Injecting Uncertainty in Graphs for Identity Obfuscation

Paolo Boldi

Universita degli Studi
Milano, Italy
boldi@dsi.unimi.it

ABSTRACT

Data collected nowadays by social-networking applications
create fascinating opportunities for building novel services,
as well as expanding our understanding about social struc-
tures and their dynamics. Unfortunately, publishing social-
network graphs is considered an ill-advised practice due to
privacy concerns. To alleviate this problem, several anony-
mization methods have been proposed, aiming at reducing
the risk of a privacy breach on the published data, while still
allowing to analyze them and draw relevant conclusions.

In this paper we introduce a new anonymization approach
that is based on injecting uncertainty in social graphs and
publishing the resulting uncertain graphs. While existing ap-
proaches obfuscate graph data by adding or removing edges
entirely, we propose using a finer-grained perturbation that
adds or removes edges partially: this way we can achieve the
same desired level of obfuscation with smaller changes in the
data, thus maintaining higher utility. Our experiments on
real-world networks confirm that at the same level of iden-
tity obfuscation our method provides higher usefulness than
existing randomized methods that publish standard graphs.

1. INTRODUCTION

Preserving the anonymity of individuals when publishing
social-network data is a challenging problem that has re-
cently attracted a lot of attention [2, 22]. The methods that
have been proposed so far for anonymizing social graphs can
be classified into three main categories: (1) methods that
group vertices into super-vertices of size at least k, where k
is the required level of anonymity; (2) methods that provide
anonymity in the graph via deterministic edge additions or
deletions; and (3) methods that add noise to the data in the
form of random additions, deletions or switching of edges.

In this paper we introduce a new graph-anonymization
method that does not fall in any of the above three cate-
gories. Our method injects uncertainty in the existence of
the edges of the graph and publishes the resulting uncertain
graph, that is, a graph where each edge e has an associated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.

Proceedings of the VLDB Endowment, Vol. 5, No. 11

Copyright 2012 VLDB Endowment 2150-8097/12/07... $ 10.00.

Francesco Bonchi

Yahoo! Research
Barcelona, Spain
{bonchi,gionis}@yahoo-inc.com

1376

Aristides Gionis Tamir Tassa

The Open University
Ra’anana, Israel
tamirta@openu.ac.il

Figure 1: (a) A graph; (b) a possible obfuscation.

probability p(e) of being present. Injecting a limited amount
of uncertainty in the data, in order to reach a desired level
of identity obfuscation, is a natural approach [1]. For in-
stance, the k-anonymity framework for relational data [25,
28] is typically based on injecting uncertainty by means of
attribute generalization; for example, generalizing an exact
numerical value to a range of values.

In the context of graph anonymization, our approach can
be seen as a generalization of random-perturbation methods,
which randomly delete existing edges and add non-existing
edges [12]. From a probabilistic perspective, adding a non-
existing edge e corresponds to changing its probability p(e)
from 0 to 1, while removing an existing edge corresponds to
changing its probability from 1 to 0. In our method, instead
of considering only binary edge probabilities, we allow prob-
abilities to take any value in [0, 1], thus allowing for greater
flexibility. The underlying intuition is that by using finer-
grained perturbation operations, one can achieve the same
desired level of obfuscation with smaller changes in the data,
thus maintaining higher data utility.

An example of the proposed obfuscation method is shown
in Figure 1: The graph (a) is the original graph that needs
to be obfuscated; the published graph (b) is a possible ob-
fuscation. While vertices v1 and vz are connected in (a), in
(b) they are connected with probability p(vi,v2) = 0.7, rep-
resenting a reduction of 0.3 in the certainty of existence of
the edge (v1,v2). Vertices vs and v4, which are connected in
(a), are no longer connected in the published graph (b), i.e.,
p(v3,v4) = 0. Vertices vz and vs, which were not connected
in (a), are connected with probability 0.8 in (b), correspond-
ing to a partial creation of an edge.

A natural question that arises is how to query and ana-
lyze data that is published in the form of an uncertain graph.
Hence, in order to prove the practical relevance of our pro-
posal, not only we need to show that the uncertain graph
maintains high utility, which we measure as similarity to
the original graph in terms of characteristic properties, but
also that the computation of these properties can be carried

out efficiently. An essential part of our discussion will be
devoted to this. Fortunately, an increasing research effort
was dedicated in recent years to the topic of querying and
mining uncertain graphs [14, 15, 24, 36, 37, 38]: this body
of research comes to our aid, providing evidence that useful
analysis can be carried out on uncertain graphs.

In this work we achieve the following contributions:

e We introduce and formalize the idea of injecting uncer-
tainty in graphs for identity obfuscation. In particular,
we formally define the notion of (k,¢)-obfuscation for

uncertain graphs (Section 3).

We provide methods for assessing the level of obfusca-
tion achieved by an uncertain graph with regards to the
degree property (Section 4).

We introduce our method for injecting uncertainty in a
graph for (k,e)-obfuscation (Section 5).

In Section 6, we discuss several graph statistics and
methods to compute them efficiently in uncertain
graphs. These statistics are then used in Section 7 to
assess the utility of the published uncertain graph.

Our experimental assessment on three large real-world
networks proves that at the same obfuscation levels,
our method maintains higher data utility than existing
random-perturbation methods.

In the next section we review the relevant literature, while
in Section 8 we conclude the paper and suggest future work.

2. RELATED WORK

As we already mentioned, methods for anonymizing so-
cial networks can be broadly classified into three categories:
generalization by means of clustering of vertices; determin-
istic alteration of the graph by edge additions or deletions;
randomized alteration of the graph by addition, deletion or
switching of edges.

In the first category, Hay et al. [10, 11] propose to gen-
eralize a network by clustering vertices and publishing the
number of vertices in each partition together with the den-
sities of edges within and across partitions. Campan and
Truta [5] study the case in which vertices contain additional
attributes, e.g., demographic information. They propose to
cluster the vertices and reveal only the number of intra- and
inter-cluster edges. The vertex properties are generalized in
such a way that all vertices in the same cluster have the
same generalized representation. Tassa and Cohen [29] con-
sider a similar setting and propose a sequential clustering
algorithm that issues anonymized graphs with higher utility
than those issued by the algorithm of Campan and Truta.

Cormode et al. [7, 8] consider a framework where two sets
of entities (e.g., patients and drugs) are connected by links
(e.g., which patient takes which drugs), and each entity is
also described by a set of attributes. The adversary relies
upon knowledge of attributes rather than graph structure
in devising a matching attack. To prevent matching at-
tacks, their technique masks the mapping between vertices
in the graph and real-world entities by clustering the ver-
tices and the corresponding entities into groups. Zheleva
and Getoor [33] consider the case where there are multiple
types of edges, one of which is sensitive and should be pro-
tected. It is assumed that the network is published without
the sensitive edges and the adversary predicts sensitive edges
based on the observed non-sensitive edges.

1377

In the second category of methods, Liu and Terzi [19]
consider the case that a vertex can be identified by its degree.
Their algorithms use edge additions and deletions in order
to make the graph k-degree anonymous, meaning that for
every vertex there are at least k — 1 other vertices with the
same degree.

Zhou and Pei [34] consider the case that a vertex can be
identified by its radius-one induced subgraph. Adversar-
ial knowledge stronger than the degree is also considered
by Thompson and Yao [30], who assume that the adver-
sary knows the degrees of the neighbors, the degrees of the
neighbors of the neighbors, and so forth. Zou et al. [35] and
Wu et al. [31] assume that the adversary knows the com-
plete graph, and the location of the vertex in the graph;
hence, the adversary can always identify a vertex in any
copy of the graph, unless the graph has other vertices that
are automorphically-equivalent.

In the last category of methods, Hay et al. [12] study the
effectiveness of random perturbations for identity obfusca-
tion. They concentrate on degree-based re-identification of
vertices. Given a vertex v in the real network, they quan-
tify the level of anonymity that is provided for v by the
perturbed graph as (max, {Pr(v | u)})™"!, where the maxi-
mum is taken over all vertices u in the released graph and
Pr(v | u) stands for the belief probability that u is the im-
age of the target vertex v. By performing experimentation
on the Enron dataset, using various values for the number
h of added and removed edges, they conclude that in order
to achieve a meaningful level of anonymity for the vertices
in the graph, h has to be tuned so high that the resulting
features of the perturbed graph no longer reflect those of the
original graph.

Ying et al. [32] compare random-perturbation methods
to the method of k-degree anonymity [19]. They too use
the a-posteriori belief probabilities to quantify the level of
anonymity. Based on experimentation on two modestly-
sized datasets (Enron and Polblogs) they conclude that the
deterministic approach for k-degree anonymity preserves the
graph structure better than random-perturbation methods.

In a more recent study, Bonchi et al. [4] take a differ-
ent approach, by considering the entropy of the a-posteriori
belief probability distributions as a measure of identity ob-
fuscation. The rationale is that while using the a-posteriori
belief probabilities is a local measure, the entropy is a global
measure that examines the entire distribution of these belief
probabilities. Bonchi et al. show that the entropy measure
is more accurate than the a-posteriori belief probability, in
the sense that the former distinguishes between situations
that the latter perceives as equivalent. Moreover, the ob-
fuscation level quantified by means of the entropy is always
greater than the one based on a-posteriori belief probabil-
ities. Finally, by means of a thorough experimentation on
three large datasets, using several graph statistics and com-
paring also to Liu and Terzi [19], they demonstrate that
random perturbation could be used to achieve meaningful
levels of obfuscation while preserving most of the features of
the original graph.

3. OBFUSCATION BY UNCERTAINTY

Let G = (V, E) be an undirected graph, where V is the set
of vertices and F is the set of edges. We write V2 to denote
the set of all (g) unordered pairs of vertices from V', that is,
Vo = {(vi,v5) | 1 < i < j <n}. The goal is to anonymize

the graph G so that the identity of its vertices is obfuscated.
We propose to publish G as an uncertain graph G = (V, p),
formally defined as follows.

DEFINITION 1. Given a graph G = (V, E), an uncertain
graph on the vertices of G is a pair G = (V,p), where
p : Vo — [0,1] is a function that assigns probabilities to
unordered pairs of vertices.

The original graph G and the uncertain graph G have the
same set of vertices V. For the sake of clarity, we write
v € G when we speak about a vertex in G, and v € G when
we speak about a vertex in G.

Since the mere description of an uncertain graph con-
sists of |V2| = n(n — 1)/2 probability values, we propose
to inject uncertainty only to a small subset of pairs of ver-
tices. Namely, given a graph G, we create a subset Ec C V>
of candidate edges, and then we inject uncertainty only to
the pairs of vertices in F¢, while we implicitly assume that
p(u,v) = 0 for all (u,v) € Ec. The size of Ec will be set
so that |Ec| = c|E|, for a small constant ¢ > 1. In Section
5 we describe a strategy for selecting Fc¢, given G and a
user-defined parameter c._

The uncertain graph G induces a collection of possible
worlds W(G). A possible world W € W(G) is a graph
W = (V, Ew), where Ew C E¢. The edge probabilities in
the uncertain graph G imply that the probability of W is

Prw) = [] pte)- JI (1—ple). (1

e€ By e€Ec\Ew

Let us consider the knowledge that an adversary may ex-
tract from such an uncertain graph about a given target
vertex in G. Following the literature, we assume that the
adversary knows some vertex property P of his target ver-
tex [4, 12, 19, 30, 31, 32, 34, 35]. Examples of such prop-
erties, as discussed in Section 2, are the degree, the degrees
of the vertex and its neighbors, and the neighborhood sub-
graph induced by the target vertex and its neighbors.

Let Qp be the domain in which P takes values, e.g., if P
is the degree property then Qp = {0,...,n—1}. Given an
uncertain graph G and a property P, for each v € G and
w € Qp we define the probability X,(w) that v originated
from a vertex in G with property value w. Specifically,

Xow)= > Pr(W) xow(W),

WeW(G)

(2)

where Pr(W) is given in Equation (1), and xu,. (W) is a 0-1
variable that indicates if the vertex v has the property value
w in the possible world W. In other words, X, (w) is the sum
of probabilities of all possible worlds in which the vertex v
has the given property value w.

The probabilities X, (w) may be arranged in a nx |Qp| ma-
trix, where each row corresponds to one vertex v € G and it
gives the corresponding probability distribution X, (w) over
all possible values w € Qp. The columns of that matrix
are proportional to the probability distributions that corre-
spond to property values. More precisely, the normalized
column corresponding to property w € Qp, i.e.,

Xy (w)

Zueé Xy (w)

is the probability that v is the image in G of a vertex that
had the property w in G.

Yo, (v) := (3)

1378

Xoy(w) | deg=0 | deg=1 | deg=2 | deg=3
V1t 0.006 0.092 0.398 0.504
Va: 0.054 0.348 0.542 0.056
V3! 0.020 0.260 0.720 0.000
V4t 0.180 0.740 0.080 0.000
Y., (v) | deg=0 | deg=1 | deg=2 | deg=3
V1t 0.023 0.064 0.229 0.900
V2! 0.208 0.242 0.311 0.100
V3! 0.077 0.180 0.414 0.000
V4 0.692 0.514 0.046 0.000

Table 1: The matrices X, (w) and Y,,(v) for the uncer-
tain graph in Figure 1(b) and the degree property.

ExXAMPLE 1. Consider the uncertain graph in Figure 1(b)
and assume property Pi. Table 1 gives the corresponding
matriz X, (w), in which each row gives the probability dis-
tribution regarding the degree of the corresponding vertex
in G. For instance, the probability that vi has degree 2 is
0.7-0.9-(1-0.8)4+0.7-(1-0.9)-0.84-(1-0.7)-0.8-0.7 = 0.398.

The columns of Xuv(w), after normalizing them, give the
corresponding Y., (v) distributions for each value of the degree
(shown also in Table 1). For instance, if we look for a vertex
that has degree 3 in G, it is either v, with probability 0.9,
or va, with probability 0.1.

To further stress the difference between the two probabil-
ity distributions, X, (w) and Y., (v), let us consider an uncer-
tain graph G in which all edge probabilities are either 0 or 1
(i.e., a certain graph). Let w be some property value in Qp
and assume that P~ (w) = {vs;, ..., v, } (namely, there are
exactly k vertices with the property w in the graph). Then,
for all v € P™'(w), Xu(w) = 1 (since each of them has the
property w with certainty) and X,(w’) = 0 for any other
property w’ # w (since any vertex can have in any certain
graph just one property). Furthermore, X,(w) = 0 for all
v ¢ P~ (w). Let us now turn to consider the column in the
matrix that corresponds to w. Then Y, (v) = 1/k for each
of the k vertices in P™*(w) and Y,,(v) = 0 for all other ver-
tices since if we look for a specific vertex in the graph with
property w and that is the only information that we know
about that sought-after vertex, then it can be any one of the
vertices in P~!(w) with probability 1/k.

We are ready to define our notion of privacy.

DEFINITION 2 ((k,e)-OBFUSCATION). Let P be a vertex
property, k > 1 be a desired level of obfuscation, and ¢ > 0
be a tolerance parameter. The uncertain graph G is said to
k-obfuscate a given vertex v € G with respect to P if the
entropy of the distribution Yp(,) over the vertices of G is
greater than or equal to log, k:

H(Yp(v)) = log, k.

The uncertain graph Gisa (k, &)-obfuscation with respect to
property P if it k-obfuscates at least (1 — e)n vertices in G
with respect to P.

Namely, given the considered attack scenario, in which the
adversary uses a background knowledge of property P of his
target vertex, we wish to lower bound the entropy of the
distribution it induces over the obfuscated graph vertices by
log, k (in similarity to the privacy goal in k-anonymity). As

for the tolerance parameter e, it serves the following pur-
pose. Considering the fact that degree sequences in typical
social networks have very skewed distribution, trying to ob-
fuscate some very unique vertices (such as Barack Obama or
CNN in twitter or Facebook) is on the one hand hopeless,
and on the other hand not necessarily needed: these vertices
do not represent “normal” users, and identifying them does
not disclose anyone’s personal information. In fact, as we
will see later, our obfuscation algorithm guarantees that the
e-fraction of vertices for which the privacy requirement is
not satisfied can be forced to be taken from some specific
sub-population; for example, in the case of degree obfusca-
tion they are vertices with high degree.

ExAMPLE 2. Consider again the graph in Figure 1. Ver-
tex v1 has degree 3 in the original graph. Thus, in order to
check the level of obfuscation of this vertex in the obfuscated
graph we have to measure the entropy of the column deg = 3
of Table Y., (v). That entropy is approximately 0.469, which
is rather low, meaning that the identity of vi is not obfus-
cated enough in the uncertain graph in Figure 1(b). Vertex
va has degree 1 in the original graph. The entropy of the
column deg = 1 is =~ 1.688 > log, 3. Vertices vz and v4
have degree 2, and the entropy of the corresponding column
is /= 1.742 > log, 3. Therefore, as three out of four ver-
tices are 3-obfuscated, the graph in Figure 1(b) provides a
(3,0.25)-obfuscation for the graph in Figure 1(a).

4. QUANTIFYING THE OBFUSCATION

In this section we describe how to compute the level of
obfuscation with regard to the degree property. When P
is the degree, Qp = {0,...,n — 1}, and, consequently, the
matrix has n rows and n columns. We need to describe how
to compute X,(w) for all v € G and w € {0,...,n — 1}.
Once the full matrix X, is given, it is possible to derive the
distributions Y., over the vertices of G for all w € P(G) and
then verify the k-obfuscation property.

Fix v € Gandlet eq,...,en—1 be the n—1 pairs of vertices
that include v. For each 1 <i < n—1, ¢; is a Bernoulli ran-
dom variable that equals 1 with some probability p;. Letting
d, be the random variable corresponding to the degree of v,
we have

n—1
dy = Zei- (4)
=1

Then for each possible degree w € Qp of v, we have X, (w)
Pr(dy = w).

LEMMA 1. The probability distribution of d, may be com-
puted exactly in time O(n?).

PROOF. Let df := Zf:l e; denote the partial sum of the
first £ Bernoulli random variables. We will show that once
we have the distribution of d‘ !, we can compute that of d,
in time O(f). Hence, the distribution of d, = d?~" can be

(£) = O(n?). Indeed,

computed in time 37~ O
Pr(d, = j) = Pr(dy,"" =7 = 1) pe+Pr(d, " = j) - (1 = pe).

Therefore, computing a single probability in the distribution
of df takes constant time (given the full distribution of d%~ 1),
and, consequently, computing the entire distribution of d*
over all 0 < j </ takes time O(¢). [

1379

It should be noted that since we choose to inject uncer-
tainty only to a subset Ec of pairs of vertices, the sum in
Equation (4) is taken only over the pairs of vertices in Fc¢
that include the vertex v. Hence, if d is the average de-
gree in GG, the average number of addends in d, is dc, where
c = |Bel/|B).

In cases where the sum in Equation (4) has a large number
of addends, we may adopt an alternative approach. Since
dy, is the sum of independent random variables, it may be
approximated by the normal distribution N(u,0?), where
po= 305 Bler) = 35 pi and o "l Var(e) =
S " pi(1 — pi) as implied by the Central Limit Theorem
[16]. (The Central Limit Theorem becomes effective already
for n ~ 30; for typical sizes of n in social networks, the
normal approximation becomes very accurate.) Specifically,

Pr(d, = w) = f:’jll/; D, .o (x)dx for w e Qp = {0,...
1}, where

=

1 _@ow)?
Do () oo e 2 (5)
S. INJECTING UNCERTAINTY

In this section we describe our algorithm, which, given a
graph G, a desired level of obfuscation k, and a tolerance
parameter £, injects a minimal level of uncertainty to the
graph so that it becomes (k, £)-obfuscated with respect to a
vertex property P.

5.1 Overview

As discussed in Section 3, we inject uncertainty in the
graph by assigning probabilities to a subset EFc C Va2 of
pairs of vertices, such that |Ec| = ¢|E], for a small constant
parameter c¢. The selection of E¢ is described in a subse-
quent section. Once Ec¢ is selected, only the pairs e € FEc¢
will become uncertain edges in G. All other pairs e ¢ Ec
will be certain non-edges, i.e., p(e) = 0. To establish the
uncertainty of each pair e € F¢, we select a random pertur-
bation r. € [0,1]. If e € E, it becomes an uncertain edge in
G with probability ple) =1—re;if e € Ec \ E, it becomes
an uncertain edge with probability p(e) = re.

In order for the uncertain graph G to preserve the charac-
teristics of the original graph GG, smaller values of the pertur-
bation parameter r. should be favored. A natural candidate
for the generating distribution of r. is the [0, 1]-truncated
normal distribution,

9,5 (r)

Jo ®0,0 (x)dx
| FH
where @, » is the density function of a Gaussian distribution
provided in Equation (5). As the standard deviation o of
the normal distribution decreases, a greater mass of R, will
concentrate near » = 0 and then the amount of injected un-
certainty will be smaller. Thus, small values of o contribute
towards better maintaining the characteristics of the origi-
nal graph, but at the same time they provide lower levels of
obfuscation. Larger values of o have the opposite effect.

A key feature of our method is to select judiciously the
perturbation r. for each pair e = (u,v) € E¢, depending
on properties of the vertices © and v. Hence, the random
variable 7. is drawn from R, where the parameter o(e)
depends on the vertices that e connects. The perturbation
will be larger for edges that connect more unique vertices,

0<r<1

Ro(r) :
) otherwise,

(6)

which, consequently, require higher levels of uncertainty to
“blend in the crowd,” and smaller for edges that connect
more “typical” vertices.

Additionally, in order to prevent identifying pairs e € E¢
that are true edges in G (by turning every pair e € Fc¢
to an edge if p(e) > 0.5 and to a non-edge otherwise), the
perturbation r. is drawn from the uniform distribution in
[0, 1], rather than from the distribution R, for a g-fraction
of the pairs e € E¢, with 0 < ¢ < 1.

5.2 Uniqueness Scores of Vertices

For certain properties of interest, such as degree, the ma-
jority of vertices in real-world graphs are already anonymous
even without random perturbations. The reason is that for
most values of the property P there are many vertices that
have that value. Hence, we aim at controlling the amount of
applied perturbation, so that larger perturbation is added
at vertices that are less anonymized in the original graph. In
particular, we suggest to calibrate the perturbation applied
to a pair e = (u,v) € E¢ according to the “uniqueness” of
the two vertices u and v with respect to the property P.
Namely, if both P(u) and P(v) are frequent values, then 7.
should be very small; on the other hand, if P(u) and P(v)
are outlier values, then r. should be higher. We proceed to
explain our method in detail.

Let P : V — Qp be a property defined on the set of
vertices V. Further, consider a distance function d between
values in the range Qp of P. So, for each pair of values,
w,w’ € Qp, a distance d(w,w’) > 0 is defined. For example,
for the degree property P, the distance d is the modulus
of the difference of two degrees, while for the radius-one
subgraph property (P3), the distance d is the edit distance
between two subgraphs.

DEFINITION 3. Let P : V. — Qp be a property on the
set of vertices V' of the graph G, let d be a distance func-
tion on Qp, and let 0 > 0 be a parameter. Then the 0-
commonness of the property value w € Qp is Co(w) :
> vy Poo(d(w, P(v))), while the 0-uniqueness of w € Qp
is Up(w) 1=

_ 1
Co(w) "

In the above definition the function ® is the Gaussian
distribution given by Equation (5). The commonness of the
property value w is a measure of how typical is the value w
among the vertices of the graph. It is obtained as a weighted
average over all other property values w’, where the weight
decays exponentially as a function of the distance between
w and w’. The uniqueness is the inverse of the commonness.
It should be noted that the commonness and uniqueness are
meaningful only as relative measures, as they allow to assess
how one property value is more common, or more unique,
in GG than another property value.

Commonness and uniqueness scores depend on the pa-
rameter 0, which determines the decay rate of the average
weights as a function of the distance. We set 6 = o as larger
amounts of uncertainty imply that property values may be
spread on larger domains of 2p due to injecting uncertainty.

5.3 The Obfuscation Algorithm

Our algorithm for computing a (k,e)-obfuscation of a
graph with respect to a vertex property P is outlined as
Algorithm 1. Targeting for high utility, the algorithm aims
at injecting the minimal amount of uncertainty needed to
achieve the required obfuscation. Computing the minimal

1380

Algorithm 1 (k,)-obfuscation

Input: G = (V, E), vertex property P, obfuscation level k,
tolerance ¢, size multiplier ¢, and white noise level g.
Output: A (k,¢e)-obfuscation G of G with respect to P.
top+0
oy 1
repeat
(€, @) + GenerateObfuscation(G, 0w, P, k,&,¢,q)
if € = co then o, < 20,
until & # oo
Gfound +~— G
: while oy + 6 < 0, do
o< (o¢e+0u)/2
(£,G) « GenerateObfuscation(G, o, P, k, €, ¢, q)
if € =00 then op 0o
else Gyound < G; 0w <0
. return G’found

PN DGy

©

amount of uncertainty is achieved via a binary search on the
value of the uncertainty parameter o.

The binary-search flow of Algorithm 1 is determined by
the function GenerateObfuscation, which is shown as Algo-
rithm 2. The function GenerateObfuscation returns a pair
(€, G) where € = 0o or 0 < € < e. In the first case, the func-
tion could not find a (k, €)-obfuscation with the given uncer-
tainty parameter. In the latter case, G is a (k, €)-obfuscation
of G with respect to P, and thus, also a (k, £)-obfuscation.

The obfuscation algorithm starts with an initial guess of
an upper bound o,, which is iteratively doubled until a
(k,e)-obfuscated graph is found. Then, the binary-search
process is performed using o, = 0 as the lower bound, and
the upper bound o, that was found. The binary search ter-
minates when the search interval is sufficiently short, and the
algorithm outputs the best (k, €)-obfuscation found (i.e., the
last one that was successfully generated, because it will be
the one obtained with the smallest o).

The function GenerateObfuscation (Algorithm 2) aims at
finding a (k, €)-obfuscation of G using a given standard de-
viation parameter o. First, it computes the o-uniqueness
level U, (P(v)) for each vertex v € G. The more unique a
vertex is, the harder it is to obfuscate it. Hence, in order to
use the “uncertainty budget” o in the most efficient way, the
algorithm performs the following two pre-processing steps.

(Line 2): Since it is allowed not to obfuscate |V of the
vertices, the algorithm selects the set H of [§|V[] vertices
with largest uniqueness scores, which are the vertices that
would require the largest amount of uncertainty, and ex-
cludes them from the subsequent obfuscation efforts. In later
steps, the algorithm will inject uncertainty only to edges
that are not adjacent to any of the vertices in H. (The
algorithm could also receive H, or part of H, as an input,
instead of fully selecting it on its own.)

(Line 3): The set of vertices not in H will need to be
obfuscated. To obfuscate more unique vertices, higher un-
certainty is necessary. Thus, edges need to be sampled with
higher probability if they are adjacent to unique vertices. In
order to handle this sampling process, our algorithm assigns
a probability Q(v) to every v € V, which is proportional to
the uniqueness level Uy (P(v)) of v.

After that, the search for a (k, £)-obfuscation starts: since
the algorithm is randomized and there is a non-zero prob-

Algorithm 2 GenerateObfuscation

Input: G = (V,E), P, k,¢,c,q, and standard deviation o.
Output: A pair (¢,G), where G is a (k, €)-obfuscation (with
€< eg),or € =oc if a (k,e)-obfuscation was not found.

1: for all v € V compute the o-uniqueness U, (P (v))
2: H < the set of [5|V][] vertices with largest Uy (P(v))
3: for all v € V do Q(v) < Us(P(v))/ >, cv Us(P(u))
4: €+ o0
5: for ¢ times do
6: LEc<+ E
7: repeat
8: randomly pick a vertex u € V' \ H according to Q
9: randomly pick a vertex v € V' \ H according to @
10: if (u,v) € E then Ec <+ Ec \ {(u,v)}
11: else Ec + Ec U {(u,v)}
12: until |Ec| = ¢|E|
13: for all e € E¢ do
14: compute o(e)
15: draw w uniformly at random from [0, 1]
16: if w<yq
17: then draw r. uniformly at random from [0, 1]
18: else draw 7. from the random distribution R ()
19: if e € E then p(e) < 1 —r. else p(e) < re
20: &'« |{v € V : not k-obfuscated by G' = (V,p)}|/|V]
21: ife'<cande <Zthené+ &G+ G

22: return (¢, G)

ability of failure, ¢ attempts to find a (k,e)-obfuscation are
performed (Lines 5-22; in our experiments we used ¢t = 5).

Each attempt begins by randomly selecting a subset Ec C
V2, which will be subjected to uncertainty injection (Lines 6-
12). The set Ec, whose target size is |Ec| = c|E], is initial-
ized to be E (Line 6). Then, the algorithm randomly selects
two distinct vertices u and v, according to the probability
distribution @, such that none of them is in H (Lines 8-9).
The pair of vertices (u,v) is removed from Ec¢ if it is an
edge, or added to E¢ otherwise (Lines 10-11). The process
is repeated until Ec reaches the required size c|E|. Since
in typical graphs, the number of non-edges is significantly
larger than the number of edges, i.e., |E| < |V2|/2, the loop
in Lines 7-12 ends very quickly, for small values of ¢, and
the resulting set E¢ includes most of the edges in F.

Next, in Line 14, we redistribute the uncertainty levels
among all pairs e € F¢ in proportion to their uniqueness
levels. Specifically, we define for each e = (u,v) € E¢ its
o-uniqueness level,

and then set
Us(e)
> oere Un(@)’

so that the average of o(e) over all e € E¢ equals o.

Given the edge uncertainty levels, o(e), we select for each
pair of vertices e € E¢ a random perturbation r.. For the
majority of the pairs (an (1 — g)-fraction, where the input
parameter ¢ is small) we select re from the random distribu-
tion R, () (see Equation (6)). For the remaining g-fraction
of pairs we select r. from the uniform distribution on [0, 1].
If e is an actual edge (e € E), it turns into an uncertain

a(e) =alEc|- (7

1381

edge in G with associated probability of ple)=1—rc. Ife
is a non-edge in G (e € Ec \ E), it turns into an uncertain
edge in G with probability p(e) = . (Line 19).

If the algorithm finds a (k, e)-obfuscated graph in one of
its ¢ trials, it returns the obfuscated graph with minimal
€. If, on the other hand, all ¢ attempts fail, the algorithm
indicates the failure by returning & = co.

6. UTILITY OF THE UNCERTAIN GRAPH

In order to prove the practical relevance of our proposal,
we need to show that: (1) the uncertain graph maintains
high utility, i.e., it is highly similar to the original graph in
terms of characteristic properties; and (2) the computation
of these properties can be carried out in reasonable time.

In the rest of this section, we discuss several graph statis-
tics and show how to compute them in uncertain graphs.
In our experimental assessment, we use those statistics to
evaluate the utility of the proposed graph obfuscation.

Further evidence to the usefulness of publishing an uncer-
tain graph is provided by the many recent papers on mining
and querying uncertain graphs [14, 15, 24, 36, 37, 38].

6.1 Sampling

Given a standard (certain) graph G, let S[G] be the value
of a statistical measure S for G. Examples of such a sta-
tistical measure S are the average degree, the diameter, the
clustering coefficient of G, and so on. In order to define the
value of S in an uncertain graph G = (V, p), the most natu-
ral choice is to consider the expected value of S[é]7 namely,

> Pr(W)-S(W), (8)

WeW(G)

E(S[G) =

where Pr(W) is given in Equation (1). While for some statis-
tics it is possible to compute the expected value in Equa-
tion (8) without explicitly performing a summation over
the exponential number of possible worlds (as we will see
in Section 6.2), for other statistics such a computation re-
mains infeasible. Hence, we have to resort to approxima-
tion by sampling. Namely, we sample a subset of possible
worlds W' C W(G) according to the distribution induced
by the probabilities Pr(1/), and then take the average S of
the statistic S in the sampled worlds as an approximation

of E(S[G]):

— 1
S::W > sw). 9)

wew’

Sampling a possible world according to the distribution
Pr(W) is carried out by sampling independently each edge e
with probability p(e).

The following lemma provides a probabilistic error bound
for approximating the expected value by an average over a
number of sampled worlds.

LEMMA 2. Let G = (V,p) be an uncertain graph and as-
sume that S is a graph statistic that satisfies a < S <b. Let
r = |W'| denote the number of sampled worlds and S be the
average of the statistic S over those worlds, Equation (9).
Then for every € > 0,

Pr(|E(S[G]) - =

>e) < 2exp (— (10)

Proor. Let W = {W,}i<i<. be the set of r graphs that
were sampled from G = (V,p). Then S; = S[Wi], 1 <
1 < r, are independent and identically distributed random
variables. Since E(S;) = E(S[G]) for all 1 < i < r, it follows
that also E(S) = E(S[G]). Hence, inequality (10) follows
directly from Hoeffding’s inequality [13]. [

COROLLARY 1. For given error bound € and probability of
failure §, we have Pr(|E(S[G]) — S| > ¢) < 6, provided that

P>k (24) I (2).

5
In the next section, we define a number of scalar and
vector statistics of interest; when possible, we also provide
an explicit computation of E(S[G]).

6.2 Statistics Based on Degree

Let di,...,d, denote the degree sequence in a graph
G. The statistic S is called a degree-based statistic if
S = F(di,...,dn) for some function F'. Examples of such
statistics are:

o Number of edges: Sxe = 53, cy do

e Average degree: Sap =23,y do.

o Mazimal degree: Sup = maxycv do.

e Degree variance:' Spy =23 (dy — Sap)?.

When G is an uncertain graph, di, ..., d, are random vari-
ables. If I is a linear function, then we have

E(S[G)) = E(F(dy,...,dn)) = F(E(d1), ..., E(dy)). (11)

Hence, since the expected degree of a vertex v € V' is equal
to the sum of probabilities of its adjacent edges, the com-
putation of the expected statistic is easy, in the case of a
linear function. As the first two examples above, Syr and
Saa, correspond to a linear function F', we have:

and
rno(i5)-

Things are less simple when F' is non-linear, since then
Equation (11) does not hold. This is the case with the lat-
ter two examples — the maximal degree (F = max) and
the degree variance (F is quadratic). For these statistics we
adopt the sampling approach described in the previous sec-
tion. Since the maximal degree is at most n— 1, the statistic
Sup satisfies Corollary 1 with a = 0 and b = n — 1. Simi-
larly, the statistic Spyv satisfies Corollary 1 with a = 0 and
b= (n— 1)%. Tt should also be noted that we can compute
E(SDV[G]) precisely. However, the cost of evaluating the
corresponding formulas, which we omit herein, is quadratic
in the number of vertices.

We proceed to describe two additional statistics that are
based on the degree distribution. In the following we use
A(d), with 0 < d < n — 1, to denote the fraction of vertices
in the graph G that have degree d.

> - -

veV

LD DD D CRY

vEV ueV\v

> plo),

ecVy

E(Sne[G]) (

>

veV

> 2

veV ueV\v

p(u,v)
ecVy

!This is one of the measures of graph heterogeneity [27].

- Z p(e).

1382

The first statistic, denoted by Spr,, is the power-law ex-
ponent of the degree distribution. For this statistic, we
assume that the degree distribution follows a power law,
A(d) ~ d™7, and Spr. is an estimate of —v. In our experi-
ments, we focused on higher degrees where the power law fits
better, and we fitted the exponent ignoring smaller degrees.

The second statistic is the degree distribution itself,
Spp = (A(0),A(1),...,A(n — 1)). As opposed to all pre-
vious statistics, which were scalar, this one is a vector. In
fact, each of the previous statistics may be derived from the
degree distribution. To approximate Spp[G| we adopt once
more the sampling approach: for every degree d, we approx-
imate A(d) by the average A(d) obtained over the sampled
possible worlds.

6.3 Statistics Based on Shortest-path Distance

Other interesting measures characterizing a graph are
those based on the shortest-path distance between pairs of
vertices. Computing distance distributions on large graphs
is far from trivial, as explained in the survey of Kang et
al. [17]. While exact solutions using breadth-first search or
Floyd’s algorithm are out of question, there is still no consen-
sus in the research community on which approximate tech-
nique is best [9]. Some methods are based on sampling, for
example, performing a breadth-first search from a selected
set of vertices [6, 18], and other are based on information
diffusion [3, 17, 23]. While the former are simpler to im-
plement, diffusion-based techniques have the advantage of
being more general (they are natively designed for directed
graphs, while most sampling methods only work for undi-
rected ones) and scale more gracefully.

Defining the distance between pairs of vertices in uncer-
tain graphs is not an easy task since, typically, the cor-
responding ensemble of possible worlds will include discon-
nected instances; in such disconnected possible worlds, some
of the pairwise distances are infinite [24]. We directly avoid
this problem by defining the distance-based measures S only
on pairs of vertices that are path-connected.

We consider five measures:

e Average distance: Sapp is the average distance among

all pairs of vertices that are path-connected.

o [ffective diameter: Sgpiam 1S the 90-th percentile dis-
tance among all path-connected pairs of vertices, i.e.,
the minimal value for which 90% of the finite pairwise
distances in the graph are no larger than. In our exper-
iments, we used the variant that linearly interpolates

between the 90-th percentile and the successive integer.

Connectivity length: The statistic Scr, is defined as the
harmonic mean of all pairwise distances in the graph,

-1
_ n(n 1)

S = mnl) (Z(u vevs Tatrs) 120 Note that

by taking dlst() = 0 for non path-connected pairs

(u,v), the connectivity length can be defined as the
average over all vertex pairs, independently on whether
they lie in the same connected component.

Distribution of pairwise distances: Sppp is the distribu-
tion of pairwise distances in the graph, where Sppp[k]
is the number of pairs of vertices whose distance equals
k, for 1 < k < n—1, and Sppp[oo] is the number of
pairs of vertices that are not path-connected.

Diameter: Spiam is the maximum distance among all
path-connected pairs of vertices.

For computing the above measures we rely on sampling.
It is easy to see that Lemma 2 and Corollary 1 hold for each
of those statistics with a =1 and b=n — 1.

To estimate the distance distribution in a given (certain)
graph, we use HyperANF [3], a diffusion-based algorithm
that provides a good tradeoff between accuracy guarantees
and execution time. As the algorithm is probabilistic, the
results that it gives may drift from the real ones, depending
on the number of registers used for the evaluation. Such
drifts affect the variance over the value obtained for each
point of the distance distribution. To limit the effect of such
probabilistic drifts, we repeat the execution of HyperANF
and used jackknifing [26] to infer the standard error of the
statistics that we compute; in our experiments this error
ranges between 0.2% and 2%.

While the HyperANF approach is viable for the first four
statistics described above, it falls short in estimating the
diameter. Exact diameter estimation is difficult and even
heuristic methods such as [9] would be too inefficient to be
executed on many sampled worlds. As a result, we focus on
estimating a lower bound Spiamrs for Spiam: such a lower
bound is computed as the largest distance ¢ for which the
approximate distance distribution computed by HyperANF
is nonzero; i.e., it is the largest distance ¢ for which we esti-
mate that there is at least one pair of vertices of distance ¢
from each other.

6.4 Clustering Coefficient

The clustering coefficient Scc measures the extent to
which the edges of the graph ‘“close triangles.” More for-
mally, given a graph G, let T5[G] be the number of cliques of
size 3 in the graph G, and T3[G] be the number of connected
triplets. The clustering coefficient Scc[G] of a graph G is
then defined as Scc[G] = T3[G]/T>[G]. Since T5[G] < T»[G],
the clustering coefficient is a number between 0 and 1.

ExampLE 3. Let K3 be the complete graph on three ver-
tices. Then T3[Ks3] =1 and T>[K3] = 1. Hence, Scc[K3]
1. Consider next the graph G on three vertices u,v,w with
two edges only — (u,v) and (u,w). Then T3[G] = 0 and
T5[G] = 1, whence Scc[G] = 0.

Given an uncertain graph G, we can estimate the ex-
pected clustering coefficient E(Scc[G]) by sampling (see
Section 6.1). Since the clustering coefficient takes values
between 0 and 1, we can apply Lemma 2 with a = 0 and
b = 1. Thus, we can estimate E(Scc[G]) within an error
of at most ¢ and probability of success at least 1 — ¢ by
sampling at least r = 1y In(2) possible worlds.

7. EXPERIMENTAL ASSESSMENT

The objective of our experimental assessment is to show
that the proposed technique is able to provide the required
obfuscation levels while maintaining high data utility. In
particular, we set the following concrete subgoals. For given
values of k£ and €, we want to assess:

1. the level of noise (specified by the value of o) needed to
achieve (k, €)-obfuscation;

2. the running time of the obfuscation algorithm;

3. the error in the statistics of the obfuscated graph with
respect to the original graph;

4. how the proposed method compares with random-per-
turbation methods for the same levels of obfuscation.

1383

Table 2: Values of o that yielded a (k, c)-obfuscation
obtained by Alg. 1. In all cases ¢ = 0.01 and ¢ = 2,
except for the two cases marked (*) where ¢ = 3.

Dataset k e=10""° e=10"1
20 5.9605-10"° 1.6153-10°
dblp 60 2.9802-10"7 3.2206-103
100 1.8775-107° 1.0711-1072
20 2.2948-107° 2.6343-10"°
flickr 60 1.0397-107% 7.3275-1072 (*)
100 5.8624-107% 2.9273 107" (%)
20 5.9605-10"% 5.9605-10~°
Y360 60 5.9605-10"% 1.0133-107°
100 5.9605-10% 1.1146-10~°
Table 3: Computation (real) time in edges/sec.
Dataset k e=10"° e=10"17
20 1069.34 1550.78
dblp 60 1000.64 1279.39
100 888.908 1166.87
20 1004.93 926.45
flickr 60 1019.05 300.39 (*)
100 862.155 271.84 (*)
20 211351 1900.32
Y360 60 176221 1665.80
100 1643.84 1664.75

For our experiments, we use three large real-world datasets.
dblp is a co-authorship graph extracted from a recent snap-
shot of the DBLP database considering only journal publi-
cations.? Vertices represent authors, and there is an undi-
rected edge between two authors if they have authored a
journal paper together.

flickr is a popular online community for sharing photos,
with millions of users.®> In addition to many photo-sharing
facilities, users are creating a social network by explicitly
marking other users as their contacts.

Y360: Yahoo! 360 was a social-networking and personal-
communication portal. In the Y360 dataset, edges represents
the friendship relationship among users.

The graphs sizes vary from 226413 vertices of dblp,
588 166 of flickr, to 1226311 of Y360, with different den-
sities; Y360 is the largest but also the sparsest dataset. The
main statistics (as defined in Section 6) of the three datasets
are reported in Table 4.

7.1 Parameter Tuning and Running Time

In our first set of experiments, we considered three obfus-
cation levels, k € {20,60, 100}, and two possible tolerance
values, ¢ € {1072,107*}. We experimented with different
values for g and ¢ (with ¢ € {0.01,0.05,0.1} and ¢ € {2, 3}),
but here we present only the case ¢ = 0.01 and ¢ = 2 (except
for two instances that will be discussed below). In Table 2,
we report the minimal values of o, as found by Algorithm 1,
that yielded a (k, €)-obfuscation for given values of k and ¢.

As expected, larger k or smaller € required larger values
of o, because more noise was needed in order to reach the
desired level of obfuscation. In some cases, Algorithm 1
failed to find a proper upper bound for o in the loop in

*http://www.informatik.uni-trier.de/~1ley/db/
Shttp://www.flickr.com/

Table 4: The sample mean on a sample of size 100, with ¢ = 107,

The last column is the average (over all

statistics) of the relative absolute difference between the sample mean and the real value of the statistics.

graph SxE Sap Svp Spv Spr, Sarp SbiamLB SEDiam Ser Sce rel.err.
dblp real 716 460 6.33 238 76.79 —0.046 7.34 25 8.78 6.96 0.38
k=20 713952 6.31 233 76.18 —0.046 7.01 22.59 7.16 6.68 0.35 | 0.049
k =60 735 766 6.50 652 122.8 —0.014 6.05 20.52 6.29 5.76 0.23 | 0.429
k =100 754776 6.67 975 187.6 —0.008 5.67 19.12 6.00 541 0.16 | 0.705
flickr real 5801442 19.73 6660 6200 —0.002 5.03 21 543 480 0.12
k=20 5921470 20.14 5847 6924 —0.002 4.84 20.51 4.80 4.64 0.05| 0.112
k=60 6944481 23.61 4534 12847 —0.002 4.59 17.66 447 442 0.04 | 0.322
k=100 7640446 25.98 6121 18438 —0.001 4.50 16.81 4.33 437 0.06 | 0.415
Y360 real 2618645 4.27 258 112.6 —0.027 8.21 31 894 777 0.04
k=20 2605027 4.25 257 109.5 —0.028 8.06 31.53 9.19 7.66 0.03 | 0.026
k=60 2605952 4.25 256 110.0 —-0.028 8.05 30.04 8.95 7.64 0.03 | 0.025
k=100 2609937 4.26 259 1119 —-0.027 8.01 31.64 8.99 7.60 0.03 | 0.023

Table 5: The relative sample standard error of the mean (SEM) on a sample of size 100, with ¢ = 107* (the
other parameters are set as in Table 2). For every statistics, the value shown is the sample standard deviation,
divided by the square root of the sample size and normalized by the sample mean. The last column is the
average of the relative sample standard errors over all of the statistics.

k SxE Sap Sup Sbv SpL Sapp SbiamLs SEDiam Scr Sce average
dblp 20 | 0.00010 0.00010 0.0120 0.00100 0.0110 0.0040 0.041 0.10 0.020 0.013 0.019
60 | 0.00024 0.00024 0.0260 0.00350 0.0170 0.0035 0.058 0.16 0.019 0.018 0.028
100 | 0.00029 0.00029 0.0170 0.00430 0.0170 0.0033 0.055 0.15 0.018 0.024 0.027
flickr 20 | 0.00016 0.00016 0.0067 0.00074 0.0037 0.0036 0.060 0.15 0.016 0.045 0.028
60 | 0.00018 0.00018 0.0100 0.00068 0.0030 0.0039 0.084 0.17 0.018 0.054 0.033
100 | 0.00017 0.00017 0.0064 0.00059 0.0032 0.0039 0.082 0.18 0.018 0.035 0.032
Y360 20 | 0.00004 0.00004 0.0024 0.00025 0.0035 0.0036 0.043 0.13 0.021 0.045 0.027
60 | 0.00004 0.00004 0.0049 0.00031 0.0032 0.0046 0.051 0.15 0.021 0.061 0.031
100 | 0.00005 0.00005 0.0120 0.00044 0.0044 0.0035 0.052 0.16 0.018 0.057 0.032

Lines 3-6. In those cases, increasing the parameter ¢ to 3
resolved the problem.

The obfuscation algorithm was implemented in Java and
run on an Intel Xeon X5660 CPUs, 2.80 GHz, 12 MB cache
size. Table 3 reports the running times (expressed in edges
per second) of the same experiments for which we reported
in Table 2 the values of 0. As explained above, we used in
all cases ¢ = 0.01 and ¢ = 2, except for the two cases marked
by () in which ¢ = 3. We note that using smaller values of ¢
has the benefit of keeping the graph size under control; such
a benefit is of special importance for large networks. Smaller
values of ¢ also reduce the runtime of Algorithm 2, where the
main loop (Lines 13-19) is over c|E| edges. This effect is ev-
ident in Table 3, where the performance drops substantially
in the two cases where ¢ = 3. As expected, the performance
slightly decreases when k increases or € decreases, due to the
increased efforts to achieve a higher obfuscation level. We
note that the smaller computation times required for Y360
are due to the fact that this dataset turns out to be easier
to obfuscate than the others (as witnessed also by the small
final values of o as reported in Table 2).

The parameter ¢ just introduces some amount of “white
noise” in the graph. Using higher values of ¢ enhances ob-
fuscation but it also reduces the utility of the final released
graph. Due to space limitations, we present only results for
q = 0.01. A more elaborated set of plots, for different set-
tings of ¢ and other obfuscation parameters, will be given in
an extended version of this paper?.

1A complete set of plots, along with the code of Algorithm 1,
is available at http://boldi.dsi.unimi.it/obfuscation/.

1384

7.2 Data Utility

Next, we computed statistics of interest on the obfuscated
graphs, using the sampling method (Section 6.1).5 For ev-
ery obfuscated graph, we sampled 100 possible worlds and
for each of them we computed all the scalar statistics listed
above. The mean values obtained are shown in Table 4.
Those values are very concentrated, as witnessed by Ta-
ble 5, that reports the relative sample standard error of the
mean (also called SEM; it is obtained as the sample stan-
dard deviation divided by the square root of the sample size
and normalized by the sample mean); the last column re-
ports the average computed over all the statistics. As can
be seen, all statistics are very well concentrated; on aver-
age, the fluctuations for all statistics are of about 3% (last
column of Table 5), but most of them (see, for example,
Sxe or Sap) exhibit a much higher level of concentration.
There is a weak dependence on k and also on ¢ (the latter
dependence is not shown here).

We proceed to comparing the sample mean of the statis-
tics obtained with their real values on the original graph (see
again Table 4). The quality of the estimation decreases when
obfuscation becomes larger: in the last column of the ta-
ble, we computed the average statistical error over all scalar
statistics, that is, the relative absolute difference between
the estimate and the real value. With small values of k,
e.g., k = 20, the error is always well below 15%; larger val-
ues of k introduce larger errors, up to 70.5% when k = 100

5For S and Sap we use the exact formulas (Sec. 6.2). The
results are almost identical to those obtained by sampling.

0 %
o
° =
o o o
o N 4 T
£ S =
o
5 2]
§ °
S o R
s 2
&S re =
[T
o o
S =
s =
8. - - - e o o
i T T T T T T T T T T T T T T 1
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Distance

=
o —_
@ - -
S]
o o
o .
g < o o
5 ©
f =
o - -
© = =
]
2 | o
(S} o
| = o
— o - i
8. - e - O — =2 0 o o
i T T T T T T T T T T T T T T T T
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Distance

Figure 2: The distribution of pairwise distances Sppp; the small (red) dots correspond to the distribution in
the real dblp graph; the boxplots give the distributions for the case k = 20, ¢ = 1072 (left) and k = 100, ¢ = 104
(right). As usual, the two whiskers represent the smallest and largest values observed across the samples,
whereas the box represents the range between the lower and the upper quartiles.)

e
[T} e
2 o
°
o
=
o —
c o
L =+
© o
<
[——
wn e
(D_ —
o —
PN
T T T T T T T T
1 2 3 4 5 6 7 8
Degree

———
wn ————
S o
°
o
[=
o e
c o
L =+
© o
<
[———
(o] S
S
o ————
——
T T T T T T T T
1 2 3 4 5 6 7 8
Degree

Figure 3: The distribution of degrees Spp; the small (red) dots correspond to the distribution in the real dblp
graph; the boxplots give the distributions for the case k = 20, ¢ = 10™% (left) and k = 100, ¢ = 10~* (right).

in the dblp dataset. Observe that some statistics (e.g., de-
gree variance or clustering coefficient) are more affected by
error than others.

The behavior described for scalar statistics is also ob-
served with vector statistics. For example, Figure 2 shows
Seop (the distribution of the pairwise distances) in the origi-
nal dblp and in two obfuscated versions. Here, two extreme
cases are presented: For k = 20 and ¢ = 1072 the distri-
bution obtained is qualitatively very similar (as witnessed
also by the scalar distance-based statistics in Table 4); con-
versely, for k = 100 and € = 10~%, the estimated distribution
is quite far from the original one. In Figure 3 we present a
similar plot for the degree distribution: for every degree, we
considered the distribution of the frequency of that degree
across all possible worlds. In this case, the approximation
is very concentrated and its mean almost coincides with the
real degree frequency, even for k = 100 and £ = 10~ .

7.3 Comparative Evaluation
We finally compare our proposed method with random-

perturbation methods that publish a standard graph (in ar-
ticular the methods described by Bonchi et al. [4]):

1385

e random sparsification: given a parameter p, each edge
e € F is removed from the graph with probability p;

e random perturbation: given a parameter p, first each
edge e € FE is removed from the graph with probability

p, then each non-existing edge in V2 \ F is added with

p|E|
CORED

To make the comparison possible, we must first determine
which value of the parameter p used in these obfuscation
algorithms corresponds to which pair (k,e) of obfuscation
parameters. The appropriate values can be deduced by the
anonymity level plots of the sparsified or perturbed graph
obtained with a certain value of p: of course, any such graph
will correspond to many pairs of parameters (k, €); for exam-
ple, given any fixed €, an appropriate k can be determined
by disregarding the en vertices with smallest anonymity and
letting k be the least anonymity of the remaining vertices.

Figure 4 shows the obfuscation levels obtained for some
of the parameter combinations on dblp and flickr. The
plot shows, for every obfuscation level k, the number of ver-
tices that have obfuscation level less than or equal to k.
The two rectangles appearing in the plot highlight the ob-
fuscation requirements (k,e). Figure 4 shows, for example,

probability

1400
1
o

o original o
© k=60,e=10"° o
v k=20,e=10"

= rand.pert. p=0.04

1200
1

12000
1
©

o original]
© k=20,e=10"*
= rand.pert. p=0.32
* spars. p=0.64

* spars. p=0.64

1000
1

800
1

Number of nodes

400
1
o,

200
1

om0 aoae] £
iﬁ%xggo%@@? v vvY
S &

AN

Number of nodes

T
40

k

60

4000 6000 8000 10000
1 1

2000
1

0

Figure 4: Comparison of the anonymity levels obtained for dblp (left) and flickr (right) using obfuscation,
random perturbation and sparsification, for the parameter choices described in Section 7.3. The plot shows,
for every obfuscation level k, the number of vertices that have obfuscation level less than or equal to k.

Table 6: Comparison between obfuscation by uncertainty and obfuscation by random sparsification and

perturbation.
graph Sne Sap Smp Spv Spr, Sarp SpiamLB SEDiam Scr Scc rel.
original 716 460 6.33 238 76.79 —0.046 7.34 25 8.78 6.96 0.38 | err.
rand.pert. (p = 0.04) 716 393 6.33 230 71.26 —0.048 7.09 18.55 7.25 6.85 0.36 | 0.071
& obf. (k=60, = 10’3) 713819 6.31 236 75.86 —0.046 7.15 22.75 7.21 6.82 0.36 | 0.043
=] rand.spars. (p = 0.64) 257 890 2.28 93 11.40 —0.124 10.24 36.72 10.60 25.77 0.13 | 0.921
obf. (k=20,e= 1074) 713952 6.31 233 76.18 —0.046 7.01 22.59 7.16 6.68 0.35 | 0.050
H original 5801442 19.73 6660 6200 —0.002 5.03 21 5.43 4.80 0.12
I rand.pert. (p =0.64) 5801229 19.73 2407 820.3 —0.0059 4.55 7.02 4.15 4.49 0.030 | 0.497
b rand.spars. (p = 0.32) 3944902 13.41 4526 2871 —0.003 5.24 19.56 4.91 6.69 0.079 | 0.286
obf. (k=20,e¢= 10’4) 5921470 20.14 5847 6924 —0.002 4.84 20.51 4.81 4.64 0.050 | 0.112

that a random perturbation of dblp with p = 0.04 matches
obfuscation (k = 60, = 107°).
We here present the comparative results in the following

cases:G

e dblp with random perturbation using p = 0.04, match-
ing k=60 and ¢ ~ 1073;

e dblp with sparsification using p = 0.64, matching k& =
20 and € ~ 107%;

e flickr with random perturbation using p = 0.32 and
with sparsification using p = 0.64, both corresponding
to k = 20 with e ~ 107,

For each of the two obfuscation techniques presented in [4],
we produced 50 samples; note that in those probabilistic
methods, the obfuscation is a certain graph. Then we com-
puted the statistics on each sample, and proceeded in the
same way as we did for the obfuscated graph.

Table 6 shows the results of the comparison. In all cases,
the quality of the statistics as computed with our obfusca-
tion method is much better; in one case, the relative error
is 5% instead of the 92% imposed by sparsification to ob-
tain the same level of obfuscation. Therefore, we can safely
conclude that our experimental assessment on real-world
graphs confirms the initial and driving intuition underlying

®The values of p used here (p € {0.04,0.32,0.64}) are the
same as those used by Bonchi et al. [4].

1386

this paper: by using finer-grained perturbation operations,
such as only perturbing partially the existence of an edge,
one can achieve the same desired level of obfuscation with
smaller changes in the data than when completely removing
or adding edges, thus maintaining higher data utility.

8. CONCLUSIONS AND FUTURE WORK

We introduce a new approach for identity obfuscation
in graph data. In the proposed approach, the desired ob-
fuscation is obtained by injecting uncertainty in the social
graph and publishing the resulting uncertain graph. Our
proposal can be seen as a generalization of random per-
turbation methods for identity obfuscation in graphs, as it
enables finer-grained perturbations than fully removing or
fully adding edges. Such increased flexibility in spreading
the noise over the edges of the graph enables achieving the
same level of obfuscation with smaller changes in the data,
as confirmed by our experiments on real-world graphs.

While the results that we achieve are most encouraging,
this work represents only a first step in a promising research
direction. As it is often the case, new privacy-enabling tech-
niques create novel attacks that, in turn, propel stronger
protection mechanisms. Therefore, in our future investiga-
tion we plan to extend and strengthen this line of research
by further assessing its limits and merits.

One interesting research direction is to investigate how
to extend our uncertainty-based approach in order to re-
lease networks with additional information, besides the mere
graph data, such as vertex attributes [22], communication
logs among users, information-propagation traces, and other
types of social dynamics. Another case of particular interest
is that of a sequential release of a social network. In a recent
paper, Medforth and Wang [21] demonstrated the risks of
publishing a sequence of releases of the same network. In
particular, they described the degree-trail attack, by which
the vertex belonging to a target user can be re-identified
from a sequence of published graphs, by comparing the de-
grees of the vertices in the published graphs with the degree
evolution of the target. The applicability of the degree-trail
attack to our probabilistic graph release is an open research
question.

Acknowledgments. This research was partially supported by
the Torres Quevedo Program of the Spanish Ministry of Science
and Innovation, co-funded by the European Social Fund, and by
the Spanish Centre for the Development of Industrial Technology
under the CENIT program, project CEN-20101037, “Social Me-
dia” (http://www.cenitsocialmedia.es/). Part of the work was
done while P. Boldi and T. Tassa were visiting Yahoo! Research.

9. REFERENCES

[1] O. Abul, F. Bonchi, and M. Nanni. Never walk alone:

Uncertainty for anonymity in moving objects Databases.

In ICDE, pages 376-385, 2008.

L. Backstrom, C. Dwork, and J. M. Kleinberg. Wherefore

art thou r3579x?: anonymized social networks, hidden

patterns, and structural steganography. In WWW, pages

181-190, 2007.

P. Boldi, M. Rosa, and S. Vigna. HyperANF: Approximating

the neighbourhood function of very large graphs on a

budget. In WW W, pages 625-634, 2011.

F. Bonchi, A. Gionis, and T. Tassa. Identity obfuscation in

graphs through the information theoretic lens. In ICDE,

pages 924-935, 2011.

A. Campan and T. Truta. A clustering approach for data

and structural anonymity in social networks. In PinKDD,

pages 33-54, 2008.

E. Cohen. Size-estimation framework with applications to

transitive closure and reachability. Journal of Computer and

System Sciences, 55(3):441-453, 1997.

G. Cormode, D. Srivastava, S. Bhagat, and

B. Krishnamurthy. Class-based graph anonymization for

social network data. PVLDB, 2(1):766-777, 2009.

G. Cormode, D. Srivastava, T. Yu, and Q. Zhang.

Anonymizing bipartite graph data using safe groupings.

PVLDB, 1(1):833-844, 2008.

P. Crescenzi, R. Grossi, L. Lanzi, and A. Marino. A

comparison of three algorithms for approximating the

distance distribution in real-world graphs. In TAPAS, pages

92-103, 2011.

[10] M. Hay, G. Miklau, D. Jensen, D. F. Towsley, and C. Li.
Resisting structural re-identification in anonymized social
networks. VLDB Journal, 19(6):797-823, 2010.

[11] M. Hay, G. Miklau, D. Jensen, D. F. Towsley, and P. Weis.
Resisting structural re-identification in anonymized social
networks. In PVLDB, 1(1):102-114, 2008.

[12] M. Hay, G. Miklau, D. Jensen, P. Weis, and S. Srivastava.
Anonymizing social networks. University of Massachusetts
Technical Report, 07(19), 2007.

[13] W. Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American Statistical
Assoctation, 58(301):13-30, 1963.

[14] R. Jin, L. Liu, and C. C. Aggarwal. Discovering highly
reliable subgraphs in uncertain graphs. In KDD, pages
992-1000, 2011.

2]

1387

[15] R. Jin, L. Liu, B. Ding, and H. Wang. Distance-constraint
reachability computation in uncertain graphs. PVLDB,
4(9):551-562, 2011.

[16] O. Kallenberg. Foundations of Modern Probability.
Springer Series in Statistics, second edition, 2002.

[17] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and
J. Leskovec. HADI: Mining radii of large graphs. ACM
Transactions on Knowledge Discovery from Data, 5(2):8,
2011.

[18] R. J. Lipton and J. F. Naughton. Query size estimation by
adaptive sampling. Journal of Computer and System
Sciences, 51(1):18-25, 1995.

[19] K. Liu and E. Terzi. Towards identity anonymization on
graphs. In SIGMOD Conference, pages 93—-106, 2008.

[20] M. Marchiori and V. Latora. Harmony in the small-world.
Physica A, 285:539-546, 2000.

[21] N. Medforth and K. Wang. Privacy risk in graph stream
publishing for social network data. In ICDM, pages 437-446,
2011.

[22] A. Narayanan and V. Shmatikov. De-anonymizing social
networks. In IEEE Symposium on Security and Privacy,
pages 173-187, 2009.

[23] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. Anf: a fast
and scalable tool for data mining in massive graphs. In
KDD, pages 81-90, 2002.

[24] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios.
k-Nearest neighbors in uncertain graphs. PVLDB,
3(1):997-1008, 2010.

[25] P. Samarati and L. Sweeney. Generalizing data to provide
anonymity when disclosing information (abstract). In PODS,
page 188, 1998.

[26] J. Shao and D. Tu. The jackknife and bootstrap. Springer
series in statistics, 1995.

[27] T. Snijders. The degree variance: An index of graph
heterogeneity. Social Networks, 3(3):163-174, 1981.

[28] L. Sweeney. Achieving k-anonymity privacy protection
using generalization and suppression. International Journal
on Uncertainty Fuzziness and Knowledge-based Systems,
10(5):571-588, 2002.

[29] T. Tassa and D. Cohen. Anonymization of centralized and
distributed social networks by sequential clustering. IEEE
Transactions on Knowledge and Data Engineering, 2012.

[30] B. Thompson and D. Yao. The union-split algorithm and
cluster-based anonymization of social networks. In
ASIACCS, pages 218-227, 2009.

[31] W. Wu, Y. Xiao, W. Wang, Z. He, and Z. Wang.
k-Symmetry model for identity anonymization in social
networks. In EDBT, pages 111-122, 2010.

[32] X. Ying, K. Pan, X. Wu, and L. Guo. Comparisons of
randomization and k-degree anonymization schemes for
privacy preserving social network publishing. In SNA-KDD,
pages 1-10, 2009.

[33] E. Zheleva and L. Getoor. Preserving the privacy of
sensitive relationship in graph data. In PinKDD, pages
153-171, 2007.

[34] B. Zhou and J. Pei. Preserving privacy in social networks
against neighborhood attacks. In ICDE, pages 506-515, 2008.

[35] L. Zou, L. Chen, and M. T. Ozsu. K-automorphism: A
general framework for privacy preserving network
publication. PVLDB, 2(1):946-957, 2009.

[36] Z. Zou, H. Gao, and J. Li. Discovering frequent subgraphs
over uncertain graph databases under probabilistic
semantics. In KDD, pages 633-642, 2010.

[37] Z. Zou, J. Li, H. Gao, and S. Zhang. Finding top-k maximal
cliques in an uncertain graph. In ICDE, pages 649-652, 2010.

[38] Z. Zou, J. Li, H. Gao, and S. Zhang. Mining frequent
subgraph patterns from uncertain graph data. IEEE
Transactions on Knowledge and Data Engineering,
22(9):1203-1218, 2010.

