
A Data­Based Approach to Social Influence Maximization

Amit Goyal
University of British Columbia

Vancouver, BC, Canada

goyal@cs.ubc.ca

Francesco Bonchi
Yahoo! Research
Barcelona, Spain

bonchi@yahoo­inc.com

Laks V. S. Lakshmanan
University of British Columbia

Vancouver, BC, Canada

laks@cs.ubc.ca

ABSTRACT

Influence maximization is the problem of finding a set of
users in a social network, such that by targeting this set,
one maximizes the expected spread of influence in the net-
work. Most of the literature on this topic has focused ex-
clusively on the social graph, overlooking historical data,
i.e., traces of past action propagations. In this paper, we
study influence maximization from a novel data-based per-
spective. In particular, we introduce a new model, which
we call credit distribution, that directly leverages available
propagation traces to learn how influence flows in the net-
work and uses this to estimate expected influence spread.
Our approach also learns the different levels of influence-
ability of users, and it is time-aware in the sense that it
takes the temporal nature of influence into account.
We show that influence maximization under the credit dis-

tribution model is NP-hard and that the function that de-
fines expected spread under our model is submodular. Based
on these, we develop an approximation algorithm for solving
the influence maximization problem that at once enjoys high
accuracy compared to the standard approach, while being
several orders of magnitude faster and more scalable.

1. INTRODUCTION
Motivated by applications such as viral marketing [5], per-

sonalized recommendations [15], feed ranking [8], and the
analysis of Twitter [16, 1], the study of the propagation of
influence exerted by users of an online social network on
other users has received tremendous attention in the last
years. One of the key problems in this area is the identifica-
tion of influential users, by targeting whom certain desirable
outcomes can be achieved. Here, targeting could mean giv-
ing free (or price discounted) samples of a product and the
desired outcome may be to get as many customers to buy
the product as possible. Kempe et al. [10] formalized this
as the influence maximization problem: find k “seed” nodes
in the network, for a given number k, such that by acti-
vating them we can maximize the expected influence spread,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th ­ 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 1
Copyright 2011 VLDB Endowment 2150­8097/11/09... $ 10.00.

i.e., the expected number of nodes that eventually get acti-
vated, according to a chosen propagation model. The prop-
agation model governs how influence diffuses or propagates
through the network (see Section 2 for background on the
most prominent propagation models adopted by [10]). Fol-
lowing this seminal paper, there has been substantial work
in this area (see Section 2.1). In this paper we study influ-
ence maximization as defined by Kempe et al., but from a
novel, data-based perspective.

Influence maximization requires two kinds of data – a
directed graph G and an assignment of probabilities (or
weights) to the edges of G, capturing degrees of influence.
E.g., in Figure 1, the probability of the edge (v, u) is 0.25
and it says there is a probability 0.25 with which user v
influences u and thus v’s actions will propagate to u with
probability 0.25. In real life, while the digraph representing
a social network is often explicitly available, edge proba-
bilities are not. Facing difficulties in gathering real action
propagation traces from which to “learn” edge probabili-
ties, previous work has resorted to simply making assump-
tions about these probabilities. The methods adopted for
assignment of probabilities to edges include the following:
(i) treating them as constant (e.g., 0.01), (ii) drawing val-
ues uniformly at random from a small set of constants, e.g.,
{0.1, 0.01, 0.001} in the so-called trivalency “model”, or (iii)
defining them to be the reciprocal of a node’s in-degree, in
the so-called weighted cascade “model” (see e.g., [10, 3, 2]).
Only recently researchers have shown how to learn the edge
probabilities from real data on past propagation traces of
actions performed by users (nodes) [14, 7].

Given that there have been several ad hoc assumptions
about probability assignment as well as recent techniques
for learning edge probabilities from real data, some natu-
ral questions arise. What is the relative importance of the
graph structure and the edge probabilities in the influence
maximization problem? To what extent different methods
of edge probability assignment accurately describe the influ-
ence propagation phenomenon? In particular, how do the
various edge probability assignments considered in earlier
literature compare with probabilities learned from real data
when it comes to accurately predicting the expected influ-
ence spread? Learning edge probabilities from real data is
prone to error either owing to noise in the data or to the
inherent nature of mining these probabilities. How robust
are solutions to influence maximization against such noise?

As we will discuss in the next section, the influence max-
imization process based on Monte Carlo (MC) simulation is
computationally expensive, even when the edge probabilities
are given as input. Having to learn these probabilities, from

73

Figure 1: The standard influence maximization pro-
cess (in light blue), and our approach (in magenta).

a large database of traces, only adds to the complexity. Can
we avoid the costly learning and simulation approach, and

directly mine the available log of past action propagation

traces to build a model of the spread of any given seed set?

Our research is driven by the questions above, and it
achieves the following contributions.

• We conduct a detailed empirical evaluation of different
methods of edge probability assignment as well proba-
bilities learned from real propagation traces and show
that methods that don’t learn probabilities from real
data end up choosing very different seed sets than those
that do. Secondly, we show the spread predicted by
methods based on edge probability assignment suffers
from large errors, compared to methods that learn edge
probabilities from real data. This offers some evidence
that the former class of methods risk choosing poor
quality seeds (Section 3).

• We develop a new model called credit distribution, built
on top of real propagation traces that allows us to di-
rectly predict the influence spread of node sets, without
any need for learning edge probabilities or conducting
MC simulations (Section 4).

• We show that influence maximization under credit dis-
tribution is NP-hard. However, we show the function
defining influence spread under this model is monotone
and submodular. Using this, we develop a greedy algo-
rithm that guarantees a (1−1/e)-approximation to the
optimal solution and is scalable (Section 5).

• We conduct a comprehensive set of experiments on large
real-world datasets (Section 6). We compare our pro-
posal against the standard approach of [10] with edge
probabilities learned from real data, and show that the
credit distribution model provides higher accuracy. We
also demonstrate the scalability of our approach by
showing our results on very large real world networks,
on which the standard approach is not practical.

2. BACKGROUND
Given a directed graph G = (V,E, p), where nodes are

users and edges are labeled with influence probabilities
among users, the influence maximization problem asks for
a seed set of users, that maximizes the expected spread of
influence in the social network, under a given propagation
model. Kempe et al. [10] mainly focus on two propaga-
tion models – the Independent Cascade (IC) and the Linear
Threshold (LT) models. In both, at a given time, each node

Algorithm 1 Greedy

Input: G, k, σm

Output: seed set S
1: S ← ∅
2: while |S| < k do
3: u← argmaxw∈V −S(σm(S + w)− σm(S));
4: S ← S + u

can be either active or inactive. Each node’s tendency to be-
come active increases monotonically as more of its neighbors
become active, and an active node never becomes inactive
again. Time unfolds in discrete steps.

In the IC model, each active neighbor v of a node u has
one shot at influencing u and succeeds with probability pv,u,
the probability with which v influences u. In the LT model,
each node u is influenced by each neighbor v according to
a weight pv,u, such that the sum of incoming weights to u
is no more than 1. Each node u chooses a threshold θu
uniformly at random from [0, 1]. At any timestamp t, if the
total weight from the active neighbors of an inactive node u
is at least θu, then u becomes active at timestamp t+ 1.

In both the models, the process repeats until no new node
becomes active. Given a propagation model m (e.g., IC or
LT) and an initial seed set S ⊆ V , the expected number
of active nodes at the end of the process is the expected
(influence) spread, denoted by σm(S).

The influence maximization problem is defined as follows.

Problem 1 (Influence Maximization). Given a di-
rected and edge-weighted social graph G = (V,E, p), a prop-
agation model m, and a number k ≤ |V |, find a set S ⊆ V ,
|S| = k, such that σm(S) is maximum.

Under both the IC and LT propagation models, this prob-
lem is shown to be NP-hard [10]. Kempe et al., however,
showed that the function σm(S) is monotone and submod-
ular. A function f from sets to reals is monotone if
f(S) ≤ f(T) whenever S ⊆ T . A function f is submodular
if f(S + w) − f(S) ≥ f(T + w) − f(T) whenever S ⊆ T .1

Submodularity intuitively says an active node’s probability
of activating some inactive node u does not increase if more
nodes have already attempted to activate u.

For any monotone submodular function f with f(∅) = 0,
the problem of finding a set S of size k such that f(S) is max-
imum, can be approximated to within a factor of (1−1/e) by
a greedy algorithm [13], a result that directly carries over to
the influence maximization problem [10] (see Algorithm 1).

The complex step of the greedy algorithm is in line 3,
where we select the node that provides the largest marginal
gain σm(S+w)−σm(S) with respect to the expected spread
of the current seed set S. Computing the expected spread
given a seed set is #P-hard under both the IC model [2,
8] and the LT model [4]. In their paper, Kempe et al. run
MC simulations of the propagation model for sufficiently
many times (the authors report 10, 000 trials) to obtain an
accurate estimate of the expected spread, resulting in a very
long computation time.

In the majority of the literature on influence maximization
following [10], the edge-weighted social graph is assumed as
input to the problem, without addressing the question of
how the probabilities are obtained. In Figure 1, we summa-
rize the standard process followed in influence maximization
1In the rest of the paper we write S+w in place of S ∪{w}
and similarly S − T in place of S \ T .

74

and we make explicit the phase of learning the edge prob-
abilities. The process starts with the (unweighted) social
graph and a log of past action propagations that say when
each user performed an action. The log is used to estimate
influence probabilities among the nodes. This produces the
directed edge-weighted graph which is then given as input
to the greedy algorithm which produces the seed set using
MC simulations.

2.1 Other Related Work
Domingos and Richardson [5] first introduced the problem

of identifying influential users for a marketing campaign as a
learning problem, which Kempe et al. [10] subsequently for-
mulated as an optimization problem. Exploiting submod-
ularity, Leskovec et al. [12] develop an efficient algorithm
called CELF, based on a “lazy-forward” optimization in se-
lecting new seeds. CELF is up to 700 times faster than the
simple greedy algorithm, while delivering the same approx-
imation guarantee (more details in Section 5.3). In spite of
this big improvement their method still faces serious scal-
ability issues [3], which has motivated recent works on effi-
cient heuristics for overcoming the efficiency and scalability
limits of the greedy algorithm [11, 3, 2, 4].
Chen et al. [2] propose PMIA heuristic to estimate influ-

ence spread under the IC model. They consider the influence
flow via Maximum Influence Paths (MIP) instead of short-
est path [11]. An MIP between a pair of nodes (v, u) is the
path with the maximum propagation probability from v to
u. More recently, Chen et al. [4] propose a scalable heuristic
called LDAG for the LT model. They construct local DAGs
for each node and consider influence only within it. Comput-
ing expected spread over DAGs can be done in linear time
while over general graphs it is #P-hard [4]. While the PMIA
and LDAG heuristics don’t offer theoretical guarantees, the
authors show empirically that these solutions are quite close
to those obtained using the corresponding greedy algorithm.
A key distinction with our work is that our proposal offers a
scalable solution to influence maximization with an approx-
imation guarantee.
The above body of work assumes a weighted social graph

as input and does not address how the edge probabilities
may be obtained. Saito et al. [14] study how to learn the
probabilities for the IC model from a set of past propa-
gations. They formalize this as a likelihood maximization
problem and then apply the expectation maximization (EM)
algorithm to solve it. In our experiments, we use their
method to learn the probabilities for the IC model.
Goyal et al. [7] also study the problem of learning influ-

ence probabilities. They focus on the time varying nature
of influence, and on factors such as the influenceability of
a specific user, and influence-proneness of a certain action.
They also show that their methods can be used to predict
whether a user will perform an action and at what time, with
higher accuracy for users with higher influenceability scores.
Our work is different from all of the above in that we pro-

pose a method for learning a model for directly predicting
the influence spread for a given node set, bypassing the need
to learn edge probabilities and to run expensive MC simu-
lations. We use this as a basis to develop a scalable approx-
imation algorithm for influence maximization that does not
make use of any explicit propagation model and is instead
data-based. To the best of our knowledge, such a data-based
approach to influence maximization is novel.

3. WHY DATA MATTERS
What is the relative importance of the network structure

and the edge probabilities in determining influence propa-
gation? How important is it to accurately learn probabil-
ities from real propagation traces? We have seen that a
large majority of the literature assumes edge probabilities
to be randomly chosen from an arbitrary fixed set or to be
determined by node degrees. How do these methods com-
pare with that of learning edge probabilities from real data,
in terms of the quality of seeds selected? To answer this,
we compare the performance of Algorithm 1 under the IC
model, with different methods of assigning edge probability.
To this end, we present two kinds of experiments that, to
the best of our knowledge, have never been reported before.

Datasets. We take two real world datasets: Flixster and
Flickr, both consisting of an unweighted directed social
graph, along with an associated action log. An action log
is a set of triples (u, a, t) which say user u performed ac-
tion a at time t. We refer to the set of triples in the action
log corresponding to a specific action a as the propagation
trace (propagation for short) associated with a. Flixster
(www.flixster.com) is one of the main players in the mo-
bile and social movie rating business [9]. Here, an action
is a user rating a movie. In other words, if user v rates
“The King’s Speech”, and later on v’s friend u does the
same, we consider the action of rating “The King’s Speech”
as having propagated from v to u. Flickr is a popular
photo sharing platform. Here, an action is a user joining an
interest group (e.g., “Nikon Selfportrait”, “HDR Panora-
mas”). The raw versions of both datasets are very large
and as a result, experiments that require repeated MC sim-
ulations cannot be run within any reasonable time on the
full data set. While the large version of the datasets are
useful for testing scalability of our proposal, for other ex-
periments we have to sample smaller datasets. In what fol-
lows, we use samples that correspond to taking a unique
“community”, obtained by means of graph clustering per-
formed using Graclus2. The resulting datasets are named
Flixster Small and Flickr Small (statistics in Table 1).

Flixster Flickr Flixster Flickr
Large Large Small Small

#Nodes 1M 1.32M 13K 14.8K
#Dir. Edges 28M 81M 192.4K 1.17M
Avg.degree 28 61 14.8 79

#propagations 49K 296K 25K 28.5K
#tuples 8.2M 36M 1.84M 478K

Table 1: Statistics of datasets.

One of the goals of the experiments is to determine which
method more accurately predicts the expected spread of
node sets. So we split the action log into two sets of prop-
agation traces – training and test sets. The edge probabil-
ities are learnt from the training set and thus, it is crucial
that the splitting is performed in such a way that a prop-
agation trace in its entirety falls into training or test set.
Taking care that similar distributions of propagation sizes
are maintained in the two sets, we place 80% and 20% of the
propagations in training and test set respectively. Precisely,
we sorted the propagation traces based on their size and put
every fifth propagation in this ranking in the test set. As

2
http://www.cs.utexas.edu/users/dml/Software/graclus.html

75

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500 3000 3500

R
M

S
E

Actual Spread

TV
WC
UN

EM/PT

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000 3500

E
s
ti
m

a
te

d
 S

p
re

a
d

Actual Spread

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 50 100 150 200 250 300 350 400 450 500

R
M

S
E

Actual Spread

(a) (b) (c)

Figure 2: Error as a function of Actual Spread on (a) Flixster Small, (c) Flickr Small; (b) Scatter plot of
predicted spread vs. actual spread on Flixster Small. The legend in all the plots follows from (a).

a result, the number of propagations in the training set are
5.1K and 5.7K for Flixster Small and Flickr Small re-
spectively. The number of tuples in the training set are 1.5M
and 385.3K respectively. The training set is used to learn
the edge probabilities according to the EM-based method of
Saito et al. [14]. One issue in using their method is that
in their work, Saito et al. assume that the input action log
data is as though it was generated by an IC model: i.e., time
is discrete, and if user u activates at time t, then at least one
of the neighbors of u was activated at time t − 1. In real-
world propagations this is not the case. To close this gap
between their model and the real data, we let all previously
activated neighbors of a node be its possible influencers.

Methods experimented. In both our experiments, we
consider the IC model together with the following methods
of edge probability assignment based on previous work [10,
14, 3, 2]:

WC: probability on an edge (v, u) is 1/in-degree(u)
(known as weighted cascade);

TV: probabilities are selected uniformly at random from
the set {0.1, 0.01, 0.001} (trivalency).

UN: all edges are uniformly assigned probability p = 0.01.

EM: probabilities are learned from the training set using
the EM-based method [14].

PT: Finally, in order to assess how robust the greedy
method is to noise in the probability learning phase, we
take EM-learnt probability and add noise. More precisely,
for each edge (v, u) we randomly pick a percentage from
the interval [−20%, 20%] to perturb pv,u, rounding to 0
or 1 in cases that go below 0 or over 1 respectively. We
call this method PT (EM perturbed).

Experiment 1: Seed set intersection. The goal of this
experiment is to understand the extent to which choice of
edge probabilities affects the decisions of different methods
in seed set selection. We run Algorithm 1 under the IC
model3 with the various methods of probability assignment
above, as well as with edge probabilities learned from the
training data set using EM. In each case, we used the algo-
rithm to produce a seed set of size k = 50. Table 2 reports
the size of the intersection for each pair of seed sets. We
can see that EM, the method using real data to learn the

3We found the greedy algorithm on Flickr Small is too
slow to complete in a reasonable time, even with CELF op-
timization. Hence we use the PMIA heuristic [2] (discussed
in Section 2.1) in order to speed up IC computation. [2] em-
pirically showed PMIA produces results very close to greedy.

influence probabilities has a very small, almost empty, inter-
section with all other methods, with the exception of its own
perturbed version PT. Thus, we conclude all methods that

use edge probabilities based on ad hoc assumptions select

seed sets very different from the method that uses propaga-

tion trace data to learn edge probabilities. Secondly, noise in

the learned edge probabilities does not affect the seed set se-

lection too drastically, as shown by the intersection between

EM and PT. What can we say about the quality of seed

sets chosen by the methods UN, TV, and WC, compared
to EM? This is addressed next.

UN WC TV EM PT PT EM TV WC UN
50 25 5 6 6 UN 0 0 44 19 50

50 9 3 2 WC 0 0 17 50
50 3 2 TV 0 0 50

50 44 EM 44 50
Flixster Small 50 PT 50 Flickr Small

Table 2: Size of seed set intersection for k = 50 on
Flixster Small (left) and Flickr Small (right).

Experiment 2: Spread prediction. In the second ex-
periment, we address the question, how good each of the
methods is at predicting the actual spread. For that end,
for a given seed set S, we compute the expected spread
σIC(S) predicted by each of the methods and compare it
with the actual spread of S according to ground truth. For
ground truth, for each propagation (movie in Flixster and
group in Flickr) in the test set, we take the set of users that
are the first to rate the movie (or join the group in case of
Flickr) among their friends, i.e., the set of “initiators” of the
action, to be the seed set. The actual spread is the number
of users who performed that action, also called propagation
size. This allows for a fair comparison of all methods from
a neutral standpoint, which is a first in itself.

Figures 2(a) and (c) report the root mean squared er-
ror (RMSE) between predicted and actual spread on the
two datasets: propagations in the test set are grouped in
bins with respect to their size4 and RMSE is computed in-
side each bin. On Flixster Small, uniform method (UN)
works well but only for small propagations, and trivalency
(TV) and weighted cascade (WC) work well but only for
very large propagations (which are only few cases, i.e., out-
liers), and this is explainable with the fact that they always
tend to predict the spread as very high. This is clearly shown
in Figure 2(b), which shows a scatter plot between predicted
and actual spread on Flixster Small.

4In Flixster Small bins are defined at multiples of 100,
in Flickr Small at multiples of 20.

76

In the case of Flickr Small, EM clearly outperforms all
the other methods for all sizes of actual spread (Figure 2(c)).
In all cases, the performance of EM and PT are so close that
they are almost indistinguishable.
Overall, even if EM tends to underestimate the spread

when this gets larger, it is by far the most accurate method

with respect to the ground truth. The other methods that
do not use the real propagation traces to learn influence
probabilities are found to be unreliable in predicting the
true spread.
By putting the results of the two experiments together, we

can draw the first conclusion of this paper: methods UN,
TV, and WC select seed sets that are very different from
EM and since they can be quite inaccurate in predicting
the true spread, they can end up selecting seed sets of poor
quality. It is thus extremely important to exploit available
past propagation traces to learn the probabilities right. This
finding strengthens the motivation for the rest of our work.

4. CREDIT DISTRIBUTION MODEL
The propagation models discussed in Section 2 are proba-

bilistic in nature. In the IC model, coin flips decide whether
an active node will succeed in activating its peers. In the LT
model it is the node threshold chosen uniformly at random,
together with the influence weights of active neighbors, that
decides whether a node becomes active. Under both models,
we can think of a propagation trace as a possible world, i.e.,
a possible outcome of a set of probabilistic choices.
Given a propagation model and a directed and edge-

weighted social graph G = (V,E, p), let G denote the set
of all possible worlds. Independently of the model m cho-
sen, the expected spread σm(S) can be written as:

σm(S) =
∑

X∈G

Pr[X] · σX
m(S) (1)

where σX
m(S) is the number of nodes reachable from S in the

possible world X. The number of possible worlds is clearly
exponential. Indeed, computing σm(S) under the IC and LT
models is #P-hard [2, 4], and the standard approach (see
[10]) tackles influence spread computation from the perspec-
tive of Eq. (1): sample a possible world X ∈ G, compute
σX
m(S), and repeat until the number of sampled worlds is

large enough. We now develop an alternative approach for
computing influence spread, by rewriting Eq. (1), giving a
different perspective. Let path(S, u) be an indicator random
variable that is 1 if there exists a directed path from the set
S to u and 0 otherwise. Moreover let pathX(S, u) denote the
outcome of the random variable in a possible world X ∈ G.
Then we have:

σX
m(S) =

∑

u∈V

pathX(S, u) (2)

Substituting in (1) and rearranging the terms we have:

σm(S) =
∑

u∈V

∑

X∈G

Pr[X] pathX(S, u) (3)

From the definition of expectation, we can rewrite this to

σm(S) =
∑

u∈V

E[path(S, u)] =
∑

u∈V

Pr[path(S, u) = 1] (4)

That is, the expected spread of a set S is the sum over
each node u ∈ V , of the probability of the node u getting
activated given that S is the initial seed set.

The standard approach samples possible worlds from the
perspective of Eq. (1). To leverage available data on real
propagation traces, we observe that these traces are similar
to possible worlds, except they are “real available worlds”.
Thus, in this paper, we approach the computation of in-
fluence spread from the perspective of Eq. (4), i.e., we es-
timate directly Pr[path(S, u) = 1] using the propagation
traces that we have in the action log.

Data Model. We are given a social graph G = (V,E), with
nodes V corresponding to users and directed (unweighted)
edges E corresponding to social ties between users, and an
action log, i.e., a relation L(User,Action, T ime) where a
tuple (u, a, t) ∈ L indicates that user u performed action a at
time t. It contains such a tuple for every action performed by
every user of the system. We will assume that the projection
of L on the first column is contained in the set of nodes V of
the social graph G. We let A denote the universe of actions,
i.e., the projection of L on the second column. Moreover,
we assume that a user performs an action at most once, and
define the function t(u, a) to return the time when user u
performed action a (the value of t(u, a) is undefined if u
never performed a, and t(u, a) < t(v, a) is false whenever
either of t(u, a), t(v, a) is undefined).

We say that a propagates from node u to v iff u and
v are socially linked, and u performs a before v (we also
say that u influences v on a). This defines a propagation
graph of a as a directed graph G(a) = (V (a), E(a)), with
V (a) = {v ∈ V | ∃t : (v, a, t) ∈ L} and E(a) = {(u, v) ∈
E | t(u, a) < t(v, a)}. Note that the propagation graph of an
action a is the graph-representation of the propagation trace
of a, and it is always a DAG: it is directed, each node can
have zero or more parents, and cycles are impossible due to
the time constraint. The action log L is thus a set of these
DAGs representing propagation traces through the social
graph. We denote by Nin(u, a) = {v | (v, u) ∈ E(a)} the
set of potential influencers of u for action a and din(u, a) =
|Nin(u, a)| to be the in-degree of u for action a. Finally,
we call a user u an initiator of action a if u ∈ V (a) and
din(u, a) = 0, i.e., u performed action a but none of its
neighbors performed it before u did. Table 3 summarizes
the notation used.

The Sparsity Issue. In order to estimate Pr[path(S, u) =
1] using available propagation traces, it is natural to inter-
pret such quantity as the fraction of the actions initiated by
S that propagated to u, given that S is the seed set. More
precisely, we could estimate this probability as

|{a ∈ A|initiate(a, S)& ∃t : (u, a, t) ∈ L}|

|{a ∈ A|initiate(a, S)}|

where initiate(a, S) is true iff S is precisely the set of initia-
tors of action a. Unfortunately, this approach suffers from
a sparsity issue which is intrinsic to the influence maxi-
mization problem [10]. If we need to be able to estimate
Pr[path(S, u) = 1] for any set S and node u, we will need
an enormous number of propagation traces corresponding to
various combinations, where each trace has as its initiator
set precisely the required node set S. It is clearly imprac-
tical to find a real action log where this can be realized.
To overcome this obstacle, we propose a different approach
to estimating Pr[path(S, u) = 1] by taking a “u-centric”
perspective: we assign “credits” to the possible influencers
of a node u whenever u performs an action. The model is
formally described next.

77

Au Number of actions performed by u.

Nin(u, a)
Neighbors of u which activated on action a before
i.e., u’s potential influencers on action a.

γv,u(a)
Direct influence credit given to v for influencing
u for action a.

Γv,u(a)
Total credit given to v for influencing u for
action a.

κv,u
Total credit given to v for influencing u for
all actions.

ΓW
x,u(a)

Total credit given to x for influencing u for action
a considering the paths that are completely
contained in W ⊆ V .

τv,u
Average time taken by actions to propagate
from user u to user v.

Table 3: Notation adopted in the next sections.

Credit Distribution. When a user u performs an action a,
we want to give direct influence credit, denoted by γv,u(a),
to all v ∈ Nin(u, a), i.e., all neighbors of u that have per-
formed the same action a before u. We constrain the sum
of the direct credits given by a user to its neighbors to be
no more than 1. We can have various ways of assigning di-
rect credit: for ease of exposition, we assume for the mo-
ment to give equal credits to each neighbor v of u, i.e.,
γv,u(a) = 1/din(u, a) for all v ∈ Nin(u, a). Later we will
see a more sophisticated method of assigning direct credit.
Intuitively, we also want to distribute influence credit

transitively backwards in the propagation graph G(a), such
that not only u gives credit to the users v ∈ Nin(u, a), but
they in turn pass on the credit to their predecessors in G(a)
and so on. This suggests the following definition of total
credit given to a user v for influencing u on action a, corre-
sponding to multiple propagation paths:

Γv,u(a) =
∑

w∈Nin(u,a)

Γv,w(a) · γw,u(a) (5)

where the base of the recursion is Γv,v(a) = 1. Sometimes,
when the action is clear from the context, we can omit it
and simply write γv,u and Γv,u. From here on, as a running
example, we consider the influence graph in Figure 1 as the
propagation graph G(a) with edges labeled with direct cred-
its γv,u(a) = 1/din(u, a). For instance,

Γv,u = Γv,v · γv,u + Γv,t · γt,u + Γv,w · γw,u + Γv,z · γz,u

= 1 · 0.25 + 0.5 · 0.25 + 1 · 0.25 + 0.5 · 0.25 = 0.75.

We next define the total credit given to a set of nodes
S ⊆ V (a) for influencing user u on action a as follows:

ΓS,u(a) =

{

1 if v ∈ S;
∑

w∈Nin(u,a)
ΓS,w(a) · γw,u(a) otherwise

Consider again the propagation graph G(a) in Figure 1.
Let S = {v, z}. Then, ΓS,u is the fraction of flow reaching
u that flows from either v or z:

ΓS,u = ΓS,w · γw,u + ΓS,v · γv,u + ΓS,t · γt,u + ΓS,z · γz,u

= 1 · 0.25 + 1 · 0.25 + 0.5 · 0.25 + 1 · 0.25 = 0.875.

Aggregating Over All Actions and All Nodes. The
next question is how to aggregate the influence credit over
the whole action log L. Consider two nodes v and u: the
total influence credit given to v by u for all actions in A, is
simply obtained by taking the total credit over all actions
and normalizing it by the number of actions performed by
u (denoted Au). This is justified by the fact that credits

are assigned by u backward to its potential influencers. We
define:

κv,u =
1

Au

∑

a∈A

Γv,u(a) (6)

Intuitively, it denotes the average credit given to v for in-
fluencing u, over all actions that u performs. Similarly, for
the case of a set of nodes S ⊆ V , we can define the total
influence credit for all the actions in A as:

κS,u =
1

Au

∑

a∈A

ΓS,u(a) (7)

Note that κS,u corresponds, in our approach, to
Pr[path(S, u) = 1] in Eq. 4. Finally, inspired by Eq. 4,
we define the influence spread σcd(S) as the total influence
credit given to S from the whole social network:

σcd(S) =
∑

u∈V

κS,u (8)

In the spirit of influence maximization (Problem 1), this
is the objective function that we want to maximize. In the
next section we formally state the problem of maximizing
influence under the CD model. We prove that the problem is
NP-hard and that the function σcd(.) is submodular, paving
the way for an approximation algorithm.

Assigning Direct Credit. We now revisit the problem
of defining the direct credit γv,u(a) given by a node u to
a neighbor v for action a. In our previous work [7], we
observed that influence decays over time in an exponential
fashion and that some users are more influenceable than
others. Motivated by these ideas, we propose to assign direct
credit as:

γv,u(a) =
infl(u)

Nin(u, a)
· exp

(

−
t(u, a)− t(v, a)

τv,u

)

(9)

Here, τv,u is the average time taken for actions to prop-
agate from user v to user u. The exponential term in the
equation achieves the desired effect that influence decays
over time. Moreover, infl(u) denotes the user influenceabil-
ity, that is, how prone the user u is to influence by the social
context [7]. Precisely, infl(u) is defined as the fraction of ac-
tions that u performs under the influence of at least one of
its neighbors, say v, i.e., u performs the action, say a, such
that t(u, a) − t(v, a) ≤ τv,u; this is normalized by Nin(u, a)
to ensure that the sum of direct credits assigned to neigh-
bors of u for action a is at most 1. Note that both infl(u)
and τ·,u are learnt from (the training subset of) L.

Discussion. It should be pointed out that unlike classical
models such as IC and LT, the credit distribution model
is not a propagation model. Instead, it is a model that,
based on available propagation data, learns the total influ-
ence credit accorded to a given set S by any node u and uses
this to predict the influence spread of S. It is not suscepti-
ble to the sparsity issue discussed above, and it obviates the
need to perform expensive MC simulations for the purpose
of estimating influence spread.

5. INFLUENCE MAXIMIZATION
We next formally define the problem studied in this paper.

Problem 2 (Influence Maximization - CD model).
Given a directed social graph G = (V,E), an action log L,
and an integer k ≤ |V |, find a set S ⊆ V , |S| = k, that
maximizes σcd(S).

78

Theorem 1. Influence maximization under the credit
distribution model is NP-hard.

Proof. We prove the hardness by reducing the well-
known NP-complete problem Vertex Cover [6] to our prob-
lem. Given an instance I of Vertex Cover, consisting of
an undirected graph G = (V,E) and a number k, create
an instance J of the influence maximization problem un-
der CD as follows. The directed social graph G′ = (V,E′)
associated with J has the same node set as G. E′ two
directed edges (u, v) and (v, u) in place of every undirected
edge (u, v) ∈ E. We express the action log L associated with
J in terms of propagation graphs, for convenience. For each
edge (v, u) ∈ E, create two propagation graphs, correspond-
ing to two actions a1 and a2 in L, consisting of only two
nodes v and u. In the propagation graph G(a1), create an
edge from v to u indicating that the corresponding action
is being propagated from v to u. In the propagation graph
G(a2), create an edge from u to v. Assign direct credits
γv,u(a1) = γu,v(a2) = α where α ∈ (0, 1]. For instance, if
we assign direct credits simply as γv,u(a) = 1/din(u, a), then
α = 1. Similarly, if we assign direct credits as in equation
9, then α = 1/e. The reduction clearly takes polynomial
time.We next prove that a set S ⊆ V , with |S| ≤ k, is a
vertex cover of G if and only if its influence spread σcd(S)
in the instance J is at least k + α · (|V | − k)/2.

Only if: Suppose S is a vertex cover of G in the in-
stance I. Consider any arbitrary node u. If u ∈ S, then
κS,u = 1 by definition. On the other hand, if u /∈ S, then
κS,u =

∑

a
ΓS,u(a)/(2 · deg(u)). Since u is not in the vertex

cover, all its neighbors must be in S and thus, for exactly
half of the actions a that u performs, ΓS,u(a) = α. These
are the actions that u performs after its neighbor. Hence,
∑

a
ΓS,u(a) = α · deg(u) and κS,u = α/2, where deg(u)

is u’s degree in G. This implies σcd(S) =
∑

u∈V
κS,u =

k + α · (|V | − k)/2.

If: Let S be any seed set whose spread is at least k + α ·
(|V | − k)/2 in instance J . Let N(u) be the set of neighbors
of u in G, that is, N(u) = {v ∈ V |(v, u) ∈ E}. Consider an
arbitrary node u /∈ S. For each node v in N(u)∩ S, v has a
credit of α over u, for the unique action whose propagation
graph is the edge (v, u), and a null credit for all the other
actions. Therefore κv,u = α/(2 · deg(u)). Aggregating over
the whole seed set S we have that κS,u = α · |N(u)∩ S|/(2 ·
deg(u)). Hence, σcd(S) =

∑

u∈V
κS,u = k +

∑

u∈V \S α ·

|N(u) ∩ S|/(2 · (deg(u)).
From our assumption, σcd(S) ≥ k+α·(|V |−k)/2, it follows

that
∑

u∈V \S |N(u)∩S|/deg(u) ≥ |V | − k. As |N(u)∩S| ≤

deg(u), this is possible only when ∀u ∈ V \S : |N(u)∩S| =
deg(u), implying that all neighbors of u must be in S and
therefore, S is a vertex cover in instance I.

Since the problem is NP-hard, we are interested in devel-
oping an approximation algorithm. We prove that the in-
fluence spread function is submodular under the CD model,
paving the way for efficient approximation.

Theorem 2. σcd(S) is monotone and submodular.

Proof. It suffices to show that ΓS,u(a) is monotone and
submodular as a positive linear combination of monotone,
submodular functions is also monotone and submodular [13].
Clearly it is monotone. We prove submodularity by induc-
tion on path lengths. Note that the propagation graph for a

given action is acyclic and hence the maximum path length
is |V | − 1. Let ΓS,u(a, ℓ) denote the total credit obtained by
the set S for influencing u, restricting attention to paths of
length ≤ ℓ. Thus, ΓS,u(a) = ΓS,u(a, |V | − 1).

Let S and T be two node sets such that S ⊆ T and let x /∈
T . Recall that the function Γ is submodular iff ΓS+x,u(a)−
ΓS,u(a) ≥ ΓT+x,u(a) − ΓT,u(a). We call the left hand side
of the inequality the marginal gain of x with respect to S
(implicitly understood to be on u) and similarly for the right
hand side.

Base Case: In the base case, ℓ = 0. Depending on u, the
base case can be split into various sub-cases: (a) If u ∈ S,
then the marginal gain of x with respect to both S and T
is 0; (b) If u ∈ T, u /∈ S, then while x’s marginal gain with
respect to T is 0, its marginal gain with respect to S is no
less than 0 as the function Γ(·) is monotone; (c) If u = x,
then the marginal gain of x with respect to both S and T is
exactly 1; (d) If u 6= x and u /∈ T , then the total credits on
u from S, S + x, T and T + x are 0. This proves the base
case.

Induction Step: Assume that the function Γ is submodu-
lar when restricted to path lengths ≤ ℓ, that is, ∀w ∈ V :

ΓS+x,w(a, ℓ)− ΓS,w(a, ℓ) ≥ ΓT+x,w(a, ℓ)− ΓT,w(a, ℓ) (10)

We will prove that the function remains submodular for
paths of length ℓ + 1 for any node u ∈ V . Consider
the marginal gain of x with respect to S on u when re-
stricted to paths of length ≤ ℓ + 1, that is, consider
ΓS+x,u(a, ℓ+1)−ΓS,u(a, ℓ+1). By definition, this is equal to
∑

w∈Nin(u,a)
ΓS+x,w(a, ℓ) · γw,u(a)−

∑

w∈Nin(u,a)
ΓS,w(a, ℓ) ·

γw,u(a). Taking the common factor γw,u(a) out and apply-
ing induction hypothesis (Eq. 10), this is

≥
∑

w∈Nin(u,a)

(ΓT+x,w(a, ℓ)− ΓT,w(a, ℓ)) · γw,u(a)

= ΓT+x,u(a, ℓ+ 1)− ΓT,u(a, ℓ+ 1)

This was to be shown.

In the remaining sub-sections, we develop an efficient ap-
proximation algorithm to solve the influence maximization
problem under the CD model.

5.1 Overview of our method
In the previous section, we show that while influence

maximization under the CD model is NP-hard, the influ-
ence spread function is monotone and submodular. Con-
sequently, the greedy algorithm (Algorithm 1) provides a
(1−1/e)-approximation to the optimum solution [13]. How-
ever, the greedy algorithm by itself does not guarantee ef-
ficiency as it requires to compute the marginal gain of a
candidate seed node with respect to the current seed set,
i.e., σcd(S+w)−σcd(S) (line 3 of Algorithm 1). For the IC
and LT models, this is done by expensive MC simulations.
For the CD model, the marginal gain can be directly com-
puted from the action log L. A naive way to do this would
be to scan L in each iteration. But this approach would be
very inefficient. Hence, we focus our attention on comput-
ing the marginal gain efficiently by carefully exploiting some
properties of our model.

From here on, with a superscript W ⊆ V on the func-
tion Γ(·), we denote the function to be evaluated on the
sub-graph induced by nodes in W . For example, ΓW

x,u(a) is

79

the total credit given to node x for influencing node u to
perform action a considering the paths that are contained
completely in the sub-graph induced by V (a) ∩ W . That
is, the sub-graph of the propagation graph for action a, in-
duced by the nodes W ∩ V (a). When the superscript is
not present the graph considered is the whole propagation

graph for action a, i.e., Γx,u(a) = Γ
V (a)
x,u (a). It should be

noted that the direct credit γx,u is always assigned consid-
ering the whole propagation graph. The following result is
key to the efficiency of our algorithm.

Theorem 3.

σcd(S+x)−σcd(S) =
∑

a∈A



(1− ΓS,x(a)) ·
∑

u∈V

1

Au

· ΓV −S
x,u (a)





Intuitively, the theorem says that the marginal gain of
a node x equals the sum of normalized marginal gain of
x on all actions. We give more insights into this equation
in the proof. The theorem provides us an efficient method
to compute the marginal gain, given values of ΓS,x(a) and
ΓV −S
x,u (a): this is the key idea behind the efficiency of our

algorithm, which can be abstractly summarized as follows:

1. Initially, scan the action log L and compute Γv,u(a)
for all combinations of v, u and a (Algorithm 2). Note
that at the beginning, S = ∅ and hence ΓS,x(a) = 0
for all combinations of x and a.

2. In each iteration of the greedy method, a node that
provides the maximum marginal gain is added to the
seed set. For this step we adopt the CELF [12] opti-
mization idea (Algorithm 3).

3. To compute the marginal gain of a node x efficiently,
we use Theorem 3. It requires values of ΓV −S

v,u (a) and
ΓS,x(a) (Algorithm 4).

4. Once a node is added to the seed set, ΓV −S
v,u (a) and

ΓS,x(a) are updated using Lemmas 2 and 3 (Alg. 5).

5.2 Proof of Theorem 3
The proof of Theorem 3 is non-trivial and we need to prove

a few auxiliary claims first. In the process, we also derive
equations to update the total credit (step 4 in the outline of
our algorithm above).

Lemma 1. ΓS,u(a) =
∑

v∈S
ΓV −S+v
v,u (a)

We first explain the claim by means of an example by tak-
ing the influence graph in Figure 1 as a propagation graph
G(a) with direct credit γv,u(a) = 1/din(u, a). Let S =
{v, z}, according to Lemma 1 (dropping the argument a),
ΓS,u = ΓV −z

v,u +ΓV −v
z,u = (0.25+0.25+0.5·0.25)+0.25 = 0.875.

Note that the credit given to v via the path v → t→ z → u
is ignored. Next, we formally prove the claim.
Proof of Lemma 1: By induction on path lengths. Recall
that ΓS,u(a, l) denotes the total credit given to set S for
influencing node u over paths of length no more than l.

Base Case: l = 0 implies only u can get credit for influ-
encing itself. Therefore if u /∈ S, both sides of the equality
become 0. When u ∈ S, the total credit given to S for in-
fluencing u (left hand side) is 1 by definition, while in the
right hand side all terms in the summation are 0 except the
case v = u, that is ΓV −S+u

u,u (a, 0) = 1.

Induction Step: Assume that the lemma is true for path
lengths no more than l. We prove it for path length up
to l + 1. We start with definition of ΓS,u(a, l + 1) (Eq. 5).
ΓS,u(a, l + 1) =

∑

w∈Nin(u,a)
ΓS,w(a, l) · γw,u(a). Applying

induction hypothesis, the right hand side becomes:

=
∑

w∈Nin(u,a)





∑

v∈S

ΓV −S+v
v,w (a, l)



 · γw,u(a) =

∑

v∈S





∑

w∈Nin(u,a)

ΓV −S+v
v,w (a, l) · γw,u(a)



 =
∑

v∈S

ΓV −S+v
v,u (a, l+ 1)

This concludes the proof.

Next, we show how the total credit can be updated in-
crementally, when the induced sub-graph under considera-
tion changes. Consider the sub-graph induced by the nodes
W = V − S where S is the current seed set. Let ΓW

v,u(a)
be the total credit given to node v for influencing u in this
sub-graph. Suppose node x is added to the seed set, then
we are interested in computing ΓW−x

v,u (a). This is clearly the
total credit given to v minus the total credit given to v via
paths that go through x. More precisely, we have:

Lemma 2. ΓW−x
v,u (a) = ΓW

v,u(a)− ΓW
v,x(a) · Γ

W
x,u(a).

As an example, consider again the propagation graph in
Figure 1 with S = {t, z}. The total credit given to v for
influencing u on the subgraph induced by nodes in V −{t, z}
is 1 · 0.25 + 0.25 = 0.5. Suppose w is added to the seed set
S, then ΓV −S−w

v,u = 0.5− 1 · 0.25 = 0.25.
The next lemma shows how to update incrementally the

total credit of influence given to a set S by a node u, after x
is added to the set. This is needed in step 4 of our method
as sketched in previous section.

Lemma 3. ΓS+x,u(a) = ΓS,u(a) + ΓV −S
x,u · (1− ΓS,x(a))

Proof: Since we refer to a single action, we drop the argu-
ment a and assume it implicitly. We use Lemma 1 to expand
ΓS+x,u and ΓS,u:

ΓS+x,u − ΓS,u =
∑

v∈S+x

ΓV −S−x+v
v,u −

∑

v∈S

ΓV −S+v
v,u

= ΓV −S
x,u −

∑

v∈S

(ΓV −S+v
v,u − ΓV −S−x+v

v,u)

Applying Lemma 2 to the terms inside the summation
(with W = V − S + v), the right hand side becomes

= ΓV −S
x,u −

∑

v∈S

(ΓV −S+v
v,x · ΓV −S+v

x,u)

The terms inside the summation denote the total credit
given to v for influencing u considering the paths that go
through x in the sub-graph induced by the nodes V −S+v.
Since the graph is acyclic, if ΓV −S+v

v,x is non-zero, then any

path from x to u cannot pass through v. Hence, ΓV −S+v
v,x ·

ΓV −S+v
x,u = ΓV −S+v

v,x · ΓV −S
x,u . Note that this equality holds

even when ΓV −S+v
v,x = 0 as both sides would be 0 in that

case. Thus, ΓS+x,u−ΓS,u = ΓV −S
x,u −

∑

v∈S
(ΓV −S+v

v,x ·ΓV −S
x,u).

The term ΓV −S
x,u can be taken out of the summation and

applying Lemma 1 gives
∑

v∈S
ΓV −S+v
v,x = ΓS,x, from which

the lemma follows.
Finally, we are ready to prove Theorem 3.

80

Proof of Theorem 3: By definition,

σcd(S + x)− σcd(S) =
∑

u∈V

1

Au

∑

a∈A

(ΓS+x,u(a)− ΓS,u(a))

Applying lemma 3, the right hand side becomes

=
∑

u∈V

1

Au

∑

a∈A

(ΓV −S
x,u (a) · (1− ΓS,x(a)))

Rearranging the terms, we get σcd(S + x) − σcd(S) =
∑

a∈A

(

(1− ΓS,x(a)) ·
∑

u∈V
1

Au

· ΓV −S
x,u (a)

)

, which was to

be shown.

5.3 Algorithms
In this section, we present our algorithm which builds on

the properties developed in previous sections and whose out-
line was given in Section 5.1. Initially, we scan the action
log L and then, we use the greedy algorithm with CELF
optimization to select the seed set. While scanning the ac-
tion log, we maintain all the information needed to select k
seeds later. In particular, we compute total credit given to
each node v for influencing any other node u for all actions
a and record it into the data structure UC (User Credits).
Each entry UC[v][u][a] corresponds to ΓV −S

v,u (a), that is, to-
tal credit given to v for activating u on the graph induced
by V − S where S is the current seed set. We also maintain
another data structure SC (Set Credits) where each entry
SC[x][a] refers to the total credit given to the current seed
set S by a node x for an action a, that is, ΓS,x(a). Since S is
empty in the beginning, SC is not used in the first iteration.

Algorithm 2 Scan

Input: G,L, λ
Output: UC
1: UC ← ∅
2: for each action a in L do

3: current table← ∅
4: for each tuple 〈u, a, tu〉 in chronological order do

5: Parents(u)← ∅; Au ← Au + 1; UC[∗][u][a]← 0
6: while ∃v : (v, u) ∈ G, v ∈ current table do

7: Parents(u)← Parents(u) ∪ {v}
8: for each v ∈ Parents(u) do

9: compute γv,u
10: if γv,u ≥ λ then

11: UC[v][u][a]← UC[v][u][a] + γv,u
12: for each w such that UC[w][v][a] · γv,u ≥ λ do

13: UC[w][u][a]← UC[w][u][a] + γv,uUC[w][v][a]
14: current table← current table ∪ {u}

Algorithm 2 describes the first step of our method that
scans L. L is maintained sorted, first by action and then by
time. It processes one action at a time and in chronological
order. We use current table to maintain the list of users
who have performed the current action and have been seen
so far, and Au to denote the number of actions performed
by user u in L, and Parents(u) for the list of parents of each
user u with respect to the current action a, that is, Nin(u, a).
For each action a and for each user u that performs it, we
scan current table to find its neighbors that already per-
formed a and add them to the list of parents of u. Then
for each parent v of u, we compute the direct credit γv,u(a)
appropriately (line 9). For the ease of exposition, here we
assume the simple definition γv,u(a) = 1/Nin(u, a), that can
be implemented as γ = 1/|Parents(u)|. If we want to use
the more complex definition of direct credit given in Eq. (9),

we need to learn the parameters τv,u for all edges and infl(u)
for all nodes in advance and pass them on to Algorithm 2 as
input, similarly to what the standard method does for influ-
ence probabilities. Although it is straightforward to learn
these parameters by means of a preliminary scan of L, we
refer the reader to [7] for an efficient way to learn them. The
total credit given to various nodes for influencing u is then
computed using equation 5 (lines 10-13). For the sake of re-
ducing memory requirements, we use a truncation threshold
λ and discard credits that are below the threshold. In the
experiments we will assess the effect of this truncation.

Algorithm 3 Greedy with CELF

Input: UC, k
Output: seed set S
1: SC ← ∅; S ← ∅; Q← ∅
2: for each u ∈ V do

3: x.mg ← computeMG(x); x.it← 0; add x to Q
4: while |S| < k do

5: x← pop(Q)
6: if x.it = |S| then S ← S ∪ {x}; update(x, UC, SC)
7: else

8: x.mg ← computeMG(x, UC, SC);
9: x.it← |S|; Reinsert x into Q and heapify

Once the first phase is completed, we use the standard
greedy algorithm with the CELF optimization [12] to select
the seeds (Algorithm 3). The algorithm maintains a queueQ
where an entry for a user x is stored in the form 〈x,mg, it〉,
where mg represents the marginal gain of user x with re-
spect to seed set in iteration it. Q is always kept sorted
in decreasing order of mg. Initially, the influence spread of
each node is computed and Q is built (lines 2-3). In each
iteration, the top element x of Q is analyzed. If x is an-
alyzed before in the current iteration (that is, x.it = |S|),
then it is picked as the next seed node and the subroutine
update is called (line 6). On the other hand, if x.it < |S|,
we recompute the marginal gain of x with respect to S by
calling the subroutine computeMG (line 8). Then x.it is set
appropriately and x is re-inserted into Q (line 9).

Algorithm 4 computeMG

Input: x, UC, SC
Output: mg
1: mg = 0
2: for each action a such that ∃u : UC[x][u][a] > 0 do

3: mga ← 1/Ax

4: for each user u such that UC[x][u][a] > 0 do

5: mga ← mga + UC[x][u][a]/Au

6: mg ← mg +mga(1− SC[x][a])

Algorithm 5 update

Input: x, UC, SC
1: for each action a such that ∃u : UC[x][u][a] > 0 do

2: for each u such that UC[x][u][a] > 0 do

3: for each v such that UC[v][x][a] > 0 do

4: UC[v][u][a]← UC[v][u][a]− UC[v][x][a] · UC[x][u][a]
5: SC[u][a]← SC[u][a] + UC[x][u][a] · (1− SC[x][a])

Algorithm 4 computes the marginal gain of a node x with
respect to the current seed set S. It leverages Theorem 3
to do this efficiently. For an action a, lines 3-5 compute
the term

∑

u∈V
1

Au

·ΓV −S
x,u (a) and line 6 multiplies it by the

term (1−ΓS,x(a)). Finally, whenever a user x is added to the
seed set, the subroutine update is invoked and Algorithm 5
updates both UC and SC, using Lemmas 2 and 3.

81

Memory requirements: Our algorithm requires to main-
tain the data structure UC whose size is potentially of the
order of

∑

a∈A |V (a)|2. In reality, total credit decreases
sharply with the length of paths. Thus by ignoring values
that are below a given truncation threshold λ, the memory
usage by our algorithm can be kept reasonable. We study
the effect of λ in the experiments in the next section.

6. EXPERIMENTAL EVALUATION
The goals of our experiments are manifold. At a high

level, we want to evaluate the different models and the op-
timization algorithms based on them with respect to accu-
racy of spread prediction, quality of seed selection, running
time, and scalability. We perform additional experiments
on the CD model and on the influence maximization algo-
rithm based on it, to explore the impact of training data size
on the quality of the solution and the impact of truncation
threshold on the quality, running time, and memory usage.
The source of the code used in our experiments is available
at http://people.cs.ubc.ca/~goyal/code-release.php.
We experiment on the same two real world datasets of

Section 3 (Table 1). While we use the “large” versions of the
datasets only to study the scalability of our method, “small”
versions of the datasets are used to compare our algorithm
with other methods (that do not scale to the large versions).

Methods Compared. Since methods based on arbitrar-
ily assigning edge probabilities are dominated by those that
learn them from the past propagation traces (see Section 3),
in our evaluation, we focus only on the following models.

IC model with edge probabilities learnt from the training
set by means of the EM method [14]. In all the experi-
ments we run 10k MC simulations.

LT model with 10k MC simulations. We take ideas from
[10] and [7] and learn weights as pv,u = Av2u/N where
Av2u is the number of actions propagated from v to u
in the training set and N is the normalization factor to
ensure the sum of incoming weights on each node is 1.

CD model with direct credit assigned as described in
Equation (9). Unless otherwise mentioned, the truncation
threshold λ is set to 0.001 (see section 5.3). Later we also
study effect of different truncation thresholds.

Accuracy of Spread Prediction. In Section 3 (“Exper-
iment 2”), we evaluated methods using IC and LT models
where edge probabilities are arbitrarily assigned and meth-
ods that learn them from available data, with respect to the
accuracy of spread prediction. We conduct a similar exper-
iment to compare the IC, LT, and CD models. Fig. 3 shows
the RMSE (computed exactly in the same way as in Section
3) in the spread predicted by the IC, LT, and CD models,
as a function of actual spread for both datasets. An in-
teresting observation from the figure is that while IC beats
LT by a large margin on Flixster Small, it loses to LT
on Flickr Small by a considerable margin. On the other
hand, the CDmodel performs very well on both the datasets.
In order to have a better understanding of the results,

we conduct a detailed analysis. Fig. 4 depicts the propor-
tion of propagation traces captured within a given abso-
lute error, which is the absolute difference between the esti-
mated spread and actual spread. More precisely, for a given
method, a point (x, y) on its plot says that the fraction of
propagation traces (in the test set) on which the (absolute)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500

R
M

S
E

Actual Spread

LT
IC

CD

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300 350 400 450 500

R
M

S
E

Actual Spread

IC
LT
CD

Figure 3: RMSE vs Propagation Size on
Flixster Small (left) and Flickr Small (right).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80

R
a
ti
o
 o

f
p
ro

p
a
g
a
ti
o
n
s
 c

a
p
tu

re
d

Absolute Error

CD
IC
LT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30 35 40 45 50

R
a
ti
o
 o

f
p
ro

p
a
g
a
ti
o
n
s
 c

a
p
tu

re
d

Absolute Error

CD
LT
IC

Figure 4: Number of propagations captured
against Absolute Error on Flixster Small (left) and
Flickr Small (right).

prediction error of that method is ≤ x, is y. For instance, on
Flixster Small, for absolute error ≤ 30, CD model cap-
tures 67% of propagations (that is, 3391 out of 5128 propaga-
tions). On the other hand, the percentages of propagations
captured within the same error by IC and LT model are 46%
and 26% respectively. Once again, it can be seen that while
IC performs better than LT on Flixster Small, it’s the
other way round on Flickr Small. This plot shows con-
clusively that within any given error tolerance, CD is able to
capture a much higher fraction of propagation traces than
IC and LT, on both data sets, confirming that CD model
is more accurate when it comes to predicting the influence
spread of a given seed set.

Seed Set Intersection. Having established that CD is
much more accurate in predicting actual spread, we next ex-
amine the question, how close to each other are the (near)
optimal seed sets for the influence maximization problem,
obtained by running the greedy algorithm under different
models. Fig. 5 shows that the intersection of seed sets ob-
tained from IC model with the seed sets obtained from LT
and CD models is empty. On the other hand, there is a
significant (∼50%) overlap between CD and LT models. We
note since the greedy algorithm with MC simulations runs
too slow on Flickr Small (more on this later), in Fig. 5 we
use PMIA [2] (for IC model) and LDAG [4] (for LT model)
heuristics to obtain the seed set (only for Flickr Small)
in order to finish this experiment within a reasonable time.5

This shows that the seed sets obtained from IC and LT mod-
els are very different from CD model. The difference is much
more pronounced in the case of IC model. These findings
are significant since together with the results of the previous
experiment, they offer some evidence that the seeds chosen
by IC and LT models run the risk of being poor with re-
spect to the actual spread they achieve. We strengthen this
evidence by conducting the next experiment.

Spread Achieved. In this experiment, we compare the

5Chen et al.[2, 4] have shown the spread obtained from
PMIA and LDAG are very close to those obtained via MC
simulations for IC and LT.

82

IC LT CD CD LT IC
50 0 0 IC 0 0 50

50 26 LT 28 50
50 CD 50

Figure 5: Size of seed set intersection for k = 50 on
Flixster Small (left) and Flickr Small (right).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35 40 45 50

In
fl
u
e
n
c
e
 S

p
re

a
d

Seed Set Size

CD
LT

High Degree
PageRank

IC

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40 45 50

In
fl
u
e
n
c
e
 S

p
re

a
d
 (

x
 1

0
0
0
)

Seed Set Size

CD
LT

High Degree
PageRank

IC

Figure 6: Influence spread achieved under CD
model by seed sets obtained by various models on
Flixster Small (left) and Flickr Small (right).

influence spread achieved by the seed sets obtained from the
three methods. For the sake of completeness, we also include
the heuristics High Degree and PageRank which select as
seeds the top-k nodes with respect to degree and PageRank
score respectively, as done in [10, 2].
One issue we face is that due to the sparsity issue, we

cannot determine the actual spread of an arbitrary seed set
from the available data. The next best thing we can do is
pick a model that enjoys the least error in spread prediction
and treat the spread predicted by it as actual spread. In
this way, for any given seed set, we can use that model to
tell us (its best estimate of) the actual spread. Given that
CD model is found to be closest to reality in predicting the
spread of a seed set (see Fig. 3 and 4), we use the spread
predicted by it as the actual spread. The results of this
experiment, depicted in Fig. 6, confirm that on both data
sets the spread achieved by the seed sets found by methods
using the IC and LT models falls far short of the actual
spread, which is best approximated using the CD model.
A surprising observation is that IC model performs poorly,
even worse than heuristics like High Degree and PageRank.
We looked in the data and found that the seeds picked by
IC model are nodes which perform a very small number of
actions, often just one action, and should not be considered
as high influential nodes. We investigate the reasons below.
For instance, on Flixster Small, the first seed picked

by the IC model is the user with Id 168766. While its influ-
ence spread under IC model is 499.6, it is only 1.08 under
CD model. In the data, the user 168766 performs only one
action and this action propagates to 20 of its neighbors. As
a result, the EM method [14] ends up assigning probability
1.0 to the edges from 168766 to all its 20 neighbors, making
it a high influence node, so much that it is picked as the first
seed. Obviously, in reality, 168766 cannot be considered as a
highly influential node since its influence is not statistically
significant. In an analogy with Association Rules, the influ-
ence of user 168766 can be seen as a maximum confidence
rule, but which occurs only once (absolute support = 1).
A deeper analysis tells us that most of the seeds picked

by the IC model are of this kind: not very active nodes
that, in the few cases they perform an action, do have some
followers. We checked and found that the average number of
actions performed by these seeds is 30.3 (against the global
average of 167). On the other hand, the average number of

actions performed by seed set obtained from our CD model
is 1108.7. We found a similar behavior in Flickr Small.

Running Time. In this experiment, we first show results
on the small versions of the data sets, for all three models,
as a function of number of seed nodes selected. All the
experiments are run on an Intel(R) Xeon(R) CPU X5570 @
2.93GHz machine with 64GB RAM running Opensuse 11.3.
The algorithms are implemented in C++.

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45 50

R
u

n
ti
m

e
 (

in
 m

in
)

Seed Set Size

IC
LT
CD

Figure 7: Running Time
Comparison.

Fig. 7 reports the
time taken (in min-
utes, on log scale) by
the various models.
It can be seen that
our method is several
orders of magnitude
faster. For instance,
to select 50 seeds
on Flixster Small,
while the greedy al-
gorithm (with CELF
optimization) takes 40 and 25 hours under IC and LT
model respectively, our algorithm takes only 3 minutes.

We do not show a similar plot for Flickr Small as the
experiment takes too long to complete (for IC and LT mod-
els). At the time of writing this paper, while the experiment
for IC model ran for 27 days without even selecting a single
seed, the experiment for LT model took the same time to
pick only 17 seeds. On the other hand, our algorithm takes
only 6 minutes to pick 50 seeds.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14

R
u
n
ti
m

e
 (

in
 m

in
)

Number of tuples (x 1M)

Flickr_Large
Flixster_Large

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10 12 14
M

e
m

o
ry

 U
s
a
g
e
 (

in
 G

B
)

Number of tuples (x 1M)

Flickr_Large
Flixster_Large

Figure 8: Runtime (left) and memory usage (right)
against number of tuples.

Scalability. Next, we show the scalability of our algorithm
with respect to the size of the action log, in number of tuples.
For this purpose, we created the training data set by ran-
domly choosing propagation traces from the complete action
log and selecting all the corresponding action log tuples. In
Fig. 8 and 9, the x-axis corresponds to the number of tuples
in the training set.

Fig. 8 (left) shows the time taken by our algorithm to
select 50 seeds against the number of tuples used. It should
be noted that most of the time taken by our algorithm is
consumed in scanning the action log. For example, it takes
15 minutes to select the seed set when 5M tuples are used
on Flixster Large, out of which, 11.6 minutes are spent
on scanning the action log and only 3.4 minutes are incurred
in selecting the seed set.

Fig. 8 (right) presents the memory usage with respect to
the number of action log tuples used to select the seed set
of size 50. Our algorithm’s memory usage is proportional
to the number of training tuples used: on Flixster Large
using 6.5M tuples, it requires approximately 16GB, while
on 13M tuples on Flickr Large, it requires approximately
46GB. This raises the question how much training data is

83

 2800

 2900

 3000

 3100

 3200

 3300

 3400

 3500

 0 1 2 3 4 5 6 7
 10

 20

 30

 40

 50
In

fl
u
e
n
c
e
 S

p
re

a
d

#
 o

f
T

ru
e
 S

e
e
d
s
 D

is
c
o
v
e
re

d

Number of tuples (x 1M)

Influence Spread
of True Seeds

Discovered 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14
 0

 10

 20

 30

 40

 50

In
fl
u
e
n
c
e
 S

p
re

a
d
 (

x
 1

0
0
0
)

#
 o

f
T

ru
e
 S

e
e
d
s
 D

is
c
o
v
e
re

d

Number of tuples (x 1M)

Influence Spread
of True Seeds

Discovered

Figure 9: Influence spread achieved and number of
“true” seeds with respect to number of tuples used
on Flixster Large (left) and Flickr Large (right).

needed to select a good seed set, which we study next.

Effect of Training Data Size. Fig. 9 shows the conver-
gence of the output of our algorithm with respect to number
of tuples used to select the seeds. Both plots have a double
y-axis (left and right). On the left side, we have the spread
of influence by the seed set obtained using a sample of train-
ing data, while on the right side, we have the overlap of the
seed set found with the “true seeds”, i.e., the seeds selected
by using the complete action logs, i.e., all 6.5M tuples in
Flixster Large and all 13M tuples in Flickr Large.
As can be seen, the quality of the seed set obtained by

using only 1M tuples is as good as using all 6.5M tuples in
case of Flixster Large. Similarly, in Flickr Large, the
influence spread “converges” after 8M tuples.
These observations suggest that we need to use only a

small sample of the propagation traces (or action log) to
select the seed set and as a result, even though our algorithm
can in principle be memory intensive when the action log is
huge, in reality, the memory requirements are not that high.

Effect of truncation threshold. Finally, we show the
effect of truncation threshold λ on the accuracy, memory
usage and running time of our algorithm in Table 4. As
expected, as we decrease the truncation threshold, while ac-
curacy (measured in terms of number of “true” seeds dis-
covered and influence spread achieved) improves, memory
requirement and running time increase. Both the influence
spread and “true seeds discovered” essentially saturate at
λ = 0.001. Note that in all our previous experiments, we
used λ = 0.001 which is a good choice as can be seen from
the table. The results on Flickr Large and on small ver-
sions of the datasets are similar.

7. CONCLUSIONS AND DISCUSSION
While most of the literature on influence maximization

has focused mainly on the social graph structure, in this pa-
per we proposed a novel data-based approach, that directly
leverages available traces of past propagations.
Our Credit Distribution model directly estimates influ-

ence spread by exploiting historical data, thus avoiding the
need for learning influence probabilities, and more impor-
tantly, avoiding costly Monte Carlo simulations, the stan-
dard way to estimate influence spread. Based on this, we
developed an efficient algorithm for influence maximization.
We demonstrated the accuracy on real data sets by showing
the CD model by far is closest to ground truth. We also
showed that our algorithm is highly scalable.
Beyond the main contributions, this paper achieves sev-

eral side-contributions: (1) Methods which arbitrarily assign
influence probabilities suffer from large error in their spread
prediction compared with those that learn these probabil-

λ
Influence True seeds Memory Runtime
Spread discovered usage (GB) (in min)

0.1 2959 38 2.1 5.25
0.01 3220 45 6 8.62
0.001 3267 48 18.8 21.25

0.0005 3267 49 26 25.9
0.0001 3270 50 51 46.7

Table 4: Effect of truncation threshold λ on
Flixster Large. “True seeds” are the ones obtained
when λ = 0.0001.

ities from data. (2) The former methods end up choosing
seed sets very different from the latter ones, suggesting the
seeds they recommend may well have a poor spread. (3)
The greedy algorithm using learned influence probabilities
is robust against some noise in the probability learning step.
(4) The IC and LT models, using learned influence proba-
bilities, choose seed sets very different from each other, and
in turn different from the CD model, which is by far closest
to ground truth. These observations further highlight the
need for devising techniques and benchmarks for compar-
ing different influence models and the associated influence
maximization methods.

Acknowledgments. This research was partially supported
by a strategic grant from NSERC Canada on Business In-
telligence Network, and a grant from the Spanish Center for
the Development of Industrial Technology under the CENIT
program, project CEN- 20101037, Social Media. Thanks to
Jamali and Ester for sharing the Flixster dataset [9].

8. REFERENCES
[1] E. Bakshy et al. Everyone’s an influencer: quantifying

influence on twitter. In WSDM 2011, pages 65–74.

[2] W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in large-scale social
networks. In KDD 2010, pages 1029–1038.

[3] W. Chen, Y. Wang, and S. Yang. Efficient influence
maximization in social networks. In KDD 2009, pages 199–208.

[4] W. Chen et al. Scalable influence maximization in social
networks under the linear threshold model. In ICDM 2010,
pages 88–97.

[5] P. Domingos and M. Richardson. Mining the network value of
customers. In KDD 2001, pages 57–66.

[6] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York, NY, USA, 1979.

[7] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. Learning
influence probabilities in social networks. In WSDM 2010,
pages 241–250.

[8] D. Ienco, F. Bonchi, and C. Castillo. The meme ranking
problem: Maximizing microblogging virality. In SIASP
workshop of ICDM 2010, pages 328–335.

[9] M. Jamali and M. Ester. A matrix factorization technique with
trust propagation for recommendation in social networks. In
RecSys 2010, pages 135–142.

[10] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the
spread of influence through a social network. In KDD 2003,
pages 137–146.

[11] M. Kimura and K. Saito. Tractable models for information
diffusion in social networks. In PKDD 2006, pages 259–271.

[12] J. Leskovec et al. Cost-effective outbreak detection in
networks. In KDD 2007, pages 420–429.

[13] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis
of approximations for maximizing submodular set functions.
Mathematical Programming, 14(1), 1978.

[14] K. Saito et al. Prediction of information diffusion probabilities
for independent cascade model. In KES 2008, pages 67–75.

[15] X. Song, Y. Chi, K. Hino, and B. L. Tseng. Information flow
modeling based on diffusion rate for prediction and ranking. In
WWW 2007, pages 191–200.

[16] J. Weng et al. TwitterRank: finding topic-sensitive influential
twitterers. In WSDM 2010, pages 261–270.

84

