
Queries with Guarded Negation

Vince Bárány
TU Darmstadt, Germany

barany@mathematik.tu-darmstadt.de

Balder ten Cate
UC Santa Cruz, CA, USA

btencate@ucsc.edu

Martin Otto
TU Darmstadt, Germany

otto@mathematik.tu-darmstadt.de

ABSTRACT

A well-established and fundamental insight in database the-
ory is that negation (also known as complementation) tends
to make queries difficult to process and difficult to reason
about. Many basic problems are decidable and admit prac-
tical algorithms in the case of unions of conjunctive queries,
but become difficult or even undecidable when queries are
allowed to contain negation. Inspired by recent results in fi-
nite model theory, we consider a restricted form of negation,
guarded negation. We introduce a fragment of SQL, called
GN-SQL, as well as a fragment of Datalog with stratified
negation, called GN-Datalog, that allow only guarded nega-
tion, and we show that these query languages are compu-
tationally well behaved, in terms of testing query contain-
ment, query evaluation, open-world query answering, and
boundedness. GN-SQL and GN-Datalog subsume a num-
ber of well known query languages and constraint languages,
such as unions of conjunctive queries, monadic Datalog, and
frontier-guarded tgds. In addition, an analysis of standard
benchmark workloads shows that many uses of negation in
SQL in practice are guarded.

1. INTRODUCTION
A well-established and fundamental insight of database

theory is that negation (also called complementation or dif-
ference) tends to make queries difficult to reason about. Re-
call that the unions of conjunctive queries are the first-order
queries that can be expressed without using negation. Many
basic problems are decidable and admit practical algorithms
in the case of unions of conjunctive queries, but are unde-
cidable in the case of arbitrary first-order queries. Examples
include query containment and open world query answering.

We argue that most queries in practice use only a re-
stricted form of negation, which is called guarded nega-
tion and was first considered in [7] (in the study of de-
cidable fragments of first-order logic). By guarded nega-
tion we mean that queries may involve negative con-
ditions only if these conditions, intuitively, pertain to

a single record in the database. For instance, if a
database schema contains relations Author(AuthID,Name)
and Book(AuthID,Title,Year,Publisher), the query that
asks for authors that did not publish any book with Elsevier
since “not publishing a book with Elsevier” is a property
of an author. The query that asks for pairs of authors and
book titles where the author did not publish the book, on the
other hand, is not allowed, since it involves a negative con-
dition (in this case, an inequality) pertaining to two values
that do not necessarily co-occur in a record in the database.
The requirement of guarded negation can be formally stated
most easily in terms of the Relational Algebra: we allow the
use of the difference operator E1−E2 provided that E1 is a
projection of a relation from the database.

Based on an analysis of standard SQL benchmark work-
loads, we argue that guarded negation covers many uses of
negation in SQL in practice. Furthermore, building on re-
cent results in logic and finite model theory [7, 9], we show
that queries with guarded negation are computationally very
well behaved. For instance, query containment and open
world query answering are decidable for first-order queries
with guarded negation, and boundedness is decidable for the
guarded-negation fragment of Datalog with stratified nega-
tion. We also determine the complexity of query evaluation
for queries with guarded negation, which (under reasonable
complexity theoretic assumptions) is easier than the same
problem for queries with unguarded negation.

Our results show that guarded negation is a fruitful con-
cept for databases, in the sense that it enables solving central
decision problems in database theory more efficiently. We
also believe that guarded negation is a fruitful concept from
a more practical point of view, allowing for efficient query
plans and query optimization strategies. This is something
we are exploring in a separate line of investigation.

Outline and Main Results. In Section 2 we review the
definition of GNFO, guarded-negation first-order logic, and
GNFP, guarded-negation fixed-point logic, as well as the
main known decidability and complexity results for these
logics [7]. We also provide an equivalent characterization of
GNFO in terms of the Relational Algebra.

In Section 3, we investigate what it means for an SQL
query to be negation-guarded. Specifically, we identify syn-
tactic restrictions on the use of negation in SQL queries,
and we show that the first-order queries satisfying these re-
strictions can be translated to GNFO, and, in fact, are ex-
pressively complete for GNFO, in the sense of Codd’s com-
pleteness theorem. Furthermore, by means of an analysis
of standard SQL benchmark workloads, we show that many

1328

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 11
Copyright 2012 VLDB Endowment 2150-8097/12/07... $ 10.00.

SQL queries in practice satisfy the syntactic restrictions.
In Section 4, similarly, we introduce a syntactic frag-

ment of Datalog with stratified negation, called GN-Datalog,
which admits a translation into GNFP.

In Section 5, we show that GN-SQL and GN-Datalog sub-
sume a number of important existing query languages and
constraint languages. In particular, GN-Datalog subsumes
both monadic Datalog (which it extends by allowing IDBs
of arbitrary arity, and negation, subject to guardedness con-
ditions) and unions of conjunctive queries.

In Section 6, we show that query containment is
2ExpTime-complete for GN-SQL queries as well as for GN-
Datalog queries (note that the decidability of these problems
follows via translations into GNFO and GNFP).

In Section 7, we determine the complexity of query evalu-
ation and open-world query answering for GN-SQL and for
GN-Datalog. While the data complexity of query evalua-
tion is in PTime, both for GN-SQL and for GN-Datalog, in
terms of combined complexity, the problem is complete for

the complexity class PNP[log2] (for GN-SQL) and PNP (for
GN-Datalog). The data complexity of open world query an-
swering for GN-SQL with respect to incomplete databases
is coNP-complete. The problem can be solved in PTime for
a considerable fragment of GN-SQL.

In Section 8, we prove decidability of the boundedness
problem for GN-Datalog. Boundedness is a classical deci-
sion problem in the study of query optimization for recur-
sive queries. It is known to be undecidable for Datalog, but
decidable for monadic Datalog. Our result can be viewed as
a powerful generalization of the decidability of boundedness
for monadic Datalog queries [15].

We conclude in Section 9 by discussing possibilities for
further extending GN-SQL and GN-Datalog.

2. PRELIMINARIES
In this section, we review definitions and results concern-

ing the guarded-negation logics GNFO and GNFP from [7].
These results will be put to extensive use in the rest of this
paper. We assume familiarity with the basic syntax and
semantics of first-order logic.

For clarity, we will maintain a distinction between in-
stances and structures: a structure has an associated do-
main, which may be a superset of its active domain, and
which may depend on the structure in question. Further-
more, structures may interpret not only relation symbols
but also constant symbols (which denote, not necessarily
distinct, domain elements). Thus, instances may be viewed
as a special case of structures, where the domain is the active
domain and there are no constant symbols. Unless explicitly
stated otherwise (by means of the adjective “unrestricted”),
we always assume structures and instances to be finite.

GNFO. Guarded Negation First-Order Logic (GNFO) is
the fragment of first-order logic consisting of all formulas
built up from atomic formulas (including equalities) us-
ing conjunction, disjunction, existential quantification, and
guarded negation, that is, negation in the specific form
α ∧ ¬φ where α is an atomic formula (possibly an equality
statement) and all free variables of φ occur in α. Note that,
since the guard α is allowed to be an equality statement,
we are essentially able to negate any formula with at most
one free variable (by writing x = x ∧ ¬φ(x)). Formally, the

formulas of GNFO are generated by the recursive definition

φ ::= R(t1, . . . , tn) | t1 = t2 | φ1 ∧φ2 | φ1 ∨φ2 | ∃xφ | α∧¬φ

where each ti is either a variable or a constant symbol, and,
in the last clause, α is an atomic formula containing all free
variables of φ. Note that function symbols (of arity greater
than zero) are not considered.

In the above definition, we required α to be an atomic
formula containing all free variables of the negated for-
mula φ. Occasionally, it is convenient to allow a slightly
more liberal syntax. Let us say that α is a generalized
guard for φ if α is a disjunction of existentially quantified
atomic formulas such that the free variables of φ are in-
cluded in the free variables of each disjunct. One could
extend GNFO by allowing generalized guards in the defi-
nition of guarded negation, thus admitting formulas such
as (∃uv R(x, y, u, v) ∨ ∃uv R(y, x, u, v)) ∧ ¬Sxy. This would
not increase the expressive power of GNFO: if a negation
is guarded by a generalized guard, we can “pull out” the
disjunction and the existential quantification to obtain an
equivalent formula without generalized guards (at the cost
of a possibly exponential blow-up in formula size). In par-
ticular, the above example can be equivalently expressed by
∃uv(R(x, y, u, v)∧¬Sxy)∨∃uv(R(y, x, u, v)∧¬Sxy). There-
fore, for simplicity, our definition of GNFO does not allow
for generalized guards.

GNFP. Guarded Negation Fixed Point Logic (GNFP) fur-
ther extends GNFO with an operator for least fixed points of
positively definable monotone operations on relations. That
is, we introduce second-order variables (also called fixed-
point variables) of arbitrary arity, which may be used to
form atomic formulas in the same way as ordinary relation
symbols, and if φ is any GNFP formula, X an n-ary second-
order variable (n ≥ 1) occurring only positively in φ (i.e,
under an even number of negations), x = x1, . . . , xn a se-
quence of first-order variables, and t = t1, . . . , tn a sequence
of terms (first-order variables or constant symbols), and the
free first-order variables of φ are included in x, then

[LFPX,x α ∧ φ](t)

is also a formula of GNFP, where α is a generalized guard
for φ, i.e., a disjunction of existentially quantified atomic
formulas (involving only atomic relations, no second-order
variables), such that all free first-order variables of φ are
also free variables of each disjunct of α.
In the above formula, the LFP operator is a generalized

quantifier binding the variables X and x. The formula ex-
presses that the tuple t belongs to the least fixed-point of
the monotone operation on relations defined by α∧ φ. Inci-
dentally, here, unlike in the case of GNFO, it is important
that α is allowed to be a generalized guard.

In what follows, whenever we consider LFP formulas, we
will always assume that they do not have any free second-
order variables. The formal semantics of [LFPX,x α ∧ φ](y)
is the familiar one from least fixed-point logic, cf. [1]. If the
formula φ has at most one free variable x, we may omit the
guard α, which can be assumed to be the equality statement
x = x. For example, the GNFP formula

[LFPX,x P (x) ∨ ∃y R(x, y) ∧X(y)](z)

says that there is an R-path from z to some element in P .

1329

Definability of Greatest Fixed Points. Besides the above
least fixed-point operator, we can consider an analogous op-
erator GFP for taking the greatest fixed point of a definable
monotone operation on relations. However, as it turns out, it
is possible to define the GFP operator in terms of the LFP
operator (and vice versa) using a dualization via guarded
negation. Specifically, [GFPX,x α(x)∧φ(x)](t) can be equiv-
alently expressed as α(t)∧¬[LFPX,xα(x)∧¬φ

′(x)](t), where
φ′ is obtained from φ by replacing all subformulas of the form
X(t′) by α(t′)∧¬X(t′). For this reason, the above definition
of GNFP does not include GFP as a primitive operator.

Definability of Simultaneous Fixed Points. It is com-
mon, in the literature on fixed point logics, to consider also
a simultaneous least fixed point operator, that takes as ar-
guments not a single formula but a tuple of formulas. More
precisely, in the context of GNFP it is natural to consider
also formulas of the form [LFPXi

S](t) where

S =

X1(x1) ← α1(x1) ∧ φ1(X1, . . . , Xn,x1)
.
.
.

Xn(xn) ← αn(xn) ∧ φn(X1, . . . , Xn,xn)

is a system of GNFP formulas, with each Xk a distinct
second-order variable, whose arity matches the length of the
tuple xk, and which occurs only positively in φ1, . . . , φn, and
where t is a tuple of terms of the same length as xi. Here,
the system S can be viewed as defining a monotone opera-
tion on tuples of relations, and the above formula expresses
that t belongs to the i-th component of the least fixed point
of this operation. It is well known that simultaneous fixed
point expressions of this form can be expressed equivalently
using a nesting of ordinary, single-variable, fixed point op-
erators, possibly at the cost of an exponential blow-up in
formula size (cf. for example [2]). The transformation pre-
serves guardedness. Hence, extending GNFP with such a
simultaneous least fixed point operator does not increase its
expressive power.

Disjunctive Normal Form for GNFO and Width. We
say that a GNFO formula is in Disjunctive Normal Form
(DNF) if it is a disjunction of disjunction-free GNFO for-
mulas, no existential quantifier occurs directly below a con-
junction sign, and no conjunction sign occurs directly below
a negation sign. Equivalently, a GNFO formula is in DNF
if it is a disjunction of GNFO formulas φ generated by the
following recursive definition:

φ ::= ∃x1, . . . , xn(ζ1 ∧ · · · ∧ ζm)
ζ ::= R(t1, . . . , tn) | (t1 = t2) | α ∧ ¬φ

(1)

where, in the last clause, α is an atomic formula containing
all free variables of φ. Every GNFO formula is equivalent
to one in DNF, of possibly exponential size, that can be
obtained by repeatedly applying the following equivalences.

(∃xφ) ∧ ψ ≃ ∃x′(φ[x′/x] ∧ ψ), φ ∧ (ψ ∨ χ) ≃ (φ ∧ ψ) ∨ (φ ∧ χ)

∃x(φ ∨ ψ) ≃ ∃xφ ∨ ∃xψ, α ∧ ¬(φ ∧ ψ) ≃ (α ∧ ¬φ) ∨ (α ∧ ¬ψ)

The width of a GNFO formula φ is the number of variables
occurring (free or bound) in the DNF formula obtained from
φ by applying the above rules.

A union of conjunctive queries (UCQ) is a GNFO formula
in DNF without negation. Thus, GNFO can be naturally
viewed as an extension of UCQs with guarded negation.

Known Decidability and Complexity Results. The fol-
lowing theorem summarizes what is known about GNFO
and GNFP that is relevant for present purposes. Recall
that the satisfiability problem has as input a formula φ(x),
and asks whether there exists a structure M and a tuple of
elements a such that M |= φ(a). The entailment problem
takes as input two formulas φ(x), ψ(x), and asks whether it
is the case that, for every structure M and for every tuple
of elements a, M |= φ(a) implies M |= ψ(a). The model
checking problem has as input a formula φ(x), a structure
M , and a tuple of elements a, and asks whether M |= φ(a).

Theorem 1 ([7]) 1. The satisfiability problem and the
entailment problem for GNFO and for GNFP are de-
cidable and 2ExpTime-complete. This holds both for
finite structures and for unrestricted structures.

2. For GNFO formulas, satisfiability over finite struc-
tures coincides with satisfiability over unrestricted
structures, and similarly for entailment. The same
does not hold for GNFP.

3. The model checking problem for GNFO is PNP[log2]-
complete (combined complexity). For GNFP, the prob-
lem is PNP-hard and is contained in NPNP ∩ coNPNP.

In the above theorem, PNP[log2] refers to those problems
that can be solved by a polynomial time deterministic algo-
rithm that is allowed to ask O(log2(n)) queries to an NP-
oracle, cf. Section 7.1. A close analysis of the 2ExpTime
upper bound argument for the satisfiability and entailment
problems of GNFP shows that these results extend to the
case with simultaneous fixed-point operators (both on finite
structures and on unrestricted structures).1

2.1 Guarded Negation in Relational Algebra
The concept of guarded negation can be equivalently cast

in terms of the Relational Algebra, where negation is ex-
pressed by means of the difference operator. Consider the
Relational Algebra (RA) defined over a schema consisting of
relation symbols of specified arity using the following prim-
itive operators (cf. [1] for their semantics).

Atomic Relations: every relation symbol belongs to RA.

Selection: if E ∈ RA has arity k and 1 ≤ i, j ≤ k, then
σi=j(E) belongs to RA and has arity k.

Projection: if E ∈ RA has arity k and 1 ≤ i1, . . . , in ≤ k,
then πi1...in(E) belongs to RA and has arity n.

Crossproduct: if E1, E2 ∈ RA have arity k and n, respec-
tively, then E1×E2 belongs to RA and has arity k+n.

1Specifically, the proof of the 2ExpTime upper bound for GNFP
is based on a satisfiability preserving translation from GNFP
to guarded fixed-point logic (GFP). The translation may give
rise to an exponential blow-up in the size of the formula, but
it preserves the width (following a suitable definition of width,
analogous to the definition of width for GNFO formulas). The
satisfiability problem for GFP formulas, in turn, is decidable in
time 2poly(|φ|)·exp(width(φ)) (where poly(n) is short for nO(1) and

exp(n) is short for 2poly(n)) by a reduction to the emptiness
problem for a suitable type of automata [20, 6]. The translation
from GFP formulas to automata extends immediately to the case
for formulas containing simultaneous fixed-point operators. Fur-
thermore, the polynomial-time inductive satisfiability-preserving
translation from GNFP to GFP given in [7] (which in fact simply
commutes with the fixed-point operators) extends in a straight-
forward manner to the case where the input and output formulas
may contain simultaneous fixed-point operators.

1330

query := select (t1 as attr1, . . . , tn as attrn) from (rel1 R1, . . . , relm Rm) where condition
| query union query | query intersect query | query except query

condition := true | t1 = t2 | t in query | exists(query)
| condition and condition | condition or condition | not(condition)

Figure 1: Grammar for FO-SQL queries

Union, Intersection, and Difference: if E1, E2 ∈ RA
both have arity k, then E1 ∪E2, E1 ∩E2 and E1−E2

belong to RA and have arity k.

Codd’s completeness theorem states that RA has the same
expressive power as the domain-independent fragment of
first-order logic, cf. [1]. Let us briefly recall here the defini-
tion of domain independence for first-order formulas with-
out constant symbols [1]. The active domain of a structure
M is the set adom(M) of all elements that occur in a tu-
ple belonging to one of the relations. For any structure M ,
let M ′ be a copy of the same structure but where all ele-
ments outside adom(M) are removed. A first-order formula
φ(x) without constant symbols is domain-independent if (i)
whenever M |= φ(a), then the tuple a consists of elements
of adom(M), and (ii) for all tuples a consisting of elements
of adom(M), M |= φ(a) if and only if M ′ |= φ(a). The
same definition applies to formulas with fixed-point opera-
tors. Examples of first-order formulas that are not domain-
independent are P (x) ∨Q(y), x = x, and ¬P (x).

We say that a relation algebra expression is negation-
guarded if every occurrence of the difference operator is of
the form πi1...im(R) − E where R is a relation symbol. We
denote by GN-RA the negation-guarded fragment of RA. It
can be shown by straightforward inductive translations that
GN-RA captures GNFO in the following sense.

Theorem 2 Every k-ary GN-RA expression is equivalent
to a domain-independent GNFO formula φ(x1, . . . , xk), and
vice versa, via a linear translation from GN-RA to GNFO
and an exponential translation backwards.

Let R,S be relation symbols of arity 2 and 1, respectively.
The following RA expressions are not negation-guarded.

(π1(R)× S)− π1,1(R) (distinct pairs from π1(R)× S)

π1,4(σ2=3(R×R))−R (reachability in two steps, not one)

π1(R)− π1((π1(R)× S)−R) (the quotient R÷ S)

In fact, it follows from results in [7] that none of these ex-
pressions is equivalent to a GN-RA expression.

It is easy to show that testing if a given RA expression is
equivalent to a GN-RA expression is undecidable.

Observe that in the above definition of GN-RA we did
not allow for the use of constant values in selections and
projections. This was only to simplify presentation. All
complexity results that we will present go through in the
presence of constant values, cf. Section 9.

3. GUARDED NEGATION IN SQL
In this section, we discuss what it means for an SQL query

to have guarded negation. More precisely, we consider a sim-
ple, first-order expressively complete, fragment of SQL with
a set-based semantics, that we call FO-SQL, and we char-
acterize the queries in this fragment that can be expressed
in GNFO.

FOSQL: a Simple FirstOrder Fragment of SQL. In
this section, unlike in the rest of the paper, we work with
named schemas. A named schema is a collection of rela-
tion names, each with an associated list of attribute names.
For the discussion below, assume we have a fixed schema,
say, consisting of book(isbn,author,title) and loca-
tion(isbn,shelf,number). We also fix an infinite supply
of “tuple variables” (also known as aliases, and denoted by
R1, R2, . . .). By a term t we will mean an expression of the
form Ri.attr where Ri is a tuple variable and attr is an
attribute name.

We consider SQL expressions that are generated by the
simple grammar given in Figure 1, where each ti is a term,
each reli is a relation name, attr1, . . . ,attrn are dis-
tinct attribute names, and R1, . . . , Rm are distinct tuple
variables. This grammar generates queries that may have
free tuple variables, i.e., there may be occurrences of tuple-
variables Ri that are not in the scope of a select-from-where

clause where they are declared. We will refer to queries
with free tuple variables as open queries (or correlated sub-
queries), and we refer to queries without free tuple variables
as closed queries (or uncorrelated subqueries). We will de-
note by FV (q) the set of free tuple variables of q. We will
be mainly interested in closed queries. Note, however, that
closed queries are allowed to contain subexpressions of the
form exists(q) or of the form t in q where q is an open query.

We only consider queries that are well-typed in the sense
that each (open or closed) query can be consistently assigned
a (unique) type, which is a list of attribute names, where

1. the type of a select-from-where query is the set of at-
tribute names specified in its select clause;

2. the union, intersect, and except operators take as ar-
guments two queries of equal type, yielding a query of
the same type.

Furthermore, terms Ri.attr are only allowed to occur when
attr belongs to the schema of the relation to which the
occurrence of Ri in question is bound, and conditions of the
form t in q are allowed only when q is a unary query, i.e.,
when the type of q consists of a single attribute.

By an FO-SQL query, we will mean a closed query sat-
isfying the above requirements. Two examples are given in
Figure 2. We assume that the reader is familiar with the
semantics of SQL, and hence omit the formal semantics of
the fragment FO-SQL. We just mention that we disregard
order and duplicates, treating relations as sets of tuples.
It is known that, under this set-based semantics, FO-SQL
is expressively complete for first-order logic, in the sense
of Codd’s expressive completeness theorem [1, 25]. That
is, FO-SQL queries have the same expressive power as the
domain-independent fragment of first-order logic. Since FO-
SQL queries are defined in terms of named schemas, while
the syntax of first-order logic is based on unnamed schemas
in which the attributes of a relation are identified by natural
numbers instead of by attribute names, here, we consider a

1331

select A.name from author A where not exists(
select B.title from book B where B.auth = A.name)

select A.name from author A where not exists(
select B.title from book B where not B.auth = A.name)

Figure 2: Two examples of FO-SQL queries, the first
negation-guarded and the second not

FO-SQL query q of type {A1, . . . , An} to be “equivalent” to
a first-order formula φ(x1, . . . , xn), containing the relation
names reli occurring in q as relation symbols of appropri-
ate arity, if for every instance I and for every n-tuple a, the
tuple a is an answer to q in I if and only if I |= φ(a).

The most important features of (full) SQL that are ex-
cluded in the above definition of FO-SQL are constants,
arithmetical comparison, and aggregation. We will discuss
the importance of these restrictions later in Section 9.

GNSQL: the GuardedNegation Fragment of FOSQL.
We say that an SQL query is negation-guarded if the follow-
ing two conditions hold:

1. each except operator has as its first argument a simple
projection and as its second argument an uncorrelated
subquery.

2. each not operator has as its argument a condition with
at most one free tuple variable.

Here, by a simple projection, we mean a select-from-where

query, where the where-clause is ‘true’. GN-SQL is the frag-
ment of FO-SQL consisting of all negation-guarded queries.

To illustrate this definition, consider the two queries given
in Figure 2. The first query involves a single occurrence of
negation, which is guarded, since the negated condition has
only one free tuple variable, namely A. The second query,
on the other hand, is not a GN-SQL query, since the second
occurrence of negation is not guarded. Indeed, the condition
B.auth = A.name has two free tuple variables.

The next theorem states that GN-SQL captures GNFO, in
the same way that FO-SQL captures full first-order logic, as
we discussed above (the same conventions apply, concerning
what it means for a FO-SQL query to be equivalent to a
first-order formula).

Theorem 3 (GN-SQL is Codd-complete for GNFO)
Each GN-SQL query can be translated in linear time into an
equivalent domain-independent GNFO formula. Conversely,
each domain-independent GNFO formula can be translated
in exponential time into an equivalent GN-SQL query.

It can be shown that the exponential complexity of the
translation from GNFO to GN-SQL is in general unavoid-
able for formulas of the form (R(x1)∨S(x1))∧· · ·∧(R(xn)∨
S(xn)). On the other hand, the proof of Theorem 3 shows
that if the schema includes a unary relation adom that is
guaranteed to denote the active domain of the instance, then
there is a polynomial translation.

3.1 Negation in Practice: A Benchmark Study
In order to assess the usage of negation in SQL queries in

practice, we have studied the workloads of two standard SQL
benchmarks, namely TPC-H [32] and TPC-DS [31]. These

benchmark q
u
er
ie
s

q
u
er
ie
s
w
it
h

n
eg

a
ti
o
n
1

q
u
er
ie
s
w
it
h

u
n
g
u
a
rd

ed
n
eg

a
ti
o
n

q
u
er
ie
s
w
it
h

in
eq

u
a
li
ti
es

2

q
u
er
ie
s
w
it
h

u
n
g
u
a
rd

ed
in
eq

u
a
li
ti
es

TPC-H 22 4 0 3 1
TPC-DS 99 8 1 8 7
SkyServer 48 2 0 8 1

1 By negation, we mean any occurrence of not or except.
2 An inequality is any occurrence of <> or !=. An inequality is
guarded if the corresponding negation not(. . . = . . .) is guarded.

Figure 3: Usage of negation in SQL benchmarks

benchmarks were designed to evaluate and compare the per-
formance of relational database management systems. In
addition, we studied the sample queries published on the
Sloan Digital Sky Survey (SDSS) SkyServer website [30], a
selection of actual queries submitted by SDSS users. For
each query, we investigated whether the query uses nega-
tion, and, if so, whether the query is negation-guarded. We
also studied the use of inequalities, and investigated which of
these inequalities can be expressed using guarded negation.
The results, given in Figure 3, shows that most queries using
negation use only guarded negation. We should note here
that most queries contain SQL constructs, such as aggrega-
tion, that do not belong to FO-SQL. Therefore, the queries
are not necessarily expressible in GN-SQL. The statistics in
Figure 3 are only concerned specifically with the explicit use
of negation. We also did not investigated the use of other
SQL constructs such as outer joins, that can, in some sense,
be viewed as involving an implicit form of negation.

4. GUARDED NEGATION IN DATALOG
In this section, we present a powerful variant of Data-

log with stratified negation, which we call GN-Datalog and
which, in terms of its expressive power, is contained in
GNFP. We first briefly recall the syntax and semantics of
Datalog, with and without stratified negation.

Definition 4 (Datalog) A Datalog program is specified by
a triple Π = (EDBΠ, IDBΠ,RulesΠ), where EDBΠ and IDBΠ

are disjoint sets of relation names, each with an associated
arity, and RulesΠ is a finite set of rules of the form

φ← ψ1, . . . , ψn

where φ, ψ1, . . . , ψn are atomic formulas of the form
R(x1, . . . , xn) with R ∈ EDBΠ ∪ IDBΠ and x1, . . . , xn a
sequence of first-order variables of appropriate length. We
refer to φ as the head of the rule, and ψ1, . . . , ψn as the body
of the rule. In addition, we require that (i) every first-order
variable occurring in the head of a rule must occur in the
body, and (ii) the relation in the head of each rule must be
an IDB relation.

A Datalog query is a pair (Π, Ans), where Π is a Datalog
program and Ans is a union of conjunctive queries over the
schema EDBΠ ∪ IDBΠ. The semantics of a Datalog query
is defined as follows: first, if Π is a Datalog program, I
an instance over the schema EDBΠ, and k a natural num-
ber, then we denote by Πk(I) the instance over the schema
EDBΠ ∪ IDBΠ containing all facts that can be derived from
the facts in I using at most k rounds of applications of rules

1332

of Π. In addition, we denote by Π∞(I) the union
⋃

k
Πk(I).

If q = (Π, Ans) is a Datalog query and I an instance over
the schema EDBΠ, then we denote by q(I) the set of all
tuples that are an answer to the query Ans in Π∞(I).

We remark that the above definition differs slightly from
the standard presentation of Datalog. Usually, Ans is re-
quired to be a designated relation from IDBΠ instead of a
union of conjunctive queries. The presentation we use here
is convenient as it helps simplify the definitions below. On
the other hand, note that this is not essential: a Datalog
program can always be extended with an additional IDB re-
lation and with additional rules computing the Ans query.

Definition 5 (Datalog with Stratified Negation) A
Datalog¬ program is a Datalog program Π where the body
of each rule may, in addition, contain atomic formulas
of the form ¬R(x1, . . . , xn) provided that R ∈ EDBΠ,
and provided that each first-order variable occurring
in the head or body of the rule occurs positively in
the body. A Datalog program with stratified negation
is a sequence Π̃ = (Π1, . . . ,Πn) of Datalog¬ programs,
called strata, with n ≥ 1, where for each i = 2 . . . n,

EDBΠi = EDBΠi−1 ∪ IDBΠi−1 . We use EDBΠ̃ and IDBΠ̃

to denote EDBΠ1 and
⋃

i=1...n IDBΠi , respectively.

A Datalog query with stratified negation is a pair (Π̃, Ans),

where Π̃ = (Π1, . . . ,Πn) is a Datalog program with strat-
ified negation and Ans is a union of conjunctive queries

over the schema EDBΠ̃ ∪ IDBΠ̃. The semantics of Dat-
alog programs and of Datalog queries extends naturally
to Datalog with stratified negation, by defining Π̃∞(I) as

Π∞
n (Π∞

n−1(· · ·Π
∞
1 (I) · · ·)) for Π̃ = (Π1, . . . ,Πn).

We say that a Datalog program Π is non-recursive if no
IDB occurs in the body of any of its rules, and hence, in
particular, for all instances I we have that Π∞(I) = Π1(I).
We say that a Datalog program with stratified negation is
non-recursive if it consists entirely of non-recursive strata.

Definition 6 (GN-Datalog) A GN-Datalog program is a

Datalog program with stratified negation Π̃ = (Π1, . . . ,Πn),
where each rule

φ0 ← (¬)φ1, . . . , (¬)φn ∈ RulesΠk (1 ≤ k ≤ n)

is negation guarded, meaning that the following holds:

For each atom φi that either occurs negated in the
body or is the head, the body includes a positive atom
φj containing all first-order variables occurring in φi,
and φj uses a relation from EDBΠk .2

A GN-Datalog query is a Datalog query with stratified nega-
tion, where each rule is negation guarded. Note that this
requirement concerns only the rules; the answer query Ans
can be any union of conjunctive queries.

Theorem 7 (Non-recursive GN-Datalog is Codd-
complete for GNFO) Each non-recursive GN-Datalog
query is equivalent to a domain-independent GNFO formula,
and vice versa, via exponential translations.
2To understand why this is the appropriate definition of negation
guardedness, observe that a rule of the form φ ← ψ1, . . . , ψn

expresses that ¬∃x(ψ1 ∧ · · · ∧ ψn ∧ ¬φ), i.e., the head of the rule
plays the same role as a negated atom in the body.

The translation from non-recursive GN-Datalog to GNFO
given in the proof of Theorem 7 can be extended in a
straightforward manner to a translation from GN-Datalog
to the extension of GNFP with simultaneous fixed-point op-
erators. Since simultaneous fixed-point operators can be
eliminated (at the cost of an additional exponential blow-
up, cf. Section 2), we obtain the following:

Theorem 8 Each GN-Datalog query is equivalent to a
domain-independent GNFP formula.

The translation from non-recursive GN-Datalog to GNFO
provided by Theorem 7 involves an exponential blow-up,
due to an elimination of subformula sharing. The trans-
lation from GN-Datalog to GNFP provided by Theorem 8
involves another exponential blow-up, due to the elimination
of simultaneous fixed-point operators. These sources of ex-
ponential complexity can be avoided (i) if we transcribe GN-
Datalog queries into GNFP formulas over a larger schema
(containing a relation symbol not only for each EDB of the
GN-Datalog query, but also for each IDB), and (ii) freely use
simultaneous fixed-point operators in the GNFP formula.
More precisely, the proof of Theorem 8 can be adapted in a
straightforward manner to show the following result, which

will be useful later on (where, for two schemas S ⊆ Ŝ, an

Ŝ-expansion of an instance I over Ŝ is an instance over Ŝ
that agrees with I on all facts over S).

Theorem 9 For every k-ary GN-Datalog query q over a
schema S one can compute in polynomial time a GNFP sen-
tence φq and a GNFP formula ψq(x1, . . . , xk), both with si-
multaneous fixed point operators, and over a possibly larger

schema Ŝ, such that

1. each instance I has a unique Ŝ-expansion Î satisfying φq.

2. for all instances I and k-tuples a, a ∈ q(I) iff Î |= ψq(a).

5. RELATIONSHIPS WITH EXISTING

LANGUAGES
Monadic Datalog is a well-known Datalog fragment that

combines an interesting level of expressiveness with good
algorithmic behavior thanks to a tight connection with tree
automata, which also make monadic Datalog suitable for a
number of applications, e.g. [19]. It also stands out as a
fragment for which the boundedness problem is decidable
[15], Theorem 21 below. Monadic Datalog does not allow
any form of negation and since all IDB predicates are unary,
guardedness of rule heads is guaranteed, so that monadic
datalog rules are trivially negation guarded. We will show
that boundedness remains decidable for GN-Datalog.

Datalog LIT is a fragment of stratified Datalog whose
model checking has linear-time data complexity [18]. Each
Datalog LIT rule must either contain in its body as ‘guard’
a positive literal containing all variables occurring in the
rule, or must solely be comprised of unary literals (includ-
ing its head). While the ‘guard’ of guarded rules need not be
an EDB atom, [18] shows that every Datalog LIT program
can (in exponential time) be transformed into an equivalent
one having only EDB atoms as guards. The latter are triv-
ially negation guarded. Every Datalog LIT program is thus
equivalent to a GN-Datalog program.

1333

GNFO subsumes a number of formalisms having currency
in ontological reasoning, such as the linear- and guarded tu-
ple generating dependencies (tgds) underlying the recently
promoted Datalog± [10] framework and the more general
frontier-guarded tgds [5] that subsume the description logics
DL-LiteR (which captures RDF Schema), ELI, and ELHdr

⊥

[3], which is the core of the proposed OWL-EL profile of
the OWL 2.0 ontology language. GNFO can encode query
answering and containment assertions involving such speci-
fications of constraints or TBoxes. A tgd is a sentence

∀x,y φ(x,y)→ ∃z ψ(y, z) (2)

where both φ and ψ, called the body and the head, respec-
tively, of the tgd rule, are conjunctions of positive atoms.
A tgd is linear if φ consists of a single atom; it is guarded
if φ contains as conjunct an atom R(x,y), the ‘guard’, in
which all of the variables of the body occur together; and
it is frontier-guarded if the body contains an atom P (y) in
which all of the variables shared by the body and the head
of the rule occur together. Every frontier-guarded tgd nat-
urally translates to a GNFO sentence.

Other query languages that can be viewed as fragments of
GNFO include the semi-join algebra [24], as well as Unary
Conjunctive View Logic (UCV) and Core XPath, cf. [12].

6. QUERY CONTAINMENT
We now exploit the connection with GNFO and GNFP

to show that query containment is decidable for GN-SQL
and for GN-Datalog. Recall that a query q is satisfiable if
there exists an instance I such that the set of answers q(I) is
non-empty, and that a query q1 is contained in a query q2 if,
for all instances I, q1(I) ⊆ q2(I). The satisfiability problem
can be viewed as (the complement of) a special case of the
query containment problem, where the second query q2 is
any fixed unsatisfiable query.

Theorem 10 Query containment is 2ExpTime-complete
for both GN-SQL queries and GN-Datalog queries. Hardness
holds already for satisfiability of non-recursive GN-Datalog,
and GN-SQL, over a fixed EDB schema.

The 2ExpTime upper bounds for GN-SQL follow directly
from Theorem 3 and Theorem 1. The 2ExpTime upper
bounds for GN-Datalog do not follow directly from The-
orem 8 and Theorem 1, due to the exponential complex-
ity of the translation from GN-Datalog to GNFP involved.
However, it follows using Theorem 9: let q1, q2 be k-ary
GN-Datalog queries (k ≥ 0), and let φ1, ψ1(x1, . . . , xk) and
φ2, ψ2(x1, . . . , xk) be the GNFP-formulas with simultane-
ous fixed point operators obtained by Theorem 9. We may
assume without loss of generality that the only relation sym-
bols that φ1, ψ1 and φ2, ψ2 have in common are the re-
lation symbols that appear in q1 and q2. It follows that
q1 is contained in q2 if and only if φ1 ∧ ψ1(x1, . . . , xk) |=
φ2 → ψ2(x1, . . . , xk). This gives us the desired result, since,
as we explained in Section 2, the 2ExpTime upper bound
for GNFP entailment from Theorem 1 extends to the case
with simultaneous least-fixed point operators. The lower
bounds are obtained by adapting the proof of an 2ExpTime-
hardness result for a fragment of GNFO in [12].

Theorem 10 generalizes the known decidability result for
monadic datalog and unions of conjunctive queries [15]. In
addition, it easily implies the decidability of containment

of Datalog queries in Unions of Conjunctive Queries [13].
This can be seen as follows. For each Datalog query q, let
q̂ be the GN-Datalog query obtained from q by guarding
each rule using an additional conjunct that is a fresh EDB
relation. Then for each UCQ q′ over the original schema,
we have that q is contained in q′ if and only if q̂ is contained
in q′. One direction follows directly from the fact that q̂
is contained in q. For the other direction, note that every
counterexample I to the containment of q in q′ gives rise
to a counterexample I ′ to the containment of q̂ in q′. The
instance I ′ in question extends I by interpreting each new
EDB relation as the total relation containing all tuples over
the active domain of I.
As a direct consequence of the finite model property of

GNFO [7] and of Theorems 3 and 7, respectively, we find
that query containment is finitely controllable for GN-SQL
queries and for non-recursive GN-Datalog queries. By this
we mean that one query is contained in an other on finite in-
stances if, and only if, the containment holds on unrestricted
instances (a finite model property).

Theorem 11 Satisfiability and containment are finitely
controllable for GN-SQL and for non-recursive GN-Datalog.

7. QUERY ANSWERING

7.1 (ClosedWorld) Query Evaluation
Since GN-SQL and non-recursive GN-Datalog admit

translations into first-order logic, the data complexity of
query evaluation is in AC0 for both query languages. Simi-
larly, since GN-Datalog is contained in the fixed-point logic
FO(LFP), the data complexity of query evaluation is in
PTime. In fact, there is a GN-Datalog query (a monadic
Datalog query) for which query evaluation is PTime-hard in
terms of data complexity [18].

In what follows we consider the combined complexity
of query evaluation. Datalog evaluation is known to be
ExpTime-complete for combined complexity (implicit in
[34]). Monadic Datalog evaluation is known to be NP-
complete [19]. The “guarded fragment of Datalog” (every
rule contains an EDB atom containing all variables occur-
ring in the rule) evaluation is in PTime [18]. Non-recursive
Datalog with stratified negation is PSPACE-complete [16].

Recall that PNP[log2] is the class of those problems that
can be solved by a polynomial time deterministic algorithm
that is allowed to ask O(log2(n)) queries to an NP-oracle.
(It relates to better known complexity classes this way: NP

⊆ DP ⊆ PNP [log] ⊆ PNP[log2] ⊆ · · · ⊆ PNP [logi] ⊆ PNP ⊆
Σp

2 ⊆ PSPACE ⊆ EXPTIME.)

Theorem 12 The combined complexity of evaluating GN-

SQL queries is PNP[log2]-complete.

Proof. The upper bound follows directly from Theo-
rem 3 and Theorem 1. For the lower bound, observe that
the translation from GNFO to GN-SQL given in the proof
of Theorem 3 is polynomial in the presence of a unary re-
lation adom containing all elements in the active domain.
We may assume without loss of generality that our input in-
stance contains such a relation. Therefore, the lower bound
from Theorem 1 extends to GN-SQL as well.

1334

We show here that the same problem is PNP-complete for
GN-Datalog. Recall that the best known upper bound on
the complexity of model checking GNFP is NPNP∩coNPNP.

Theorem 13 The combined complexity of evaluating GN-
Datalog queries is PNP-complete. Hardness holds already
for non-recursive GN-Datalog queries with only unary IDB
predicates and nullary negation.

7.2 OpenWorld Query Answering
Open world (OWA) query answering is the following prob-

lem: given a query q, an instance I, and a tuple of values a,
decide whether it is the case that a belongs to the answers
of q in every instance extending I with additional facts. An
instance of open-world query answering I |=OWA q(a) thus
asks for the unsatisfiability of I ∪{¬q(a)} in the usual first-
order semantics, when treating I as a set of atomic facts with
its elements as constants. Open world semantics is the natu-
ral choice when working with incomplete databases, in data
exchange settings, and in the context of ontological reason-
ing. In each of these settings, open world query answering
is an extensively researched problem.

In this section, we investigate the data complexity of open-
world query answering for queries with guarded negation.
Formally, for each query q we denote by OWAq the problem,
given an instance I and a tuple of values a from adom(I),
to decide whether I |=OWA q(a). More generally, for each
query q and for each set of constraints Σ, we denote by
OWAq,Σ the problem, given an instance I, to decide whether
I,Σ |=OWA q.

Note that, in the absence of constraints, for conjunctive
queries q, by monotonicity, the problem I |=OWA q(a) coin-
cides with I |= q(a), and therefore OWAq is in PTime (in
fact, in AC0). For first-order queries q, on the other hand,
the problem OWAq can be undecidable. We will show be-
low that the problem is decidable for first-order queries with
guarded negation.

As constraints, we will consider tuple-generating depen-
dencies, cf. (2), and key constraints. As noted above, linear-,
guarded- and frontier-guarded tgds [5, 10] are expressible in
GNFO. With respect to OWA query answering, conjunc-
tive queries are known to be FO-rewritable relative to linear
tgds [10] and possess Datalog rewritings relative to frontier-
guarded tgds [4]. Accordingly, the data complexity of open-
world query answering for conjunctive queries against lin-
ear tgds is in AC0, in PTime for frontier-guarded tgds, and
PTime-complete already for guarded tgds [10].

We begin by observing that OWA query answering for
GNFO queries, as for many description logics [29, 11, 27],
has coNP data complexity. For an instance I, we denote by
|I| the total number of facts of I, and, for two instances I, J ,
we write I ⊆ J if every fact of I is a fact of J .

Proposition 14 Let φ(x) be a fixed GNFO formula. For
an instance I and a tuple a of elements from adom(I), if
there is an instance J |= φ(a) with I ⊆ J , then there is an
instance J |= φ(a) with I ⊆ J and |J | = O(|I|).

Proposition 14 tells us that, in solving the open-world
query answering problem for GNFO queries, it suffices to
consider ony instances whose size is linear in the size of the
input instance. This gives us the following:

Theorem 15 For each GNFO query q (in particular, for
each GN-SQL query), OWAq is in coNP. There is a boolean
GN-SQL query q for which OWAq is coNP-hard.

Proof. The coNP upper bound is immediate from the
above proposition. Given an instance I with distinguished
elements a, Proposition 14 shows that to refute I |=OWA

q(a) it suffices to guess a linear size instance J with I ⊆ J
and test in polynomial time that J satisfies ¬q(a). The
lower bound is established by a reduction from 3-colorability.
Let q be the GNFO sentence (for readability, we omit the
repeated occurrences of Nx as guard):

∃x(Nx∧¬P1x∧¬P2x∧¬P3x) ∨
∨

i

∃xy(Exy∧Pix∧Piy) (3)

expressing that P1, P2, P3 do not constitute a valid 3-
coloring of the graph (N,E). It is easy to check that a sim-
ple undirected graph G is not 3-colorable iff G |=OWA q, and
it is straightforward to formulate the domain-independent
boolean query (3) in GN-SQL.

This is remarkable, given that open-world query answer-
ing is in general undecidable for first-order queries, even in
the absence of constraints.

Recall that every frontier-guarded tgd can be formulated
as a GNFO sentence. This allows us to lift the above result
to the open-world query answering problem with constraints
that are frontier-guarded tgds. More precisely, if Σ is a set of
frontier-guarded tgds, then OWAq,Σ, by definition, coincides
with OWAq∨

∨
σ∈Σ

¬σ, and therefore we get the following.

Corollary 16 For each GNFO query q and for each finite
set of frontier-guarded tgds Σ, OWAq,Σ is in coNP.

In various contexts, such as data exchange [17], it is use-
ful to consider incomplete databases that contain, besides
constant values, also labeled null values. In this case, open
world query answering is defined not in terms of extensions
of instances, but in terms of homomorphisms that are al-
lowed to map the labeled null values to constant values or
to other labeled null values. It is worth observing that the
above proofs go through in this more general setting with
null values, showing that for GNFO queries q and for finite
sets of frontier-guarded tgds Σ, OWAq,Σ is in coNP even
over instances containing labeled nulls.

Next we identify a subfragment of GNFO that accommo-
dates the earlier mentioned formalisms including conjunctive
queries and frontier-guarded tgds and whose queries enjoy
PTime data complexity for OWA. Recall that open-world
query answering I |=OWA q asks for the unsatisfiability of
I ∪ {¬q}. Under negation, the subformula ∃x(Nx ∧ ¬P1x ∧
¬P2x∧¬P3x) of the coNP-complete query (3) turns into the
disjunctive requirement ∀x(Nx→ P1x∨P2x∨P3x) that is,
in an intuitive sense, ultimately responsible for intractabil-
ity. Indeed, it has been observed in the context of DL-Lite
that the introduction of even the weakest form of disjunc-
tion renders query answering intractable (see, e.g., [11]).
It turns out that the positive occurrence of conjunctions
¬A(x)∧. . .∧¬B(x) involving two or more negated conjuncts
are the only source of intractability in GNFO queries.

Definition 17 (serial GNFO queries, SGNQ)
A GNFO-formula ϕ is serial if it is in DNF and no conjunc-
tion ¬χ(x)∧ . . .∧¬ψ(x) with two or more negated conjuncts
occurs positively in ϕ, i.e., in the scope of an even number of
negations. Let SGNQ denote the set of serial GNFO queries.

1335

Clearly, every union of conjunctive queries is a serial
GNFO query. Furthermore, every frontier-guarded tgds,
as well as its negation, is equivalent to a boolean serial
GNFO queries. It fact, for every finite set Σ of frontier-
guarded tgds and for every serial GNFO query q, we have
that q ∨

∨
σ∈Σ ¬σ is a serial GNFO query. In other words,

the reduction from open-world query answering in the pres-
ence of frontier-guarded tgds to open-world query answering
in the absence of tgds, that we gave earlier, holds also in the
case of serial GNFO queries.

Theorem 18 For each SGNQ q and for each finite set Σ
of frontier-guarded tgds, OWAq,Σ is in PTime.

In fact, for every boolean SGNQ q we can effectively com-
pute a boolean Datalog query q′ such that for all instances
I, we have I |=OWA q ⇐⇒ I |= q′ .

There is a boolean SGNQ query q for which OWAq is
PTime-complete.

The proof is based on a reduction from the open-world
query answering problem for SGNQs in the presence of
frontier-guarded tgds to the open-world query answering
problem for conjunctive queries in the presence of frontier-
guarded tgds. A PTime solution of the latter problem via
Datalog rewritings is due to [4].

Finally, we show that OWA answering GNFO queries un-
der key constraints is undecidable. This holds even for a
fixed GNFO query and a fixed key constraint of the form
∀xyz(F (x, y) ∧ F (x, z)→ y = z) with F a relation symbol.

Theorem 19 (i) There is a boolean conjunctive query q
and a set Σ comprising guarded tgds and a single key
constraint, so that OWAq,Σ is undecidable.

(ii) There is a boolean SGNQ q and a key constraint σ, so
that OWAq,{σ} is undecidable.

While undecidability of the uniform problem (where the
query is part of the input) follows from various similar re-
sults for weaker formalisms [29], for a fixed query this seems
to be a new result.

8. BOUNDEDNESS AND FIRSTORDER

DEFINABILITY
In this section, we study the boundedness problem for

GN-Datalog. Our main result, Corollary 28, states that it is
decidable whether a GN-Datalog program is fully bounded,
i.e., whether, for every instance, the computation of each
stratum of the GN-Datalog program reaches a fixed point
in a bounded number of steps.

The semantics of a Datalog program Π can be defined
in terms of a least fixed point for the IDB predicates. For
this we view Π, or rather each of its instatiations ΠI over
a given instance I, as a monotone operator. An application
of this operator to any instantiation of the IDB predicates
produces the result of firing all rules once and in parallel,
on these IDB predicates and the static EDB predicates as
given in I. This operator ΠI is monotone, and the desired
interpretation of the IDB predicates in Π∞(I) is its unique
least fixed point. This view extends to not necessarily finite
instances I, where ΠI , due to its monotonicity, still has a
unique least fixed point, also refered to as Π∞(I). As in the
case of finite instances, this fixed point is obtained as the
limit of the monotone sequence of stages Πα

I generated by

iterating ΠI as an update operator, starting from the empty
instantiation for all IDB predicates in stage 0, and taking
unions at limit ordinals, until finally (for cardinality reasons)
a stage Πα

I is reached that is a fixed point, and indeed the
unique least fixed point (Πα+1

I = Πα
I implies Πα

I = Π∞(I)).
All these considerations hold for any notion of program or

recursion scheme that shares the crucial monotonicity with
Datalog programs. Monotonicity refers to monotonicity in
the IDB arguments, and is guaranteed by syntactic positiv-
ity in the IDB predicates in all cases we consider.We are
mostly interested in IDB-positive GNFO-programs, which
we first investigate in isolation, towards understanding their
stratified, and overall no longer monotone, use in GN-
Datalog (cf. Definition 23 below).

The notion of boundedness captures the semantic and pro-
cedural essence of non-recursive behavior (in contrast with
syntactic non-recursiveness as defined in Section 4, which
focuses on a trivial reason for boundedness).

Definition 20 A monotone program Π is c-bounded
(bounded in the classical sense, or over unrestricted in-
stances) if there exists some n ∈ N such that Πn+1

I = Πn
I

for every finite or infinite instance I. It is bounded over a
class of instances I if there is such an n that is good for all
I ∈ I. We call Π f-bounded if it is bounded over the class of
all finite instances.
BDD(P, I) stands for the boundedness problem for programs
from P over instances from I: given Π ∈ P, decide whether
Π is bounded over I. We reserve the names BDDc(P) and
BDDf (P) for BDD(P,All) and BDD(P,Fin), where All
and Fin are the classes of unrestricted and of finite instances,
respectively.

Despite its basic nature, the boundedness problem is
known to be undecidable for even very rudimentary classes
of programs – a fact which frustrated all hopes to systemat-
ically eliminate bounded, i.e. spurious, recursion in effective
tools for query optimization. See for instance [21] for the un-
decidability of (f-)boundedness for Datalog programs with
binary IDB predicates, as well as for Datalog programs with
just monadic IDB predicates but with EDB negation or even
just with inequalities in the bodies. One of the few major
decidability results is the following from [15].

Theorem 21 (Cosmadakis et al. [15]) BDDf (P) =
BDDc(P) is decidable for the class P of all monadic
Datalog programs.

The following result from classical model theory is of fun-
damental importance for links between boundedness and
first-order (FO) definability. It speaks about IDB-positive
programs Π that are first-order in the sense that the bodies
of rules can be expressed in FO, by formulas that are posi-
tive in all IDB predicates (which guarantees monotonicity).
We use the term first-order programs in this sense. We say
that the fixed point of Π is FO-definable over the class I
if each IDB predicate in the least fixed point Π∞(I) is de-
finable in terms of the EDB predicates by some first-order
formula, uniformly across all I ∈ I.

Theorem 22 (Barwise–Moschovakis [8]) An IDB-
positive first-order program Π is bounded in the classical
sense if, and only if, the fixed point of Π is FO-definable
over the class of all (finite and infinite) instances.

1336

Analogous equivalences can be derived for many natural
fragments L ⊆ FO, where boundedness of IDB-positive L-
programs is equated with L-definability of their fixed points.
This is true in particular also for the guarded negation frag-
ment GNFO ⊆ FO.

Moreover, for many well-behaved fragments L ⊆ FO there
are model theoretic transfer results that say that an L-
program Π is bounded over I if, and only if, it is bounded
over some subclass I0 ⊆ I. A case of particular interest
is a finite model property for boundedness, which links the
classical notion to its finite model theory version. This, too,
is available in the case of GNFO.

Definition 23 A GNFO-program is an IDB-positive pro-
gram Π with rules of the form

Xxs ← αs(xs) ∧ φs(X,xs)

where φs ∈ GNFO is positive in the IDB predicates X and
αs is an EDB atom guarding the variable tuple xs in the
head.

The following say that for GNFO we are in the ideal situa-
tion that f-boundedness and c-boundeness coincide, and that
the classical and finite model theory variants of the Barwise–
Moschovakis correspondence hold. The finite model theory
analogue is the least straightforward of these.3

Proposition 24 For GNFO-programs Π and their least
fixed points Π∞, t.f.a.e.:

(i) Π∞ is FO-definable over all finite instances.

(ii) Π∞ is FO-definable over all unrestricted instances.

(iii) Π∞ is GNFO-definable over all finite instances.

(iv) Π∞ is GNFO-definable over all unrestricted instances.

(v) Π is bounded over all finite instances.

(vi) Π is bounded over all unrestricted instances.

Another crucial transfer property for BDD(GNFO) is
based on the notion of treewidth. In [7], it was suggested
that the key to the good computational behavior of GNFO
and GNFP lies in the fact that these logics have a tree-
like model property : for testing the satisfiability and the
entailment of formulas, it suffices to consider structures of
bounded treewidth. The same notion provides the key to
decidability of boundedness as well.

The width w(Π) of a GNFO-program Π is the maximum
number of element variables used in any of its rules in DNF.

Lemma 25 A GNFO-program Π of width ≤ w is bounded
over all unrestricted instances if, and only if, it is bounded
over the class of all (possibly infinite) instances of treewidth
at most w.

Proof. Each finite stage Xn of Π can be defined by a
sequence of GNFO-formulas whose width is bounded by w.
In particular, for each natural number n, boundedness of
Π at stage n ≥ 1, w.r.t. a class of structures, is equivalent
to the validity of a certain GNFO-sentence of width w, on
that class of structures. Since a GNFO-sentence of width

3It is known, for instance, that the universal fragment of
FO, despite its finite model property, does not satisfy this
analogue: there is a purely universal program whose limit
is uniformly definable in universal FO across all finite in-
stances, although it is unbounded over finite instances.

w is valid on arbitrary structures if and only if it is valid
on structures of treewidth at most w (cf. [7, 28]), the claim
follows.

We turn to decidability of BDDc(GNFO) and of full
boundedness (to be defined below) of GN-Datalog. Given
the meager history of decidability results concerning bound-
edness for database purposes, it is interesting that here is
one considerable extension of the early decidability result
for monadic Datalog from [15], cf. Theorem 21 above.

We note that GN-Datalog is stricly more expressive than
monadic Datalog, but avoids the dangers of negation that
render boundedness undecidable, for instance, in the exten-
sion of monadic Datalog by just inequalities, or by negative
as well as positive access to some binary EDB predicates.

Technically, the following decidability assertion is an easy
corollary to the decidability results for monadic second-order
logic and guarded second-order logic over tree-like structures
in [9]. These results in turn are based on a non-trivial re-
duction to an automata theoretic decidability result of Col-
combet and Löding, which, in the relevant strength needed
here, has not been published yet. As in [9] we indicate this
caveat formally as an assumption (ILT), which refers to the
decidability of limitedness for weighted parity automata on
infinite trees, as announced in connection with progress on
earlier work in [14].

Recall that BDDc(GNFO) and BDDf (GNFO) coincide.

Theorem 26 (assuming ILT) Boundedness for GNFO-
programs is decidable.

Proof. The GNFO-formulas in an GNFO-program can
be translated into explicitly guarded formulas of guarded
second-order logic GSO (denoted GSO∗ in [9]). The re-
sult then follows from the decidability of BDD(GSO∗,Wk),
boundedness for GSO∗ over the class of structures of
treewidth k, where both the GSO∗-formulas and the param-
eter k are treated as input (Theorem 8.8 in [9]). We apply
this to the GSO∗-translation of the input GNFO-program Π
over the class Wk for k := w(Π).4 By Lemma 25, (ii), this
is a valid reduction.

Towards our interest in GN-Datalog, with its stratified
use of guarded negation as defined in Section 4, we extend
the notion of boundedness from Definition 20 as follows.

Definition 27 A GN-Datalog program Π̃ = (Πi)i≤n is
called fully f/c-bounded over a class of instances I if each
stratum Πi is f/c-bounded over the class of all instances
obtained from instances in I by evaluating all IDB pred-
icates from lower strata according to Π̃<i and treating
them as EDB for Πi. Equivalently, a GN-Datalog program
Π̃ = (Πi)i≤t is fully f/c-bounded if there are natural num-
bers k1, . . . , kt such that for all finite/unrestricted instances

I, Π∞(I) = Πkt

t (Π
kt−1

t−1 (· · ·Πk1

1 (I) · · ·)).

Corollary 28 (assuming ILT) For GN-Datalog, full f-
boundedness is decidable and coincides with full c-
boundedness.

4NB: since Π really corresponds to a system of least fixed
points in several IDB predicates X, we need the result for
systems of simultaneous fixed points in GSO∗ from [9], as
discussed in the proof sketch for Theorem 11.5 there.

1337

Proof. The proof is by induction on the number of
strata. Note that by definition of full boundedness, a strat-
ified GN-Datalog program Π̃ = (Πi)i≤n fails to be fully
bounded if, and only if, there is a least stratum m ≤ n such
that Πm is unbounded over the class of instances obtained
by evaluating all IDB predicates of lower strata according to
Π̃<m. Since these lower strata are bounded, this partial eval-
uation is in fact GNFO-definable. It follows that the above
arguments concerning the GNFO-variant of the Barwise–
Moschovakis theorem and its finite model theory version
carry through – stratum by stratum, and up to the first
stratum that turns out to be unbounded, if any. This also
reduces the decidability claim to that in Theorem 26.

We remark that the passage through boundedness for
GSO∗ over Wk, which is known to be of non-elementary
complexity even for k = 1, prevents us from extracting any
reasonable complexity bounds. It is conceivable, of course,
that alternative methods yield such bounds (as is the case
for other special cases of interest, besides that of monadic
Datalog, that also follow from the master result of [9]).

9. DISCUSSION

9.1 Further Extensions of GNSQL

Inequalities. GN-SQL can be viewed as a well-behaved
query language extending unions of conjunctive queries with
a restricted form of negation. In this sense, it is natural
to compare GN-SQL to UCQ(6=), the language of unions
of conjunctive queries with inequalities. Like GN-SQL,
UCQ(6=) is computationally well-behaved: query contain-
ment is Πp

2-complete [23, 33], the combined complexity of
query evaluation is NP-complete, and the data complexity
of open world query answering is NP-complete w.r.t. a large
class of constraints [17], cf. also [26]. In this light, and in the
light of Figure 3, the question arises whether we can extend
GN-SQL to allow for the use of (unguarded) inequalities.

Let us denote by GN-SQL(6=) the extension of GN-SQL
where conditions may make use of the inequality relation
(6=), but the inequality relation cannot be used to guard
negations. It is easy to see that Theorem 12 extends to
GN-SQL(6=) — we may view the inequality as just an-
other relation that is part of the input instance. All the
other results we obtained for GN-SQL, however, fail for GN-
SQL(6=). This follows from the fact that it is possible to ex-
press functional dependencies in GN-SQL(6=). Indeed, every
functional dependency

∀xyzuv(F (x,y, u) ∧ F (x, z, v)→ u = v)

is equivalent to the GNFO sentence with inequality

¬∃xyz, u, v(F (x,y, u) ∧ F (x, z, v) ∧ u 6= v) ,

which can easily be expressed in GN-SQL(6=) as well. Re-
call that inclusion dependencies too can be expressed in GN-
SQL. This, together with classical results in dependency the-
ory (cf. [1]) and Theorem 19(ii)), implies the following:

Theorem 29 (i) GN-SQL(6=) is not finitely controllable
for satisfiability or query containment.

(ii) The satisfiability and query containment problems for
GN-SQL(6=) are undecidable (both on finite instances
and on unrestricted instances).

(iii) There is a GN-SQL(6=) query for which open world
query answering is undecidable.

Known results for various description logics contained in
GNFO imply that OWA answering for GNFO(6=) queries is
undecidable when the query is part of the input [29]. The-
orem 29 strengthens this by showing undecidability already
for a fixed GNFO(6=) query. Naturally, similar results can be
obtained for the extension of GN-Datalog with inequalities.

Constants and Comparisons. GN-SQL queries, as we de-
fined them, cannot contain constant values, nor arithmeti-
cal comparisons (i.e., conditions of the form t1 < t2). In-
deed, over linearly ordered domains, inequalities can be ex-
pressed using arithmetical comparisons (x 6= y is equiva-
lent to x < y ∨ y < x), and hence, by Theorem 29, most
problems immediately become undecidable when arithmeti-
cal comparisons are allowed. However, as we will show, our
results do generalize to the extension of GN-SQL where (i)
queries may contain constant values, and (ii) arithmetical
comparisons of the form t1 < t2 are allowed provided that
at least one of t1, t2 is a constant value.
In what follows, let lin = (D,≺) be any ordered domain

(where D is a countable set and ≺ is a total order on D)
that is “reasonable” in the sense that the following problems
are all solvable in polynomial time (for some appropriate
representation of the elements of D):

1. given d1, d2 ∈ D, is it the case that d1 ≺ d2?

2. given d ∈ D, does there exist d′ ∈ D with d′ ≺ d?

3. given d ∈ D, does there exist d′ ∈ D with d ≺ d′?

4. given d1, d2 ∈ D, is there a d′ ∈ D with d1 ≺ d
′ ≺ d2?

Essentially, all the usual ordered domains, such as the
natural numbers (N, <), the rational numbers (Q, <), and
the strings (A∗, <lex) over a finite ordered alphabet A, are
reasonable in this sense.

Let GN-SQL(lin) be the extension of the GN-SQL syntax
where (i) all terms t are allowed to be either of the form
R.attr (as before) or to be an element of lin (in which case
we call t a constant); and (ii) for all terms t1, t2 of which at
least one is a constant value, t1 < t2 is allowed as an atomic
condition. The semantics of GN-SQL(lin) queries is only
well-defined for instances whose active domain is a subset of
lin. Therefore, we restrict attention to such instances.

All results for GN-SQL that we have presented can be
extended to GN-SQL. For simplicity, we sketch the relevant
construction here only for the query containment problem.

Theorem 30 Let lin be any reasonable ordered domain.
GN-SQL(lin) query containment is 2ExpTime-complete.

Aggregation. Recall that GN-SQL does not allow for any
form of aggregation that is available in SQL. This is for good
reason: allowing even simple forms of aggregation such as
counting would quickly lead to undecidability, since query
containment for unions of conjunctive queries under the bag
semantics is undecidable [22].

9.2 Further Extensions of GNDatalog

Allowing IDBs As Guards. If in the definition of negation-
guarded Datalog rules one permits also the use of IDB atoms
from the same or lower stratum as guards, this can result

1338

in an exponential gain in succinctness but does not increase
the expressive power. (A simple induction on strata and
on stages of inductive definitions of IDB predicates confirms
that all tuples added to the interpretation of IDB predi-
cates are guarded by some EDB atom.) Query evaluation
complexity, however, suffers an exponential blow-up as a
consequence of this relaxation.

Proposition 31 (GN-Datalog with IDB guards)
Answering GN-Datalog queries with IDB atoms allowed as
guards is ExpTime-complete in combined complexity.

Capturing the AlternationFree Fragment of GNFP.
In [18], an extension of Datalog-LIT was presented, called
Datalog-LITE, which includes “generalized literals” and was
shown to capture the alternation-free fragment of guarded
fixed point logic (GFP). We expect that GN-Datalog can be
similarly extended, in order to subsume Datalog-LITE and
capture the alternation-free fragment of GNFP.

Acknowledgements: This research was partially sup-
ported by NSF Grant IIS-0905276. We thank Alkis Poly-
zotis for helpful comments. Detailed proofs of the results
can be found at http://tiny.cc/guardednegation.

10. REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] A. Arnold and D. Niwinski. Rudiments of µ-calculus.
Elsevier, 2001.

[3] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat.
On rules with existential variables: Walking the
decidability line. Art. Intell., 175(10):1620–1654, 2011.

[4] J.-F. Baget, M.-L. Mugnier, S. Rudolph, and
M. Thomazo. Complexity Boundaries for Generalized
Guarded Existential Rules. Technical Report
lirmm-00568935, LIRMM, 2011.

[5] J.-F. Baget, M.-L. Mugnier, S. Rudolph, and
M. Thomazo. Walking the complexity lines for
generalized guarded existential rules. In Proc. IJCAI,
pages 712–717, 2011.

[6] V. Bárány and M. Bojanczyk. Finite satisfiability for
guarded fixpoint logic. IPL, 112(10):371–375, 2012.

[7] V. Bárány, B. ten Cate, and L. Segoufin. Guarded
negation. In Proc. ICALP, pages 356–367, 2011.

[8] J. Barwise and Y. N. Moschovakis. Global inductive
definability. J. Symb. Log., 43(3):521–534, 1978.

[9] A. Blumensath, M. Otto, and M. Weyer. Decidability
results for the boundedness problem. Preprint at
www.mathematik.tu-darmstadt.de/~otto/, 2011.

[10] A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. Tractable
query answering over ontologies with Datalog±. In
Proc. Description Logics Workshop, 2009.

[11] D. Calvanese, G. D. Giacomo, D. Lembo,
M. Lenzerini, and R. Rosati. Data complexity of query
answering in description logics. In Proc. KR, pages
260–270, 2006.

[12] B. ten Cate and L. Segoufin. Unary negation. In
Proc. STACS, pages 344–355, 2011.

[13] S. Chaudhuri and M. Y. Vardi. On the equivalence of
recursive and nonrecursive datalog programs. J.
Comput. Syst. Sci., 54(1):61–78, 1997.

[14] T. Colcombet and C. Löding. The nesting-depth of
disjunctive µ-calculus for tree languages and the
limitedness problem. In Proc. CSL, pages 416–430,
2008.

[15] S. Cosmadakis, H. Gaifman, P. Kanellakis, and
M. Vardi. Decidable optimization problems for
database logic programs. In Proc. STOC 1988, pages
477–490, 1988.

[16] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and expressive power of logic program-
ming. ACM Comput. Surv., 33(3):374–425, 2001.

[17] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: semantics and query answering.
Theoretical Computer Science, 336(1):89–124, 2005.

[18] G. Gottlob, E. Grädel, and H. Veith. Datalog LITE: a
deductive query language with linear time model
checking. ACM Trans. Comput. Log., 3(1):42–79, 2002.

[19] G. Gottlob and C. Koch. Monadic datalog and the
expressive power of languages for Web information
extraction. J. ACM, 51(1):74–113, 2004.

[20] E. Grädel and I. Walukiewicz. Guarded fixed point
logic. In In Proc. LICS, pages 45–54, 1999.

[21] G. Hillebrand, P. Kanellakis, H. Mairson, and
M. Vardi. Undecidable boundedness problems for
datalog programs. J. of Logic Prog., 25(2):163–190,
1995.

[22] Y. E. Ioannidis and R. Ramakrishnan. Containment of
conjunctive queries: beyond relations as sets. ACM
Trans. Database Syst., 20(3):288–324, 1995.

[23] A. Klug. On conjunctive queries containing
inequalities. J. ACM, 35(1):146–160, 1988.

[24] D. Leinders, M. Marx, J. Tyszkiewicz, and J. Bussche.
The semijoin algebra and the guarded fragment. J. of
Logic, Lang. and Inf., 14(3):331–343, 2005.

[25] L. Libkin. Expressive power of SQL. Theor. Comput.
Sci., 296(3):379–404, 2003.

[26] A. Madry. Data exchange: On the complexity of
answering queries with inequalities. Inf. Process. Lett.,
94(6):253–257, 2005.

[27] M. Ortiz, D. Calvanese, and T. Eiter. Data complexity
of Answering Unions of Conjunctive Queries in SHIQ.
In Proc. Description Logics Workshop, 2006.

[28] M. Otto. Expressive completeness through logically
tractable models. Submitted, 2012.

[29] R. Rosati. The limits of querying ontologies. In Proc.
ICDT, pages 164–178, 2006.

[30] Sloan Digital Sky Survey. Sky server sample SQL
queries. http://skyserver.sdss.org/public/en/
help/docs/realquery.asp. Accessed Sept. 25, 2011.

[31] TPPC. TPC-DS benchmark.
http://www.tpc.org/tpcds/. Release 2008-01-21.

[32] TPPC. TPC-H benchmark.
http://www.tpc.org/tpch/. Release 2.14.3.

[33] R. van der Meyden. The complexity of querying
indefinite data about linearly ordered domains. J.
Comput. Syst. Sci., 54(1):113–135, 1997.

[34] M. Y. Vardi. The complexity of relational query
languages. In Proc. STOC 1982, pages 137–146, 1982.

1339

