n maps to when edit script s is
applied. (Note that we are overloading function s, however the use
should be clear from the context.)

Evolution of Webpages : We assume there is some evolution pro-
cess π that takes a webpage w and creates a new version of the
webpage π(w) by performing a sequence of edit operations on w
that include insertion of nodes, deletion of nodes and substitution of
labels. Thus π is essentially an edit script. Since we are primarily
interested in structural changes, we ignore any changes that are not
to the ordered labeled tree. However, we are not given what π is;
we are only provided the new version of the webpage w′ = π(w).

Wrappers and Robustness : Let w be a webpage with a distin-
guished node d(w). We want to construct a wrapper that extracts
from future versions of w. Let w′ = π(w) be a new version of the

Figure 3: Adversarial vs. Probabilistic Wrappers.

webpage. We want to find the location of distinguished node in w′.
We assume that the distinguished nodes are never deleted when

webpages evolve. For instance, an IMDB movie webpage will al-
ways contain the number of votes even though the webpage may
change. It is reasonable to assume this since the content of interest
is usually an important part of the webpage, and we only intend to
be robust to cosmetic changes and other peripheral changes (e.g.,
changes to ads) that do not affect the main content. Thus, there
is a single distinguished node d(w′) = π(d(w)) in the new tree
w′ = π(w), namely the node that the distinguished node d(w) is
mapped to on applying edits π.

As an example, consider Figure 3. Every node in the ordered
labeled trees in this figure has the label “a”. The second leaf in T1 is
the distinguished node (with a dashed box around it). Consider tree
T1 and T2. Let us say tree T2 is obtained from T1 by an edit script
π that deletes the first leaf in T1. Then, the distinguished node in
T2 is now the first leaf (displayed using a dashed box in T2.) On
the other hand, tree T3 is obtained from T1 by an edit script π that
deletes one of the last 3 leaves of T1. The distinguished node in T3

is now the second node. Note that T2 and T3 are isomorphic trees.
We are now ready to define what we mean by a wrapper.

A wrapper is a function φ from a webpage to a node in the
webpage. We say that a wrapper φ works on a future version
w′ of a webpage w, denoted φ |= w′, if φ(w′) = d(w′).

If φ(w′) 6= d(w′), then we say that the wrapper has failed or has
broken. As an example, consider the wrapper “extract the second
leaf” for Figure 3. If we apply this wrapper to T2, it fails. On the
other hand, if we apply it to T3, it works.

Our objective is to construct page-level wrappers which are im-
mune to π, i.e., wrappers which continue to extract the distinguished
node in the new versions of webpages. We consider two different
models for the evolution process π.

Adversarial Robustness : In the adversarial model, we assume
that each edit operation has an associated cost. (The formal defini-
tion for edit costs is given in Section 3.1.)

We define the adversarial robustness of a wrapper φ on page
w as the largest cost c such that for all w′ that can be obtained
from w using a set of edit operations with total cost at most c,
we have φ(w′) = d(w′).

Thus, we want wrappers that are guaranteed to work when we
bound the changes to the underlying webpage, i.e., we want our
wrapper to work for the “worst-case” modification of cost c. This
leads to our first problem:

PROBLEM 1. Given a page w, compute the wrapper φ that has
the highest adversarial robustness on w.

We denote the optimal wrapper by φadv[w], or simply φadv when
w is clear from the context. Not only do we desire to find φadv , we

982

Model Optimal Wrapper Optimal Wrapper Optimal Confidence Confidence
(Single Node) (k- Nodes) Robustness (Single Node) (k- Nodes)

Adversarial O(n1n2d1d2) O(n1n2d1d2) NP-Hard O(n1n2d1d2) O(kn1n2d1d2)
Probabilistic O(n1n

2
2d1) O(n1n2 ×max(n2d1, kd2)) NP-Hard O(1) O(1)

Table 1: Complexity of various problems under the two models. Here, n1 and n2 are sizes of the trees corresponding to the old and
new versions of the webpages, and d1 and d2 are the depths.

also want to evaluate its robustness, as it gives a measure of how
good any wrapper can be for the given page. In particular, the ro-
bustness of the optimal wrapper can be used as an indication as to
how often the page needs to be recrawled. If the robustness is low,
then the wrapper may break even on small cost changes to the web-
page. For such a case, we would want to recrawl the fresh version
of the webpage fairly often in order to ensure correctness. Note that
once we apply our wrapper on a new version and extract the dis-
tinguished node, we can update the wrapper accordingly (assuming
the extraction is correct).

PROBLEM 2. Compute the adversarial robustness of φadv .

Finally, given a new version w′ of webpage w, we want to evaluate
the confidence in our extraction from w′. Confidence is a mea-
sure of how much we trust our extraction of the distinguished node
for the given new version. (We define confidence formally in Sec-
tion 3.5.) For instance, if w′ differs significantly from w, we might
have less confidence in our extraction. However, if all the differ-
ences between w and w′ are in a different part of the page, distant
from the distinguished node, we might have a larger confidence in
our extraction. Our next problem is:

PROBLEM 3. Given a new version w′ of w, compute the confi-
dence of φadv on w′.

Informally, robustness is a measure of how well wrappers will work
on future versions of a given webpage, while confidence is how
well a wrapper will work on a particular future version.

Probabilistic Robustness : While the adversarial robustness mea-
sures the behavior in the worst case, probabilistic robustness mea-
sures the behavior of a wrapper in the expected case.

We illustrate this distinction with the example in Figure 3. Prob-
abilistically speaking, if one node is deleted, it is much more likely
that one of the three leaf nodes after the distinguished node in T1

get deleted, rather than the single node before the distinguished
node. In this case, a probabilistically optimal wrapper would return
the second leaf instead of the first leaf as the distinguished node
(since the second leaf is more likely to be the distinguished node.)

On the other hand, if we were to consider the worst case (ad-
versarial) behavior, then both these trees were derived by a single
delete operation from T1, and therefore both edit scripts have the
same edit cost. Thus, an adversarial wrapper would consider the
first or the second leaf given a tree with structure T2 (or equiva-
lently T3) to have equal chance of being the distinguished node.

In the probabilistic model (defined formally in Section 4), we
assume that the edit operations in π come from some probability
distribution. In other words, for a webpage w, π(w) gives a proba-
bility distribution over all possible future states of w.

Given such a probabilistic change model, we define the
probabilistic robustness of a wrapper φ on page w as simply
the probability that φ |= w′, wherew′ is drawn randomly from
the distribution π(w).

We denote the optimal wrapper by φprob[w], or simply φprob
when w is clear from the context.

We have the following three corresponding problems for the prob-
abilistic model.

PROBLEM 4. Given w, compute the optimal wrapper φprob.
PROBLEM 5. Compute the probabilistic robustness of φprob.
PROBLEM 6. Given a new version w′ of w, compute the confi-

dence of φprob on w′.

We present solutions to these 6 problems in Sections 3 and 4.
Table 1 contains the complexity for each of the problems for the
two models. The multiple-node wrapper is the version where we
want to extract k distinguished nodes from the new version of the
webpage. (We consider it in Appendix C.)
Storage of State : Since we operate at a page-level, a wrapper can
be constructed by simply storing the old version of the webpage
w as well as the distinguished node d(w). Subsequently, on being
provided a new version w′, the wrapper executes a procedure using
three arguments w,w′, d(w) to output the node in w′ that is the
distinguished node. In other words,

φ(w′) := f(w, d(w), w′) (2)
All our optimal wrappers are of this form. Note that storing

the old version of the webpage might incur an additional storage
cost — however, the human cost of re-annotation when a wrapper
breaks far outweighs the small cost of storage in order to achieve
optimality. In addition, we only need to store the ordered labeled
tree and not the entire HTML content of the webpage, a small frac-
tion of the size of the webpage.

3. ADVERSARIAL MODEL
In this section, we consider the adversarial robustness of wrap-

pers. We first derive an upper bound on the robustness in Sec-
tion 3.2. Subsequently, we design a wrapper that achieves the upper
bound in Section 3.3. We prove that finding the maximum robust-
ness is intractable in Section 3.4. Then, we describe a measure of
confidence for the adversarial model, and discuss how to evaluate
it in Section 3.5.

3.1 Preliminaries
Edit Costs : We described the possible edit operations to a web-
page in Section 2. We now describe adversarial edit costs for these
operations. Let L be the set of all labels. We assume that there
is a cost function e, from L ∪ {∅} × L ∪ {∅} → R, such that
e(l1, l2) represents the cost of substitution of a node with label l1
to one with label l2, e(∅, l) denotes the cost of insertion of a node
with label l, and e(l, ∅) represents the cost of deletion of a node
with label l. Note that e(l, l) = 0. In addition, we assume that the
triangle inequality holds, i.e., e(l1, l3) ≤ e(l1, l2) + e(l2, l3).

Given an edit script s, the cost of s, denoted cost(s), is simply
the sum of costs of each of the operations in s as given by the cost
function e.
Adversarial Wrapper : Now we consider the adversarial robust-
ness problem. Given a webpage w with a distinguished node d(w),
we want to construct the wrapper φadv that has the maximum ad-
versarial robustness. This wrapper is constructed by storing the
webpage w as well as the distinguished node d(w), as discussed
in Equation 2 in Section 2. Subsequently, the wrapper is then a
function that takes in a new version w′ of the webpage w, executes
a procedure utilizing w′,w and d(w) and returns the distinguished
node in the new version.

983

3.2 Upper Bound
We first derive an obvious upper bound on the adversarial ro-

bustness. We define the ambiguity of a page, denoted amb(w),
to be the smallest number c such that there are two edit scripts s1
and s2, with cost(s1) ≤ c, cost(s2) ≤ c, s1(w) ≡ s2(w) but
s1(d(w)) 6≡ s2(d(w)). In other words, there exists two scripts,
each with cost less than or equal to c, such that both the scripts re-
sult in isomorphic trees, but map the distinguished node to different
nodes in the trees.

It is easy to see that amb(w) is an upper bound on robustness,
since a wrapper cannot distinguish between two pages s1(w) and
s2(w) (since they are isomorphic), and the distinguished nodes in
the two pages differ. Thus, we have:

LEMMA 3.1. The robustness of φadv is at most amb(w).

3.3 Achieving the Upper-Bound
We now describe a very simple wrapper φ that achieves the upper

bound, which shows that the maximum adversarial robustness is
precisely the ambiguity of the webpage amb(w).

For any new version of the webpage w′, the wrapper computes
the edit script s with the smallest cost such that s(w) ≡ w′ and
returns s(d(w)), i.e., the node in w′ that node d(w) in w maps to
on applying s. (We discuss the details of the algorithm after the
following theorem.) We call this wrapper algorithm φedit.

THEOREM 3.2. The adversarial robustness of φedit on w is
equal to amb(w).

PROOF. By Lemma 3.1, we know that the robustness of φedit is
≤ amb(w). In what follows, we show that robustness of φedit is
≥ amb(w), and hence the robustness must be exactly amb(w).

Assume on the contrary that the wrapper fails on a webpage
w′, where w′ was obtained from w using a script sactual with
cost(sactual) < amb(w). Thus, we have w′ = sactual(w). Since
the wrapper fails on w′, φedit(w′) 6= sactual(d(w)).

Let smin be the smallest cost edit script that takes w to w′.
Thus, we have smin(w) ≡ w′ ≡ sactual(w). Also, by defi-
nition, smin(d(w)) ≡ φedit(w

′). Since smin has the smallest
cost, we have cost(smin) ≤ cost(sactual) < amb(w). Also,
smin(d(w)) ≡ φedit(w

′) 6≡ sactual(d(w)), so smin 6≡ sactual.
Thus, we have two different scripts, smin and sactual, both with
cost less than amb(w), such that they result in isomorphic trees
but different distinguished nodes. This contradicts the definition of
ambiguity.

COROLLARY 3.3. The φedit wrapper achieves the maximum
adversarial robustness, which is equal to amb(w).

We can use an algorithm by Zhang and Sasha [9] to compute the
minimum cost tree edit script from w to w′. Note that the original
algorithm was only presented for edit distances which satisfy met-
ric properties, i.e., the edit costs satisfy the triangle inequality and
the cost of deletion of a node with a given label is same as the cost
of insertion of a node with the same label. However, the algorithm
can be shown to also work under weaker conditions, with the only
constraint being the triangle inequality between edit costs.

The complexity of the algorithm isO(n1n2d1d2), where n1 and
n2 are the number of nodes in the trees w and w′, while d1 and d2
are the maximum depths of the nodes in w and w′.

3.4 Computing Maximum Robustness
Section 3.3 settles Problem 1. Now we look at Problem 2, com-

puting the maximum adversarial robustness. We observe a surpris-
ing result that although we can construct the wrapper with maxi-
mum adversarial robustness in PTIME, computing its robustness

is NP-hard. We obtain a reduction from the NP-Complete partition
problem. The proof may be found in Appendix A.1.

THEOREM 3.4. Computing amb(w) is NP-hard.

3.5 Confidence in Extraction
Now we consider Problem 3, determining the confidence in our

extraction given a new version w′. Note that confidence we de-
fine is not one in the traditional sense. In particular, it is not a
normalized number in [0, 1], but is simply a non-negative number.
However, it does give an indication as to how good the extraction
is. If the confidence is large, the extraction is likely to be correct.

Intuitively, if the page w′ differs a lot from w, then our confi-
dence in the extraction should be low. However, if all the changes
in w′ are in a distinct portion away from the distinguished node,
then the confidence should be high despite those changes. Based
on this intuition, we define the confidence of extraction on a given
new version as follows.

Let s1 be the smallest cost edit script that takes w to w′ (i.e.,
s1(w) ≡ w′). Thus, the node extracted by φedit is s1(d(w)). We
also look at the the smallest cost script s2 that takes w to w′ (i.e.,
s1(w) ≡ s2(w) ≡ w′) but does not map d(w) to the node corre-
sponding to s1(d(w)). We define the confidence as the difference
cost(s2) − cost(s1). In other words, this quantity is nothing but
the additional cost that needs to be used to break the optimal adver-
sarial wrapper. Intuitively, if this difference is large, the extracted
node is well separated from the rest of the nodes, and the extraction
is unlikely to be wrong.

For instance, consider the example in Figure 3. In the figure, if
we used the wrapper “extract the second leaf of T2”, then the con-
fidence of the wrapper is 0, since there is an equal cost edit script
(i.e., the one on top), that gives a different distinguished node.

To compute the confidence, we need to solve the following con-
strained edit script problem : given two trees w and w′ and two
nodes n and n′, compute the smallest edit script between w and
w′ with the constraint that n is not mapped to n′. It is straight-
forward to extend the Zhang-Sasha algorithm [9] for solving the
unconstrained minimum cost edit script problem to solve the con-
strained version. Computing the confidence has the same complex-
ity as computing the pairwise tree edit cost i.e., O(n1n2d1d2).

The complete algorithm for extraction and confidence computa-
tion (Algorithm 1) can be found in the appendix.

3.6 Discussion
In this section, we provided the optimal wrapper under adver-

sarial model with a given set of edit costs. This brings us to the
issue of setting the edit costs. Intuitively, the edit cost for an oper-
ation should capture how difficult it is for a website maintainer to
make that edit operation. For instance, inserting a new table table
should be more expensive than inserting a new row tr. There are
techniques [17] that learn the frequencies with various edit opera-
tions take place in websites, which can be used to derive the costs.
For instance, we can set the cost of an edit to be (1 - probability of
that edit). In the experiments, we show that even the simple model
that assigns a unit cost to each edit operation performs exceedingly
well in practice.

In the next section, we use probabilities of change to create an
optimal wrapper that works best in an expected case.

4. PROBABILISTIC ROBUSTNESS
We now analyze the robustness of wrappers under a probabilistic

model. In Section 4.1, we define what we mean by a probabilistic
edit model. We derive a specification of the optimal probabilistic

984

wrapper in Section 4.2. The design of an efficient wrapper accord-
ing to the specification is done in Section 4.3. (Some of the techni-
cal details may be found in Appendix B.) Similar to the adversarial
case, deriving robustness of the optimal wrapper is shown to be in-
tractable in Section 4.4. We also show how to derive a confidence
estimate for our extraction in the same section.

4.1 Probabilistic model
We consider an existing probabilistic model for tree-edits [17],

which was proposed recently to capture how webpages evolve over
time. In this model, probabilities are defined in terms of a proba-
bilistic transducer π, which takes as input a webpage w, and out-
puts a new version w′ of the webpage by performing a random set
of edit operations drawn from a probability space. These edit oper-
ations are the same as the ones described in Section 2.

As before, letL be the set of all labels. The transducer is parame-
trized by a set of probabilities : the deletion probability pdel(l) for
each label l ∈ L, the insertion probability pins(l) for each label l,
and the substitution probability psub(l1, l2) for each pairs of labels
l1, l2. In addition, it takes a probability pstop (indicating the proba-
bility that the transducer stops making edits to the webpage). Addi-
tional details about the operation of the transducer can be found in
Appendix B.1. The resulting transducer defines a probability dis-
tribution over all possible future states of the webpagew, which we
denote by π(w).

Given two trees w1 and w2, with sizes n1, n2 and depths d1 and
d2, Dalvi et al. [17] provide an algorithm that computes the prob-
ability P(π(w1) ≡ w2) in time O(n1n2d1d2). They also provide
an efficient algorithm to learn the parameters of the probabilistic
transducer from archival data. Here, we assume that such a proba-
bility model is already given to us.

4.2 Optimal Probabilistic Robustness
We now consider Problem 4 which is as follows : given a proba-

bilistic transducer π and a webpage w, construct the wrapper φprob
that maximizes the probability P(φprob |= w′), where w′ is drawn
from the probability distribution π(w). In this section, we provide
the specification of the wrapper and a simple but inefficient algo-
rithm to meet the specification. In the next section, we design a
more efficient algorithm.

Given two webpages w1 and w2, along with two nodes m1 and
m2 in respective webpages, define Pπ(w1, w2,m1,m2) to be the
probability that the transducer π transforms w1 to a tree isomor-
phic to w2 with the constraint that node m1 gets mapped to a node
isomorphic tom2. For the purposes of the section, we use “a trans-
forms into b” instead of “a transforms into a tree isomorphic to b”
for simplicity. Similarly, we say “m1 gets mapped to m2”, instead
of “m1 gets mappped to a node isomorphic to m2”.

The specification of the wrapper is similar to that of the optimal
algorithm πadv for the adversarial case. Define φprob to be the
wrapper that given a new version w′ of a webpage w, outputs the
node x in w′ that maximizes Pπ(w,w

′, d(w), x). In other words,
we wish to compute:

argmax
x∈w′

Pπ(w,w
′, d(w), x) (3)

The following result is straightforward.

THEOREM 4.1. φprob is the wrapper with highest probabilistic
robustness.

Observe that for a fixed x, we can reduce the problem of com-
puting Pπ(w,w

′, d(w), x) to the standard problem of computing
P(π(w) ≡ w′) for a pair of trees. We can simply change the la-
bels of d(w) and x to new unique labels l∗1 and l∗2 and impose a

r’

u

P
1 P

2

v

P
1
’ P

2
’

r

P
1 P

2

T
u

P
1
’ P

2
’

T
v

Figure 4: Probabilistic Wrapper: Mappings between sub-trees.
probability of 0 for deletion of label l∗1 and for all substitutions of
l∗1 except to l∗2 . Thus, we can compute Pπ(w,w

′, d(w), x) in time
O(n1n2d1d2). By letting x vary over all possible nodes in w2,
repeating this procedure immediately gives us an algorithm for an
optimal probabilistic wrapper with complexity O(n1n

2
2d1d2).

4.3 Achieving Optimal Robustness
In the naive algorithm described in the previous section, differ-

ent calls to Pπ(w,w
′, d(w), x) in Eq. 3 share lots of computations

for various x, so we can eliminate the redundancy to make the al-
gorithm more efficient and reduce its complexity. We describe this
algorithm in this section.

Given a node in a tree, we define its prefix to be all nodes in the
tree that are to its left or to the left of its ancestors. In other words,
if we were exploring the nodes in the tree in a post-order fashion,
(i.e., children of a node before the node itself) the nodes that are
visited before the given node is visited form its prefix. Note that P1

is a prefix of the node u in the tree in the left in Figure 4. Any prefix
of a node in a tree is also regarded as a prefix of the tree itself.

Now, let w′ be a tree obtained from w using a sequence of edit
operations. Consider the canonical mapping between the nodes of
w′ and w, which keeps track of where the nodes in w ended up in
w′. We formally defined this mapping in Section 2. Our basic
observation is that this mapping respects sibling and parent rela-
tionships, as well as the prefix order. For instance, if node a maps
to b, then a child of a can only map to a child of b. Similarly, a node
to the left of a can only map to a node to the left of b. For instance,
in Figure 4 which depicts the two trees, if node u gets mapped to
node v, then the nodes in P1 must be mapped to nodes in P ′1, nodes
in Tu must be mapped to nodes in Tv , and nodes in P2 must be
mapped to nodes in P ′2.

We have the following result:

THEOREM 4.2. For any u ∈ w, v ∈ w′, Pπ(w,w
′, u, v) equals

the product of: (according to the notations of Figure 4.)
• p1v : the probability that P1 transforms to P ′1.
• p2v : the probability that Tu transforms to Tv .
• p3v : the probability that P2 transforms to P ′2.

Note that in Figure 4, the ancestors of u and v are contained in
P2 and P ′2, and as a result, the probabilities P1 and P2 are not
symmetric (i.e., P2 is not a prefix of u if the ordering of the nodes
were reversed in the tree.)

The basic idea behind the more efficient algorithm is to precom-
pute the transformation probabilities between all pairs of prefixes of
complete sub-trees, and to use this to compute Pπ(w,w

′, d(w), v)
for all possible v. The analysis is non-trivial, and for lack of space,
we give the details of the algorithm in Appendix B. We state here
the complexity of the algorithm.

THEOREM 4.3. The probabilistic wrapper φprob has complex-
ity O(n1n

2
2d1).

Thus, we get an O(d2) speed-up over the naive algorithm. In prac-
tice, this makes a big difference, and makes extraction from some
of the large websites tractable. In Appendix B.4, we describe some

985

heuristics and optimizations that speed up the algorithm even fur-
ther, and make it very efficient.

4.4 Evaluating Robustness and Confidence
Robustness: Let φprob denote the optimal wrapper as outlined in
the previous section. We define the robustness of this wrapper on a
given webpage as the probability that, given a page w, φprob works
onw′, wherew′ is drawn from a distribution given by π. Similar to
the adversarial case, we can show the following result, once again
using a reduction from the partition problem (We omit the proof.)

THEOREM 4.4. Computing the robustness of the probabilistic
wrapper φprob is NP-hard.

Confidence: Also, given a new page w′, we want to compute the
confidence in our extraction from w′. We define confidence of ex-
traction to simply be the probability of a correct extraction, given
that w′ is derived from w using a probabilistic edit script π.

The probability that the extraction is correct is exactly the prob-
ability Pπ(w,w

′, d(w), φprob(w
′)). Since the algorithm for the

probabilistic wrapper also computes this quantity, we get it for free.

5. EVALUATION
In this section we evaluate our wrappers against each other and

against traditional XPath-based techniques.

5.1 Experimental Setup
Data: To test the robustness of our techniques, we used archival
data from Internet Archive (archive.org), a website storing pre-
vious versions of webpages on the Internet going back several years.
We obtained webpages from Internet Archive for three different do-
mains:
• A: IMDB Movie Database (imdb.com)
• B: CNN Stock Price Listings (money.cnn.com)
• C: Wikipedia (en.wikipedia.org)

(We have also experimented with other domains: Yahoo! Finance
(finance.yahoo.com), and Citysearch (citysearch.com), and
the results are not very different from the ones presented for the
three domains above.) For each of these websites, for our experi-
ments, we chose a set of (≈ 10) webpages that have archival ver-
sions. For each of these webpages, we crawled every version found
on Internet Archive (typically of the order of several 100’s of ver-
sions per webpage.) Additional details on the data sets including
crawl times, number of pages, number of versions, and so on can
be found in Appendix D.1.
Distinguished Nodes: In order to test wrappers, we need to de-
temine if an extraction is “correct.” One approach is to manually
inspect each extraction result to check if the wrapper found, say,
the correct book price or movie title. This approach does not scale
well, so we developed the following alternative scheme.

In each of our data sets, we manually select distinguished nodes
that can be identified because they either have a fixed unique textual
content or have a portion of their content that is fixed and unique
across all versions. For instance, in the IMDB pages, the number of
user votes for a movie is always displayed as “<Number> votes”.
As an other example, in the CNN Stock Price Listings, the distin-
guished node containing the last traded stock price always contains
the string “last price”. Similarly, in Wikipedia, the time zone of a
city always contains the content “time zone”.

In our experiments, we implicitly hide this fixed textual content
from the wrappers, but not from our evaluation code. After the
wrapper produces its result, we can then easily check if it is correct
by seeing if the result contains this fixed textual content.

In a way, we are artificially transforming easy extraction prob-
lems into to hard extraction problems. That is, if this textual con-
tent is visible, then even a simple wrapper can simply look for this
textual content on the webpage and return the corresponding node.
But without this content, the wrapper must rely on less clear indi-
cations in the webpages. We believe that our synthetic test cases
are representative of the more challenging extraction cases where
wrappers tend to fail, and have the added advantage that it is easy
to check for correctness.

Implementation: We implemented both the adversarial (denoted
ADV in the figures) and probabilistic wrappers (denoted PROB in
the figures) in Java. For ADV, we used unit costs for each edit
operation. In additional experiments, not shown here, we observed
that the results are not very sensitive to the precise cost choices
made — for instance, the results for setting the cost of changes to
be (1 - their probabilities) are very similar. For PROB, we used
the techniques described previously [17] to learn the probabilities
of every edit operation on a dataset of IMDB pages. We then use
these probabilities as input to the wrapper.

Baselines: For comparison, we implemented two other wrappers.
The first uses the full XPath containing the complete sequence of
labels of the nodes from the root to the distinguished node (in the
initial version of the webpage). This wrapper is often used in prac-
tice. The second uses the robust XPath wrappers from [17]. We
will call these wrappers FULL and XPATH respectively.

Objectives: The input to a wrapper is (a) the old version of a page,
(b) the location of the distinguished node in that page, and (c) the
new version. For each execution, we check if the wrapper finds the
distinguished node in the new version. We also study the usefulness
of the confidence values returned by the wrappers.

We study how well our wrappers perform as a function of the
elapsed time between the old and the new versions of the webpage.
We use skip sizes as a proxy for this time. We say a pair of versions
has a skip of k if the difference between the version numbers of the
two versions is k.

We also study the relative performance between PROB and ADV
for all possible skip sizes, and the average edit distance, time taken,
and size of trees as a function of the skip size. Since these experi-
ments are not central to the paper, they can be found in Appendix D.

In addition, we also measure the time taken for extraction by
each of our wrappers. Since our wrappers run offline, time is not
critical; however, our wrappers run reasonably fast. The wrapper
PROB takes 500ms on average on a processor running Intel Core 2
Duo 1.6GHz, while ADV takes 40ms on average. (See Appendix D
for more details.)

Evaluation of Robustness : In this experiment, we vary the skip
size, and we evaluate all wrappers for how many mistakes are made
in extraction. In particular, we study the total number of errors for
three skip sizes (k = 1, 5 and 10) for each of the techniques. For
each skip size k, for all pairs of version numbers (i, i + k) (for
all version numbers i), we ran all the wrappers, and plotted the
results in Fig 5(a). (For instance, if there were 10 versions, for
k = 5 our pairs of versions are (1, 6), (2, 7), . . . (5, 10).) The y
axis represents the percentage of times the wrapper failed (in log
scale). For instance for k = 1, the full XPath wrapper and the
robust XPath wrapper failed around 15% and 5% of the time while
the PROB and ADV both perform similarly and failed in less than
1% of the cases. Thus, our wrappers perform much better.

Figures 5(b) and 5(c) contain the results for the Wikipedia and
CNN datasets respectively. The results for Wikipedia and CNN are
similar, with ADV and PROB outperforming all other methods. For
instance, on the Wikipedia data, for k = 10, PROB has one in four

986

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

K=1 K=5 K=10

Fraction of Errors on IMDB

PROB
ADV

XPATH
FULL

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

K=1 K=5 K=10

Fraction of Errors on Wikipedia

PROB
ADV

XPATH
FULL

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

K=1 K=5 K=10

Fraction of Errors on CNN

PROB
ADV

XPATH
FULL

Figure 5: Experiments on (a) IMDB (b) Wikipedia (c) CNN.

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Precision vs Recall for IMDB

ADV
PROB

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Precision vs Recall for Wikipedia

ADV
PROB

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Precision vs Recall for CNN

ADV
PROB

Figure 6: Precision-Recall curves for ADV and PROB for (a) IMDB (b) Wikipedia (c) CNN.

errors that XPATH has. Between ADV and PROB, there is no clear
distinction. Both are comparable to each other, with PROB being
better on the Wikipedia and IMDB webpages, and ADV having a
slight edge on the CNN webpages. On the CNN pages, all wrappers
perform slightly poorly, possibly because of high variability in the
structure of the website. (However, the confidence estimates of our
wrappers (as we see next) are fairly reliable, even for CNN.)

Accuracy of the Confidence Threshold: In addition to being ro-
bust, our wrappers also output confidences on the extractions. The
confidence values are an indication of when the wrappers are mak-
ing mistakes. These values can be used to decide whether to use
the extracted results, or to refer the webpage for human relabeling.

In this experiment, we study the accuracy of the confidence val-
ues in predicting the correctness of the extractions for ADV and
PROB. We define our “relevant” set to be precisely the instances
where the extraction is correct, independent of threshold. We now
try to see how accurately these “correct” instances can be retrieved
by setting a given confidence threshold.

We evaluate accuracy as follows: Suppose we run the optimal
wrapper on a set of pages N . Out of these, let the set Nc be the
ones where extraction is correct. In addition, we get a confidence
value on each of the pages. We want to use the confidence scores
to identify the set Nc of correct extractions. Given a threshold τ
on the confidence, let Nτ be the set of pages where the confidence
of extraction was higher than τ . Then, we define the precision to
be |Nc ∩Nτ |/Nτ , i.e., the fraction of retrieved instances that were
correct, and recall to be |Nc∩Nτ |/Nc, i.e., the fraction of the total
correct instances that were retrieved.

We plotted precision (on the y-axis) vs. recall (on the x-axis) for
ADV and PROB in Figure 6. As can be seen from the figures, for
both ADV and PROB, the curve is very close to the ideal precision-
recall curve, i.e. the confidences are very indicative of correct ex-
traction results. Also, while PROB does not completely dominate
ADV, it behaves much better. So even though both PROB and ADV
make similar number of mistakes in Figure 5, the confidences in the
probabilistic wrapper are much more predictive of the mistakes.

6. CONCLUSION
In this paper, we presented algorithms to construct provably op-

timal wrappers under the adversarial and probabilistic model. By
evaluating on real websites, we demonstrated that our wrappers are
highly effective in coping with changes in websites, and reduce the
wrapper breakage by up to 500% over existing techniques, and pro-

vide reliable near-perfect confidence estimates.
We showed that both the wrappers have comparable perfomance

in terms of wrapper breakage. However, the probabilistic wrapper
is more effective in predicting its failures.

7. REFERENCES
[1] A. Sahuguet et. al. Building light-weight wrappers for legacy web

data-sources using w4f. In VLDB, pages 738–741, 1999.
[2] Tobias Anton. Xpath-wrapper induction by generating tree traversal

patterns. In LWA, pages 126–133, 2005.
[3] Boris Chidlovskii et. al. Documentum eci self-repairing wrappers:

performance analysis. In SIGMOD, pages 708–717, 2006.
[4] D. C. Reis et. al. Automatic web news extraction using tree edit

distance. In WWW, pages 502–511, 2004.
[5] Wei Han, David Buttler, and Calton Pu. Wrapping web data into

XML. SIGMOD Record, 30(3):33–38, 2001.
[6] Chun-Nan Hsu and Ming-Tzung Dung. Generating finite-state

transducers for semi-structured data extraction from the web.
Information Systems, 23(8):521–538, 1998.

[7] J. Myllymaki et. al. Robust web data extraction with xml path
expressions. Technical report, IBM Report RJ 10245, May 2002.

[8] K. Lerman et. al. Wrapper maintenance: A machine learning
approach. JAIR, 18:149–181, 2003.

[9] K. Zhang et. al. Simple fast algorithms for the editing distance
between trees and related problems. SIAM J. Comput., 18(6), 1989.

[10] N. Kushmerick, D. Weld, and R. B. Doorenbos. Wrapper induction
for information extraction. In IJCAI, pages 729–737, 1997.

[11] Nicholas Kushmerick. Wrapper verification. World Wide Web,
3:79–94, March 2000.

[12] Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and
Usage Data. Springer-Verlag New York, Inc., 2006.

[13] M. Abe et. al. Robust pointing by xpath language: Authoring support
and empirical evaluation. In SAINT, pages 156–, 2003.

[14] M. Kowalkiewicz et. al. Robust web content extraction. In WWW,
pages 887–888, 2006.

[15] Marek Kowalkiewicz et. al. Myportal: Robust extraction and
aggregation of web content. In VLDB, pages 1219–1222, 2006.

[16] I. Muslea, S. Minton, and C. Knoblock. Stalker: Learning extraction
rules for semistructured, web-based information sources. In AAAI:
Workshop on AI and Information Integration, pages 1–8, 1998.

[17] Nilesh N. Dalvi et. al. Robust web extraction: an approach based on a
probabilistic tree-edit model. In SIGMOD, pages 335–348, 2009.

[18] P. Gulhane et. al. Web-scale information extraction with vertex. In
ICDE, pages 1209–1220, 2011.

[19] Robert McCann et. al. Mapping maintenance for data integration
systems. In VLDB, pages 1018–1029, 2005.

[20] Valter Crescenzi et. al. Roadrunner: Towards automatic data
extraction from large web sites. In VLDB, pages 109–118, 2001.

987

APPENDIX
A. ADVERSARIAL WRAPPER DETAILS

Data: w,w′, u

Result: New Location of u in w′ and confidence of extraction
Find minimum cost script s such that s(w) ≡ w′;
v := s(u);
c1 := c(s);
Find minimum cost script s′ such that s′(w) ≡ w′ and v 6≡ s′(u);
c2 := c(s′);
Return v, c2 − c1

Algorithm 1: Optimal Adversarial Wrapper.

A.1 Proof of Theorem 3.4
PROOF. We show a reduction from the partition problem which

is known to be NP-complete. In the partition problem, we are given
a set of positive integers x1, x2, . . . , xn, with total sum 2S, and we
want to check if this set can be partitioned into two sets with sum
S each.

Consider a tree w that has a root node with n children having
labels a0, a1, · · · , an. The distinguished node is a1. Consider the
following edit costs: all the insertion costs are infinity. All deletion
costs are infinity, except a0 and an, which have a deletion cost of
0. Additionally, we have a set of labels b0, · · · , bn+1 such that
e(ai, bi) = 0, e(ai, bi+1) = e(ai, bi−1) = xi for 1 ≤ i ≤ n, and
all other substitution costs are infinity. These edit costs satisfy the
triangle inequality. The root cannot be deleted or substituted.

There are only two kinds of edit scripts can lead to ambiguity.
(These two edit scripts are depicted in Figure 7 leading to T4.)
These are (1) delete a0, and transform each ai to either bi−1 or
bi for 1 ≤ i ≤ n, and (2) delete an and transform each ai to either
bi or bi+1 for 0 ≤ i ≤ n − 1. Note that if one of the ai continue
to stay in the final version, it is easy to ascertain where the distin-
guished node is. (If ai is present in the final version, the node i− 1
nodes to the left is the distinguished node.) Additionally, for (1), if
a0 is deleted and then some ai gets substituted to bi+1, we can once
again ascertain where the distinguished node is. (If the ith location
has bi+2 for some i, one can be sure that the first node is the dis-
tinguished node.) A similar reasoning holds for why substitution to
bi−1 does not happen for any ai in (2).

Both the scripts lead to a treew′ containing children c1, c2, · · · , cn,
with each ci = bi−1 or bi. In one script, the distinguished node is in
the first position, and in another script, it is in second position. Any
tree w′ of the above form can be achieved using two ambiguous
edit script.

We prove that that the partition problem has a solution iff amb(w) =
S. Consider any new tree w′ of the above form resulting from
scripts s1 and s2, where s1 deletes the first node and s2 deletes the
last node. If ci = bi, then it means that s1 did not pay a price, while
s2 had a cost xi. If ci = bi−1, then the edit script s1 had a cost
of xi, while s2 did not pay a price. Thus, the total cost of the two
scripts is cost(s1)+cost(s2) = 2S, the total sum of all xi. Hence,
cost(s1), cost(s2) ≤ S iff cost(s1) = cost(s2) = S, and there is
a partition of the set of xi into two sets with sum S each.

B. PROBABILISTIC WRAPPER DETAILS

B.1 Background: Probabilistic Transducer
The transducer π makes one pass over the entire webpagew, and

at each position, probabilistically decides to either insert a node,

Figure 7: Hardness Proof. First edit script: T1 followed by T2

followed by T4. Second edit script: T1 followed by T3 followed
by T4.

delete a node, or substitute its label. Formally, it has the following
operations:

1. Let r be the root node of w with label l. First, π is applied
recursively to all the children of r to obtain mutated children
of r.

2. With probability pdel(l), it deletes the node r. Otherwise,
with probability pdel(l, l′), it changes the label of l to l′.

3. With probability pstop, it stops and outputs the tree. Other-
wise, with probability pins(lnew), it inserts a new node at
the top with label lnew, assigns a random subsequence of top
nodes as the children of the new node, and repeats Step 3.

B.2 Background: TP Algorithm
Since our optimizations try to make use of shared computation

in the algorithm provided in [17] to compute P(π(w) ≡ w′), we
first describe the details of this algorithm (which we call the TP
Algorithm (Transformation Probability Algorithm). This algorithm
is primarily based on the Zhang-Sasha algorithm [9] for computing
tree edit distance.

The algorithm computes, bottom-up, for every pair of nodes u ∈
w and v ∈ w′, the probability P(π(wu) ≡ w′v), where wu and
w′v are the subtrees rooted at u and v respectively. In Figure 4, this
probability is the probability of transformation of Tu to Tv . Ad-
ditionally, for a given pair of nodes, the algorithm uses dynamic
programming to compute the probability that any prefix of the tree
under the first node transforms to any prefix of the tree under the
second node. For instance, for the trees under r and r′ in Figure 4,
P1 and P ′1 are both prefixes (of r and r′ respectively), and as a re-
sult, during computation of the transformation probability of r and
r′, the algorithm also computes the probability of P1 transforming
into P ′1.

For any prefix pairs P1 and P ′1, the transformation probability
P(π(P1) ≡ P ′1) can be expressed in terms of the transformation
probabilities of smaller prefixes as well as transformation probabil-
ities of entire sub-trees. The algorithm uses dynamic programming
to efficiently compute the transformation probability of all sub-tree
pairs. It can be shown that there are n1d1 prefixes of w and n2d2
prefixes of w′, and hence the total complexity of the algorithm is
O(n1n2d1d2), where n1 and n2 are the number of nodes in the
two trees and d1 and d2 are the depths of the two trees.

988

B.3 An Improved Algorithm
Now we present our improved algorithm for the problem of com-

puting the location of the distinguished node given a probability
model of transformation π. As discussed in Section 4, this is the
same as:

argmax
v∈w′

Pπ(w,w
′, u, v),

where u = d(w), which does better than the naive algorithm that
invokes the TP algorithm n2 times for each node v in w′. The
pseudocode is provided in Algorithm 2.

The algorithm uses Theorem 4.2. First, consider a vanilla run
of the TP algorithm. Since this run computes the transformation
probabilities for each pairs of prefixes of nodes in the two trees,
we can compute the probabilities p1v and p2v in Theorem 4.2 for
all v using the single vanilla run. (Note that p1v is nothing but the
probability of transformation of the prefix of u relative to w into
the prefix of v relative to w′. Also note that p2v is nothing but the
transformation probability for the sub-tree under u to the subtree
under v.) The first run is depicted in line labeled 1 in Algorithm 2.

The only difficulty is computing p3v for all v. As we noted ear-
lier, p3v and p1v computations are not symmetric: we need a sep-
arate technique to compute p3v for all v. (This is because we now
need to also account for the ancestors of u and v.)

We define P2(u) to be this tree for u, and P ′2(v) to be this tree for
v. To compute the transformation probabilities between P2(u) and
P ′2(v), we can run a TP algorithm on these two trees. However,
this computation still shares a lot of computation with the original
TP run.

THEOREM B.1. [Complete Subtree] Given nodes x and y in
P2(u) and P ′2(v) respectively, the subtrees rooted at x and y are
identical to the corresponding subtrees for the original trees, except
when x is an ancestor of u and y is an ancestor of v.

We omit the proof, but instead give the intuition based on Fig 4;
the nodes in P2 and P ′2 are precisely the nodes in the right of u and
v or their ancestors. The nodes in the right of u and v do not cut
the path from the root r and r′ to u and v, and thus do not have
the trees under them affected. On the other hand, the ancestors of
u and v have the left hand portion of their sub-tree cut by the path
from the root to u or v.

Thus, in order to compute p3v , i.e. the probability of P2(u)
transforming to P ′2(v), we only need to compute the additional
transformation probabilities for the following trees : (1) an ances-
tor of u to any node in P ′2(v) that is not v’s ancestor, (2) any node
in P2(u) that is not u’s ancestor to an ancestor of v and (3) two an-
cestors of u and v. If we do this naively, this approach would give
rise to a overall complexity that is the same as the naive algorithm
given earlier.

For (1), using Theorem B.1, the subtree under the node in P ′2(v)
is the same as the one in the original tree. Since u is fixed, we
can simply run the TP algorithm with arguments P2(u) and the
complete tree w′ to derive all these transformation probabilities for
all v. This needs to be done precisely once. (This run is depicted in
line labeled 2 in Algorithm 2.)

For (2) and (3), observe that we are computing the transforma-
tion probability between (a) a sub-tree or a prefix of P2(u) and (b)
a prefix of P ′2(v). This can be computed by computing bottom-
up, the transformation probabilities between the prefixes of each
of the sub-trees in P2 and the prefixes of P ′2(v), using dynamic
programming. (This run for each v is depicted in line labeled 3 in
Algorithm 2.)

Since there are n1d1 prefixes of subtrees of P2(u), and n2 pre-
fixes of P ′2(v), the total time taken for a fixed P ′2 is n1d1n2. Fi-

nally, as we vary P ′2 for over all possible n2 nodes, the total com-
plexity is O(n2

2n1d1). This leads to an O(d2) speed-up over the
naive algorithm, which in practice, is significant.

The complete algorithm is outlined in Algorithm 2.

Data: w,w′, u

Result: New location of u in w′ and confidence of extraction
1 Run TP(w,w′) and record p1v and p2v for all v;

Tu := tree under u;
P1 := prefix of u in w;
P2 := w − Tu − P1;

2 Run TP(P2, w′) and record transformation probabilities of P2 to
complete subtrees in w′;
foreach v ∈ w′ do

Tv := tree under v;
P ′1 := prefix of v in w′;
P ′2 := w′ − Tv − P ′1;
foreach z ∈ P2 in PostOrder do

3 Compute transformation probabilities of prefix of z in tree
P2 to tree P ′2;

end
p3v := Transformation probability of P2 to P ′2;
Pr(v) := p1v × p2v × p3v ;

end
Return node v with largest Pr, and Pr(v);

Algorithm 2: Optimal Probabilistic Wrapper.

B.4 Heuristics and Optimizations

B.4.1 Alignments
We now describe a heuristic technique we use to improve the

performance of our probabilistic wrapper as well as the adversar-
ial wrapper. Often, in the old and new versions of the web-page,
there are some text strings that appear precisely once in each of
the pages. One simple heuristic for both the probabilistic and ad-
versarial wrappers is to first map these unique text strings to each
other in two versions of the web-page (i.e., we assume that the node
containing the text in the new version was derived from the node
containing the text in the old version.) Once we perform this map-
ping, both versions of the web-page can be partitioned into various
sub-trees. (Note that there is a one-to-one mapping between the
sub-trees or partitions in the two versions.) Subsequently, if we are
interested in a single distinguished node, we can simply run our
probabilistic and adversarial wrappers for the partition that the dis-
tinguished node resides in (with the corresponding partition in the
new version.)

As an example, consider Figure 4. Let the distinguished node in
the first tree (corresponding to the original version of the web-page)
be in the sub-tree Tu under u, and let the second tree be the new
version of the web-page. In that case, if the text strings contained at
node u and node v were identical, and they are not found anywhere
else in either of the two trees, then we can reduce the problem into
finding the distinguished node given two partitions (sub-trees) Tu
and Tv .

In our experiments, we found that the size of the original web-
page was as large as 4000 nodes, but after using the technique given
above, the size of the sub-tree under consideration was reduced to
around 100. This gave rise to a large 50X speedup in the time taken
for both the wrappers.

B.4.2 Subforest Optimization
In the probabilistic wrapper, the deletion probability of portions

of the tree (of the old version) and insertion probability of portions

989

of the tree (of the new version) is used repeatedly in different runs
of transformation probability calculation. These portions are pre-
cisely prefixes of complete sub-trees of some node (because at any
point in the wrapper algorithm, only sub-trees of this form are un-
der consideration). Thus, we do this computation once and store
it for lookup later on. We perform this computation for every pair
of nodes from the tree in post-order (i.e., the two nodes, and all
nodes in between in post-order). While this does not change the
complexity of the wrapper algorithm, it gives a speedup of about
3X in practice.

B.4.3 Early Pruning
In the algorithm for the probabilistic wrapper, we can precom-

pute the product X(v) = p1v × p2v for all v. This computa-
tion is relatively efficient. Subsequently, we can retain the largest
Pr(v′) computed so far, and avoid running step (3) for all v if
X(v) < Pr(v′), since all those nodes v can never be the one with
the largest Pr.

C. MULTIPLE DISTINGUISHED NODES
In this section, we explore the case of k multiple distinguished

nodes in the original tree w, all of whose new locations we need to
discover inw′. For instance, for a book on Amazon (amazon.com),
we might want to extract the title, author, price on the page corre-
sponding to the book.

Adversarial Wrapper: In this case, all we need to do is to dis-
cover the lowest cost edit script, and use it to discover mappings
for every single node in the set of k distinguished nodes. Thus, the
complexity is the same as the single target node case.

Similarly, we can compute the confidence associated with each
node by computing the edit cost once, and computing, for each
of the k-nodes, the cost of the second edit script that maps the
distinguished node to a different node. Thus, the complexity is
O(k × n1n2d1d2).

Probabilistic Wrapper: In the probabilistic scheme, we need to
compute the transformation probabilities for each node in the set of
target nodes. However, as in the optimal algorithm in Section 4.3,
we can share computation for several of the phases.

In Algorithm 2, the run corresponding to Line 1 stays unchanged
since it operates on the original versions of the two trees. The
run corresponding to Line 2 now needs to compute transformation
probabilities for every distinguished node, giving rise to a com-
plexity of O(kn1n2d2). For the run corresponding to Line 3, on
the other hand, finding transformation probabilities corresponding
to every node v still has the same complexity ofO(n1n

2
2d1). How-

ever, for the root, the transformation probability will vary based on
which distinguished node is under consideration. Thus, we have
an additional complexity of O(n1n2k) since we do this k times.
Thus, the complexity is O(n1n2 max(kd2, n2d1)).

There is no additional complexity if we wish to return the confi-
dence in answers, since that is anyway used to decide which node
to return. The complexity of each algorithm is summarized in Ta-
ble 1.

D. ADDITIONAL EXPERIMENTS AND EX-
PERIMENTAL DETAILS

D.1 Dataset Details
Additional details on the dataset are available in Table 2. The

table displays, for each website we experimented with, the number
of webpages in that website that we considered, the average number

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 1 2 3 4 5 6 7 8 9 10

Number of breakage vs K. for IMDB

PROB
ADV

Figure 8: Number of Errors for Probabilistic and Adversarial
wrappers.

of versions of each webpage found on Internet Archive, the number
of distinguished nodes in those webpages, and the earliest and latest
crawl times of the versions found on Internet Archive across all
webpages for that website.

For instance, for IMDB, there were 9 distinct movie pages that
we studied over time. On average, each movie page had around 310
archival versions. We studied the performance of our algorithms for
3 different distinguished nodes (corresponding to number of votes,
sound format, and number of minutes), the archival versions ranged
from October 2003 to June 2008.

Notice that for Wikipedia, the distinguished nodes varied from
webpage to webpage, since the Wikipedia webpages were sam-
pled randomly from different topics (ranging from San Francisco
to Alexander Graham Bell).

D.2 Relative Performance
We now study closely the performance of the probabilistic wrap-

per versus the adversarial wrapper as the skip size changes. The
results are in Figure 8, where we plot the absolute number of errors
for both schemes versus the skip size k for the IMDB dataset. (The
IMDB case is especially instructive since the probability model was
learnt on a dataset of IMDB pages.) As expected, both schemes
perform worse as skip size is increased. Also, as can be seen from
the figure, the adversarial and probabilistic wrappers make approx-
imately the same number of mistakes when k is close to 1 or 10, but
not around k ≈ 5, when the difference is approximately 0.5%. The
reason for this behavior may be that in the “very easy” (those with
k ≈ 1) and “very hard” cases (those with k ≈ 10), the changes
are either so minimal or so drastic that both the algorithms either
catch it or don’t. However, for the middle cases, the probabilistic
wrapper, since it uses more fine-grained probabilities, does better.

D.3 Variation of Time Taken, Tree Size and
Edit Distance with Skip Size

For each of our experiments studying robustness on varying skip
size (see Section 5) we also recorded the average size of the trees
(after partitioning the trees using the alignment optimization in Ap-
pendix B.4.1), as well as the average edit distance between the two
archival versions of the trees. This information, along with the av-
erage time taken for the probabilistic wrapper is displayed for each
data set in Table 3. Note that we do not record the average time
taken for the adversarial wrapper because it is always < 100ms.

As can be seen in the table, as k increases, so does the time
taken, the edit distance as well as the size of the tree. Note that
the size of the trees increase as the skip size increases since the
alignment optimization of Appendix B.4.1 is able to prune only a
small portion of the DOM trees. As a result, the time taken for the

990

Site Number of pages Average number of ver-
sions per page

Number of distinguished nodes
per page

Earliest crawl time Latest crawl time

IMDB 9 310 3 02 Oct. 2003 26 Jun. 2008
Wikipedia 11 145 1-3 (Depends on webpage) 04 Dec. 2003 01 Aug. 2008
CNN 11 45 4 08 Feb. 2005 01 Aug 2008

Table 2: Dataset Details (Crawled from Internet Archive).

Parameter IMDB Wikipedia CNN
k = 1 k = 5 k = 10 k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

Average time taken (s) 0.44 0.49 0.55 0.44 1.04 1.48 0.45 1.28 1.73
Average edit distance
between two versions

1.5 3.7 6 6.5 26.8 38.4 28.7 110.9 130.3

Average size of trees 93.7 97.2 100.4 47.9 60.8 70.2 45.9 94.1 112.7

Table 3: Variation with Skip Size.

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 1 2 3 4 5 6 7 8 9 10

Edit Distance vs K. for IMDB

Figure 9: Edit distance vs. Skip Size.

probabilistic wrapper increases as well, from 0.45s all the way to
1.73s in some cases. However, even for the hardest case k = 10,
the average time taken does not go beyond 2s for any website. On
the other hand, edit distance predictably increases with step size,
since it is a measure of how different the two archival versions of
the same webpage are.

To see how much the skip size affects the edit distance, we plot-
ted the average edit distance between two pages versus the skip size
for the pages in the IMDB dataset, displayed in Fig 9. This dis-
tance is for the trees already partitioned according to the alignment
technique in Appendix B.4.1. Note that the edit distance varies al-
most linearly with respect to the skip size for this dataset. Note
also that this edit distance is a proxy for the absolute number of
changes around the distinguished node (changes away from the dis-
tinguished node will be ignored if we use the alignment heuristic.)
This result implies that there are no “sudden changes” happening to
IMDB web-pages on average. The changes are gradual, and as long
as we make sure to “refresh” our wrapper by extracting the new
version periodically, and updating the location of the distinguished
node, we should be able to keep extracting correct information.

E. EXTENDED RELATED WORK
Information extraction via wrappers has been studied for more

than a decade, with most of the emphasis being on learning wrap-
pers that are generalizable or adaptable and correct [16, 20]. Bing
Liu [12] provides a good survey of the area, focusing on web wrap-
pers. However, there has been a recent surge of work on detection

and correction of wrappers, on the face of page evolution.
This recent work can be classified into one of three categories (a)

wrapper breakage (b) wrapper repair (c) robust wrapper discovery.
The field of wrapper breakage detection or wrapper verifica-

tion [11, 19] tries to identify when a wrapper has failed. Typically,
verification is done by studying the distribution of content as well
as structural features in the two web-pages, and outputting an er-
ror whenever the distribution changes drastically. Our algorithms,
since they also provide a confidence in the extraction result, can
be also used for verification. (If the confidence is too low, we can
conservatively output an error and refer to a human annotator for
correction.)

Given a wrapper framework that has broken, wrapper repair
or wrapper reinduction [8, 3] tries to automatically re-learn bro-
ken wrappers. In particular, Lerman et. al. [8] propose an algo-
rithm to compute statistically significant patterns for attribute val-
ues. Changes in these patterns for the extracted values signal that
the wrapper is no longer valid. Subsequently, these patterns are
once again searched to find the attribute values while repairing bro-
ken wrappers. The work on ECI wrappers [3] uses inherent content
features (such as word count) to repair wrappers.

Thus, typically, the techniques used in wrapper repair are learn-
ing of content models on the web-page, and using it to detect where
the new location of the target node is. These content models need
to be learned per web-site (since they may not easily generalize
from other web-sites), and in some cases, it may not be possible to
do so, especially when there is lack of sufficient training data. Our
techniques, on the other hand, do not require training data for each
website. We simply use an cost model across all sites. However,
note that our algorithms (which rely primarily on structure) can
only be improved using content models, thus the work on wrapper
repair is complementary to ours.

Lastly, there has been some work recently on discovering robust
wrappers. However, most of this work either uses human help to
help them discover robust wrappers [7], or discovers them from a
fixed wrapper language [17].

Mapping one tree to another, or finding the smallest tree edit dis-
tance has been used to solve other information extraction problems
in the past. It has been used to map similar portions between two
trees to each other in order to identify repeating elements in HTML
pages [12], as well as identify clusters of web-pages with similar
HTML structure [4].

991

