
Fast Updates on Read-Optimized Databases
Using Multi-Core CPUs

Jens Krueger†, Changkyu Kim?, Martin Grund†, Nadathur Satish?, David Schwalb†,
Jatin Chhugani?, Hasso Plattner†, Pradeep Dubey?, Alexander Zeier†

†Hasso-Plattner-Institute, Potsdam, Germany
Contact: jens.krueger@hpi.uni-potsdam.de

?Parallel Computing Lab, Intel Corporation
Contact: changkyu.kim@intel.com

ABSTRACT
Read-optimized columnar databases use differential updates to han-
dle writes by maintaining a separate write-optimized delta partition
which is periodically merged with the read-optimized and com-
pressed main partition. This merge process introduces significant
overheads and unacceptable downtimes in update intensive sys-
tems, aspiring to combine transactional and analytical workloads
into one system.

In the first part of the paper, we report data analyses of 12 SAP
Business Suite customer systems. In the second half, we present an
optimized merge process reducing the merge overhead of current
systems by a factor of 30. Our linear-time merge algorithm exploits
the underlying high compute and bandwidth resources of modern
multi-core CPUs with architecture-aware optimizations and effi-
cient parallelization. This enables compressed in-memory column
stores to handle the transactional update rate required by enterprise
applications, while keeping properties of read-optimized databases
for analytic-style queries.

1. INTRODUCTION
Traditional read-optimized databases often use a compressed col-

umn oriented approach to store data [25, 18, 28]. Performing sin-
gle inserts in such a compressed persistence can be as complex
as inserting into a sorted list [11]. One approach to handle up-
dates in a compressed storage is a technique called differential up-
dates, maintaining a write-optimized delta partition that accumu-
lates all data changes. Periodically, this delta partition is combined
with the read-optimized main partition. We refer to this process as
merge throughout the paper, also referred to as checkpointing by
others [11]. This process involves uncompressing the compressed
main partition, merging the delta and main partitions and recom-
pressing the resulting main partition. In contrast to existing ap-
proaches, the complete process is required to be executed during
regular system load without downtime. The update performance of
such a system is limited by two factors — (a) the insert rate for the
write-optimized structure and (b) the speed with which the system
can merge the accumulated updates back into the read-optimized

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 1
Copyright 2011 VLDB Endowment 2150-8097/11/09... $ 10.00.

partition. Inserting into the write-optimized structure can be per-
formed fast if the size of the structure is kept small enough. As an
additional benefit, this also ensures that the read performance does
not degrade significantly. However, keeping this size small implies
merging frequently, which increases the overhead of updates.

To the best of our knowledge we are not aware of any sophisti-
cated implementation and therefore compare against a naı̈ve imple-
mentation. Based on the result of analyzing 12 SAP Business Suite
customer systems, we found that current systems would merge ap-
prox. 20 hours every month, while supporting a maximum of ~1,000
updates per second (see Section 2 for more detail). In read-mostly
scenarios this limitation is not a major problem since the work-
load can be stopped during reload, modifications are invisible until
applied in batch or performance degradation is acceptable. How-
ever, when engineering a system for both transactional and analyt-
ical workloads as described in [22, 17, 13], it becomes essential
to reduce the merge overhead and to support the required single
update rates for handling transactional workloads. Systems under
load will have to cope with even longer times for merging or face
considerable downtimes every month. This causes a scheduling
problem, which is particularly critical when considering fully uti-
lized systems of globally active enterprises where downtimes are
not acceptable. Additionally, growing data volumes over time and
expanding amounts of captured data in the transactional processes
further intensify the impact of the merge process.

Contributions. We propose an optimized online merge algo-
rithm for dictionary encoded in-memory column stores, enabling
them to support the update performance required to run enterprise
application workloads on read-optimized databases. More specifi-
cally, we make the following contributions:

(i) We make design choices based on analyses of real enterprise
systems.

(ii) We develop multi-core aware optimizations taking underlying
CPU caches and thread-level parallelism into account, result-
ing in a speed-up of 30 times over unoptimized serial code.

(iii) We verify our analytical model in terms of compute and mem-
ory bandwidth requirements for current and applicable for up-
coming architectures.

The remainder of the paper is structured as follows. First, Sec-
tion 2 presents data analyses of the most influential parameters for
the merge process on real enterprise systems, followed by Section 3
with an overview of our system. Then, 4 and 5 introduce our merge
algorithm. Section 6 describes an optimized and parallelized ver-
sion which is closely evaluated in Section 7. Related work is dis-
cussed in Section 8 and Sections 9 and 10 conclude the paper.

61

2. ENTERPRISE DATA
CHARACTERISTICS

This section motivates combined transactional and analytical sys-
tems using a compressed in-memory column store. We base our
findings on a thoroughly conducted analysis of SAP Business Suite
customer systems. In total we analyzed customer data of 12 com-
panies with 74.000 tables per installation.1 We analyzed the appli-
cation behavior, the system’s workloads, table sizes, distinct values
and current merge durations in order to derive scenarios to validate
our optimized merge implementation.

Applications. Traditionally, the database market divides into trans-
action processing (OLTP) and analytical processing (OLAP) work-
loads. OLTP workloads are characterized by a mix of reads and
writes to a few rows at a time, typically through a B+Tree or other
index structures. Conversely, OLAP applications are characterized
by bulk updates and large sequential scans spanning few columns
but many rows of the database, for example to compute aggregate
values. Typically, those two workloads are supported by two dif-
ferent types of database systems – transaction processing systems
and warehousing systems.

In contrast to this classification, single applications such as De-
mand Planning or Available-To-Promise exist, which cannot be ex-
clusively referred to one or the other workload category. These
applications initiate a mixed workload in terms of that they pro-
cess small sets of transactional data at a time including write oper-
ations and simple read queries as well as complex, unpredictable
mostly read operations on large sets of data with a projectivity
on a few columns only. Furthermore, there is an increasing de-
mand for “real-time analytics” – that is, up-to-the moment report-
ing on business processes that have traditionally been handled by
data warehouse systems. Although warehouse vendors are doing
as much as possible to improve response times (e.g. by reducing
load times), explicit separation between transaction processing and
analytics systems introduces a fundamental bottleneck in analyti-
cal scenarios. Predefinition of data that is extracted, transformed
and loaded into the analytics system leads to the fact that analytics-
based decision are made on a subset of potential information. This
separation of systems prevents transactional applications from us-
ing analytical functionality throughout the transaction processing
due to the latency that is inherent in the data transfer.

Workload. As a follow-up of the previous section, we analyzed
the enterprise application workload as of today. Figure 1 shows
the query distribution of key lookups, table scans, range selects, in-
serts, modifications and deletes for the transactional and analytical
systems . In total, more than 80% of all queries are read access —
for OLAP systems even over 90%. While this is the expected result
for analytical systems, the high amount of read queries on trans-
actional systems is surprising as this is not the case in traditional
workload definitions. Consequently, the query distribution leads to
the concept of using a read-optimized database for both transac-
tional and analytical systems. Even though most of the workload
is read-oriented, ~17% (OLTP) and ~7% (OLAP) of all queries
are updates. A read-optimized database supporting both workloads
has to be able to support this amount of update operations. Addi-
tional analyses on the data have shown an update rate varying from
3,000 to 18,000 updates/second. In contrast, the TPC-C bench-
mark, which has been the foundation for optimizations over the
last decade, has a higher write ratio (46%) compared to our analy-
sis (17%).

1The number of tables is constant per installation, but differently
used based on the modules in use.

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100%

OLTP OLAP

W
or

kl
oa

d

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100%

TPC-C

W
or

kl
oa

d

Select

Insert
Modification
Delete

Write:

Read:

Lookup
Table Scan
Range Select

Insert
Modification
Delete

Write:

Read:

Figure 1: Distribution of query types extracted from customer
database statistics, comparing OLTP and OLAP workloads. In con-
trast, the TPC-C benchmark has a higher write ratio.

1

10

100

1000

10000

100000

0 1-100 100-1K 1K-10K 10K-100K 100K - 1M 1M-10M >10M

144
57992513852685

6290
15553

46418

N
um

be
r o

f T
ab

le
s

Number of Rows

Figure 2: All 73,979 tables clustered by number of rows.

Table Size. Figure 2 presents the different sizes of the analyzed
tables, while the tables are grouped by size. Despite the huge to-
tal amount of tables, only a limited number have a high amount of
rows. Merging the smaller tables is easier to schedule due to their
size and the fact that they will not be updated as often as the larger
ones. An efficient merge process that provides the required exe-
cution speed will allow for fast updates on the most active tables
without interfering with the system performance. Figure 3 shows a
closeup of the 144 largest tables from Figure 2 with their distribu-
tion of the number of rows and columns, creating the major part of
the merge costs of the system.

Distinct Values. In order to estimate the respective dictionary
sizes when applying dictionary encoding to the table, we analyzed
the 21 most active tables of each customer. In summary, over 32
billion records and more than 400 million distinct values were in-
spected. We observed that enterprise data works on a well known
value domain of each column. Most of the columns in financial
accounting and inventory management work with a very limited
set of distinct values, as depicted in Figure 4. Since most of the
columns come with a given configuration of values and free value
entries are very rare, enterprise application data is suitable for com-
pression techniques by exploiting redundancy within the data and
knowledge about the data domain for optimal results. Furthermore,
columns with a small number of distinct values and a large value
size heavily profit from dictionary encoding.

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 - 32 33 - 1023 1024 - 100000000

13%
9 %

78%

24%

12%

64%

Number of Distinct Values

Inventory Management
Financial Accounting

%
 o

f C
ol

um
ns

Figure 4: Distinct Values in Inventory Management and Financial
Accounting.

62

1
10

100
1000

10000

1 12 23 34 45 56 67 78 89 100 111 122 133 144
Number of Rows in Millions Number of Columns

Figure 3: Overview of the 144 tables which have more than 10 million rows of one analyzed SAP Business Suite customer system. The
tables are sorted by the number of rows and the abscissa shows the respective position. For every table, the number of rows (in millions) are
displayed in blue and the number of columns in green.

Merge Duration. We concentrated on the 144 most intensively
used tables. The number of rows varies from 10 million to 1.6
billion with an average of 65 million rows, whereas the number of
columns varies from 2 to 399 with an average of 70. We picked the
V BAP table with sales order data of 3 years (33 million rows, 230
columns, 15 GB) and measured the merge of new sales order data
from one month of 750,000 rows, taking 1.8 trillion CPU cycles or
12 minutes2. Converted, our initial implementation handled ~1,000
merged updates per second. Using this as an estimation for the
complete system with a size of 1.5 TB, the total merge duration
was around 20 hours every month.

Summary. Nowadays database management systems cannot ful-
fill the requirements of specific enterprise applications since they
are either optimized for one or the other workload category, lead-
ing to a mismatch of enterprise applications regarding the under-
lying data management layer. Considering the trend of increas-
ingly complex business processes, the new functionality provided
by enterprise-specific data management, enabling ad-hoc queries
on transactional events, will lead to an amplified usage of computing-
intensive analytic-style queries. Based on the demand of analytics
on up-to-date transactional data, the data characteristics of enter-
prise data as presented above and the query distribution as shown
in Figure 1, we see a huge potential for read-optimized databases
like in-memory column stores for becoming the main persistence
of enterprise applications combining analytical and transactional
workloads.

3. SYSTEM OVERVIEW
Based on the observations presented in the previous section, we

present HYRISE [10]. HYRISE is an in-memory compressed ver-
tical partition-able database engine. It is designed to support the
update rate required by mixed workloads and to provide the high
read performance of column stores. In this paper we concentrate
on a fully decomposed storage layout. Tables are stored physically
as collections of attributes and metadata. Each attribute consists of
two partitions: main and delta partition.

The main partition is dictionary compressed — values in the tu-
ples are replaced by encoded values from the dictionary. An or-
dered collection is used as a dictionary, allowing fast iterations over
the tuples in sorted order. Additionally, the search operation can be
implemented as binary search that has logarithmic complexity. As
a result, most queries can be executed with a binary search (random
access) in the dictionary while scanning the column (sequential ac-
cess) for the encoded value only. This comes at a price: updates
might change encoded values and require a rewrite of the complete
partition. Consequently, direct updates in the main partition would
be unacceptable slow.

In order to minimize the overhead of maintaining the sort order,
incoming updates are accumulated in the write-optimized delta par-
tition as described in [25]. In contrast to the main partition, data in
2On 2 x 6 core Intel® Xeon® processor X5650, 48 GB RAM,
2.6 GHz

the write-optimized delta partition is not compressed. In addition
to the uncompressed values, a CSB+ tree [24] with all the unique
uncompressed values of the delta partition is maintained per col-
umn. This approach provides acceptable insert performance and
fast read performance with support for sorted iterations.

The design decision of not compressing the delta partition has
two important properties that affect the overall system performance.
Firstly, memory consumption increases, leading to a potential drop
in performance. Secondly, maintaining an uncompressed delta par-
tition means that both read and update queries save extra random
memory accesses for materialization. For a net performance bene-
fit, the size of the delta partition must be kept small.

To ensure this, HYRISE executes a periodic merge process. In
contrast to the definition of merging in [11], our understanding of
the merge process is as follows: A merge process combines all data
from the main partition as well as the delta partition to create a new
main partition that then serves as the primary data store. To avoid
confusion with merging query intermediate results, when talking
about merging data in this paper we always refer to the merge pro-
cess described above. The merge process is transactionally safe,
as it works on a copy of the table and the merged table is com-
mitted atomically at the end. During the merge, incoming updates
are stored in a temporary second delta, which becomes the primary
delta when the merge result is committed. Interferences with other
queries are minimized, as the table has to be locked only for a min-
imal period at the beginning and end of the merge. As a result, the
merge only impacts other running queries if the system resources
are greatly over-committed, causing resource contention. However,
a scheduling algorithm can detect a good point in time to start and
even pause and resume the merge process. We see two scheduling
strategies: a) merging with all available resources and b) minimiz-
ing resource utilization by constantly merging in the background.
The topics of transactional safety and scheduling of the merge pro-
cess are both orthogonal to the topic of this paper. For the remain-
der, we assume that the merge uses all available resources.

In order to achieve high update rates, table modifications in HY-
RISE follow the insert-only approach. Therefore, updates are al-
ways modeled as new inserts and deletes only invalidate rows. We
keep the insertion order of tuples and only the lastly inserted ver-
sion is valid. Firstly, we chose this concept because only a small
fraction of the workload are modifications as described in Section 2
and the insert-only approach allows queries to also work on the his-
tory of data. Secondly, we rejected to change the order of stored
tuples for the benefit of better read performance in order to avoid
surrogate tuple ids. In our system, the implicit offset of a tuple is
always valid for all attributes of a table. Due to this design de-
cision, columns cannot be sorted individually as in other column
based systems, e.g. [25]. As memory bandwidth clearly is a bot-
tleneck for our parallelized merge algorithm, we use dictionary en-
coding and bit-compression to reduce the transferred data from and
to main memory in our prototype system. However, as the growth
in CPU compute power exceeds the development of main memory
bandwidth it could be desirable to apply further compression rou-

63

tines, trading less memory traffic for more CPU cycles. However,
compression algorithms modifying the tuple order introduce depen-
dencies between attributes and thus limit the scalability. Therefore,
compression techniques like run length encoding are not applied
in our prototype. We trade additional compression techniques for
better update and merge performance, a simplified transaction han-
dling and the possibility to store the change history for all records
as it is required by enterprise systems.

Terminology. In order to avoid ambiguity, we define the follow-
ing terms to be used in the rest of the paper.

1. Table: A relation table with NC columns, with one write
(delta) and one read optimized (main) partition.

2. Update: Any modification operation on the table resulting in
an entry in the delta partition.

3. Main Partition: Compressed and read-optimized part of the
column.

4. Delta Partition: Uncompressed write-optimized part of the
column where all updates are stored until the merge process
is completed.

5. Value-Length: The number of bits allocated to store the un-
compressed values for a given column.

4. UPDATE PERFORMANCE
In order to account for the time taken to perform the merging of

the main and delta partitions for each column, we define the total
time taken to perform updates as the

Update Rate =
ND

TU + TM
Updates/Second (1)

where TU defines the time taken to perform ND updates to the
delta partitions of all columns and TM defines the time taken to
perform the merging of the main and delta partitions of all columns
of the table.

For supporting efficient updates, we want the update rate to be
as high as possible. Furthermore, the update rate should also be
greater than the minimum sustained update rate required by the spe-
cific application scenario. When the number of updates against the
system durably exceed the supported update rate, the system will
be rendered incapable of processing new inserts and other queries,
leading to failure of the database system. In order to prevent this,
we set a low target update rate of 3,000 and a high target update
rate of 18,000 updates/second. Even though most of the workload
issued is read-oriented this target is chosen based on the analyzed
data and to cover various workloads.

An important performance parameter for our system is the fre-
quency at which the merging of the partitions must be executed, as
presented in Section 3. The frequency of executing the merging of
partitions affects the size (number of tuples) of the delta partition.
Computing the appropriate size of the delta partition before execut-
ing the merge operation is dictated by the following two conflicting
choices:

(i) Small delta partition A small delta partition implies a rel-
atively low overhead to the read query, implying a small re-
duction in the read performance. Furthermore, the insertion
into the delta partition will also be fast. This means however
that the merging step needs to be executed more frequently,
thereby increasing the impact on the system.

(ii) Large delta partition A large delta partition implies that the
merging is executed less frequently and therefore adds only a
little overhead to the system. However, increasing the delta
partition size implies a slower read performance due to the

0000
0001
0010
0011
0100
0101
0110
0111
1000

000
001
010
011
100
101

100
010
011
010

apple
charlie
delta
frank
hotel
inbox

hotel
delta
frank
delta

bravo
charlie

charlie
golf

young

0110
0011
0100
0011

hotel
delta
frank
delta

0001
0010

bravo
charlie

bravo
charlie
delta
frank

hotel
inbox

apple

golf

young

Main(Compressed) Main Dictionary

Partition after merge
(Compressed)

Merged
Dictionary

P
a
rt

it
io

n
 f

ro
m

M
a

in

P
a

rt
it
io

n

fr
o

m
 D

e
lt
a

golf

charlie young

bravo charlie golf young

(0) (1,3) (2) (4)

Delta (Uncompressed)

CSB+ tree

(#): Index to Delta Partition

0
1
2
3
4

Merge of

two

partitions
NM

U
J

M
M

J

D
J

ND

Figure 5: Example showing the data structures maintained for each
column. The main partition is stored compressed together with the
dictionary. The delta partition is stored uncompressed, along with
the CSB+ tree. After the merging of the partitions, we obtain the
concatenated compressed main column and the updated dictionary.

fact that the delta partition stores uncompressed values, which
consume more compute resources and memory bandwidth,
thereby appreciably slowing down read queries (scan, index
lookup, etc.) Also, while comparing values in the main par-
tition with those in delta partition, we need to look up the
dictionary for the main partition to obtain the uncompressed
value (forced materialization), thereby adding overhead to the
read performance.

In our system, we trigger the merging of partitions when the
number of tuples ND in the delta partition is greater than a cer-
tain pre-defined fraction of tuples in the main partition NM .

4.1 Example: Merging Main and Delta
Figure 5 shows an example of a column with its main and delta

partitions. Note that the other columns of the table would be stored
in a similar fashion. The main partition has a dictionary consisting
of its sorted unique values (6 in total). Hence, the encoded values
are stored using 3 (= dlog 6e) bits. The uncompressed values (in
gray) are not actually stored, but shown for illustration purpose.
As described earlier in Section 3, the compressed value for a given
value is its position in the dictionary, stored using the appropriate
number of bits (in this case 3 bits).

The delta partition stores the uncompressed values themselves.
In this example, there are five tuples with the shown uncompressed
values. In addition, the CSB+ tree containing all the unique un-
compressed values is maintained. Each value in the tree also stores
a pointer to the list of tuple ids where the value was inserted. For
example, the value ”charlie” is inserted at positions 1 and 3. Upon
insertion, the value is appended to the delta partition and the CSB+
tree is updated accordingly.

After the merging of the partitions has been performed, the main
and delta partitions are concatenated and a new dictionary for the
concatenated partition is created. Furthermore, the compressed val-
ues for each tuple are also updated. For example, the encoded value
for ”hotel” was 4 before merging and ”6” after merging. Further-
more, it is possible that the number of bits that are required to store
the compressed value will increase after merging. Since the num-
ber of unique values in this example is increased to 9 after merging,
each compressed value is now stored using dlog 9e = 4 bits.

64

Description Unit Symbol
Number of columns in the table - NC

Number of tuples in the main table - NM

Number of tuples in the delta table - ND

Number of tuples in the updated table - N′
M

For a given column j; j ∈ [1 . . .NC]:
Main partition of the jth column - Mj

Merged column - M′j

Sorted dictionary of the main partition - Uj
M

Sorted dictionary of the delta partition - Uj
D

Updated main dictionary - U′j
M

Delta partition of the jth column. - Dj

Uncompressed Value-Length bytes Ej

Compressed Value-Length bits Ej
C

Compressed Value-Length after merge bits E′j
C

Fraction of unique values in delta - λj
D

Fraction of unique values in main - λj
M

Merge auxiliary structure for the main - Xj
M

Merge auxiliary structure for the delta - Xj
D

Cache Line size bytes L
Memory Traffic bytes MT
Number of available parallel threads - NT

Table 1: Symbol Definition. Entities annotated with ′ represent the
merged (updated) entry.

5. EFFICIENT MERGING ALGORITHM
We now describe the merge algorithm in detail and enhance the

naı̈ve merge implementation by applying optimizations known from
join processing. Furthermore, we will parallelize our implemen-
tation and make it architecture-aware to achieve the best possible
throughput. For the remainder of the paper we refer to the symbols
explained in Table 1.

As explained in Section 3, we use a compression scheme wherein
the unique values for each column are stored in a separate dic-
tionary structure consisting of the uncompressed values stored in
a sorted order. Hence, |Uj

M| = λj
M · NM with |X| denoting

the number of elements in the set X. By definition, λj
M, λj

D ∈
[0 . . . 1]. Furthermore, the compressed value stored for a given
value is its index in the (sorted) dictionary structure, thereby re-
quiring dlog |Uj

M|e bits3 to store it. Hence, Ej
C = dlog |Uj

M|e.

Input(s) and Output(s) of the Algorithm:
For each column of the table, the merging algorithm combines

the main and delta partitions of the column into a single (modified)
main partition and creates a new empty delta partition. In addition,
the dictionary U′j maintained for each column of the main table
is also updated to reflect the modified merged column. This also
includes modifying the compressed values stored for the various
tuples in the merged column.

For the jth column, the input for the merging algorithm consists
of Mj , Dj and Uj

M, while the output consists of M′j and U′j
M.

Furthermore, we define the cardinality N′
M of the output and the

size of the merged dictionary |U′j
M| as shown in Equation 2 and 3.

N′
M = NM + ND (2)

|U′j
M| = |D

j ∪Uj
M| (3)

3Unless otherwise stated, log refers to logarithm with base 2 (log2).

We perform the merge using the following two steps:

(1) Merging Dictionaries: This step consists of the following two
sub-steps: a) Extracting the unique values from the delta par-
tition Dj to form the corresponding sorted dictionary denoted
as Uj

D. b) Merging the two sorted dictionaries Uj
M and Uj

D,
creating the sorted dictionary U′j

M without duplicate values.
(2) Updating Compressed Values: This step consists of append-

ing the delta partition Dj to the main partition Mj and up-
dating the compressed values for the tuples, based on the new
dictionary U′j

M. Since Dj may have introduced new values,
this step requires: a) Computing the new compressed value-
length. b) Updating the compressed values for all tuples with
the new compressed value, using the index of the correspond-
ing uncompressed value in the new dictionary U′j

M.

We now describe the above two steps in detail and also compute
the order of complexity for each of the steps. As mentioned earlier,
the merging algorithm is executed separately for each column of
the table.

5.1 Merging Dictionaries (Step 1)
The basic outline of step one is similar to the algorithm of a sort-

merge-join[20]. However, instead of producing pairs as an output
of the equality comparison, the merge will only generate a list of
unique values. The merging of the dictionaries is performed in two
steps (a) and (b).

Step 1 (a). This step involves building the dictionary for the delta
partition Dj . Since we maintain a CSB+ tree to support efficient
insertions into Dj , extracting the unique values in a sorted order
involves a linear traversal of the leaves of the underlying tree struc-
ture [24]. The output of Step 1(a) is a sorted dictionary for the delta
partition Uj

D, with a run-time complexity of O(|Uj
D|)

Step 1(b). This step involves a linear traversal of the two sorted
dictionaries Uj

M and Uj
D to produce a sorted dictionary U′j

M. In
line with a usual merge operation, we maintain two pointers called
iteratorM and iteratorD , to point to the values being compared
in the two dictionaries Uj

D and Uj
M, respectively. Both are ini-

tialized to the start of their respective dictionaries. At each step, we
compare the current values being pointed to and append the smaller
value to the output. Furthermore, the pointer with the smaller value
is also incremented. This process is carried out till the end of one
of the dictionaries is reached, after which the remaining dictionary
values from the other dictionary are appended to the output dic-
tionary. In case both values are identical the value is appended to
the dictionary once and the pointers for the dictionaries are incre-
mented. The output of Step 1(b) is a sorted dictionary U′j

M for the
merged column, with |U′j

M| denoting its cardinality. The run-time
complexity of this step is O(|Uj

M|+ |U
j
D|).

5.2 Updating Compressed Values (Step 2)
The compressed values are updated in two steps – (a) comput-

ing the new compressed value length and (b) writing the new main
partition and updating the compressed values.

Step 2(a). The new compressed value-length is computed as shown
in Equation 4. Note that the length for storing the compressed val-
ues in the column may has increased from the one used for storing
the compressed values before the merging algorithm. Since we use
the same length for all the compressed values, this step executes in
O(1) time.

E′j
C = dlog(|U′j

M|)e bits (4)

65

apple
charlie
delta
frank
hotel
inbox

00
01
10
11

bravo
charlie

golf
young

Delta Dictionary
Delta Partition

(Compressed)

00
01
10
01
11

bravo
charlie

charlie
golf

young

0000
0010
0011
0100
0110
0111

0001
0010
0101
1000

100 hotel

00 bravo

Old

Main

Partition

Old Delta

Partition

Main Auxiliary

Delta Auxiliary
0110

0001

0
1
2
3
4
5

Merged

Partition

Use 100 (i.e., 4) as an index

to the auxiliary structure to

get a new value -- 0110

Step1(a) Step1(b)

Step2(b)

bravo
charlie

golf
young

U
J

D X
J

M

X
J

D

Figure 6: Example showing the various steps executed by our
linear-time merging algorithm. The values in the column are simi-
lar to those used in Figure 5.

Step 2(b). We need to append the delta partition to the main par-
tition and update the compressed values. As far as the main parti-
tion Mj is concerned, we use the following methodology. We it-
erate over the compressed values and for a given compressed value
Ki

C , we compute the corresponding uncompressed value Ki by
performing a lookup in the dictionary Uj

M. We then search for Ki

in the updated dictionary U′j
M and store the resultant index as the

encoded value using the appropriate number of Ej
C bits in the out-

put. For the delta partition Dj , we already store the uncompressed
value, hence it requires a search in the updated dictionary to com-
pute the index, which is then stored.

Since the dictionary is sorted on the values, we use a binary
search algorithm to search for a given uncompressed value. The
resultant run-time of the algorithm is

O(NM + (NM + ND) · log(|U′j
M|)). (5)

To summarize the above, the total run-time for the merging al-
gorithm is dominated by Step 2(b) and heavily dependent on the
search run-time. As shown in Section 7, this makes the merging
algorithm prohibitively slow and infeasible for current configura-
tions of tables. We now present an efficient variant of Step 2(b),
which performs the search in linear time at the expense of using
an auxiliary data structure. Since merging is performed on every
column separately, we expect the overhead of storing the auxiliary
structure to be very small as compared to the total storage and in-
dependent of the number of columns in a table and the number of
tables residing in the main memory.

5.3 Initial Performance Improvements
Based on the previously described naı̈ve algorithm, we signif-

icantly increase the merge performance by adding an additional
auxiliary data structure per main and per delta partition, denoted
as Xj

M and Xj
D respectively. The reasoning for the auxiliary data

structure is to provide a translation table with constant access cost
during the expensive Step 2(b). We now describe the modified
Steps 1(a), 1(b) and 2(b) to linearize the update algorithm of com-
pressed values and improve the overall performance.

Modified Step 1(a). In addition to computing the sorted dic-
tionary for the delta partition, we also replace the uncompressed

values in the delta partition with their respective indices in the dic-
tionary. By this approach lookup indices for Step 2 are changed
to fixed width and allow better utilization of cache lines and CPU
architecture aware optimizations like SSE.

Since our CSB+ tree structure for the delta partition also main-
tains a list of tuple ids with each value, we access these values while
performing the traversal of the tree leaves and replace them by their
newly computed index into the sorted dictionary. Although this in-
volves non-contiguous access of the delta partition, each tuple is
only accessed once, hence the run-time is O(ND). For example,
consider Figure 6, borrowing the main/delta partition values de-
picted in Figure 5. As shown in Step 1(a), we create the dictionary
for the delta partition (with 4 distinct values) and compute the com-
pressed delta partition using 2 bits to store each compressed value.

Modified Step 1(b). In addition to appending the smaller value
(of the two input dictionaries) to U′j

M, we also maintain the index to
which the value is written. This index is used to incrementally map
each value from Uj

D and Uj
M to U′j

M in the selected mapping table
Xj

M or Xj
D. If both compared values are equal the same index will

be added to the two mapping tables.
At the end of Step 1(b), each entry in Xj

M corresponds to the
location of the corresponding uncompressed value of Uj

M in the
updated U′j

M. Similar observations hold true for Xj
D (w.r.t. Uj

D).
Since this modification is performed while building the new dictio-
nary and both Xj

M and Xj
D are accessed in a sequential fashion

while populating them, the overall run-time of Step 1(b) remains
as noted in Equation 3 – linear in sum of number of entries in the
two dictionaries. Step 1(b) in Figure 6 depicts the corresponding
auxiliary structure for the example in Figure 5.

Modified Step 2(b). In contrast to the original implementa-
tion described earlier, computing the new compressed value for the
main (or delta) table reduces to reading the old compressed value
Ki

C and retrieving the value stored at Ki
C th index of the corre-

sponding auxiliary structure Xj
M or Xj

D. For example in Figure 6,
the first compressed value in the main partition has a compressed
value of 4 (1002in binary).

In order to compute the new compressed value, we look up the
value stored at index 4 in the auxiliary structure that corresponds
to 6 (11002 in binary). So value 6 is stored as the new compressed
value, using 4 bits since the merged dictionary has 9 unique values,
as shown in Figure 5. Therefore, a lookup and binary search in the
original algorithm description is replaced by a lookup in the new
algorithm, reducing the run-time to O(NM + ND).

To summarize, the modifications described above result in a merg-
ing algorithm with overall run-time of

O(NM + ND + |Uj
M|+ |U

j
D|) (6)

which is linear in terms of the total number of tuples and a sig-
nificant improvement compared to Equation 5.

6. ARCHITECTURE-AWARE MERGE IM-
PLEMENTATION

In this section, we describe our optimized merge algorithm on
modern CPUs in detail and provide an analytical model highlight-
ing the corresponding compute and memory traffic requirements.
We first describe the scalar single-threaded algorithm and later ex-
tend it to exploit the multiple cores present on current CPUs.

The model serves the following purposes: (1) Computing the ef-
ficiency of our implementation. (2) Analyzing the performance and
projecting performance for varying input parameters and underly-

66

ing architectural features like varying core and memory bandwidth.

6.1 Scalar Implementation
Based on the modified Step 1(a) (Section 5.3), extracting the

unique values from Dj involves an in-order traversal of the un-
derlying tree structure. We perform an efficient CSB+ tree traver-
sal using the cache-friendly algorithm described by Rao et al. [24].
The number of elements in each node (of cache-line size) depends
on the size of the uncompressed values Ej in the jth column of the
delta partition. For example, with Ej = 16 bytes, each node con-
sists of a maximum of 3 values. In addition to appending the value
to the dictionary during the in-order traversal, we also traverse the
list of tuple-ids associated with that value and replace the tuples
with the newly computed index into the sorted dictionary. Since
the delta partition is not guaranteed to be cache-resident at the start
of this step (irrespective of the tree sizes), the run-time of Step 1(a)
depends on the available external memory bandwidth.

As far as the total amount of data read from the external mem-
ory is concerned, the total amount of memory required to store the
tree is around 2X [24] the total amount of memory consumed by
the values themselves. In addition to traversing the tree, writing
the dictionary Uj

D involves fetching the data for write. Therefore,
the total amount of bandwidth required for the dictionary computa-
tion is around 4 · Ej bytes per value (3 · Ej bytes read and 1 · Ej

bytes written) for the column. Updating the tuples involves read-
ing their tuple id and a random access into Dj to update the tuple.
Since each access would read a cache-line (L bytes wide) the to-
tal amount of bandwidth required would be (2 · L + 4) bytes per
tuple (including the read for the write component). This results
in the total required memory traffic for this operation as shown by
Equation 8. Note that at the end of Step 1(a), Dj also consists of
compressed values (based on its own dictionary Uj

D).
Applying the modified Step 1(b) (as described in Section 5.3),

the algorithm iterates over the two dictionaries and produces the
output dictionary with the auxiliary structures. As far as the num-
ber of operations is concerned, each element appended to the out-
put dictionary involves around 12 ops4 [5]. As far as the required
memory traffic is concerned, both Uj

M and Uj
D are read sequen-

tially, while U′j
M, Xj

M and Xj
D are written in a sequential order.

Note that the compressed value-length used for each entry in the
auxiliary structures is

E′j
C = dlog(|U′j

M|)e. (7)

Hence, the total amount of required read memory traffic can be
calculated as shown in Equation 9. The required write memory
traffic for building the new dictionary and generate the translation
table is calculated as shown in Equation 10.

MT = 4 ·Ej · |Uj
D|+ (2 · L + 4) ·ND (8)

MT = Ej · (|Uj
M|+ |U

j
D|+ |U

′j
M|) +

E′j
C · (|X

j
M|+ |X

j
D|)

8
(9)

MT = Ej · |U′j
M|+

E′j
C · (|X

j
M|+ |X

j
D|)

8
(10)

As shown for the modified Step 2(b) in Section 5.3, the algorithm
iterates over the compressed values in Mj and Dj to produce the
compressed values in the output table M′j . For each compressed
input value, the new compressed value is computed using a lookup

41 op implies 1 operation or 1 executed instruction.

into the auxiliary structure Xj
M for the main partition or Xj

D for
the delta partition, with an offset equal to the stored compressed
value itself.

The function shown in Equation 11 is executed for each element
of the main partition and similar for the delta partition.

M′j [i]← Xj
M [M [i]] (11)

As far as the memory access pattern is concerned, updating each
successive element in the main or delta partition may access a ran-
dom location in the auxiliary data structure (depending on the stored
compressed value). Since there may not exist any coherence in the
values stored in consecutive locations, each access can potentially
access a different cache line (size L bytes). For scenarios where
the complete auxiliary structure cannot fit in the on-die caches, the
amount of read memory traffic to access the auxiliary data structure
is approximated by Equation 12.

MT = L · (NM + ND) (12)

In addition, reading the main/delta partition requires a read memory
traffic as shown in Equation 13, while writing out the concatenated
output column requires a total memory traffic that can be calculated
as in Equation 14.

MT = Ej
C · (NM + ND) /8 (13)

MT = 2E′j
C (NM + ND) /8 (14)

In case Xj
M (or Xj

D) fits in the on-die caches, their access will
be bound by the computation rate of the processor, and only the
main/delta partitions will be streamed in and the concatenated table
is written (streamed) out. As far as the relative time spent in each of
these steps is concerned, Step 1 takes about 33% of the total merge
time (with Ej = 8 bytes and 50% unique values) and Step 2 takes
the remainder.5 In terms of evidence of compute and bandwidth
bound, our analytical model defines upper bounds on the perfor-
mance, if the implementation was indeed bandwidth bound (and a
different bound if compute bound). Our experimental evaluations
show that our performance closely matches the lower of these up-
per bounds for compute and bandwidth resources — which proves
that our performance is bound by the resources as predicted by the
model.

6.2 Exploiting Thread-level Parallelism
We now present the algorithms for exploiting the multiple cores/

threads available on modern CPUs. NT denotes the number of
available processing threads.

6.2.1 Parallelization of Step 1
Recalling Step 1(a), we perform an in-order traversal of the CSB+

tree and simultaneously update the tuples in the delta partition with
the newly assigned compressed values.

There exist two different strategies for parallelization:

(i) Dividing the columns within a table amongst the available
threads: Since the time spent on each column varies based
on the number of unique values, dividing the columns evenly
amongst threads may lead to load imbalance between threads.
Therefore we use a task queue based parallelization scheme [1]
and enqueue each column as a separate task. If the number of
tasks is much larger than the number of threads (as in our case
with few tens to hundred columns and few threads), the task
queue mechanism of migrating tasks between threads works
well in practice to achieve a good load balance.

5Section 7 gives more details.

67

(ii) Parallelizing the execution of Step 1(a) on each column amongst
the available threads: Since a small portion of the run-time is
spent in computing the dictionary, we execute it on a single-
thread, and keep a cumulative count of the number of tuples
that needs to be updated as we create the dictionary. We par-
allelize the next phase where these tuples are evenly divided
amongst the threads and each thread scatters the compressed
values to the delta partition.

For a table with very few columns, scheme (ii) performs better than
scheme (i). We implemented both (i) and (ii) and since our input
table consisted of few tens to hundreds of columns, we achieved
similar scaling for both these schemes on current CPUs. In Sec-
tion 7.2, we report the results for (i) – the results for (ii) would be
similar. Step 1(b) involves merging the two sorted dictionaries Uj

M

and Uj
D with duplicate removal and simultaneously populating the

auxiliary structures Xj
M and Xj

D. This is an inherent sequential de-
pendency in this merge process and also requires the merge process
to remove duplicates. Also note that for tables with large fractions
of unique values or large value-lengths (≥ 8 bytes) a significant
portion of the total run-time is spent in Step 1(b). Therefore, it
is imperative to parallelize well, in order to achieve speedups in
the overall run-time of the merging algorithm. We now describe
our parallelization scheme in detail that in practice achieves a good
load-balance. Let us first consider the problem of parallelizing the
merging of Uj

M and Uj
D without duplicate removal. In order to

evenly distribute the work among the NT threads it is required to
partition both dictionaries into NT -quantiles. Since both dictio-
naries are sorted this can be achieved in NT log(|Uj

M|+ |U
j
D|)

steps [8]. Furthermore, we can also compute the indices in the two
dictionaries for the ith thread ∀i ∈ NT following the same algo-
rithm as presented in [5]. Thus, each thread can compute its start
and end indices in the two dictionaries and proceed with the merge
operation. In order to handle duplicate removal while merging, we
use the following technique consisting of three phases. We addi-
tionally maintain an array counter of size (NT + 1) elements.

Phase 1. Each thread computes its start and end indices in the
two dictionaries and writes the merged output, while locally re-
moving duplicates. Since the two dictionaries consisted of unique
elements to start with, the only case where this can create duplicate
elements is when the last element produced by the previous thread
matches the first element produced by the current thread. This case
is checked for by comparing the start elements in the two dictionar-
ies with the previous elements in the respectively other dictionary.
In case there is a match, the corresponding pointer is incremented
before starting the merge process. Once a thread (say the ith thread)
completes the merge execution, it stores the number of unique ele-
ments produced by that thread to the corresponding location in the
counter array (i.e. counter[i]). There is an explicit global barrier at
the end of phase 1.

Phase 2. In the second phase, we compute the prefix sum of the
counter array, so that counter[i] corresponds to the total number
of unique values that would be produced by the previous i threads.
Additionally, counter[NT] is the total number of unique values that
the merge operation would produce. We parallelize the prefix sum
computation using the algorithm by Hillis et al. [12].

Phase 3. The counter array produced at the end of phase 2 also
provides the starting index at which a thread should start writing
the locally computed merged dictionary. Similar to phase 1, we
recompute the start and end indices in the two dictionaries. Now
consider the main partition. The range of indices computed by the

0
10
20
30
40
50
60
70
80
90

10
0K

 (U
nO

pt
)

10
0K

 (O
pt
)

50
0K

 (U
nO

pt
)

50
0K

 (O
pt
)

1M
 (U

nO
pt
)

1M
 (O

pt
)

2M
 (U

nO
pt
)

2M
 (O

pt
)

4M
 (U

nO
pt
)

4M
 (O

pt
)

8M
 (U

nO
pt
)

8M
 (O

pt
)

U
pd

at
e
Co

st
 (C

yc
le
s
pe

r T
up

le
)

Merge ‐ Step2

Merge ‐ Step1

Update Delta

Figure 7: Update Costs for Various Delta Partition Sizes with a
main partition size of 100 million tuples with 10% unique values
using 8-byte values. Both optimized (Opt) and unoptimized (Un-
Opt) merge implementations were parallelized.

thread for Uj
M also corresponds to the range of indices for which

the thread can populate Xj
M with the new indices for those values.

Similar observations hold for the delta partition. Each thread per-
forms the merge operation within the computed range of indices to
produce the final merged dictionary and auxiliary data structures.

Summary. In comparison to the single-threaded implementation,
the parallel implementation reads the dictionaries twice and also
writes the output dictionary one additional time, thereby increasing
the total memory traffic by

Ej ·
“
|Uj

M|+ |U
j
D|

”
+ 2Ej · |U′j

M| (15)

bytes. The overhead of the start and end index computation is also
very small as compared to the total computation performed by Step
1(b). The resultant parallel algorithm evenly distributes the total
amount of data read/written to each thread, thereby completely ex-
ploiting the available memory bandwidth.

6.2.2 Parallelization of Step 2
To parallelize the updating of compressed values, we evenly di-

vide the total number of all tuples N′
M amongst the available threads.

Specifically, each thread is assigned N′
M/NT tuples to operate

upon. Since each thread reads/writes from/to independent chunks
of tables, this parallelization approach works well in practice. Note
that in case any of Xj

M or Xj
D can completely fit in the on-die

caches, this parallelization scheme still exploits to read the new
index for each tuple from the caches and that the run-time is pro-
portional to the amount of bandwidth required to stream the input
and output tables.

7. PERFORMANCE EVALUATION
We now evaluate the performance of our algorithm on a dual-

socket six-core Intel® Xeon® processor X5680 with 2-way SMT
per core, and each core operating at a frequency of 3.3 GHz. Each
socket has 32 GB of DDR (for a total of 64 GB of main memory).
The peak external memory bandwidth on each socket is 30 GB/sec.
We used SUSE SLES 11 as operating system, the pthread library
and the Intel® ICC 11.1 as compiler. As far as the input data is
concerned, the number of columns in the partition NC varies from
20 to 300. The value-length of the uncompressed value Ej for a
column is fixed and chosen from 4 bytes to 16 bytes. The num-
ber of tuples in the main partition NM varies from 1 million to 1
billion, while the number of tuples in the delta partition ND varies
from 500,000 to 50 million, with a maximum of around 5% of NM .
Since the focus of the paper is on in-memory databases, the number
of columns is chosen so that the overall data completely fits in the

68

available main memory of the CPU. The fraction of unique values
λj
M and λj

D varies from 0.1% to 100% to cover the spectrum of
scenarios in real applications (described in Section 2). For all ex-
periments, the values are generated uniformly at random. We chose
uniform value distributions, as this represents the worst possible
cache utilization for the values and auxiliary structures. Different
value distributions can only improve cache utilization, leading to
better merge times. However, differences in merge times due to
different value distributions are expected to be very small and are
therefore neglected. We first show the impact of varying ND on the
merge performance. We then vary Ej from 4-16 bytes to analyze
the effect of varying value-lengths on merge operations. We finally
vary the percentage of unique values (λj

M, λj
D) and the size of the

main partition NM . In order to normalize performance w.r.t. vary-
ing input parameters, we introduce the term – update cost. Update
Cost is defined as the amortized time taken per tuple per column
(in cycles/tuple), where the total time is the sum of times taken to
update the delta partition TU and the time to perform the merging
of main and delta partitions TM , while the total number of tuples
is NM + ND .

7.1 Impact of Delta Partition Size
Figure 7 shows the update cost for varying tuples of the delta

partition. In addition to the delta partition update cost, we also
show both run-times for the unoptimized and optimized Steps 1 and
2 in the graph. NM is fixed to be 100 million tuples, while ND is
varied from 500,000 (0.5%) to 8 million (8%) tuples. λj

M and λj
D

are fixed to be around 10%. The uncompressed value-length Ej is
8 bytes. We fix the number of columns NC to 300. Note that the
run-times are on a parallelized code for both implementations on
our dual-socket multi-core system.

As far as the unoptimized merge algorithm is concerned, Step
2 (updating the compressed values) takes up the majority of the
run-time and does not change (per tuple) with the varying number
of tuples in the delta partition. The optimized Step 2 algorithm
drastically reduces the time spent in the merge operation (by 9-10
times) as compared to the unoptimized algorithm. Considering the
optimized code, as the delta partition size increases, the percent-
age of the total time spent on delta updates increases and is 30% –
55% of the total time. This signifies that the overhead of merging
contributes a relatively small percentage to the run-time, thereby
making our scheme of maintaining separate main and delta parti-
tions with the optimized merge an attractive option for performing
updates without a significant overhead.

The update rate in tuples/second is computed by dividing the to-
tal number of updates with the time taken to perform delta updates
and merging the main and delta partitions for the NC columns. As
an example, for ND = 4 million and say NC = 300, an update cost
of 13.5 cycles per tuple (from Figure 7) evaluates to

4, 000, 000 · 3.3 · 109

13.5 · 104, 000, 000 · 300
≈ 31, 350 updates/second. (16)

7.2 Impact of Value-Length and Percentage of
Unique values

Figure 8 shows the impact of varying uncompressed value-lengths
on the update cost. The uncompressed value-lengths are varied be-
tween 4, 8 and 16 bytes. We show two graphs with the percentage
of unique values fixed at (a) 1% and (b) 100% respectively. NM

is fixed to be 100 million tuples for this experiment and the break-
down of update cost for ND equal to 1 million and 3 million tuples
is shown. We fix the number of columns NC to 300.

0
0.5
1

1.5
2

2.5
3

3.5
4

4 8 16 4 8 16

1M delta 3M delta

Up
da

te
 C
os
t (
Cy
cl
es
 p
er
 T
up

le
)

(a) 1% Unique Values

Update Delta Merge ‐ Step1 Merge ‐ Step2

0
2
4
6
8
10
12
14

4 8 16 4 8 16

1M delta 3M delta

Up
da

te
 C
os
t (
Cy
cl
es
 p
er
 Tu

pl
e)

(b) 100% Unique Values

Update Delta Merge ‐ Step1 Merge ‐ Step2

Figure 8: Update Costs for Various Value-Lengths for two delta
sizes with 100 million tuples in the main partition for 1% and 100%
unique values.

As the value-length increases, the time taken per tuple to update
the delta partition increases and becomes a major contributor to the
overall run-time. This time also increases as the size of the delta
partition increases. For example, in Figure 8(a), for an uncom-
pressed value-length of 16 bytes, the delta update time increases
from about 1.0 cycles per tuple for ND = 1 million to about 3.3 cy-
cles for ND = 3 million. This time increases as the percentage
of unique values increases. The corresponding numbers in Fig-
ure 8(b) for 100% unique values are 5.1 cycles for ND = 1 million
and 12.9 cycles for ND = 3 million.

As far as the Step 2 of the merge is concerned, the run-time de-
pends on the percentage of unique values. For 1% unique values,
the auxiliary structures fit in cache. As described in Section 6.2,
the auxiliary structures being gathered fit in cache and the run-time
is bound by the time required to read the input partitions and write
the updated partitions. We get a run-time of 1.0 cycles per tuple
(around 1.8 cycles per tuple on 1-socket), which is close to the
bandwidth bound computed in Section 6.2. For 100% unique val-
ues, the auxiliary structures do not fit in cache and must be gathered
from memory. The time taken is then around 8.3 cycles (15.0 cycles
on 1-socket), which closely matches (within 10%) the analytical
model developed in Section 6. The time for Step 2 mainly depends
on whether the auxiliary structures can fit in cache and therefore is
constant with small increases in the delta size from 1 million to 3
million.

As far as Step 1 is concerned, for a given delta partition size
ND , the time spent in Step 1 increases sub-linearly with the in-
crease in value-length (Section 6.1). For a fixed value-length, the
time spent increases marginally with the increase in ND – due to
the fact that this increase in partition size only changes the unique
values by a small amount and hence the compressed value-length
also changes slightly, resulting in a small change in the run-time
of Step 1. With larger changes in the percentage of unique values
from 1% to 100%, the run-time increases. For instance, for 8-byte
values and 1 million delta partitions, Step 1 time increases from
0.1 cycles per tuple at 1% unique values to 3.3 cycles per tuple at
100% unique values.

Finally, the percentage of time spent in updating the tuples as
compared to the total time increases both with increasing value-
lengths for fixed ND and increase in ND for fixed value-lengths.

Parallel Scalability. We now highlight the parallel scalability
of our system for two cases: (a) 1% unique values and (b) 100%
unique values. We report the execution times on 1-socket, with
the respective 2-socket scaling reported in a separate column. We
achieve near-linear scaling with 2-sockets (1.8 – 2.0 times) for var-
ious phases of our algorithm. This is in-line with the 2 times peak
increase in the computing resources from 1 to 2 sockets.

The update costs in cycles per tuple for serial (1 thread) and par-

69

% unique Step Update cost (cpt) Scaling on Socket
1T 6T 1-socket Scaling

1% Update Delta 4.52 0.87 5.2X 1.8X
Step 1 1.29 0.30 4.3X 1.9X
Step 2 3.89 1.85 2.1X 1.9X

100% Update Delta 20.63 4.21 4.9X 1.9X
Step 1 20.92 6.97 3.0X 2.0X
Step 2 66.21 15.0 4.4X 1.8X

Table 2: Parallel scalability of various steps for different percent-
ages of unique values. 1T denotes single-threaded run, while 6T
represents the run using all 6-cores on a single socket. Socket Scal-
ing denotes the additional scaling using both sockets on our system
as compared to a single-socket execution.

allel (6 threads) for 1 million delta size and 8-byte values are shown
in Table 2. All performance run-times below are for a single-socket
execution, to explain the thread scaling per socket. We first note
that in all cases, updating the delta partitions takes place when a
tuple is updated in the database and not during the merge. When a
tuple is updated, multiple delta partitions corresponding to different
columns of the tuple need to be modified at the same time. Con-
sequently, in this phase, we parallelize over the different columns
being updated. This scheme gives us a parallel scalability of about
5 times.

During merge time, Steps 1 and 2 of the merge are parallelized as
described in Section 6.2 for each partition. For the case when only
1% of the partition values are unique, Step 1 is compute bound.
However, the parallel Step 1 algorithm, as described in Section 6.2,
performs twice as many comparisons as the serial code due to the
three phase algorithm. This parallel overhead results in a scaling
of 4.3 times rather than 6 times on our 6-core system. The paral-
lel Step 2, for 1% unique values is bound by memory bandwidth.
This is the streaming bandwidth involved in bringing in the par-
titions from memory, while the auxiliary structures are in cache.
Therefore, Step 2 does not scale linearly with compute resources
and only achieves 2.1 times scaling on 6-cores.

As far as 100% unique values are concerned, all data structures
must be accessed from memory. The parallel Steps 1 and 2 are
both bandwidth bound. While Step 1 involves streaming accesses
from memory, Step 2 involves irregular accesses (gathers) of auxil-
iary structures from memory. In terms of the serial single-threaded
code, Step 1 has very regular accesses for which the hardware
prefetcher is successful at prefetching data and hence serial per-
formance is good. This results in a low speedup of 3 times for
serial code. Step 2 is also bandwidth bound and furthermore the
parallel code accesses more data than the serial code. However,
due to irregular memory accesses, the hardware prefetcher does
not work well and the serial code is heavily latency bound. On the
other hand, the parallel version introduces more parallel memory
accesses which reduce latency impacts. We get better parallel scal-
ing of 4.4 times for Step 2 than the 3 times for Step 1. Also note
that the Step 2 scaling for 100% unique values is better than for 1%
unique values since the serial code gets better performance when
data starts fitting in caches.

Finally, we note that the use of Simultaneous Multithreading
(SMT) does not improve performance. As mentioned above this
is because our optimized implementations are either compute or
bandwidth bound while SMT mainly helps latency bound applica-
tions.

7.3 Impact of Main Partition Size and Per-
centage of Unique Entries

Figure 9 shows the impact of varying the percentage of unique

 1

 2

 4

 8

 16

 32

 64

 128

0.10% 1% 10% 100%U
pd

at
e
Ra

te
 (K

 U
pd

at
es
 p
er
 S
ec
)

% of Unique Values

1 Million 10 Million 100 Million 1 Billion

Figure 9: Update Rates for optimized merge with varying main
partition sizes (1 million to 1 billion tuples) and varying percentage
of unique values (0.1% to 100%). The delta partition size is fixed
at 1% of the main partition. The two dashed lines show our low
and high target update rates of 3,000 and 18,000 updates/second
respectively.

entries and the main partition size on the update performance (higher
numbers are better). In this figure, the uncompressed value-length
is fixed to the common practical scenario of 8 bytes. The size of
the delta partition is fixed at 1% of the main partition size in this
experiment. The update cost is shown as the percentage of unique
entries varies from 0.1% to 100% to cover a wide range of practical
scenarios. We also vary the main partition size from 1 million to 1
billion. We fix the number of columns NC to 300.

Figure 9 clearly shows the impact of caching on the overall up-
date performance. The cost of Step 2, which is a significant fraction
of overall update cost, depends on the dictionary size of the main
and delta auxiliary structures. When both main and delta auxil-
iary structures Xj

M and Xj
D fit in cache, Step 2 operates out of

cache and is not limited by main memory bandwidth but rather
from CPU compute resources. This leads to a high performance
of over 81,000 updates/second. When the auxiliary structures do
not fit in cache, the update rate is limited by memory bandwidth to
about 7,100 updates/second, also matching our model. The num-
ber of entries in the auxiliary structures is proportional to the main
partition size as well as the percentage of unique entries. From the
figure (for instance at 1% unique entries), there is a sharp perfor-
mance difference when the main partition size changes from 100
million to 1 billion – this corresponds to the auxiliary structures
size ranging from about 1 million (2.5 MB) to 10 million (30 MB).
The actual cache size on our dual-socket platform is 24 MB, match-
ing the drop in performance.

Even in cases where the auxiliary structures fit in cache, the up-
date rate drops slightly with increasing main partition sizes. Al-
though Step 2 time is relatively constant, the cost of inserting ele-
ments into the CSB+ tree and the cost of constructing the auxiliary
structures (Step 1) increase. This can be seen for both 0.1% and
1% unique values in Figure 9.

When the auxiliary structures do not fit in cache, the update rates
slightly drop with increasing main partition sizes, but stabilize at
about 7,100 updates/second. This exceeds our target of 3,000 up-
dates per second. In particular, this occurs even for very large par-
titions of 1 billion entries, showing that our system is scalable to
future databases with larger partitions.

In Section 4, we described two target update rates – 18,000 up-
dates/second for high update-rate systems and 3,000 for low update-
rate systems. Figure 9 shows that we meet our high update rates for
tables which have at most 100 million rows, when the unique val-
ues are less than 1%. We always meet our low update rates even
at 100% unique values. Finally, from Figure 7, we note that the
unoptimized parallelized CPU code is about 9-10 times worse than

70

optimized code – hence we only achieve about 730 updates/second,
which is much lower than our target rates.

7.4 Comparison With Analytical Model
We now compute the run-times projected by our analytical model

and compare them to the actual obtained performance. We focus on
a single-socket execution for the analysis below 6. Let NM be 100
million tuples, and ND be 1 million tuples (the scenario in Table 2).
Ej equals 8 bytes. For streaming accesses, our system obtains a
memory bandwidth of around 23 GB/sec (around 7 bytes/cycle),
while random accesses result in a memory bandwidth of around
5 bytes/cycle – both measured using separate micro-benchmarks,
each running with 6 threads respectively. We use these bandwidth
numbers in our analysis below.

Consider the case with 100% unique entries. As such, the auxil-
iary structures (Xj

M and Xj
D) cannot fit in the LLC of our system

and the performance would be bound by the underlying memory
bandwidth. Consider Step 1, consisting of steps 1(a) and 1(b). The
total amount of memory traffic generated by this step is given by
Equation 8. The first part consists of streaming access, and can be
accessed at 7 bytes/cycle, while the second part (random access)
will be at 5 bytes/cycle. The net performance equals

4·8·1,000,000
7

+ (128+4)·1,000,000
5

101, 000, 000
= 0.306 cpt. (17)

The total amount of memory traffic generated in step 1(b) is ob-
tained by adding up Equations 9, 10, and 15, to obtain around
6.6 cpt. The net time taken for Step 1 equals 0.3+6.6 = 6.9 cycles,
which is within 1% of the obtained performance (Table 2). Simi-
larly for Step 2(b), the total memory traffic is obtained by adding
Equation 12 (at 5 bytes/cycle) and Equation 13, 14 at 7 bytes/cycle
to obtain 14.2 cycles. The obtained performance is around 15 cpt,
which is within 5.5% of the projected performance by our model.

Similarly, we can compute the performance numbers for cases
where the auxiliary data structures are expected to fit in the LLC.
Consider 1% unique values, and Step 2. The cost of accessing the
auxiliary structures will now be bound by the number of executed
instructions while the remaining time (Equation 13 and 14) will
still be bound by the available memory bandwidth. Assuming lin-
ear scaling of the compute-bound part, the total runtime would be
around

4

6
+

19.9
8

+ 2·19.9
8

7
= 1.73 cycles (18)

The actual achieved performance is 1.85 cycles (Table 2), which
is within 7% performance. Our implementation run-time closely
matches the projected performance of our analytical model (within
1-10%). Our model can be used to project performance with vary-
ing input scenarios. For e.g., with 0.1% unique entries, the run-
times would be similar to the case shown above where Xj

M and
Xj

D fit in caches. As the number of unique entries increases, Xj
M

and Xj
D may cease to fit in caches and will therefore obtain per-

formances completely bound by the memory bandwidth, with the
performance numbers obtained by plugging in the appropriate pa-
rameter values of λj

M, λj
D and E′j

C.

8. RELATED WORK
Vertical partitioned databases as HYRISE have been researched

from the very first conferences on database systems with focus on
read-intensive environments [26, 21, 2]. Pure vertical partitioning
6Our efficiently parallelized implementation achieves near-linear
scaling with two sockets: per-phase scaling presented in Table 2.

into a “column-store” has been a recent topic of interest in liter-
ature. Copeland and Khoshafian [7] introduced the concept of a
Decomposition Storage Model (DSM) as a complete vertical and
attribute-wise partitioned schema, which has been the foundation
for multiple commercial and non-commercial column store imple-
mentations such as MonetDB/X100 [4], C-Store [25] or Sybase
IQ [9]. All of those examples have shown the ability to outper-
form conventional databases in read-mostly analytical-style scenar-
ios with high selectivity. Unlike HYRISE, most of the column-store
implementations are pure disk based approaches and focus on im-
proving the overall performance by reducing the number of disk
seeks by decomposing relations. Consequently, data modifications
must be propagated to multiple files on disk. This implementation
is therefore inappropriate for workloads combining transactional-
and analytical-style queries, because updates and inserts are spread
across different disk locations. As in HYRISE, data compression
can limit the applicability to scenarios with frequent updates, lead-
ing to dedicated delta structures in order to improve performance
of inserts, modifications and deletes. The authors of [4] and [23]
describe a concept of treating vertical fragments as immutable ob-
jects, using a separate list for deleted tuples and uncompressed delta
columns for appended data while using a combination of both for
updates. In contrast, HYRISE maintains all data modification of
a table in one differential delta buffer. The authors of [11] also
use a dedicated differential buffer in order to improve update per-
formance in a column store. They describe a technique to merge
a stable (persisted) storage with a dedicated differential buffer by
(implicit) positions rather than key values. However, the focus lies
on merging the differences at query processing time. They use the
term checkpointing to describe the inevitable process of incorpo-
rating and persisting the differential buffer into the stable storage.
However, they do not describe how this process works in detail and
how it affects update rates when performed online. In [3] Beier
et al. describe an online process for reorganization of compressed
main memory databases. Even though the work is close in spirit,
the focus is on re-compression of individual horizontal chunks of a
table compared to our full table approach. Furthermore they de-
liberately focus on analytical workloads compared to the mixed
workload we describe. In [16] we presented an early version of our
approach for optimizing write performance in read-optimized col-
umn stores, however we did not focus on hardware optimizations
and parallelism.

Recently, efforts have been made to utilize the high compute and
bandwidth resources of modern processors to speed up database
primitives such as search, scan, sort, join and aggregation [14, 27,
5, 15, 6]. Such works have focused on improving performance of
specific primitives, but the impact of these optimizations on real
workloads has not been described. In contrast to previous work,
we start with characterizations of real world enterprise workloads,
while our design decisions and experimental parameters are driven
by real issues that make updates on read-optimized databases pro-
hibitively slow.

9. DISCUSSION AND FUTURE WORK
In earlier sections, we presented our characterizations of enter-

prise workloads. This showed that apart from the traditional classi-
fication of databases into OLTP and OLAP systems single applica-
tions exist which do not fit entirely into one category. These appli-
cations like Demand Planning or ATP introduce a mixed workload,
working on transactional data including write operations as well
as complex read operations on large data sets. The focus of this
paper is an optimized merge process, enabling read-optimized in-
memory column stores to meet both requirements for read and up-

71

date performance of today’s enterprise applications. The introduc-
tion of mixed workload systems meets the increasing demand for
“real-time analytics”, reporting directly on the transactional data.
We see the potential for transactional applications using analytical
functionality and for faster and more detailed reports in real time.
While this trend develops, complex analytical queries and full table
scan operations will increase in the database workload, justifying
the decision for a read-optimized database. The rethinking of how
persistence should be managed to leverage new hardware possibil-
ities and discarding parts of the over 20-year old data management
infrastructure can simplify future ERP systems. This would end the
trend of more and more complex systems compensating shortcom-
ings of the persistence layer, e.g. by maintaining pre-computed and
materialized results. The overall goal should be to define an appli-
cation persistence based on data characteristics and usage patterns
of the consuming applications. Thus, the observations and opti-
mizations in this paper are closely tied to the observed enterprise
applications. If the workload changes, the database engine has to
adapt.

For future work we see two major directions: On the one hand
we plan to extend the current analytical model with a more detailed
model for scans and lookup operations [19]. On the other hand,
we plan to investigate other delta partition structures to balance the
insert/merge costs to achieve optimal performance. In addition, re-
source consumption needs to be considered. The algorithms and
solutions presented throughout the paper are optimized towards op-
timal resource utilization. However, depending on the current sys-
tem load it can be advisable to prolong the merge process in favor
to increase the current insert throughput. A scheduling algorithm
could constantly analyze the available bandwidth and thus adjust
the degree of parallelization for the merge process. The memory
consumption of the merge process has to be tackled. Possible ideas
include an incremental processing of the individual attributes for
the cost of adding intermediate data structures to guarantee trans-
actional safety. Ideas from [3] could be taken further to directly
include a horizontal partitioning strategy.

10. CONCLUSIONS
In this paper, we presented a linear-time algorithm to update the

compressed main storage during the merge process, which resulted
in a speedup of 30 times over current implementations. The update
performance facilitated by our merge algorithm enables in-memory
column stores to execute transactional enterprise workloads, while
retaining their high read performance and therefore allowing new
and more complex mixed transactional and analytical queries on
up-to-date transactional data.

11. REFERENCES
[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data locality of

work stealing. In SPAA, pages 1–12, 2000.
[2] S. Agrawal, V. R. Narasayya, and B. Yang. Integrating Vertical and

Horizontal Partitioning Into Automated Physical Database Design. In
SIGMOD, pages 359–370, 2004.

[3] F. Beier, K. Stolze, and K.-U. Sattler. Online reorganization in read
optimized mmdbs. In SIGMOD, pages 1125–1136, 2011.

[4] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In CIDR, pages 225–237, 2005.

[5] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K.
Chen, A. Baransi, S. Kumar, and P. Dubey. Efficient implementation

of sorting on multi-core SIMD CPU architecture. In VLDB, pages
1313–1324, 2008.

[6] J. Cieslewicz and K. A. Ross. Adaptive aggregation on chip
multiprocessors. In VLDB, pages 339–350, 2007.

[7] G. P. Copeland and S. Khoshafian. A Decomposition Storage Model.
In SIGMOD, pages 268–279, 1985.

[8] R. S. Francis and I. D. Mathieson. A Benchmark Parallel Sort for
Shared Memory Multiprocessors. IEEE Trans. Computers,
37(12):1619–1626, 1988.

[9] C. D. French. “One Size Fits All” Database Architectures Do Not
Work for DDS. In SIGMOD, pages 449–450, 1995.

[10] M. Grund, J. Krueger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and
S. Madden. Hyrise - a hybrid main memory storage engine. In VLDB,
pages 105–116, 2011.

[11] S. Héman, M. Zukowski, N. J. Nes, L. Sidirourgos, and P. A. Boncz.
Positional update handling in column stores. In SIGMOD, pages
543–554, 2010.

[12] W. D. Hillis and G. L. Steele, Jr. Data parallel algorithms. Commun.
ACM, 29(12):1170–1183, 1986.

[13] A. Jindal. The mimicking octopus: Towards a one-size-fits-all
database architecture. In VLDB PhD Workshop, 2010.

[14] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen,
T. Kaldewey, V. W. Lee, S. A. Brandt, and P. Dubey. FAST: Fast
Architecture Sensitive Tree search on modern CPUs and GPUs. In
SIGMOD, pages 339–350, 2010.

[15] C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, A. D. Nguyen, A. D.
Blas, V. W. Lee, N. Satish, and P. Dubey. Sort vs. Hash Revisited:
Fast Join Implementation on Modern Multi-Core CPUs. In VLDB,
pages 1378–1389, 2009.

[16] J. Krueger, M. Grund, C. Tinnefeld, H. Plattner, A. Zeier, and
F. Faerber. Optimizing Write Performance for Read Optimized
Databases. In DASFAA, pages 291–305, 2010.

[17] J. Krueger, M. Grund, A. Zeier, and H. Plattner. Enterprise
application-specific data management. In EDOC, pages 131–140,
2010.

[18] R. MacNicol and B. French. Sybase IQ Multiplex - Designed For
Analytics. In VLDB, pages 1227–1230, 2004.

[19] S. Manegold, P. A. Boncz, and M. L. Kersten. Generic Database Cost
Models for Hierarchical Memory Systems. In VLDB, pages 191–202,
2002.

[20] P. Mishra and M. H. Eich. Join Processing in Relational Databases.
CSUR, 24(1):63–113, 1992.

[21] S. B. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Vertical
Partitioning Algorithms for Database Design. ACM Transactions on
Database Systems, 9(4):680–710, 1984.

[22] H. Plattner. A common database approach for OLTP and OLAP
using an in-memory column database. In SIGMOD, pages 1–2, 2009.

[23] R. Ramamurthy, D. J. DeWitt, and Q. Su. A Case for Fractured
Mirrors. In VLDB, pages 430–441, 2002.

[24] J. Rao and K. A. Ross. Making B+-Trees Cache Conscious in Main
Memory. In SIGMOD, pages 475–486, 2000.

[25] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil,
A. Rasin, N. Tran, and S. B. Zdonik. C-Store: A Column-oriented
DBMS. In VLDB, pages 553–564, 2005.

[26] P. J. Titman. An Experimental Data Base System Using Binary
Relations. In IFIP Working Conference Data Base Management,
pages 351–362, 1974.

[27] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and
J. Schaffner. SIMD-Scan: Ultra Fast in-Memory Table Scan using
on-Chip Vector Processing Units. In PVLDB, pages 385–394, 2009.

[28] M. Zukowski, P. A. Boncz, N. Nes, and S. Héman. MonetDB/X100 -
A DBMS In The CPU Cache. IEEE Data Eng. Bull., 28(2):17–22,
2005.

72

