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ABSTRACT

Natural language text corpora are often available as sets
of syntactically parsed trees. A wide range of expressive
tree queries are possible over such parsed trees that open a
new avenue in searching over natural language text. They
not only allow for querying roles and relationships within
sentences, but also improve search effectiveness compared
to flat keyword queries. One major drawback of current
systems supporting querying over parsed text is the perfor-
mance of evaluating queries over large data. In this paper
we propose a novel indexing scheme over unique subtrees
as index keys. We also propose a novel root-split coding
scheme that stores subtree structural information only par-
tially, thus reducing index size and improving querying per-
formance. Our extensive set of experiments show that root-
split coding reduces the index size of any interval coding
which stores individual node numbers by a factor of 50% to
80%, depending on the sizes of subtrees indexed. Moreover,
We show that our index using root-split coding, outperforms
previous approaches by at least an order of magnitude in
terms of the response time of queries.

1. INTRODUCTION
Natural language text is a prominent source of represent-

ing and communicating information and knowledge. It is
often considered as an arbitrary collection or sequence of
words by search systems. Such systems ignore the regular-
ities and inherent structure that exist in finer granularity
portions of text such as sentences. Tools such as part of
speech taggers, syntactic parsers and semantic role labelers
augment natural language text with tags and relationships
that can be used to improve the effectiveness of searching
over text significantly.
Various applications have shown interest in using the out-

put of such text augmenting tools. A body of recent works [6,
18] focuses on improving the precision and recall of open
information extraction systems by attending to the inher-
ent structure underlying natural language text to train fea-

tures for their extractions, and achieves up to %70 improve-
ment on the F-measure of extractions compared to TextRun-
ner [3]. Moreover, Question answering systems such as Pow-
erAnswer [11] and MULDER [10] use syntactic parsing in
several components of their system.

As an example of how such tools can improve the effec-
tiveness of searching over natural language text, imagine
one is interested in finding out the answer to the TREC-
2004 question ‘What kind of animal is agouti?’ Using
a keyword-based search engine. She can send a query such
as ‘agouti’ and scan the returned results for the desired
answer. Alternatively, if a corpus of syntactically parsed
sentences exists, it can be matched against a parse of the
query ‘agouti is a’. As a result, sentences having the
same structure and terms as the given parsed query will be
returned in the result set. Figure 1 shows the parse tree of
the query and the parse tree of a sample sentence contain-
ing the answer, parsed using the Stanford parser [9]. The
matched subtree has been bolded in this figure for better vi-
sualization. As this figure shows, a few words separate the
match, rodent, from the query terms. However, the parser
manages to identify the correct syntactic relationship be-
tween the match, and the query terms.

1.1 Problem Statement
Despite great advantages of using parsing in terms of im-

proving the search effectiveness, syntactic parsers are not
in widespread use for querying natural language text. One
reason that is sometimes cited is that parsing is a slow pro-
cess. As an example, Stanford parser takes a few days to
parse one million sentences on a single machine. However,
this is not a major problem since parsing can be parallelized
on a large number of machines, reducing its time cost sig-
nificantly. Moreover, parsing is a one time task and the
amortized cost of parsing a corpus of natural language text
once and querying it many times, is not high.

The other and probably a stronger reason why syntactic
parsing has not been widely used is that there is a lack of
efficient storage mechanisms and access methods over large
scale parsed text. Some of the major querying systems over
syntactically parsed corpora such as TGrep2 [14] and Cor-
purSearch [13] require an in-memory scan of the entire cor-
pus for answering any single query. As a result, they cannot
scale to large corpora. LPath [4] and similar relational node
approaches1 that store structural information of individual
nodes in a RDBMS, improve the performance of evaluating
small or selective queries. However, they suffer from long

1often over XML documents
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Figure 1: A sample query tree and a parsed matching sentence. The matched subtree is bolded. Label nodes
adhere to Penn treebank tags.

posting lists over low selectivity node labels and require a
large number of joins for evaluating large queries. To al-
leviate these problems path indexes (e.g. see [16, 15, 20])
and frequent subtree (or subgraph) indexes such as [23, 19]
have been proposed over tree structured data and can be uti-
lized for querying syntactically annotated trees. One major
drawback of path indexes is that trees and graphs decom-
posed into paths lose structural information, and a unique
tree or graph cannot be constructed from the decomposed
paths. As a result, such systems either do not support exact
query matching or require post validations to find the set of
matching nodes. Indexes which use frequent sub-structures
do not suffer from loss of structural information, but still re-
quire post validations for exact matchings, as non-frequent
structures are not retained in the indexes. Moreover, such
indexes often perform best when statistics over the frequent
patterns in the queries are available. Finally, Williams et
al. [17] index subgraphs of all sizes as index keys. They
assume that input graphs are very small, which makes ex-
traction of all subgraphs possible. Over parse trees which
often have more than 100 nodes, extracting subtrees of all
sizes takes prohibitive time. In this paper, our goal is to
develop index structures and access methods that support
exact query matching over parse trees and addresses the
aforementioned problems. Our solutions exploit the inher-
ent characteristics of natural language text to improve the
performance of querying over syntactically parsed trees.

1.2 Contributions and Paper Organization
The contributions of this paper are the following.

• We propose a Subtree Index (SI) over syntactically
parsed corpora of natural language text. SI stores
unique subtrees (up to a certain size) from the corpora
as index keys. It also stores the structural information
of each subtree in a set of posting lists which can be
used to perform exact tree matchings. We show exper-
imentally that SI can achieve a large query run-time
speedup compared to the scenario where only struc-
tural information of nodes are stored (see [4] for an
example). To the best of our knowledge, SI is the first
work on indexing tree structured data that stores the
set of unique subtrees as index keys.

• A novel root-split coding is proposed that concisely
stores the structural information of subtrees in subtree
index, making it possible to perform exact matching,

while reducing the index size, index construction time
and query response times, significantly.

• A query decomposition algorithm is proposed over base-
line coding schemes that in our settings achieves op-
timality in terms of the number of joins required to
evaluate queries. Also, our query decomposition algo-
rithm over root-split coding achieves optimality among
all root-split decompositions.

• We experimentally show that when SI stores subtrees
larger than one node, it outperforms the node ap-
proach. We also show that our root-split coding out-
performs our baseline coding schemes in terms of the
query response times, is highly scalable and has a rea-
sonably small index size and index construction time.
Finally, we show that our index using root-split coding
outperforms previous approaches supporting syntacti-
cally annotated tree queries by at least one order of
magnitude.

The structure of the paper is as follows. In the next sec-
tion, we study the literature around querying parse trees.
We cover relevant work around query systems on syntacti-
cally parsed corpora, XML documents, trees and graphs. In
Section 4 we provide the details of our subtree index and de-
scribe our baseline and root-split coding schemes. Section 5
theoretically studies the properties of our coding schemes
and presents query decomposition algorithms. In Section 6
we evaluate the performance of our system using different
sizes of subtrees and coding schemes and compare it with
previous approaches. Finally, we conclude in Section 7 and
provide a list of potential future avenues.

2. RELATED WORK
In the past couple of decades there has been an emergence

of developing querying systems over syntactically annotated
trees. Some of the major systems that operate on the out-
put of syntactic parsers are TGrep2 [14] which is a grep
for parse trees, CorpusSearch [13] and LPath [4]. TGrep2
and CorpusSearch, load the corpus in the main memory and
scan the entire corpus to evaluate each query. Thus, their
querying performance degrades over larger corpora and they
cannot scale. LPath [4] uses an indexing approach to query
syntactically annotated trees. It uses a relational database
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to store some structural information of nodes such as in-
terval codes. LPath performs better than Tgrep2 and Cor-
pusSearch, specifically over queries having labels with higher
selectivities (See [4]). Our subtree index improves the per-
formance of LPath by pre-materializing subtrees larger than
single nodes, thus reducing the size of posting lists and the
number of joins required to evaluate queries.
There has been extensive work on indexing and query-

ing over trees and graphs. Shasha et al. [16, 15] proposed
ATreeGrep, which facilitates approximate and exact match-
ing over unordered trees. ATreeGrep stores all paths of the
set of input trees into a suffix array. It also uses a hash
index over all nodes and edges to pre-filter a set of can-
didate trees and to improve overall querying performance.
Tree matching is done by decomposing the query tree into
its root to leaf paths, and evaluating them against the suffix
array. In contrast to our subtree index, ATreeGrep does not
support distinct labels over different children of a node. It
also does not support single node queries. Moreover, our
subtree interval and root-split codings remove the need for
post-validations. As a result, as confirmed by our experi-
ments, our subtree index using root-split coding performs
at least an order of magnitude faster than ATreeGrep. The
work byWilliams et al. [17] on subgraph isomorphism, stores
the canonical forms of all subgraphs into an index. However,
they assume that the input graphs are very small, making it
possible to compute and store the exponentially many sub-
graphs of all sizes. Their approach cannot be used over parse
trees as computing subtrees of all sizes is prohibitive in time.
TreePi [23] uses frequent subtrees as elements of its index for
subgraph isomorphism problem. TreePi prunes the search
space of candidate graphs, and finds the set of matches us-
ing post validations. Compared to TreePi, our approach
stores all subtrees up to a certain size and performs exact
matching over the index. Moreover, our root-split and sub-
tree interval codings do not require any post validations. As
we discuss in Section 6, an adaptation of TreePi to index-
ing parse trees results in smaller index sizes, but a worse
querying performance compared to our root-split coding.
There is also work on improving the performance of eval-

uating twig queries [5] by reducing the size of intermediate
results while processing joins over streams of structural in-
formation stored in an index over XML documents. Multi-
Predicate MerGe JoiN (MPMGJN) [22], StackTree [1] and
TwigStack [5] are a few of the pioneer works on improving
the performance of structural joins over twig queries (See [8]
for a survey). Our implementation of subtree index in this
paper, uses MPMGJN off-the-shelf for processing structural
joins over subtrees. More efficient stack-based approaches
can be directly applied over our root-split coding, but might
require extra processing over our baseline approaches.

3. PRELIMINARIES
In this section we formally define our data and query mod-

els and the semantics of matchings.

Definition 1. A syntactically annotated tree T is a tuple
T = {V,E,ΣV ,m}, where V is the set of nodes, E ⊆ V ×V
is a set of directed edges, ΣV is the set of node labels of T
and the function m defines the mappings of V 7→ ΣV . T is
acyclic and is distinguished by its root, r(T ), where for every
v ∈ V , there is a directed r−v path in T . For any (u, v) ∈ E
edge, u is called a parent node and v is called a child node.

For any node v ∈ V , it has a unique parent, except for r(T )
which has no parents.

Definition 2. A tree query or simply a query Q is a di-
rected tree Q = {V,E,ΣV ,ΛE ,m}. ΛE is the set of edge
types. Type of an edge could be any of navigational axes.
Function m defines mappings of E 7→ ΛE as well as V 7→
ΣV .

Navigational axes are a set of binary structural relation-
ships between pairs of nodes in a query tree. Examples are
parent-child axis, denoted by /, and ancestor-descendant
axis, denoted by // (See [4] for a complete list of axes).
Thus, A//B/C indicates a query with root A with a child
C and a descendant B. Note that queries are unordered, i.e.
changing the order of B and C does not change the query
semantics.

Definition 3. A query Q = {V,E,ΣV ,ΛE ,m} matches
a tree T = {V ′, E′,Σ′

V ,m′} if there exists a mapping func-
tion f : V (Q) 7→ V ′(T ) that maps nodes of Q to nodes of T ,
such that (1) ∀v ∈ V,m(v) = m′(f(v)) and (2) ∀(u, v) ∈ E,
then f(u) and f(v)) must be in the same relationship in T
as suggested by m(u, v).

To support large-scale query matching over tree struc-
tured data efficiently, a common practice is to assign a set
of numbers to each node in the data tree and index the
trees based on these numbers. Such numbers represent the
structural information of nodes in the data tree. One such
numbering scheme, commonly referred to as (node) inter-
val coding [22], assigns to each data tree node a pair of pre
and post numbers indicating the pre- and post-visit ranks
of the node in a DFS traversal, respectively. In addition,
a level number is assigned to handle parent-child queries.
An inverted index is then constructed on (treeId, pre, post,
level) values, sorted on the increasing order of treeId and pre
values.

4. SUBTREE INDEX
In this section, we propose a novel subtree index and a

few storage and querying techniques over this index. We
present some structural properties of the index and an ana-
lytical study of its performance. Specifically, we study how
interval coding can be extended to represent the structural
information of subtrees; hence our subtree interval coding.
We further introduce a novel root-split coding which leads
to a more concise index compared to subtree interval coding
and reduces the response time of queries as well as index
construction time.

Given a set of syntactically annotated trees S and a size
parameter mss, consider the set of all unique subtrees of
sizes 1, 2, . . . ,mss that can be extracted from trees in S,
and associate to each subtree a posting list consisting of the
IDs of trees in S where the subtree appears. We want to
organize the pairs of subtrees and posting lists in an index,
referred to as Subtree Index (or SI for short), such that our
queries can benefit from this structuring.

4.1 Subtree Indexes over Syntactically Parsed
Trees

One drawback of subtree indexes is that their size could
be prohibitively large. Two factors that affect the size of a
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subtree index are (1) the number of unique subtrees (index
keys), and (2) the total number of extracted subtrees. This
latter number gives an upper bound on the total number of
postings in the index. Next, we study how the above two
factors change over sample datasets of syntactically anno-
tated text using a few experiments. We also discuss what
properties of syntactically annotated trees make the size of
a subtree index over them manageable.

Number of Index Keys

The number of index keys is equal to the number of unique
subtrees extracted from the set of data trees. One nice prop-
erty of syntactically annotated trees is that the number of
index keys (and unique subtrees over them) grows almost
linearly with the size of the input, for different values of
mss. As a result, the body of the index does not grow dra-
matically as more data is being indexed.One reason for this
is that similar structures are abundant throughout the cor-
pus of parsed trees. This is based on the observation that
there is only a finite and relatively small set of grammat-
ical structures used in natural languages, and the number
of such unique structures does not grow dramatically even
considering differences in writing styles and parsing errors.
Figure 2 shows the number of unique subtrees as a func-

tion of the input size, for different values of mss, over col-
lections of parse trees containing 1 to 106 sentences from a
news corpus. The figure shows approximately the same rate
of growth in the number of keys, for different values of mss.
Moreover, the number of index keys grows almost linearly
with the size of the indexed data.
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Figure 2: Number of index keys (unique subtrees) as
a function of the input size in terms of the number
of sentences

Number of Extracted Subtrees

For a tree of size n, the number of subtrees of size m could
range from n−m+ 1 to

(

n−1

m−1

)

. The former belongs to the
case where the tree is a unary branch of height n, and the
latter demonstrates the case where the parse tree consists
of a root with n− 1 leaf children. Note that the number of
subtrees of sizes 1, . . . ,mss of a tree gives an upper bound
on the number of postings stored for it in the index. There-
fore, for large values of mss and n, the number of postings
stored in the index could be very large, resulting in a huge
index. As we show later over syntactically annotated trees,

the number of subtrees is in practice orders of magnitude
smaller than the worst case scenario, making it possible to
build SI for small values of m (e.g. 1 ≤ m ≤ 5).

To study how the number of extracted subtrees changes
over syntactically annotated trees, we conducted an exper-
iment on more than 50, 000 nodes from a (constituency)
parsed corpus of news. Over each node, we extracted ev-
ery possible subtree of sizes 2 to 5, and counted the number
of such subtrees. Figure 3 depicts how the number of sub-
trees changes with the branching factor of the nodes, for this
dataset. As this figure shows, nodes with higher branching
factors lead to more subtrees, on the average.

0 5 10 15 20 25
10

0

10
1

10
2

10
3

10
4

10
5

branching factor of nodes

A
v
g

. 
n

u
m

b
e

r 
o

f 
s
u

b
tr

e
e

s
 (

lo
g

s
c
a

le
)

 

 

ss=2

ss=3

ss=4

ss=5

Figure 3: Average number of subtrees extracted in
terms of the branching factor of roots of subtrees

Some of the important characteristics of syntactically an-
notated trees that distinguishes them from other tree struc-
tured data types are as follows. First, syntactically anno-
tated trees have a small average branching factor. The aver-
age branching factor for internal nodes in the above dataset
is 1.52. Thus, on average, each internal node has less than
two children. Second, syntactically annotated trees rarely
have nodes with large branching factors. In our above ex-
periment, there exist only two nodes with branching factors
larger than 10, while there could exist nodes with branching
factors of a few hundreds or even larger over XML doc-
uments. This is due to two reasons. (a) Parse trees are
relatively small trees and (b) high branching factor nodes in
parse trees are due to highly repetitive structures which are
rare in well-written natural language corpora. Finally, the
above properties are fairly consistent across different cor-
pora and syntactic parsers. Therefore, syntactically anno-
tated trees are good candidates for subtree indexes as the
number of index keys and posting list sizes are manageable
for small values of mss.

4.2 SI Construction
A subtree index is parameterized by mss, the maximum

subtree size. Given mss and a set of parsed trees, SI ex-
tracts the set of all unique subtrees of sizes 1, . . . ,mss, then
flattens and encodes them as index keys. Figure 4 depicts
an example of how unique subtrees of sizes 2 and 3 are ex-
tracted as keys of SI. The given input tree has 8 and 7 index
keys of sizes 4 and 5, respectively. Note that the index keys
are considered unordered. Thus, postings of A(B)(C) and
A(C)(B) are stored under the same key entry in the index.
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Once index keys have been extracted, they need to be
flattened, encoded and stored into the index. We traverse
each subtree in pre-order and for each node capture its label
and size. In this approach, a tree can be encoded by exactly
mss(⌈log

2
(mss+ 1)⌉+ ⌈log

2
|ΣV |⌉) bits. Recall that ΣV is

the alphabet of node labels.

4.3 Query Matching over Subtree Indexes
Query matching over a subtree index has two phases, (1)

the query decomposition phase in which the queries are de-
composed into smaller subtrees, where each subtree size is at
most mss, and the posting lists of subtrees are fetched from
the index, and (2) the join phase in which these posting lists
are joined to compute the final set of results.

Definition 4. For two trees T and T ′, we say that T is
a subtree of T ′ and denote it by T - T ′ if and only if (1)
V (T ) ⊆ V (T ′) and (2) E(T ) ⊆ E(T ′).

Definition 5. A set C = {c1, . . . , ck} of trees is a node-
cover of tree T , if and only if (1) for all ci ∈ C, we have
ci - T and (2) for all v ∈ V (T ) there exists at least one
ci ∈ C such that v ∈ V (ci).

Intuitively, a node-cover of a tree T is a set of subtrees of
T such that every node of T appears on at least one of the
subtrees of the node-cover.

Definition 6. A set C = {c1, . . . , ck} of trees is a full-
cover of T , if and only if (1) C is a node-cover of T , and
(2) for all e ∈ E(T ) there exists at least one ci ∈ C such
that e ∈ E(ci)

According to the above definition, a full-cover C of tree
T , covers both nodes and edges of T . Hereafter, we refer to
both full-covers and node-covers simply as covers, when the
meaning is clear from the context.

Definition 7. Given a query Q and a size parameter
mss, C = {c1, . . . , ck} is a valid cover of Q with respect
to mss if and only if C is a cover of Q and there does not
exist a subtree ci ∈ C such that |ci| > mss, for all 1 ≤ i ≤ k.

In the rest of the paper, we assume that all covers are
valid, unless otherwise noted. Given a query, our goal in
the query decomposition phase is to find a “good” cover.
A “good” cover can be informally defined in terms of its
closeness to a cover that results in the least query execution
cost. A query could have a large number of covers, and the

choice of which cover to pick can significantly affect query
execution cost. In Section 5 we study a few properties of
covers over proposed coding schemes that help us prune the
search space of “good” covers. Next we discuss our coding
schemes over subtree indexes and a brief overview of how
query matching is performed over each coding scheme.

4.4 Coding Schemes
In this section we propose three coding schemes for en-

coding the structural information of subtrees stored as keys
in a subtree index. The first two coding schemes are adap-
tations of current coding schemes over text or XML docu-
ments; they are mainly used as baseline methods. We also
propose a novel root-split coding which stores the subtree
structural information more concisely.

4.4.1 Filter-Based Coding

The filter-based coding is a minimal coding scheme which
does not store any structural information about the keys
being indexed. Similar to any inverted index structure, the
filter-based coding stores a sorted list of unique tree identi-
fiers, tids, of the trees that contain the indexed subtrees.

Query matching for the filter-based coding starts by find-
ing a cover and fetching the respective posting lists of the
subtrees in the cover. The join phase includes pairwise in-
tersection of these lists to obtain the list of candidate tids.
Unlike the other two coding schemes, Query matching for
the filter-based coding requires a third (usually costly) post-
validation phase, called the filtering phase. In the filtering
phase, the parse trees corresponding to candidate tids are
fetched and scanned to check if they match the query.

4.4.2 Subtree Interval Coding

As discussed in Section 3, interval coding stores for each
node a pair of pre and post values to handle containment
queries [22] and a level value to answer parent-child axes
queries. A subtree interval coding generalizes the node in-
terval coding and stores for each indexed subtree the (pre,
post, level, order) numbers of all of its nodes, as the struc-
tural information of the subtree.

The order value, the order of a node in a pre-order traver-
sal, is stored to differentiate between instances of symmetric
postings, which are stored under the same index key. Note
that we consider subtrees to be unordered and therefore in-
stances of A(B)(C) and A(C)(B) are indexed under the same
key. This can lead to incorrect results when joining results
of a decomposed query in the subtree interval coding. For
instance, a query such as A(C(D)(E))(B), can be evaluated
using a join on the C node of the results for A(C)(B) and
those of C(D)(E). This join can be correctly evaluated, by se-
lecting only the instance of A(C)(B), by consulting with the
order values. Not filtering instances of A(B)(C), results in
incorrect matches having the the structure A(B(D)(E))(C).

The structure of a posting describing a subtree of size m
is therefore as follows

{tid,m,< l1, r1, v1, o1 >, . . . , < lm, rm, vm, om >}

where tid is an identifier of the tree that contain the subtree
and < li, ri, vi, oi > values are the left, right, level and order
numbers for the ith node, respectively. Remember that node
orders for subtrees are according to a pre-order traversal.
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4.4.3 Root-Split Interval Coding

The idea behind root-split (interval) coding is to avoid
storing unnecessary structural information and to represent
each subtree as concisely as possible. Root-split coding
stores for each subtree only the tree identifier and (pre, post,
level) values of its root. Compared to subtree interval cod-
ing, root-split coding reduces the size of each posting by a
factor of at least m, where m is the size of the subtree be-
ing indexed. Note that since the structural information of
individual nodes are not stored in a root-split coding, the
queries cannot be arbitrarily decomposed and joined. In
the following, we define the types of covers required while
evaluating queries over SI with root-split coding.

Definition 8. Given a query Q and a cover C of Q such
that C = {c1, . . . , ck}, then C is a root-split cover of Q if and
only if either C = {Q} or for every subtree ci, there exists a
subtree cj , 1 ≤ i, j ≤ k, such that one of the following holds:
(1) both ci and cj are rooted at the same node in Q, (2) ci
is rooted at the parent of cj in Q, or (3) cj is rooted at the
parent of ci in Q.

Intuitively, a root-split cover is a cover which can be eval-
uated only by performing joins over the roots of its subtrees.
Such a cover would be useful for our root-split coding as we
only store structural information over roots of index keys.
Every query Q has at least one valid root-split cover, which
is the set containing individual nodes of Q. In the next sec-
tion we discuss how to construct (root-split) covers that lead
to more efficient query execution times.

5. QUERY DECOMPOSITION
In this section, we study the theoretical properties of the

root-split coding and compare it in terms of applicability and
optimality with the subtree interval and filter-based codings.
As will be discussed in this section, root-split coding reduces
the size of posting lists, by reducing the number of postings
and the size of each posting. As a result, the size of SI with
root-split coding is smaller than its corresponding SI using
subtree interval coding, by a large factor.

5.1 Monotonicity of Posting List Sizes
In the context of relational query optimization, intersec-

tion of the posting lists of subtrees indexed in SI, maps to
select-project-join queries, with selections using index scan
and joins using merge joins over sorted data streams (post-
ing lists). In such a context a query optimizer over a subtree
index, often generates query execution plans in the form of
left-deep (or right-deep) trees resulting in a linear order of
joins. Given a query Q, an efficient query plan can be ob-
tained by (1) picking a “good” cover of Q whose subtrees
serve as data streams over leaves of the query plan, and (2)
searching the space of available plans for the selected cover
and finding an efficient or optimal query execution plan.
The second step is the task of a query optimizer and we do
not study it in this paper. However, in this section we study
what properties of a cover make it more amenable for query
optimization.

Lemma 1. For any two index keys s1 and s2 over a given
SI, where s1 - s2, we have

(i) The posting list of s2 is always a subset of the posting
list of s1 for filter-based coding.

(ii) The posting list of s2 is a subset of the posting list of
s1 for root-split coding if and only if s1 and s2 share
the same root.

(iii) The posting list of s2 is not guaranteed to be a subset
of the posting list of s1 for subtree interval coding.

Proof. The proof is based on the structure of the three
proposed codings.

(i) In filter-based coding only the tid values are stored.
If there exists a tree tk in the posting list of s2 (i.e.
s2 - tk), since s1 - s2, then we have s1 - tk. The
subtree relationship, -, similar to subset relationship
is transitive.

(ii) For root-split coding, when s1 - s2 and s1 and s2
share the same root, if there exists a tuple T = {ti, <
lk, rk, vk >} in the posting list of s2, then it will be
encoded using the same interval codings in the posting
list of s1. Therefore, s2’s posting list is a subset of s1’s.

(iii) Proof for subtree interval coding is by a counter exam-
ple. Assume we are given a SI with mss = 2 which has
only the following tree indexed NP(NN)(NN)(NN). Appar-
ently, NP - NP(NN), however, there are three entries in
the posting list of NP(NN), while there is only one entry
in the posting list of NP, which proves that the posting
list of subtrees is not guaranteed to be supersets.

Lemma 2. For any two index keys s1 and s2 of a SI with
root-split coding, where s1 - s2 and s1’s root has a different
label from s2’s root, then for each posting in the posting list
of s1 there is at most one posting in the posting list of s2
associated with it.

Proof. Given the conditions of this lemma, s1 must be
a descendant of s2’s root. Since ancestor-descendant rela-
tionship is a one to many relationship, there must be only
one posting in the posting list of s2 for any number of its
descendants, hence the lemma is proved.

The direct conclusion from Lemmata 1 and 2 is that the
size of the posting lists monotonically decreases for subtrees
of larger sizes in filter-based and root-split codings, while we
do not have such a guarantee for the subtree interval coding.
As a result, for a particular join, picking larger subtrees from
the first two encodings guarantees a smaller join cost. In the
next section we use this property to define max-covers and
the notion of join optimality.

5.2 Join Optimality
As discussed earlier, root-split coding constrains query de-

composition to covers in which subtrees can be joined over
their roots only. In this Section, we investigate the ramifica-
tions of such a constraint on the size of the root-split covers.
We study the number of joins required to evaluate a cover as
a measure of its efficiency. Moreover, we study the problem
of join optimality for root-split and non root-split covers.

5.2.1 Max Covers

Given a query Q, a valid root-split cover C over Q might
have subtrees ranging in size from 1 to mss. One inter-
esting problem is to investigate if there exists an algorithm
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that can always generate a root-split cover, where the size
of every subtree is equal to mss. We call such a cover a
max-cover. According to the discussion in the previous sec-
tion, such a cover would achieve an efficient query evaluation
plan. Among all max-covers of Q, only a few are root-split,
and among such max-covers, those with the smallest size, in
terms of the number of subtrees, are desirable as they lead
to our definition of a join-optimal cover.

Definition 9. For a given query Q, a join-optimal cover
of Q, is a max-cover over Q that has the smallest size in
terms of the number of subtrees among all covers of Q.

Note that for a cover C of Q and a SI with either of filter
based or root-split codings, there always exists a max-cover
which has size smaller than or equal to |C|. As a result, we
do not need to check join optimality for covers that are not
max-covers. However, according to Lemma 1, it is not al-
ways desirable to select covers over a subtree interval coding
from max-covers. As that lemma shows, larger subtrees in
the covers do not necessarily lead to smaller posting lists,
when subtree interval coding is used. However, an experi-
ment we conducted showed that max-covers are often good
heuristics for evaluating queries over subtree interval cod-
ing scheme. On a dataset containing more than 112, 000
index keys of sizes 1, . . . , 5, in only 0.0005% of cases there
exist index keys ki and kj , such that ki - kj and kj has
a larger posting list than ki. Therefore, in order to signifi-
cantly reduce the search space for good covers, we only con-
sider max-covers (hereafter covers) over all proposed coding
schemes.

5.2.2 Join Optimal Covers

In this section, we study the problem of finding join opti-
mal covers.

Definition 10. Given a query Q, and a cover C over it,
we say that C has deep branching anomaly, if there exist
subtrees si and sj in C such that (1) si and sj share at least
one node of Q, say v ∈ V (Q), such that v is not root of si,
and v is not root of sj, and (2) v has at least two children u
and u′, such that u ∈ V (si), u 6∈ V (sj) and u′ ∈ V (sj) and
u′ 6∈ V (si).

Deep branching anomaly, as defined in Definition 10, de-
scribes a situation where two subtrees in a given cover can-
not represent the structure of part of the query they cover,
uniquely. Deep branching anomaly can result in extraneous
matches for root-split codings. As a result of a deep branch-
ing anomaly, extra subtrees might be required to be added
to the root-split covers to fix this anomaly.
For non root-split codings, deep branching anomaly can be

dealt with, efficiently. Such an anomaly does not introduce
any issues for query evaluation under filter-based coding as
the final set of matches is computed by scanning over the
candidate matches. For subtree interval coding this anomaly
can be dealt with by joining on the deepest shared branching
node of the two subtrees. In the example that follows, we
demonstrate how it is possible to handle deep branching for
subtree interval coding.

Example 1. Consider the query in Figure 5.(a) and let
mss = 4. A join-optimal root-split cover of the query is
C1={A(B(C(D))), B(C(E)(F))}. Figure 5.(b) shows multiple

tree structures that match the given root-split cover. The re-
sult set obtained by an anomalous join over roots of the sub-
trees in C1, i.e. A and B nodes, thus can result in extranuous
matches for root-split coding. By sacrificing join optimal-
ity, we can obtain root-split covers that do not have the deep
branching anomaly, as in the following cover C2={A(B(C(D))),

B(C(E)(F)), C(D)(E)(F)}. Over subtree interval coding, join
optimality can still be achieved by performing the joins on
the deepest branching node, i.e. C.
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Figure 5: Example of a query having deep branching
anomaly with mss = 4

Proposition 1. The number of extra joins required for
evaluating a root-split cover of a query Q is at most |Q| −

⌈ |Q|
mss

⌉ −mss+ 1, compared to a join optimal cover.

Proof. The worst case happens when the tree is struc-
tured as a unary branch of height |Q|. In this case, the num-
ber of subtrees for a root-split cover is given by |Q|−mss+1,
while the number of subtrees in a join optimal cover is given

by ⌈ |Q|
mss

⌉. The difference of these two terms gives our propo-
sition bound.

The above proposition provides an untight upper bound
on the number of extra joins required to evaluate a root-split
cover. In practice however, as we will show in Section 6.3,
the actual number of extra joins is smaller than the above
bound. In the rest of this section, we provide algorithms
for computing covers for both root-split and non root-split
codings.

Figure 6 shows the optimalCover algorithm that com-
putes a join optimal cover for the input query Q. The algo-
rithm starts with an empty cover C, and in each step either
adds a subtree of size mss or calls optimalCover on larger
subtrees. Thus, at the base of the recursion, optimalCover
handles only children of Q having size less than or equal to
mss. Any child of Q with size equal to mss is added im-
mediately to the cover C. Children with sizes smaller than
mss are handled by calling assign until the total number of
unassigned nodes in the subtree of Q and including Q is less
than mss. At this point if Q is not the root of the original
query, Q and its unassigned nodes can be part of a subtree
originating from parent of Q, and thus the optimalCover re-
turns. Otherwise, if Q is the root of the original pattern, all
that is left to do is to cover the last set of unassigned nodes,
whose number is less than mss. This is achieved by one last
call to assign in lines 9− 10. The algorithm assign is also
presented in the same figure. Intuitively, a call of assign(t)
computes a subtree of size mss, rooted at t, which has the
most possible set of unassigned nodes. It starts by picking
larger unassigned children of t and once it runs out of unas-
signed nodes, adds assigned nodes until the size of subtree
is mss.
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optimalCover(Q)

1 C ← ∅
2 for c ∈ Q.children
3 if |c| = mss
4 C ← C ∪ c, |Q| = |Q| − |c|, c.assigned = true
5 else if |c| > mss
6 C ← C ∪ optimalCover(c)
7 while |Q| ≥ mss
8 C ← C ∪ assign(Q)
9 if |Q| > 0 and isRoot(Q)
10 C ← C ∪ assign(Q)
11 return C

assign(Q)

1 cnt = 1, t.root = Q.root, Q.assigned = true
2 sort Q.children on size, descending
3 for c ∈ Q.children
4 if c.assigned = false
5 if (mss− cnt− |c|) ≥ 0
6 c.assigned = true, t.children← t.children ∪ c
7 |Q| = |Q| − |c|, cnt = cnt+ |c|
8 if cnt = mss then return t
9 if cnt < mss
10 for c ∈ (Q.children− t.children)
11 if (mss− cnt− |c|) ≥ 0 then
12 t.children← t.children ∪ c, cnt = cnt+ |c|
13 else
14 add subtrees(c,mss− cnt)[0] to t.children
15 return t

Figure 6: Algorithm that computes a join optimal
cover of size mss

Example 2. Consider the tree shown in Figure 1.(a) and
suppose we run the algorithm optimalCover on this tree with
mss = 3. The first child of S is NP(NNS(agouti)) of size 3 and
this child is added to C immediately. The second child of S,
VP, is of size 7, so optimalCover(VP) is called, which in turn
calls optimalCover on NP of size 4. Since DT(a) and NN both
have size less than mss, assign(NP) is called; the call returns
NP(DT(a)) which is added to C and sets |NP | = 2. Since NP

is not a root (line 9 of optimalCover), C is returned to the
caller. The next steps of the algorithm will add VP(VBZ(is)),
VP(NP(NN)) and S(NP(NNS)) to the cover. Note that a join of
subtrees VP(NP(NN)) and NP(DT(a)) must be in the form of an
equality join on node NP, to avoid erroneous results due to
deep branching anomaly.

Lemma 3. Given a parameter mss ≤ 6 and a tree t,
where |t| > mss and all children of t have size less than
mss, repeated calls of assign over r(t) partitions t into a
join optimal cover.

Proof. Since children of t all have size less than mss,
any subtree that covers them has to be rooted at r(t). Thus,
the partitioning problem reduces to the integer bin packing
problem, where the bin capacity is mss−1 and children sizes
are the volumes of the items to be stored. The objective is to
minimize the number of bins (subtrees in our problem). Our
assign algorithm sorts children in a non-increasing order
of their sizes, which maps to the fit first decreasing (FFD)
approximation algorithm for bin packing. FFD in general
gives approximation ratio of 11

9
OPT + 1 [21] and is shown

to be optimal for integer bin packing with bin sizes less than
or equal to 6, which proves our lemma.

The above lemma proves that for small values of mss,
assign provides an optimal partitioning and for general mss,

it achieves a good approximation ratio. As discussed earlier,
the number of extracted subtrees could grow dramatically
as mss increases and therefore, in practice we will not be
dealing with mss values larger than 6. In our experiments,
we limited mss to be at most 5.

Theorem 1. Given that the size parameter mss ≤ 6,
then optimalCover computes a join optimal cover.

Proof. We assume that |Q| ≥ mss, otherwise, Q can be
covered using a single subtree, which is obviously join op-
timal. optimalCover starts from the root of Q. For each
child c of Q, we have one of the following three cases, (1)
|c| < mss, (2) |c| = mss, and (3) |c| > mss. Case (1) is han-
dled by assign algorithm which we showed join optimality
in Lemma 3. Case (2) is directly assigned into an individ-
ual subtree partition at line 3 of the optimalCover. Finally,
case (3) is handled by recursive calls of optimalCover until
either of cases (1) or (2) occur. Over internal nodes with
condition of case (1), as soon as enough of their children
are assigned and their remaining size reduces to less than
mss, optimalCover returns and leaves their handling to the
ancestor which satisfies case (1). As a result optimalCover
achieves a globally join optimal cover over Q.

Through some modifications of the optimalCover algo-
rithm, we can develop an algorithm that obtains the small-
est root-split cover in terms of size. This algorithm, referred
to as minRC, is presented in Figure 7. This new algorithm
takes a bottom-up approach and descends into subtrees of
smaller sizes until children have size less than or equal to
mss. Then, it covers the given subtree entirely, before mov-
ing up to higher levels. This guarantees that every child of
a given node v is covered, before v is covered and as a result
deep branching anomaly is avoided.

minRC(Q)

1 C ← ∅
2 for c ∈ Q.children
3 if |c| = mss
4 C ← C ∪ c, |Q| = |Q| − |c|, c.assigned = true
5 else if |c| > mss
6 C ← C ∪minRC(c)
7 while |Q| ≥ 0
8 C ← C ∪ assign(Q)
9 return C

Figure 7: Algorithm that computes the best root-
split cover of size mss

Example 3. The minRC algorithm returns the following
cover over the query in Figure 1.(a). C = {NP(NNS(agouti)),
NP(DT(a)), NP(DT)(NN), VP(VBZ(is)), S(NP(NNS))}. The sub-
tree ordering shown is the same as the order by which minRC
adds subtrees to C. C is join optimal, and it has the same
number of subtrees as an optimal cover, given in Example 2.

Theorem 2. Given a parameter mss ≤ 6, minRC re-
turns the smallest root-split cover possible.

Proof. minRC handles internal nodes that fall into case
(1) of the proof in Theorem 1 different from optimalCover.
To avoid deep branching anomaly, it requires that each inter-
nal node is assigned to a subtree, before any of its ancestors
are assigned. As a result, there are cases where minRC does
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not achieve optimality. However, since all root-split covers
have to handle deep branching anomaly, minRC achieves
the smallest cover possible among them, by repeatedly call-
ing assign on non-assigned subtrees, which was shown to be
optimal.

6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup
For our experiments in this section, we parsed a collection

of sentences from the AQUAINT corpus of English News
Text [2], using Stanford Parser [9], and used this dataset or
a part of it in our experiments. This dataset would be a
good representative for any parsed English dataset as the
same grammar and similar rules are applied when parsing,
and the set of tags and their corresponding disctributions
are very similar. We further processed the collection of ob-
tained parse trees and assigned ids and structural tags to
their nodes. With this tagging, each node is described as a
tuple consisting of treeId, nodeId, parentId, pre, post, level
and label. The treeId value points to the corresponding tree
that contains the node. The nodeId is a numeric value that
uniquely identifies each node within a tree, and parentId is
the nodeID of the parent node.
We constructed two sets of queries over syntactically an-

notated text for our experiments. The first set, WH query-
set was created by a third person who was asked to select 48
questions from AOL query log [12], 12 questions from each of
what, which, where and who questions. She was then asked
to rewrite the questions in the form of matching sentences.
For instance a question such as who is the mayor of New
York city? could be converted to mayor of New York city
is %match%. Finally, we parsed these sentences using Stan-
ford parser and removed for each sentence the leaves that
contain terms from the sentence, leaving only the sentence
structure.
Our second query set, FB query-set, was constructed by

extracting subtrees from a set of parsed sentences which
were not included in our indexes. The extracted subtrees
were selected according to the frequencies of their nodes.
To account for differences in the selectivities of queries that
are posed to our indexes, we constructed 7 classes of queries,
consisting of nodes with high (H), medium (M) and low (L)
frequency labels, together with their combinations; i.e. HM,
HL, ML, HML. For each class, we construct 10 subtrees of
size 1 to 10.
Our subtree index was implemented as a native disk-based

B+Tree index. We did not implement a caching system
over the B+Tree and relied on the page buffering of the
operating system for any savings in the number of disk page
accesses. We also flattened and sequentially stored parse
trees in a separate file, which we call the data file. All our
experiments were run on a 64-bit machine with 64 GB of
physical memory and a 4x quad-core processor. The system
page size was 4096 bytes. The reported index sizes will be
different on 32-bit addressing systems or with different page
sizes. More details of the setup is presented in [7].

6.2 Index Construction
In this section we study the characteristics of the indexes

built over syntactically annotated trees experimentally. We
investigate how the size of the index is affected by the choice
of the coding scheme and size of the input data. We also

study the index construction time for different coding schemes
and input sizes.

6.2.1 Index Size

Figure 8 shows the subtree index size for the three pro-
posed coding schemes and varying input sizes, with the input
size marked on top of each sub-figure. Furthermore, in each
sub-figure, we vary the maximum subtree size, mss, from 1
to 5, as shown on the X axis.

As the figure shows, the size of the index is smallest for
filter-based coding, and largest for the subtree interval cod-
ing in all cases. One interesting pattern in the results for
sizes of the index is that as mss increases, the gap between
the sizes of root-split and subtree interval codings grows.
The reason is that for larger subtrees, subtree interval cod-
ing uses larger postings, because it has to store the structural
information for individual nodes. However, the posting size
in root-split coding has constant size, and the index size
increases only due to more keys being indexed.
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Figure 8: SI size (bytes) for filter-based, root-split
and subtree interval codings, with mss = 1, . . . , 5.

Table 1 shows the ratio of the index size when mss is 5
to the the index size when mss is 1, for all three coding
schemes and four dataset sizes. As the table depicts, root-
split coding shows the smallest increase in the size of the
index among all coding schemes.

Table 1: Ratio of the subtree index size when mss
is 5 to the index size when mss is 1

Filter-based Root-split Subtree Interval
100 22 15 48
1k 24 14 50
10k 23 13 59
100k 21 12 54

The size reduction for root-split coding is due to (1) reduc-
ing the size of each posting as only structural information
of roots are stored, and (2) reducing the number of postings
as multiple subtrees which have the same key and the same
root structural information will be represented with only
one posting in root-split coding, while every single subtree
requires a distinct posting using the subtree interval cod-
ing. Figure 9 depicts the number of postings for our three
coding schemes, varying the dataset size and mss. As this
figure shows, for mss = 1 the number of postings of root-
split and subtree interval codings are equal and as mss in-
creases the gap between the number of postings for these
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coding schemes widens. Filter-based coding has the small-
est number of postings as it only stores unique treeIds, and
no structural information.
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Figure 9: Total number of postings for filter-based,
root-split and subtree interval codings, with varying
input sizes and mss values.

Finally, to have an idea of the space overhead of the index,
the size of a B+tree constructed over subtree inverted lists
is comparable to the size of the data file for mss = 1. For
larger values of mss, the gap between the data file size and
subtree index size grows. For mss = 5 and subtree inter-
val coding, the size of data file is two orders of magnitude
smaller than the subtree index size.

6.2.2 Index Construction Time

Figure 10 shows the construction time of the subtree index
for different datasets, coding schemes and mss values. As
shown, the construction time is smallest for filter-based cod-
ing and largest for subtree interval coding. Root-split has
a construction time that is slightly larger than filter-based
coding. As mss increases the difference in the construction
time between subtree interval coding and the other two cod-
ings grows. This is mostly because the size of the index for
subtree interval coding is larger and as a result more data
has to be written over disk.
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Figure 10: Index construction time (seconds) for
filter-based, root-split and subtree interval codings,
with mss = 1, . . . , 5 and varying input sizes.

6.3 Querying Performance
In this section, we experimentally evaluate the perfor-

mance of querying of our subtree index under different set-
tings. In particular, we investigate the runtime of queries in

terms of their number of matches for the filter-based, root-
split and subtree interval codings as mss values and query
sizes vary. We also compare the performance of our subtree
index using root-split coding with ATreeGrep [16] and our
adaptation of TreePi [23] over tree structured data, which
we call frequency-based approach. We also present some
scalability results for the three coding schemes using data
sizes of one thousand to one million sentences. Finally, we
study the performance of our decomposition algorithms by
comparing the number of joins that are required under each
query decomposition policy.

6.3.1 Response Time of Queries

To obtain the query response time over our subtree index,
we used all the 48 WH queries and 70 FB queries, and tried
each query 5 times and took the average running time per
query. We grouped the queries according to their total num-
ber of matches into the following bins: (1) less than 10, (2)
between 10 and 100, (3) between 100 and 1k, (4) between
1k and 10k and (5) larger than 10k matches. Figure 11
shows the average run-time of queries with varying number
of matches on the horizontal axis, over 100k sentences.

As Figure 11 shows, the running time of the queries de-
creases for all coding schemes as mss increases. This re-
duction is smallest for queries with large number of matches
using filter-based coding, as the time of the filtering phase
becomes a dominating factor, when there are many matches.
As shown in the figure, Root-split coding performs better
than subtree interval coding in all cases. Filter-based cod-
ing performs better than root-split coding for mss = 1 and
less than 10 matches on average. However, for larger values
of mss, which are mainly interesting for a subtree index,
root-split coding performs better than the other two coding
schemes.

Unlike the filter-based coding, both the root-split and sub-
tree interval codings display a reduction in their average
query response times for larger number of matches, for the
following reasons. (1) The intermediate result size of a query
with a small number of matches could be large and this
would affect the runtime of queries under root-split and sub-
tree interval codings, but not under filter-based coding. (2)
As is expected, larger queries have on average smaller num-
ber of matches; however, these queries require a larger num-
ber of joins and take longer for these two coding schemes.
This pattern can also be seen in Figure 12 where the running
time is depicted as the query size varies.

Figure 12 displays the runtime of queries in terms of the
query size using the same settings as in Figure 11. In this
figure, we only included queries which have 100 and more
matches. As this figure shows, root-split and subtree inter-
val codings show an increasing trend with respect to the size
of queries. Filter-based coding displays a somewhat random
behavior with respect to the query size as its performance is
mostly determined by the number of matches and how well
the cover subtrees can perform filtering. According to this
figure, as mss increases, root-split and subtree interval cod-
ings perform better on larger queries as they require smaller
number of joins to compute the result set of queries.

6.3.2 Comparison with Other Systems

Table 2 displays the results of comparing our SI with
mss = 3 using root-split coding with ATreeGrep [16] and a
frequency-based approach that is an adaptation of TreePi [23]
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Figure 11: Average runtime of queries in terms of
number of matches for filter-based, root-split and
subtree interval codings and mss values of 1 to 5

for indexing parse trees. Similar to TreePi, the frequency-
based approach stores in the index all single nodes and a
percentage of larger highest frequency subtrees. This per-
centage is denoted in brackets in the last three columns of
Table 2. The frequency-based approach also uses the same
query decomposition algorithm as TreePi, except over tree
structured queries.
The results in Table 2 are obtained over the queries in

our FB query-set and are grouped by the frequency classes.
Since ATreeGrep does not support all the queries, the results
are averaged over as many queries as there were results for.
As this table depicts, SI with root-split coding outperforms
by at least one order of magnitude over all frequency classes.

Table 2: Average runtime of FB query classes us-
ing Subtree index with root-split coding (mss = 3),
ATreeGrep and Frequency-based approaches with
varying frequency cutoff thresholds.

RS ATG FB(0.1%) FB(1%) FB(10%)
L 0.09 1.9 3.05 3.03 3.04
M 0.01 10.06 12.32 0.8 0.35
ML 0.25 2.13 10.3 9.62 9.25
H 1.73 22.4 39.21 34.51 34.53
HL 1.57 32.97 34.58 34.61 34.6
HM 1.76 37.08 35.54 31.40 31.57
HML 1.76 86.02 49.03 42.97 43.13

6.3.3 Scalability Results

Figure 13 presents the average runtime of our queries over
four subsets of our parsed collection. 1k, 10k, 100k and 1m
sentences. We used mss = 3 for the results reported in this
figure, but the result for other values of mss were similar.
The reported runtimes are the average query response times
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Figure 12: Average runtime of queries in terms of
the size of queries for filter-based, root-split and
subtree interval codings and mss values of 1 to 5

over all queries in FB query-set and using our three cod-
ing schemes. The results in this figure show that all three
coding schemes display a similar pattern as the dataset size
increases, i.e. the running time grows approximately linearly
with the number of sentences indexed.

Figure 13 also shows that the root-split coding scales up
better with the dataset size. Averaged over all queries and
in the range of 1k to 1m sentences of our parsed collection,
the query runtime increases for filter-based, subtree interval
and root-split codings by a factor of 1025, 752 and 529,
respectively.

6.3.4 Query Decomposition Algorithms Results

Table 3 displays the average number of joins per query
over groups ofWho, Which, Where andWhat queries formss
values of 2 to 5. As Table 3 shows, optimalCover achieves
a fewer number of joins for all groups of queries and mss
values2. Despite a fewer number of joins obtained for filter-
based and subtree interval codings, root-split still manages
to have a smaller query response time, by minimizing the
I/O cost and avoiding to perform filtering.

7. CONCLUSIONS AND FUTURE DIREC-

TIONS
We proposed a novel subtree index in this paper. Sub-

tree index improves the query response time of node and
edge approaches by reducing the posting lists and the num-
ber of joins required for evaluating tree structured queries.
Compared to path approaches, it preserves the structure of
trees within index keys, and can perform exact matchings

2In the case where mss = 1, root-split and subtree interval
will have equal number of joins, which is equal to |Q| − 1

1326



1K 10K 100K 1M
10

−2

10
−1

10
0

10
1

10
2

10
3

Input size

A
v
e
ra

g
e
 q

u
e
ry

 r
u
n
ti
m

e
 i
n
 s

e
c
o
n
d
s
 (

lo
g
s
c
a
le

)

 

 

Filter−based

Root−split

Subtree interval

Figure 13: Average runtime of queries (mss = 3)
over datasets of 1k, 10k, 100k and 1m sentences and
using different coding schemes.

Table 3: Average number of joins required over
queries in the WH query set. r=root-split,
s=subtree interval.

Query mss = 2 mss = 3 mss = 4 mss = 5
set r s r s r s r s

Who 5.91 5.41 4.75 3.33 3 2.16 2.41 1.66
Which 6.83 6.25 5.41 4.25 4.25 3 3.25 2.25
Where 4.91 4.75 4.41 3.33 2.66 2.08 2.25 1.58
What 5.58 5.33 4.58 3.33 2.91 2.25 2.25 1.58

without a need for post validations. Our root-split coding
provides a concise encoding of the structural information
of subtrees and reduces the index size, index construction
time and query response time compared to one or both of
our baseline methods. It also improves the querying per-
formance by at least an order of magnitude compared to
previous approaches.
As future improvements we propose adapting more effi-

cient structural join approaches such as TwigStack [5] over
our subtree index. Moreover, it would also be interesting
to further study the problem query optimization over SI,
by considering building data structures that store statistics
about subtrees such as their selectivities.
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