
Performance Guarantees for Distributed Reachability
Queries

Wenfei Fan1,2 Xin Wang1 Yinghui Wu1,3

1University of Edinburgh 2Harbin Institute of Technology 3UC Santa Barbara

{wenfei@inf, x.wang-36@sms, y.wu-18@sms}.ed.ac.uk

ABSTRACT

In the real world a graph is often fragmented and distributed
across different sites. This highlights the need for evaluat-
ing queries on distributed graphs. This paper proposes dis-
tributed evaluation algorithms for three classes of queries:
reachability for determining whether one node can reach an-
other, bounded reachability for deciding whether there exists
a path of a bounded length between a pair of nodes, and
regular reachability for checking whether there exists a path
connecting two nodes such that the node labels on the path
form a string in a given regular expression. We develop these
algorithms based on partial evaluation, to explore parallel
computation. When evaluating a query Q on a distributed
graph G, we show that these algorithms possess the follow-
ing performance guarantees, no matter how G is fragmented
and distributed: (1) each site is visited only once; (2) the
total network traffic is determined by the size of Q and the
fragmentation of G, independent of the size of G; and (3)
the response time is decided by the largest fragment of G
rather than the entire G. In addition, we show that these
algorithms can be readily implemented in the MapReduce
framework. Using synthetic and real-life data, we experi-
mentally verify that these algorithms are scalable on large
graphs, regardless of how the graphs are distributed.

1. INTRODUCTION
Large real-life graphs are often fragmented and stored dis-

tributively in different sites, e.g., social networks [27], Web
services networks [23] and rdf graphs [16,26]. For instance,
a graph representing a social network may be distributed
across different servers and data centers for performance,
management or data privacy reasons [12, 23, 25, 27] (e.g.,
social graphs of Twitter and Facebook are geo-distributed
to different data centers [12, 25]). Moreover, various data
of people (e.g., friends, products, companies) are typically
found in different social networks [27], and have to be taken
together when one needs to find the complete information
about a person. With this comes the need for effective tech-

Figure 1: Querying a distributed social network

niques to query distributed graphs, for e.g., computing rec-
ommendations [17] and social network aggregations [27].

There have been a number of algorithms and distributed
graph database systems for evaluating queries on distributed
graphs (e.g., [3, 6, 11, 29, 30]). However, few of these algo-
rithms and systems provide performance guarantees, on the
number of visits to each site, network traffic (data shipment)
or computational cost (response time). The need for devel-
oping efficient distributed evaluation algorithms with per-
formance guarantees is particularly evident for reachability
queries, which are most commonly used in practice.

This paper advocates to evaluate queries on distributed
graphs based on partial evaluation. Partial evaluation (a.k.a.
program specialization) has been proved useful in a variety
of areas including compiler generation, code optimization
and dataflow evaluation (see [18] for a survey). Intuitively,
given a function f(s, d) and part of its input s, partial evalu-
ation is to specialize f(s, d) with respect to the known input
s. That is, it conducts the part of f ’s computation that
depends only on s, and generates a partial answer, i.e., a
residual function f ′ that depends on the as yet unavailable
input d. This idea can be naturally applied to distributed
query evaluation. Indeed, consider a query posed on a graph
G that is partitioned into fragments (F1, . . . , Fn), where Fi

is stored in site Si. To compute Q(G), each site Si can find
the partial answer to Q in fragment Fi in parallel, by taking
Fi as the known input s while treating the fragments in the
other sites as yet unavailable input d. These partial answers
are collected and combined by a coordinator site, to derive
the answer to query Q in the entire G.

Example 1: Figure 1 depicts a fractionG of a recommenda-
tion network, where each node denotes a person with name
and job titles (e.g., database researcher (DB), human re-
source (HR)), and each directed edge indicates a recommen-
dation. The graph G is geo-distributed to three data centers
DC1, DC2 and DC3, each storing a fragment of G.

Consider a query Q given in Fig. 1, posed at DC1. It is to
find whether there exists a chain of recommendations from
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a CTO Ann to her finance analyst (FA) Mark, through either a
list of DB people or a list of HR people. Observe that such a
path exists: (Ann, CTO) → (Walt, HR) → (Mat, HR) → (Fred,
HR) → (Emmy, HR) → (Ross, HR) → (Mark, FA). However,
it is nontrivial to verify this in the distributed setting. A
naive method is to first ship data from DC1, DC2 and DC3

to a single site, and then evaluate the query using an al-
gorithm developed for centralized data (i.e., graphs stored
in a single site). This is infeasible because its data ship-
ment may be prohibitively expensive and worse still, may
not even be allowed for data privacy. Another way is to use
a distributed graph traversal algorithm, by sending messages
between different sites. This, however, requires messages to
be sent along DC1 → DC2 → DC1 → DC2 → DC3 → DC1,
incurring unbounded number of visits to each site, excessive
communication cost, and unnecessary delay in response.
We can do better by using partial evaluation. We send

the query Q to DC1, DC2 and DC3, as is. We compute the
partial answers to (sub-queries of) Q at each site, in parallel,
by taking the fragment residing in the site as known input
and introducing Boolean variables to indicate unknown in-
put (i.e., fragments in the other sites). The partial answers
are vectors of Boolean formulas, one associated with each
node that has an edge from a fragment stored at another
site. These Boolean formulas indicate (1) at DC1, from Ann

there exist an HR path to Walt and a DB path to Bill, and
from Fred there is an HR path to Emmy; (2) at DC2, there
exist an HR path from Emmy to Ross, an HR path from Mat

to Fred; and (3) at DC3, there exists an HR path from Ross to
Mark. These partial answers are collected by a coordinator
site (DC1), which solves a system of equations formed by
these Boolean formulas that are recursively defined, to find
the truth values of those Boolean variables. It yields answer
true to Q, i.e., there exists an HR path from Ann to Mark.
We will show that this method guarantees the following:

(1) each site is visited only once; (2) besides the query Q,
only 2 messages are sent, all to the coordinator, and each
message is independent of the size of G, and (3) partial eval-
uation is conducted in parallel at each site, without waiting
for the outcome or messages from any other site. ✷

While there has been work on query answering via par-
tial evaluation [2, 3, 6, 11], the previous work has focused
on either trees [2, 3, 6] or non-recursive queries expressed in
first-order logic (FO) [11]. We are not aware of any pre-
vious algorithms based on partial evaluation for answering
reachability queries, which are beyond FO, on possibly cyclic
graphs that are arbitrarily fragmented and distributed.

Contributions. We provide distributed evaluation algo-
rithms for three classes of reachability queries commonly
used in practice, via partial evaluation. We show that these
algorithms posses several salient performance guarantees.

(1) Our first algorithm is developed for reachability queries
(Section 3), to decide whether two given nodes are con-
nected by a path [31]. We show that when evaluating such
a query on a distributed graph G, the algorithm (a) visits
each site only once, (b) is in O(|Vf ||Fm|) time, and (c) its
total amount of data shipped is bounded by O(|Vf |

2), where
|Vf | is the number of nodes that have edges across different
sites, and |Fm| is the size of the largest fragment in G.

(2) Our second algorithm is for evaluating bounded reacha-
bility queries (Section 4), for determining whether two given
nodes are connected by a path of a bounded length [31]. We

show that this algorithm has the same performance guaran-
tees as its counterpart for reachability queries.

(3) Our third algorithm is to evaluate regular reachability
queries (Section 5), to decide whether there exists a path be-
tween a pair (u, v) of nodes such that the node labels on the
path satisfy a regular expression R. When evaluating such
a query on a distributed graph G, the algorithm (a) visits
each site only once, (b) is in O(|Fm||R|2 + |R|2|Vf |

2) time,
and (c) has network traffic bounded by (|R|2|Vf |

2), where
|Fm| and |Vf | are as above, and |R| is the size of regular
expression R, which is much smaller than |Vf | and |Fm|.

(4) We also develop a MapReduce [7] algorithm for evaluat-
ing regular reachability queries (Section 6). This shows that
partial evaluation can be readily implemented in the widely
used MapReduce framework. The algorithm can be easily
adapted to evaluate (bounded) reachability queries, which
are special cases of regular reachability queries.

(5) We experimentally evaluate the efficiency and scalability
of our algorithms(Section 7). We find that our algorithms
scale well with both the size of graphs and the number of
fragments. For instance, it takes 16 seconds to answer a
regular reachability query on graphs with 1.5M (million)
nodes and 2.1M edges, partitioned into 10 fragments. We
also find that the communication cost of our algorithms is
low. Indeed, the amount of data shipped by our algorithms
is no more than 11% of the graphs in average. For reacha-
bility queries on real-life graphs, our algorithms take only
6% of running time of the algorithms based on message
passing [21], and visit each site only once as opposed to 625
visits in average by its counterpart [21]. In addition, our
MapReduce algorithm is efficient.

We contend that partial evaluation yields a promising ap-
proach to evaluating queries on distributed graphs. It guar-
antees that (1) the number of visits to each site is min-
imum; (2) the total network traffic is independent of the
size of the entire graph; (3) the evaluation is conducted in
parallel, and its cost depends on the largest fragment of a
partitioned graph and the number of nodes with edges to
different sites, rather than the entire graph; and (4) it im-
poses no constraints on how the graph is fragmented and
distributed. Moreover, it can be readily implemented in the
MapReduce model, as verified in our experimental study.

Related Work. We categorize related work as follows.

Distributed databases. A variety of distributed database
systems have been developed. (1) Distributed relational
databases (see [24]) can store graphs in distributed rela-
tional tables, but do not support efficient graph query eval-
uation [8, 9]. (2) Non-relational distributed data storage
manage distributed data via various data structures, e.g.,
sorted map [4], key/value pairs [8]. These systems are built
forprimary-key only operations [8,9], or simple graph queries
(e.g., degree, neighborhood)1, but do not efficiently sup-
port distributed reachability queries. (3) Distributed graph
databases. Neo4j1 is a graph database optimized for graph
traversal. Trinity2 and HyperGraphDB3 are distributed sys-
tems based on hypergraphs. Unfortunately, they do not sup-
port efficient distributed (regular) reachability queries.

1http://neo4j.org/
2http://research.microsoft.com/en-us/projects/trinity/
3http://www.kobrix.com/hgdb.jsp
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Closer to our work is Pregel [21], a distributed graph
querying system based on message passing It partitions a
graph into clusters, and selects a master machine to assign
each part to a slave machine. A graph algorithm allows (a)
the nodes in each slave machine to send messages to each
other, and (b) the master machine to communicate with
slave machines. Several algorithms (distance, etc.) sup-
ported by Pregel are addressed in [21]. Similar message-
sending approaches are also developed in [13]. These algo-
rithms differ from ours as follows. (a) In contrast to our
algorithms, the message passing model in Pregel may seri-
alize operations that can be conducted in parallel, and have
no bound on the number of visits to each site, as shown by
our experimental study (Section 7). (b) How to support reg-
ular reachability query is not studied in [21]. On the other
hand, the techniques of Pregel can be combined with partial
evaluation to support local processing of reachability queries
at each site (see Section 3).

Distributed graph query evaluation. Several algorithms have
been developed for evaluating queries on distributed graphs
(see [19] for a survey). (1) Querying distributed trees [2,3,6].
Partial evaluation is used to evaluate XPath queries on dis-
tributed XML data modeled as trees [3, 6], as well as for
evaluating regular path queries [2]. It is nontrivial, however,
to extend these algorithms to deal with (possibly cyclic)
graphs. Indeed, the network traffic of [3,6] is bounded by the
number of fragments and the size of the query, in contrast to
the number of nodes with edges to different fragments in our
setting. Moreover, we study (regular) reachability queries,
which are quite different from XPath. Finally, our algo-
rithms only visit each site once, while in [2] each site may
be visited multiple times. (2) Querying distributed semi-
structured data [13,28–30]. Techniques for evaluating regu-
lar path queries on distributed, edge-labeled, rooted graphs
are studied in [30] and extended in [29], based on message
passing. It is guaranteed that the total network traffic is
bounded by n2, where n is the number of edges across dif-
ferent sites. A distributed BFS algorithm is given in [28],
which takes nearly cubic time in graph size, and a table of
exponential size to achieve a linear time complexity, and is
impractical for large graphs. These differ from our algo-
rithms as follows. (a) Our algorithms guarantee that each
site is visited only once, as opposed to twice [30]. (b) As
remarked earlier, message passing may unnecessarily serial-
ize operations, while our algorithms explore parallelism via
partial evaluation. While an analysis of computational cost
is not given in [29, 30], We show experimentally that our
algorithms outperform theirs (Section 7).
There has also been recent work on evaluating SPARQL

queries on distributed RDF graphs [11], which is not appli-
caple to our setting due to (a) no performance guarantees or
complexity bounds are provided in [11], and (b) the queries
considered in [11] are expressible in FO, while we study (reg-
ular) reachability queries beyond FO.

2. DISTRIBUTED GRAPHS AND QUERIES
We start with distributed graphs (Section 2.1), reachabil-

ity queries and a partial evaluation framework (Section 2.2).

2.1 Distributed Graphs
We start with basic notations of graphs. We consider

node-labeled, directed graphs, simply referred to as graphs.

Graphs. A graph G = (V,E, L) consists of (1) a finite set
V of nodes; (2) a set of edges E ⊆ V × V , where (v, w) ∈ E
denotes a directed edge from node v to w; and (3) a function
L defined on V such that for each node v in V , L(v) is
a label from a set Σ of labels. Intuitively, L() specifies
node attributes, e.g., names, keywords, social roles, ratings,
companies [20]; the set Σ specifies all such attributes.

We will use the following notations.

(1) A path ρ from node v to w in G is a sequence of nodes
(v = v0, v1, . . . , vn = w) such that for every i ∈ [1, n],
(vi−1, vi) ∈ E. The length of path ρ, denoted by len(ρ),
is the number of edges in ρ. We define the label of ρ to be
the list of the labels of v1, . . . , vn−1, excluding v0 and vn.
Abusing notations of trees, we refer to vi as a child of vi−1,
and vj as a descendant of vi for i, j ∈ [0, n] and i < j.

We say that a node v can reach w if and only if (iff) there
is a path from v to w. The distance from v and w, denoted
by dist(u, v), is the length of the shortest paths from v to w.

(2) A node induced subgraph Gs of G is a graph (Vs, Es, Ls),
where (a) Vs ⊆ V , (b) there is an edge (u, v) ∈ Es iff u, v ∈
Vs and (u, v) ∈ E, and (c) for each v ∈ Vs, Ls(v) = L(v).

Distributed Graphs. In practice a graph G is often par-
titioned and stored in different sites [16, 27]. We define a
fragmentation F of a graph G = (V,E, L) as a pair (F, Gf ),
where F is a collection of subgraphs of G, and Gf is called
the fragment graph of F , specifying edges across distinct
sites. More specifically, F and Gf are defined as follows.

(1) F = (F1, . . . , Fk), where each fragment Fi is specified
by (Vi ∪ Fi.O, Ei ∪ cEi, Li) such that (a) (V1, . . . , Vk) is
a partition of V , (b) each (Vi, Ei, Li) is a subgraph of G
induced by Vi, (c) for each node u ∈ Vi, if there exists an
edge (u, v) ∈ E, where v is in another fragment, then there
is a virtual node v in Fi.O, and (d) cEi consists of all and
only those edges (u, v) such that u ∈ Vi and v is a virtual
node, referred to as cross edges. We also use Fi.I to denote
the set of in-nodes of Fi, i.e., those nodes u ∈ Vi such that
there exists a cross edge (v, u) incoming from a node v in
another fragment Fj to u, i.e., v is a virtual node in Fj .

Intuitively, Vi ∪ Fi.O of Fi consists of (a) those nodes in
Vi and (b) for each node in Vi that has an edge to another
fragment, a virtual node indicating the connection. The
edge set Ei∪cEi consists of (a) the edges in Ei and (b) cross
edges in cEi, i.e., edges to other fragments. In a distributed
social graph, for instance, cross edges are indicated by either
IRIs (universal unique IDs) or semantic labels of the virtual
nodes [21,27]. We also identify Fi.I, a subset of nodes in Vi

to which there are incoming edges from another fragment.
We assume w.l.o.g. that each Fi is stored at site Si.

(2) The fragment graph Gf is defined as (Vf , Ef ), where Vf

=
⋃

i∈[1,k](Fi.O ∪ Fi.I) and Ef =
⋃

i∈[1,k] cEi. Here Fi.O ∪

Fi.I includes all the nodes in Fi that have cross edges to or
from fragment Fi. These nodes can be grouped together,
denoted by a single “hyper-node”, indicating Fi. The set
Ef collects all the cross edges from all fragments.

Example 2: Figure 1 depicts a fragmentation F of graph
G, consisting of three fragments F1, F2, F3 stored in sites
DC1, DC2 and DC3, respectively. For fragment F1, F1.O
consists of virtual nodes Pat, Mat and Emmy, F1.I includes
in-nodes Fred, and its cE set consists of cross edges (Fred,
Emmy), (Bill, Pat) and (Walt, Mat), i.e., all the edges from F1

outgoing to another fragment; similarly for F2 and F3. In
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Figure 2: Fragment graph and partial evaluation

particular, edges (Mat, Fred) and (Bill, Pat) are cross edges
from fragments F2 to F1 and F1 to F3, respectively.
The fragment graph Gf of F is shown in Fig. 2, which

collects all in-nodes, virtual nodes and cross edges, but does
not contain any nodes and edges internal to a fragment. ✷

We remark that no constraints are imposed on fragmenta-
tion, i.e., the graphs can be arbitrarily fragmented. Observe
that multiple fragments may reside in a single site, and our
algorithms can be easily adapted to accommodate this.

2.2 Queries and Partial Evaluation
Given a fragmentation F of graph G and a query Q, dis-

tributed query evaluation is to compute the answer to Q in
G, using data in F . It aims to minimize (1) the number of
visits to each site, (2) the network traffic (communication
cost), i.e., the total amount of data shipped from one site
to another, and (3) the response time (computational cost).
We focus on three classes of graph queries in this work.

(1) A reachability query qr(s, t) is to determine whether node
s can reach another node t in G.

(2) A bounded reachability query qbr(s, t, l) is to decide
whether dist(s, t) ≤ l for a given integer (bound) l.

(3) A regular reachability (path) query qrr(s, t, R) is to deter-
mine whether there exists a path ρ from s to t such that ρ
satisfies R. Here R is a regular expression:

R ::= ǫ | a | RR | R ∪R | R∗,

where ǫ is the empty string, a is a label in Σ, RR and R∪R
and R∗ denote alternation, concatenation and the Kleene
closure, respectively. We say that a path ρ satisfies R if the
label of ρ is a string in the regular language defined by R.

Remark. Observe the following. (1) One can define a
“wildcard” , which matches any label, as a1 ∪ . . . ∪ am,
for all ai’s in Σ. Leveraging , reachability and bounded
reachability queries can be expressed as regular reachability
(path) queries. We study these queries separately because
(a) they admit lower complexity than regular reachability
queries, and (b) in practice, it often suffices to use these
simple queries [31], without paying the price of higher com-
plexity of regular path queries. (2) It is known that it is np-
complete to determine whether there exists a simple path ρ
from s to t such that ρ satisfies a regular expression R [22].
Here we do not require ρ to be a simple path, i.e., we allow
multiple occurrences of the same node on ρ, and develop a
low polynomial time algorithm for regular path queries.
Notations in this section are summarized in Table 1.

Partial evaluation. Given a query Q and a fragmentation
F of a graph G, we compute Q(G), a Boolean value indicat-
ing the reachability of Q in G. Assume that Q is posed on a
site Sc, referred to as a coordinator site, in which a mapping
h from the fragments in F to different sites is stored. As
shown in Fig. 2, we use partial evaluation to compute Q(G).

symbols notations
F = (F,Gf ) graph fragmentation in which Gf is the fragment graph

Fi.I the set of in-nodes in a fragment Fi

Fi.O the set of virtual nodes in a fragment Fi

qr(s, t) reachability query
qbr(s, t, l) bounded reachability query
qrr(s, t, R) regular reachability query

Table 1: Notations: graphs and queries

(1) Distributing at site Sc. Upon receiving Q, the coordi-
nating site Sc posts Q to each fragment, as is, by using h.

(2) Local evaluation at each site Si. Each site Si evaluates

(sub-queries) of Q in parallel, by treating the fragment Fi

stored in Si as the known input to Q; the other fragments Fj

are taken as the yet unavailable input, denoted by Boolean
variables associated with virtual nodes in Fi.O. The par-
tial answers are represented as vectors of Boolean formulas
associated with nodes in Fi.I, and are sent back to Sc.

(3) Assembling at Sc. Site Sc assembles these partial

answers to get the final answer Q(G), by using Gf .

Following this, the next three sections develop evaluation
algorithms for (bounded, regular) reachability queries.

3. DISTRIBUTED REACHABILITY
We first develop distributed evaluation strategies for

reachability queries. Given a reachability query qr(s, t) and a
fragmentation F = (F,Gf ) of a graph G, we decide whether
s reaches t in G. The main result of this section is as follows.

Theorem 1: Over a fragmentation F = (F,Gf ) of a graph
G, reachability queries can be evaluated (a) in O(|Vf ||Fm|)
time, (b) by visiting each site only once, and (c) with the to-
tal network traffic bounded by O(|Vf |

2), where Gf = (Vf , Ef )
and Fm is the largest fragment in F . ✷

As a proof of the theorem, we provide an algorithm to
evaluate reachability queries qr(s, t) over a fragmentation F
of a graph G. The algorithm, denoted as disReach, is given
in Fig. 3. As shown in Fig. 2, the algorithm evaluates qr(s, t)
based on partial evaluation, in three steps as follows.

(1) The coordinator site Sc posts the same query qr(s, t) to
each fragment in F (line 1).

(2) Upon receiving qr(s, t), each site invokes procedure
localEval to partially evaluate qr(s, t), in parallel (lines 3-
4). This yields a partial answer Fi.rvset from each fragment,
which is a set of Boolean equations (as will be discussed
shortly) and is sent back to the coordinator site Sc.

(3) The coordinator site Sc collects Fi.rvset from each site
and assembles them into a system RVset of Boolean equa-
tions (line 3). It then invokes procedure evalDG to solve
these equations and finds the final answer to qr(s, t) in G
(line 5). In contrast to partial query evaluation on trees
[2, 3, 6], the Boolean equations of RVset are possibly recur-
sively defined since graph G may have a cyclic structure,

We next present procedures localEval and evalDG, for pro-
ducing and assembling partial answers, respectively.

Partial evaluation. Procedure localEval evaluates qr(v, t)
on each fragment Fi in parallel. For each in-node v in Fi, it
decides whether v reaches t. Later on procedure evalDG will
assemble such answers and find the final answer to qr(s, t).

Let us consider how to compute qr(v, t). If t ∈ Fi and v
can reach t, then qr(v, t) can be locally evaluated to be true.
Otherwise, qr(v, t) is true iff there exists a virtual node v′ of
Fi such that both qr(v, v

′) and qr(v
′, t) are true. Indeed, in

1307



Algorithm disReach /* executed at the coordinator site */

Input: Fragmentation (F,Gf ), reachability query qr(s, t).
Output: The Boolean answer ans to qr in G.

1. post query qr(s, t) to all the fragments in F ;
2. RVset := ∅;
3. for each fragment Fi in F do

4. RVset := RVset ∪ localEval(Fi, qr(s, t));
5. ans := evalDG(RVset);
6. return ans;

Procedure localEval /* locally at each site in parallel */

Input: A fragment Fi, a reachability query qr(s, t).
Output: (a set rvset of Boolean equations).

1. Fi.rvset:= ∅; iset:= Fi.I; oset:= Fi.O;
2. if s ∈ Fi then iset:= iset ∪ {s};
3. if t ∈ Fi then oset:= oset ∪ {t};
4. for each node v ∈ oset do
5. if v = t then v.rf := true;
6. else v.rf := Xv ;
7. for each node v ∈ iset do
8. for each node v′ ∈ oset do
9. if v′ ∈ des(v, Fi) then v.rf := v.rf ∨ v′.rf;
10. Fi.rvset := Fi.rvset ∪ {Xv = v.rf}
11. send Fi.rvset to the coordinator site Sc;

Figure 3: Algorithm disReach
the latter case v can reach t if there exists a virtual node v′

such that v′ can reach t. Observe that qr(v, v
′) can be locally

evaluated in Fi, but not qr(v
′, t) since v′ and t are in other

fragments. Instead of waiting for the answer of qr(v
′, t), we

introduce Boolean variables, one for each virtual node v′ in
Fi.O, to denote the yet unknown answer to qr(v

′, t) in G.
The answer to qr(v, t) is then a Boolean formula v.rf associ-
ated with v, which is the disjunction of only the variables of
those virtual nodes v′ to which v can reach in Fi.
More specifically, procedure localEval works as follows. It

first initializes a set Fi.rvset of Boolean equations, and puts
the in-nodes Fi.I and virtual nodes Fi.O of Fi in sets iset

and oset, respectively (line 1). If s (resp. t) is in Fi, localEval
includes s (resp. t) in iset (resp. oset) as well (lines 2-3). A
Boolean variable Xv is associated with each node v ∈ oset∪
iset. For each virtual node v ∈ oset, if v is t or v can reach t
via a path in Fi, thenXv is assigned true (lines 4-5). For each
in-node v ∈ iset, localEval locally checks whether v can reach
a virtual node v′ ∈ oset (lines 8-9). If so, localEval updates
v.rf, the Boolean formula of v, to be v.rf ∨ v′.rf (line 10).
Observe that if t is in des(v, Fi), then v.rf is evaluated to be
true. Here v′ ∈ des(v, Fi) denotes that v′ is a descendant of
v in Fi; this can be checked using any available centralized
algorithm for reachability queries [31], locally in Fi. After
the formula of in-node v is constructed, Fi.rvset is extended
by including a Boolean equation Xv = v.rf. The set Fi.rvset
is then sent to the coordinator site Sc (line 11).

Example 3: Consider a query qr(Ann,Mark) over G in Fig 1.
Algorithm disReach at the coordinator site DC1 first sends
the query to each site, where a set of Boolean equations are
computed, as shown below.

Fi Fi.I rf rvset

F1
Ann xPat ∨ xMat {xAnn = xPat ∨ xMat, xFred = xEmmy}Fred xEmmy

F2

Mat xFred {xMat = xFred,
xJack = xFred,
xEmmy = xFred ∨ xRoss}

Jack xFred

Emmy xFred ∨ xRoss

F3
Ross true

{xRoss = true, xPat = xJack}Pat xJack

Observe that for each i ∈ [1, 3], each equation in Fi.rvset
is of the form Xv =

∨
Xv′ , where v is an in-node, and v′ is

Procedure evalDG /* executed at the coordinator site */

Input: A system RVset of Boolean equations.
Output: The Boolean answer ans to qr(s, t).

1. construct dependency graph Gd = (Vd, Ed, Ld) from RVset;
2. if there is no vd ∈ Vd such that L(vd) = {Xv = true}

then return false;
3. else merge all such nodes into a node vtrue;
4. if vtrue ∈ des(vs, Gd) then return true;
5. else return false;

Figure 4: Procedure evalDG

a virtual node that v can reach in Fi. In particular, Ross.rf
= true since the node Ross can reach Mark in F3. ✷

Assembling. After the local evaluation, the equations col-
lected in RVset at the coordinator site Sc form a Boolean
equation system (BES) [14]. It consists of equations of the
form Xv = v.rf, where v is an in-node in some fragment
Fi, and Boolean variables in v.rf are associated with virtual
nodes (out-nodes), which in turn are connected to in-nodes
of some other fragments. In particular, RVset contains a
Boolean equation Xs = s.rf, where the truth value of Xs is
the final answer to qr(s, t). Given RVset, procedure evalDG

is to compute the truth value of Xs. Observe that equations
in RVset may be defined recursively. For example, xFred in
Example 3 is defined indirectly in terms of itself.

Observe that RVset has O(|Vf |) Boolean equations. It is
known that BES RVset can be solved in O(|Vf |

2) time [14].
We next present such an algorithm, based on a notion of de-
pendency graphs. The dependency graph of RVset is defined
as Gd = (Vd, Ed, Ld), where vd ∈ Vd is a Boolean variable
Xv in RVset; Ld(vd) =

∨
Xvi if Xv =

∨
Xvi is in RVset; and

there is an edge (vd, v
′
d) ∈ Ed if and only if X ′

v is in
∨

Xvi of
Ld(vd). Note that the size |Gd| of Gd is in O(|Vf |

2), where
Gf = (Vf , Ef ) is the fragment graph of F .

Based on this notion, we present procedure evalDG in
Fig 4. It first constructs the dependency graph Gd of RVset
(line 1). It groups into a single node vtrue all those nodes
(variables) that are known to be true (line 3). It returns
false if no such node exists, since no in-nodes can reach t in
any of the fragment (line 2). Otherwise, it returns true if vs
(indicating Xs in Xs = s.rf) can reach vtrue (lines 4-5).

Example 4: Consider the Boolean equations of Example 3.
Given these, evalDG first builds its dependency graph, shown
in Fig 5(a). It then checks whether there is a path from XAnn

to Xtrue (XMark). It returns true as such a path exists. ✷

Correctness. One can easily verify the following: s can
reach t in G iff there exist a positive integer l and a path
(s, x1, . . . , xl, t) such that xi.rf’s are built in some fragment
by localEval, and moreover, are evaluated to true by proce-
dure evalDG. This can be shown by induction on l.

Complexity. Algorithm disReach guarantees the following.

The number of visits. Obviously each site is visited only
once, when the coordinator site posts the input query.

Total network traffic. For each fragment Fi, Fi.rvset has
|Fi.I| equations, each of |Fi.O| bits indicating the presence
or absence of variables in the Boolean formula. Hence the set
RVset consists of at most |Vf | equations, each of at most |Vf |
bits. The total network traffic is thus bounded by O(|Vf |

2),
independent of |G|, since |qr(s, t)| is negligible.

Computational cost. Observe the following. (1) Procedure
localEval is performed on each fragment Fi in parallel, and
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it takes O(|Fi||Vf |) time to compute Fi.rvset for each frag-
ment (see the discussion below). Hence it takes at most
O(|Vf ||Fm|) time to get Fi.rvset from all sites, where Fm is
the largest fragment of F . (2) It takes procedure evalDG

O(|Gd|) time to construct the dependency graph Gd, and to
find whether vs reaches vtrue in Gd. Since |Gd| is in O(|Vf |

2),
and |Vf | is typically much smaller than |Fm| in practice, the
computational cost is bounded by O(|Fm||Vf |). That is, the
response time is also independent of the entire graph G.
To check whether a pair of nodes connect in a fragment or

in Gd, we use DFS/BFS search, and thus get the O(|Vf ||Fm|)
(resp. O(|Vf |

2)) complexity. In fact any indexing techniques
(e.g., reachability matrix [31], 2-hop index [5]), parallel and
graph partition strategies (e.g., Pregel [21]) developed for
centralized graph query evaluation can be applied here, which
will lead to lower computational cost.
The analysis above completes the proof of Theorem 1.

Remarks. In theory, one can compute the transitive clo-
sure (TC) of a graph to decide whether a node can reach
another. However, it is impractical to compute the TC over
large graphs due to its time and space costs. Worse still,
when the graphs are distributed, computing TC may incur
excessive unnecessary data shipments. Indeed, we are not
aware of any distributed algorithms that compute TC with
performance guarantees on network traffic, even when index-
ing structures are employed (see [31] for a survey on such in-
dexes). In contrast, we show that in the distributed setting,
partial evaluation promises performance guarantees. Also
observe that in practice, the size of Vf is usually small [27].

4. DISTRIBUTED BOUNDED REACHA-

BILITY QUERIES
We next develop a distributed evaluation algorithm for

bounded reachability queries qbr(s, t, l), to decide whether
dist(s, t) ≤ l. In contrast to reachability queries, to evaluate
qbr(s, t, l) we need to keep track of the distances for all pairs
of nodes involved. Nevertheless, we show that the algorithm
has the same performance guarantees as algorithm disReach.

Theorem 2: Over a fragmentation F = (F,Gf ) of a graph
G, bounded reachability queries can be evaluated with the
same performance guarantees as for reachability queries. ✷

To prove Theorem 2, we outline an algorithm, denoted by
disDist (not shown), for evaluating qbr(s, t, l) over a fragmen-
tation F of a graph G. It is similar to algorithm disReach for
reachability queries (Fig. 3), but it needs different strategies
for partial evaluation at individual sites and for assembling
partial answers at the coordinator site. These are carried
out by procedures localEvald and evalDGd, respectively.

Procedure localEvald. To evaluate qbr(s, t, l), for each frag-
ment Fi and each in-node v in Fi, we need to find dist(v, t),
the distance from v to t. To do this, we find the minimum
value of dist(v, v′)+dist(v′, t) when v′ ranges over all virtual
nodes in Fi to which v can reach. We associate a variable

Xv′ with each such v′ to denote dist(v′, t) (numeric value).
We express the partial answer for v as a formula v.rf.

Procedure localEvald is similar to localEval, but differs in
that for each virtual node v, if v = t, it assigns 0 to v.rf,
and otherwise v.rf is Xv. For each in-node v ∈ iset and each
virtual node v′ ∈ oset, localEvald locally finds the distance
from v to v′ and uses a set st to collect formulas v′.rf +
dist(v, v′) if dist(v, v′) < l. The set Fi.rvset with equations
Xv = min(v.st) is sent to the coordinator site Sc.

Procedure evalDGd. Given Fi.rvset from all the sites, pro-
cedure evalDGd assembles these partial answers to find the
answer to qbr(s, t, l) in G. As opposed to evalDG (Fig. 4), it
builds an edge weighted graph Gd = (Vd, Ed, Ld,Wd), where
(Vd, Ed, Ld) is a labeled dependency graph as defined be-
fore; and the weight Wd(e) of e is dist(vd, v

′
d). Note that

|Vd| ≤ |Vf | and |Ed| ≤ |Vf |
2, where Gf = (Vf , Ef ) is the

fragment graph of F . The procedure then uses algorithm
Dijkstra [32] to compute the distance d from Xs to Xt, in
time O(|Ed|+ |Vd| log |Vd|), where Xs ∈ Vd denotes the node
s in qbr(s, t, l). It returns true iff d ≤ l. One can verify that
dist(s, t) in G is equal to the distance from Xs to Xt in Gd.

Example 5: Given query qbr(Ann,Mark, 6) posed on graph
G of Fig 1, disDist computes a set of equations of arithmetic
formulas (not Boolean equations). The vectors for F2 are:

Fi Fi.I st rvset

F2

Mat {(xFred + 1)} {{xMat = min{(xFred + 1)},

xJack = min{(xFred + 3)}, xEmmy =

min{(xFred + 3), (xRoss + 1)}}

Jack {(xFred + 3)}
Emmy {(xFred + 3), (xRoss + 1)}

After rvset is received by coordinator DC1, procedure
evalDGd first builds a weighted dependency graph Gd, shown
in Fig 5(b). It then computes the shortest path from XAnn

to XMark by applying Dijkstra to Gd. It returns true since the
length of the path is 6, satisfying the distance bound. ✷

One can verify that algorithm disDist (1) visits each
site only once, (2) its total network traffic is bounded by
O(|Vf |

2), and (3) it takes at most O(|Fm||Vf |) time, where
Fm is the largest fragment in F . Moreover, indexing tech-
niques [31] can be incorporated into localEvald and evalDGd,
to reduce the cost of local evaluation and hence, the response
time (e.g., with constant time via a distance matrix).

5. DISTRIBUTED REGULAR REACHA-

BILITY QUERIES
We now develop techniques to distributively evaluate reg-

ular reachability queries. Given such a query qrr(s, t, R) and
a fragmentation F of graph G, it is to find whether there
exists a path ρ from s to t in G such that ρ satisfies R.
In contrast to (bounded) reachability queries, to evaluate
qrr(s, t, R) we need to collect and transmit information about
not only whether there are paths from a node to another,
but also whether the paths satisfy the complex constraint
imposed by R. The main result of this section is as follows.

Theorem 3: On a fragmentation F = (F,Gf ) of graph G,
regular reachability queries qrr(s, t, R) can be evaluated (a) in
O(|Fm||R|2 + |R|2|Vf |

2) time, (b) by visiting each site once,
and (c) with the total network traffic in O(|R|2|Vf |)

2), where
Gf = (Vf , Ef ) and Fm is the largest fragment in F . ✷

To prove Theorem 3, we first introduce a notion of query
automata (Section 5.1), and then present an evaluation al-
gorithm based on query automata (Section 5.2).
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Figure 6: Query automaton Gq(R)

5.1 Query Automaton
To effectively check whether a path satisfies a regular ex-

pression R, we represent R as a variation of nondeterministic
finite state automata (NFA), referred to as query automaton.
A query automaton Gq(R) of qrr(s, t, R) accepts paths ρ

that satisfy R. It is defined as <Vq, Eq, Lq, us, ut>, where
(1) Vq is a set of states, (2) Eq ⊆ Vq×Vq is a set of transitions
between the states, (3) Lq is a function that assigns each
state a label in R, and (4) us and ut in Vq are the start
state and final state corresponding to s and t, respectively.
In contrast to traditional NFA, at state uv, for each edge
(v, v′) on a path, a transition uv → u′

v can be made via
(uv, u

′
v) ∈ Eq if L(v) = Lq(uv) and L(v′) = Lq(u

′
v). The

automaton can be constructed in O(|R|log(|R|)) time, using
a conversion similar to that of [15]. It is of linear size in |R|.
We say that a state u is a child of u′ (resp. u′ is a parent

of u) if (u′, u) ∈ Eq, i.e., u
′ can transit to u.

Example 6: Recall qrr(Ann,Mark, R), the regular reachabil-
ity query given in Example 1, where R = (DB* ∪ HR*). Its
query automaton Gq(R) is depicted in Fig 6. The set Vq

has four states Ann, DB, HR, Mark, where the start and final
states are Ann and Mark, respectively. The set Eq of transi-
tions is {(Ann,DB), (DB,DB), (DB,Mark), (Ann,HR), (HR,HR),
(HR,Mark)}. In contrast to NFA, it is to accept paths in, e.g.,
G of Fig. 1, and its transitions are made by matching the
labels of its states with the job labels on the paths (except
the start and final states, which are labeled with name).
As another example, consider query qrr(Walt,Mark, R′),

where R′=((CTO DB*) ∪ HR*). Figure 6 shows its query
automaton, which has 5 states and 7 transitions, with Walt

and Mark as its start state and final state, respectively. ✷

We say that a node v in G is a match of a state uv in
Gq(R) iff (1) L(v) = Lq(uv), and (2) there exist a path ρ
from v to t and a path ρ′ from uv to ut, such that ρ and ρ′

have the same label. The lemma below shows the connection
between qrr(s, t, R) and Gq(R), which is easy to verify.

Lemma 4: Given a graph G, qrr(s, t, R) over G is true if
and only if s is a match of us in Gq(R). ✷

5.2 Distributed Query Evaluation Algorithm
We next present an algorithm to evaluate regular reacha-

bility queries over a fragmentation F of a graphG. The algo-
rithm, denoted as disRPQ (not shown), evaluates qrr(s, t, R)
based on partial evaluation in three steps, as follows.

(1) It first constructs the query automaton Gq(R) of
qrr(s, t, R) at site Sc, and posts Gq to each fragment in F .

(2) Upon receiving Gq(R), each site invokes procedure
localEvalr to compute a partial answer to qrr(s, t, R) by using
Gq, in parallel. The partial answer at each fragment Fi, de-
noted as Fi.rvset, is a set of vectors. Each entry in a vector
is a Boolean formula (as will be discussed shortly).

(3) The partial answer is sent back to the coordinator site
Sc. The site Sc collects Fi.rvset from each site and assembles

Procedure localEvalr/* executed locally at each site, in parallel */

Input: A fragment Fi, a query automaton Gq(Vq , Eq , Lq , us, ut).
Output: Partial answer to qrr in Fi (a set rvset of vectors).

1. Fi.rvset := ∅; iset:= Fi.I; oset:= Fi.O;
2. if s ∈ Fi then iset:= iset ∪ {s} /* s denoted by us */
3. if t ∈ Fi then oset:= oset ∪ {t}; /* t denoted by ut */
4. for each node v ∈ Vi \ oset do v.visit := false;
5. for each node v ∈ oset do
6. v.rvset := ∅;
7. for each node u ∈ Vq do

8. if v = t and u = ut then v.rvec[ut] := true;
9. else if L(v) = Lq(u) then v.rvec[u] := X(v,u);
10. else v.rvec[u] := false;
11. v.visit := true;
12. for each node v ∈ iset do
13. v.rvec := cmpRvec(v, Fi, qrr, Gq);
14. Fi.rvset := Fi.rvset ∪ v.rvec;
15. send Fi.rvset to the coordinator site Sc;

Procedure cmpRvec

Input: A node v, a fragment Fi, and
a query automaton Gq(Vq , Eq , Lq , us, ut).

Output: The vector v.rvec of v, consisting of Boolean formulas.

1. if v.visit = true then return v.rvec;
2. for each node vq ∈ Vq do rvec[vq ] := false;
3. for each node w ∈ C(v, Fi) do

4. if w.visit = false then

5. w.rvec := cmpRvec(w,Fi, qrr, Gq(R));
6. for each node vq ∈ Vq do

7. if L(v) = Lq(vq) then

8. rvec[vq ] := rvec[vq ] ∨ cmposeVec(vq , w, w.rvec, Gq(R));
9. v.visit := true;
10. return rvec;

Figure 7: Procedure localEvalr and cmpRvec

them into a set RVset of vectors of Boolean formulas. It then
invokes procedure evalDGr to solve these equations and find
the final answer to qrr(s, t, R) in G.

We now present procedures localEvalr and evalDGr.

Local evaluation. We first formulate the partial answer
v.rvec at each node v in a fragment Fi. It indicates whether
v is a match of some state u in the query automaton Gq, i.e.,
v reaches t and moreover, satisfies the constraints imposed
by Gq (Lemma 4). Hence we define v.rvec to be a vector
of O(|Vq|) entries, where Vq is the set of states in Gq. For
each state u in Vq, the entry v.rvec[u] is a Boolean formula
indicating whether node v matches state u. In contrast to its
counterparts for (bounded) reachability queries, here v.rvec
is a vector of Boolean formulas, instead of a single formula.

Observe that v matches a state uv if and only if (1) L(v)
= L(uv), and (2) either v is t, or there exists a child w of v
and a child uw of uv such that w matches uw. To cope with
virtual nodes, for each w ∈ Fi.O and each state uw ∈ Vq, we
introduce a Boolean variable X(w,uw), denoting whether w
matches uw. The vector of each in-node v in Fi.I consists
of formulas defined in terms of these Boolean variables.

Based on these, we give procedure localEvalr in Fig. 7.
It first initializes a set Fi.rvset of vectors, and puts the in-
nodes Fi.I and virtual nodes Fi.O of Fi in sets iset and
oset, respectively (line 1). If s (resp. t) is in Fi, localEval
includes s (resp. t) in iset (resp. oset) as well (lines 2-3).
For each node v in Fi, it associates a flag v.visit to indicate
whether v.rvec is already computed, and initializes it to be
false if v is not in oset (line 4). It then initializes the vector
v.rvec for each virtual node v of Fi (lines 5-11), as follows.
If v = t, then v.rvec[ut] is assigned true (line 8). Otherwise
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for each state u in Gq, if u and v have the same label, then
v.rvec[ut] is a Boolean variable X(v,u), indicating whether v
matches u (line 9); if not, v.rvec[u] is false (line 10). Since
v.rvec is initialized (lines 6-10), localEval sets v.visit to be
true (line 11). Then for each in-node v, localEvalr invokes
procedure cmpRvec to partially compute the vector of v, and
extends Fi.rvset with v.rvec (lines 12-14). After all in-nodes
are processed, F.rvset is sent to site Sc (line 15).
Procedure cmpRvec computes the vector v.rvec for a node

v, as follows. If v.visit is true, it returns v.rvec (line 1). Oth-
erwise, it initializes a vector rvec (lines 2). The procedure
then computes v.rvec following Lemma 4. For each child w
of v, if w is not visited, then w.rvec is computed via a recur-
sive call of cmpRvec (lines 3-5; here C(v, Fi) denotes the set
of children of v in Fi). After w.rvec is known, for each state
vq in Gd, cmpRvec checks if v and vq have the same label
(lines 6-7); if so, it uses w.rvec[v′q] to compute rvec[vq] via
procedure cmposeVec (line 8). After v.rvec[vq] is computed,
v.visit is set true (line 9) and v.rvec[vq] is returned (line 10).
Procedure cmposeVec (not shown) takes a state vq and a

node w as input, and constructs a formula f using formulas
in w.rvec. Initially f is false. For each child state v′q of vq,
it checks whether w and v′q have the same label. If so, f is
extended by taking w.rvec[v′q] as a disjunct. The formula f
is returned after all child states of vq is processed.

Example 7: Given qrr(Ann,Mark, R), the query of Exam-
ple 1 posed on the distributed graph G of Fig. 1, procedure
localEvalr evaluates the query on F2 as follows. For each
virtual node of F2, it initializes its vector, e.g., the vector
of Ross is (false, false, X(Ross,HR), false), corresponding to the
states (Ann,DB,Mark,HR) in query automaton Gq(R) (see
Fig. 6). It then invokes procedure cmpRvec to compute the
vector of each in-node F2. For instance, consider in-node
Emmy. Since (1) Emmy is an HR that matches state HR in
Gq, and (2) Emmy has a child Ross that may match state
HR, the formula Emmy.[HR] is extended to X(Ross,HR) by pro-
cedure cmposeVec. The final vectors for F2 are:

fragment in-node rvec(Ann,DB,HR,Mark)

F2

Mat false false X(Fred,HR) false

Jack false false false false
Emmy false false X(Ross,HR) false ✷

Assembling. Procedure evalDGr (not shown) collects the
partial answers from all the sites into a set RVset, and as-
semble them to compute the answer to qrr(s, t, R) at the
coordinator site Sc. It is similar to procedure evalDG given
in Fig. 4, except that it uses a different notion of dependency
graphs. Here the dependency graph Gd of RVset is defined
as (Vd, Ed, Ld), where (a) for each in-node v and each entry
u of its vector v.rvec in RVset, there is a node vd(v,u) ∈ Vd,
(b) Ld(vd(v,u)) = v.rvec[u], a formula of the form

∨
X(v′,u′);

and (c) there is an edge (vd(v,u), vd(v′,u′)) ∈ Ed if and only
if X(v′,u′) appears in Ld(vd(v,u)). In other words, the node
set Vd of Gd is defined in terms of both in-nodes in the
fragments of F and the states in the query automaton Gq.
Procedure evalDGr constructs the dependency graph Gd

of RVset, and checks whether vd(s, us) can reach vd(u,u′)

for some node u, where Ld(vu,u′) is true. One can verify
that s matches us iff there exists a node vd(u,u′) ∈ Vd with
Ld(vu,u′) = true, and vd(s, us) reaches vd(u,u′).

Example 8: Consider again query qrr(Ann,Mark, R) posed
on the graph G of Fig. 1. The vector sets Fi.rvset are com-
puted in parallel in all fragments Fi, as described in Ex-

,R=(DB* U HR*)Gq(R)
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...
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Figure 8: Assembling with dependency graph

ample 7. Upon receiving Fi.rvset from all the sites, pro-
cedure evalDGr first builds a dependency graph Gd based
on the vector sets, as shown in Fig 8. Each node, e.g.,
vd(Ann,Ann) is shown together with its label, e.g., X(Mat,HR).
It then checks whether node vd(Ann,Ann) reaches a node
with label true, which is node vd(Ross,HR) here. It returns
true as the query answer, as there is a path (Ann, Mat, Fred,
Emmy, Ross, Mark) satisfying the regular expression R. ✷

Correctness and complexity. One can readily verify the
following. (1) The algorithm disRPQ always terminates. (2)
Given a query qrr(s, t, R) and a fragmentation F of graph G,
algorithm disRPQ returns true iff there exists a path ρ from
s to t in G such that ρ satisfies R. To complete the proof of
Theorem 3, observe the following about its complexity.

The number of visits. Each site is visited only once, when
the query automaton is posted by the coordinator site.

Total network traffic. The communication cost includes the
following: (1) O(|Gq|card(F )) for sending query automaton
Gq(R) to each site, where card(F ) is the number of frag-
ments, and |Gq| is in O(|R|); and (2) O(|R|2|Fi.I||Fi.O|) for
sending partial answers from each fragment Fi to the coordi-
nator site. Putting these together, the total network traffic
is in O(|R|2|Vf |

2), where Vf is the total number of virtual
nodes, since the number card(F ) of fragments and query size
|R| are much smaller than |Vf | in practice. Note that the
communication cost is independent of the entire graph G.

Total computation. It takes O(|R|2 ∗ |Fm|) time to compute
the vector set in each fragment, in parallel, where |Fm| is the
size of the largest fragment Fm in F . To see this, observe
that at each node v, it takes at most O(|C(v, Fm)| ∗ |R|2)
time to construct its vector, for each child of v in C(v, Fm).
Moreover, each node is visited once and its vector is com-
puted once. Thus, in total it takes at most O(|Fm||R|2) time
to compute all the vectors. The assembling phase takes up
to O(|R|2|Vq|)

2) time. Taking these together, the total com-
putation time is in O(|Fm||R|2 + |R|2|Vf |)

2).

6. DISTRIBUTED REACHABILITY WITH

MAPREDUCE
We next present a simple MapReduce algorithm to eval-

uate regular reachability queries. This algorithm just aims
to demonstrate how easy to support our techniques in the
MapReduce framework. More advanced MapReduce algo-
rithms can be readily developed based on partial evaluation.

MapReduce [7] is a software framework to support dis-
tributed computing on large datasets with a large number
of computers (nodes). (1) The data are partitioned into
a collection of key/value pairs. Each pair is assigned to a
node (mapper) identified by its key. (2) Each mapper pro-
cesses its key/value pairs, and generates a set of intermediate
key/value pairs, by using a Map function. These pairs are
hash-partitioned based on the key. Each partition is sent
to a node (reducer) identified by the key. (3) Each reducer
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Figure 9: Processing path of algorithm reduceRPQ

produces key/value pairs via a Reduce function, and writes
them to a distributed file system as the result [7].
Our MapReduce algorithm, MRdRPQ, is illustrated in

Fig. 9 and given in Fig. 10. It evaluates qrr(s, t, R) on graph
G using procedures preMRPQ, mapRPQ and reduceRPQ. We
next present the three procedures in details.

Procedure preMRPQ. A coordinator first generates the query
automaton Gq(R) of qrr(s, t, R) (line 1; see Section 5). The
graph G is then partitioned into K fragments (line 2) using
some strategy parG, where K is the number of mappers.
Each fragment Fi is represented as a key/value pair, where
the key is i ∈ [1,K], and its value is a pair <Fi, Gq(R)>
(lines 3-4). It is sent to mapperMi along withGq(R) (line 5).
Graph partitioning is conducted implicitly by MapReduce

implementation (e.g., Hadoop), provided the number K of

mappers and the average size ⌈ |G|
K

⌉ of fragments (line 2). To
explore the maximum parallelism we want the fragments to

be of equal size; hence ⌈ |G|
K

⌉. One may also want to minimize∑
Fi∈F

|Fi.I||Fi.O|, where Fi.I (resp. Fi.O) is the set of in-

nodes (resp. virtual nodes) of fragment Fi. However, this
partition problem is intractable [10]. In our implementation
we used Hadoop’s default partitioning strategy.

Procedure mapRPQ at each mapper. Upon receiving a pair
<i, (Fi, Gq(R))>, procedure mapRPQ is triggered at map-
per Mi, in parallel. It simply uses procedure localEvalr of
Fig. 7 as its Map function, and computes a key/value pair
<1, rvseti> (line 1), where rvseti is the vector set as de-
scribed in Section 5. It sends the pair to a reducer Ro. Note
that pairs from all the mappers are sent to the same reducer.

Procedure reduceRPQ at the reducer Ro. After collecting the
key/value pairs from all the mappers, the reducer puts these
pairs in a set RVset (lines 1-3). It then invokes the assem-
bling procedure evalDGd (see Section 5) as the Reduce func-
tion to compute the answer ans to qrr in G (line 4), and
writes a pair <0, ans> to the distributed file system (line 5).

Correctness and complexity. The correctness of algo-
rithm MRdRPQ immediately follows from the correctness of
algorithm disRPQ (see Section 5). Following [1], we analyze
the performance of MRdRPQ using the elapsed communica-
tion cost ECC (data volume cost), which measures the total
time cost of (parallel) data shipment. We define a process
path P of MRdRPQ to be a path from the coordinator to
the reducer, passing a single mapper (see Fig. 9). The cost
of a process path α is the sum of the size of input data
shipped to the nodes on α, following an edge of α. The ECC

of MRdRPQ is the maximum cost over all process paths.
The ECC analysis unifies the time and network traffic costs

of a MapReduce algorithm. It does not count the in-memory
computation cost of the Map and Reduce functions. Never-
theless, (1) any indexes and compression techniques devel-
oped for centralized graph query evaluation can be adopted

Procedure preMRPQ

Input: Graph G, regular reachability query qrr(s, t, R), integer K.
Output: Lists of key/value pairs to be sent to mappers.

1. construct query automaton Gq(R);/*executed at coordinator*/

2. glist := parG(G,K, ⌈ |G|
K

⌉); /* graph partition */
3. for each fragment Fi ∈ glist (i ∈ [1,K]) do

4. pair L := <i, (Fi, Gq(R))>;
5. send L and Gq(R) to mapper i;

Procedure mapRPQ /* executed at each mapper */

Input: A key/value pair L = <i, (Fi, Gq(R))>.
Output: A key/value pair rdpair.

1. rvseti := localEvalr(Fi, Gq(R));
2. send localEvalr(Fi, Gq(R)) to a reducer;

Procedure reduceRPQ /* executed at a single reducer */

Input: A list of key/value pairs.
Output: The Boolean value ans to qrr in G.

1. set RVset := ∅;
2. for each pair <1, rvseti> in rdlist do
3. RVset:= RVset ∪ rvseti;
4. ans:= evalDGr(RVset);
5. return <0, ans >;

Figure 10: Algorithm MRdRPQ

by mappers, as remarked earlier, (2) further MapReduce

steps can be used to implement both Map and Reduce func-
tions, and (3) network traffic dominates the total computa-
tion time for real-life large graphs [1].

For algorithm MRdRPQ, one can verify the following. (1)
The input size of each mapper is bounded by O(|Fm|), where
Fm is the largest fragment returned by parG. (2) The input
size of the reducer is bounded by O(|R|2|Vf |

2), where Vf is
the set of nodes in the fragment graph Gf . Putting these
together, the ECC of mapRPQ is O(|Fm|+ |R|2|Vf |

2).

7. EXPERIMENTAL EVALUATION
We next present an experimental study of our distributed

algorithms. Using real-life and synthetic data, we conducted
four sets of experiments to evaluate the efficiency and com-
munication costs of algorithms disReach (Section 3), disDist
(Section 4), disRPQ (Section 5) and the MapReduce algo-
rithm MRdRPQ (Section 6) on Amazon EC2.

Experimental setting. We used the following data.

(1) Real-life graphs. For (bounded) reachability queries, we

used the following4: (a) a social network LiveJournal, (b)
a communication network WikiTalk, (c) two Web graphs
BerkStan and NotreDame, and (d) a product co-purchasing
network Amazon. The sizes of these graphs are shown below.

dataset |V | |E|

LiveJournal 2,541,032 20,000,001
WikiTalk 2,394,385 5,021,410
BerkStan 685,230 7,600,595
NotreDame 325,729 1,497,134
Amazon 262,111 1,234,877

For regular reachability queries, we used the following
graphs with attributes on the nodes: (a) Citation5, in which
nodes represent papers with id and venue, and edges denote
citations, (b) MEME5, a blog network in which nodes are
Web pages and edges are links, (c) Youtube6, a social net-
work in which each node is a video with attributes (e.g.,

4http://snap.stanford.edu/data/index.html
5http://www.arnetminer.org/citation/
6http://netsg.cs.sfu.ca/youtubedata/
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category), and each edge indicates a recommendation, and
(d) Internet7, where each node is a system labeled with its id
and location, and each edge represents internet connection.
The datasets are summarized below, where |L| is the size of
node label set, and card(F ) is the number of the fragments
generated for regular reachability queries (see below).

dataset |V | |E| |L| card(F )

Citation 1,572,278 2,084,019 6300 10
MEME 700,000 800,000 61065 11
Youtube 234,452 454,942 12 12
Internet 57,971 103,485 256 10

(2) Synthetic data. We designed a generator to produce

large graphs, controlled by the number |V | of nodes, the
number |E| of edges, and the size |L| of node labels.

(3) Graph fragmentation. We randomly partitioned real-life
and synthetic graphs G into a set F of fragments, controlled
by card(F ) and the average size of the fragments in F (the
sum of the numbers of nodes and edges), denoted by size(F ).
Unless stated otherwise, size(F ) = |G|/card(F ).

(4) Query generator. We randomly generated (a) reachabil-

ity queries, (b) bounded reachability queries with bound l,
and (c) regular reachability queries from a set L of labels.

(5) Algorithms. We implemented the following algorithms

in Java: (A) disReach, disReachn and disReachm for reach-
ability queries, where (a) disReachn ships all the fragments
to a coordinator in parallel, which calls a centralized BFS

algorithm to evaluate the query [31]; and (b) disReachm,
a message-passing based distributed BFS algorithm follow-
ing [21] (see details below); (B) disDist and disDistn for
bounded reachability queries, where disDistn is similar to
disReachn; (C) disRPQ, disRPQn and disRPQd for regular
reachability queries, where disRPQn is similar to disReachn,
and disRPQd is a variant of the algorithm of [30] (see Sec-
tion 1); and (D) the MapReduce algorithm MRdRPQ.
Following [21], algorithm disReachm assigns a worker Si

for each fragment Fi, and a master Sc that maintains the
fragment graph (see Section 2). (i) Each node v in the frag-
ments has a status l(v) ∈ {inactive, active}, initially inactive.
(ii) A message “T” can be sent only from active nodes v1
(i.e., l(v1) = active) to their inactive children v2 (i.e., l(v2)
= inactive), which then become active. (iii) no active node
can become inactive again. (iv) Si can send “T”, “idle”, or a
virtual node of Fi as a message to Sc.
Upon receiving a reachability query qr(s, t), Sc posts qr

to all the workers Si. For the fragment Fi that contains
the node s specified in qr(s, t), its worker Si changes l(s)
to active, and sends a message “T” to its immediate inac-
tive children, which in turn propagate “T” following a BFS

traversal to inactive nodes. During the propagation, (i) if
“T” reaches an inactive virtual node v, Si sends a message
v to Sc, which redirects the message to workers Sj where
the fragments Fj has inactive in-node v; Sj then makes v
active, and propagates “T” along the same lines in Fj ; (ii)
if “T” reaches the node t in qr(s, t), Si sends message “T”

to Sc, and algorithm disReachm returns true, indicating that
qr(s, t) = true; and (iii) when no message is propagating
in Si, it sends message “idle” to Sc. Algorithm disReachm
returns false if all the workers send “idle” to it.

Machines. We deployed these algorithms on Amazon EC2
High-Memory Double Extra Large instances8. Each site

7http://www.caida.org/data/
8http://aws.amazon.com/ec2/

Time(second) Traffic(MB)Datasets
disReachdisReachndisReachm disReachdisReachndisReachm

LiveJournal 12.03 27.52 186.55 174 1800 27
WikiTalk 3.32 9.95 41.42 80 726 19
BerkStan 3.25 8.51 40.31 29 555 11
NotreDame 0.83 3.77 13.32 14 147 7
Amazon 0.55 2.55 7.86 10 120 5

Table 2: Efficiency and data shipment: real life data

stored a fragment. Each experiment was run 5 times and
the average is reported here.

Experimental results. We next present our findings.

Exp-1: Efficiency and scalability of disReach.

Efficiency. We first evaluated the efficiency of disReach,
disReachn and disReachm. Fixing card(F ) = 4, we randomly
generated 100 reachability queries (where around 30% re-
turn “true”), and report the average evaluation time and the
network traffic in Table 2. The results show that disReach

is far more efficient than disReachn and disReachm. For ex-
ample, on Amazon, disReach takes only 20% of the running
time of disReachn, and 6% of that of disReachm. On the real
datasets it takes 4 seconds in average.

For the network traffic of disReachm, we counted the total
number of messages sent between the workers and the mas-
ter. Table 2 shows that in average, the network traffic of
disReach is only 9% of that of disReachn (i.e., the size of the
original graphs), but is not as good as that of disReachm. In-
deed, the data shipment of disReachm is linear in the number
of the total virtual nodes. However, this reduction comes at
the cost of serializing operations that can be conducted in
parallel, as indicated by its extra running time (Table 2).
Moreover, it has no bound on the number of visits to each
site; for instance, when card(F ) = 4 on Amazon, the four
sites were visited about 2500 times in total.

Scalability. To evaluate the scalability with card(F ), we used
LiveJournal as the dataset and varied card(F ) from 2 to
20. We used the same set of queries as above. Fig. 11(a)
shows that the larger card(F ) is, the less time disReach and
disReachn take. For disReach, this is because partial evalu-
ation of localEval takes less time on smaller fragments. For
disReachn, while the evaluation time on the restored graph
remains stable (about 10 seconds), it takes less time to ship
each fragment to the coordinator when card(F ) increases. In
contrast, the larger card(F ) is, the more costly disReachm is.
Indeed, smaller fragments require more frequent visits and
thus, more communication cost.

To evaluate the scalability with the average size(F ) of
fragments, we generated synthetic graphs following the den-
sification law [20], by fixing card(F ) = 8 and varying the size
of the graphs from 280K to 2.52M. As shown in Fig. 11(b),
when size(F ) is increased, so is the running time of all these
algorithms, as expected. Nonetheless, disReach scales well
with size(F ), and is less sensitive to size(F ) than the others.

We also tested disReach and disReachm over a larger syn-
thetic graph, which has 36M nodes and 360M edges. We
varied card(F ) from 10 to 20 in 2 increments. The results,
shown in Fig 11(c), tell us the following. (1) disReach scales
well with card(F ), and takes less time over larger card(F ),
and (2) disReachm takes more time when card(F ) gets larger.
The results are consistent with the observation of Fig 11(a).

Exp-2: Efficiency of disDist. This set of experiments
evaluated the performance of disDist and disDistn. Us-
ing WikiTalk, we varied card(F ) from 2 to 20, and ran-
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Figure 11: Performance evaluation

domly generated 100 bounded reachability queries with
l=10. Fig. 11(d) shows that (1) disDist outperforms disDistn
by 62.5% in average, and (2) disDist and disDistn take less
time over larger card(F ), for the same reason as given above.
The performance of disDist and disDistn (not shown) are

consistent with their counterparts (disReach and disReachn).

Exp-3: Efficiency and scalability of disRPQ.

Efficiency. The third set of experiments focused on the per-
formance of algorithms disRPQ, disRPQn and disRPQd [30],
for regular reachability queries. We specify the complexity
of such a query in terms of (|Vq|, |Eq|, |Lq|), where Vq, Eq

and Lq are the sets of states, transitions and node labels in
its query automaton, respectively (see Section 5.1).
We first evaluated the response time and network traffic

of these algorithms on the four real-life datasets described
earlier, with |V |, |E|, |L| and card(F ) given there. We gen-
erated 30 regular reachability queries with (|Vq| = 8, |Eq| =
16, |Lq| = 8), and report their average time (resp. network
traffic) in Fig. 11(e) (resp. Fig 11(f)). We find the follow-
ing: (1) disRPQ is more efficient than disRPQn and disRPQd;
indeed, the running time of disRPQ is 61.8%, 88%, 64.8%
and 56.6% of that of disRPQd on Youtube, MEME, Citation
and Internet, respectively; and (2) disRPQ incurs less net-
work traffic than the other algorithms: at most 25% of data
shipped by disRPQd and 3% of that of disRPQn in average.
To evaluate the impact of query complexity, we used

Youtube and generated 40 regular reachability queries by
varying |Vq| from 4 to 18 and |Eq| from 8 to 36, while fixing
|Lq| = 8. Fig. 11(g) shows that (1) all the algorithms take
longer to answer larger queries, and (2) disRPQ and disRPQd

are less sensitive to the size of queries than disRPQn.

Scalability. We generated synthetic graphs by fixing card(F )
= 10 while varying the size of the graphs from 350K to

3.15M. We tested 30 queries with |Vq| = 8, |Eq| = 16 and
|Lq| = 8, and report the average running time in Fig. 11(h).
The result shows that disRPQ scales well with size(F ), and
performs better than disRPQd and disRPQn. Moreover, it is
efficient: disRPQ takes 16 seconds on graphs with 1.5M (mil-
lion) nodes and 2.1M edges. In addition, the larger size(F )
is, the longer the three algorithms take, as expected.

To evaluate the scalability card(F ), we generated graphs
with 1.2M nodes and 4.8M edges, and varied card(F ) from 6
to 20. As shown in Fig. 11(i), the larger card(F ) is, the less
time disRPQ takes, since it conducts partial evaluation on
smaller fragments by exploring parallel computation. This
confirms our complexity analysis for disRPQ (Section 5). In-
deed, the time taken by disRPQ when card(F ) = 6 is reduced
by 75% when card(F ) = 20. Similarly, disRPQd and disRPQn

take less time when card(F ) is increased.
In addition, we evaluated the scalability of disRPQ and

disRPQd over large synthetic graphs. Fixing |V | = 36M, |E|
= 360M and |L| = 50, we varied card(F ) from 10 to 20 in 2
increments. As shown in Fig 11(j), (1) both algorithms scale
well with card(F ), and take less time when card(F ) increases;
and (2) disRPQ consistently outperforms disRPQd.

Exp-4: Efficiency of MRdRPQ. Finally, we evaluated the
efficiency and scalability of MRdRPQ, implemented using
Hadoop (http://hadoop.apache.org), and deployed on Ama-
zon EC2, where each instance serves as a mapper. We use
Youtube and four sets of qrr Q1, Q2, Q3,Q4 of different com-
plexities (4, 6, 8), (6, 8, 8), (10, 12, 8), (12, 14, 8), respectively.

To evaluate the scalability of MRdRPQ, we fixed the num-
ber of mappers as 10, and varied the graph size from 350K
to 3.15M. As shown in Fig. 11(k), MRdRPQ scales well with
size(F ). Moreover, the larger size(F ) is or the more complex
a query is, the longer time MRdRPQ takes, as expected. To
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evaluate its scalability with the number |M | of mappers, we
varied |M | from 5 to 30. As shown in Fig. 11(l), it takes
less time of MRdRPQ to evaluate queries with more map-
pers. Indeed, the time taken by MRdRPQ using 5 mappers
is reduced by 50% when 30 mappers are used for Q1.
We also find that disRPQ takes 17.4% of the running time

of MRdRPQ and 3.7% of its network traffic on Youtube. The
extra cost of MRdRPQ is incurred in the Map phase of the
MapReduce framework, for distributing data to mappers.

Summary. From the experimental results we find the fol-
lowing. (1) All of our algorithms scale well with the size
of graphs, the number of fragments, and the complexity
of queries (for disRPQ and MRdRPQ). (2) Our algorithms
are efficient even on randomly partitioned graphs. For in-
stance, (a) disReach takes 20% and 6% of the running time
of disReachn and disReachm over Amazon, and takes in av-
erage 4 seconds over all real life datasets; and (b) disRPQ

takes 67.8% and 46% of the time of disRPQd [30], and ships
47.9% and 45.9% of the data sent by disRPQd, on real-life
and synthetic graphs in average, respectively. Overall our
algorithms ship no more than 11% of the entire graphs in
average. (3) Partial evaluation works well in the MapReduce

model, as verified by the performance of MRdRPQ.

8. CONCLUSION
We have provided algorithms for evaluating a group of

reachability queries on distributed graphs based on partial
evaluation, possess performance guarantees on the number
of visits to each site, the total network traffic, and on the
response time. Moreover, they are generic: no constraints
is posed on how the graphs are partitioned and distributed.
We have also shown that partial evaluation can be naturally
conducted as MapReduce. Our experimental study has ver-
ified the scalability and efficiency of our methods. We con-
clude that partial evaluation provides a promising approach
to distributed graph query evaluation.
We are currently developing distributed evaluation

(MapReduce) algorithms for other queries, notably graph
pattern matching, over larger real-life graphs. Another topic
is to combine partial evaluation and incremental computa-
tion, to provide efficient distributed graph query evaluation
strategies in the dynamic world.
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